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Solutions to Chapter 1

1.1 Give an example of a real world problem that fits the general model of learning and

optimization illustrated in Figure 1.1.

[Solution)]

In the Internet routing protocols, the routing problem can be viewed as a good example
that fits the general model of learning and optimization.

In the routing problem, the goal of protocols is to find an optimal route from the
source computer to the destination computer. Between the source and destination node,
there are many routers which can relay the data packets. Routing protocol is to choose a
set of routers to relay the packets efficiently.

The input action is the relay probabilities of each router. It is supposed that with
high relay probability, the router would more likely relay these packets. We can adjust

these relay probabilities to get a good routes.
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The destination computer can use the lost-packet rate and transmission delay to qual-
ify the routes’ performance. The performance can be observed through destination com-
puter. These are the output variables.

The optimization problem is to adjust the relay probabilities of each router to get
a good routes performance. The detailed construction and information in the internal
network may be very complicated. We can use the learning and optimization method to

learn the network behaviors and optimize the relay routes.

1.2 A person travels from the star point shown in Figure 1.20 to one of the seven des-
tinations indicated as the circles in the figure. The person may receive a reward shown
as the number in the corresponding circle when she/he reaches a destination. There are
three time steps, [ = 0,1, 2, in this problem. The letters a1, 12,13 and g, ..., near
the arrows represent the actions. Develop an optimal policy for the person to receive the

biggest reward. Note that there is more than one optimal policy.

[Solution]

At first we consider the open-loop policy, we can find the best reward is 10. Action
sequences {aq 1, a2, @32} {12,002, 031} can reach this optimal reward.

Next, we consider the policy depending on the action history. We can know the optimal
policy has three sections as below.

Stepl: do(0) = {11, 12,1 3};

Step2: di(a11) = {aoza}, di(arz) = {ags}, di(ar3) = {asa} = di = {ags};

Step3: da(an,1, 01) = {asa}, da(an1, az) = {asp}, da(ar g, 1) = {asa}, da(an e, o) =
{043,1}, d2(041,3, OZ2,1) = {043,1}, d2(041,3, @2,2) = {043,1} = d2(041,1, 042,1‘) = {043,2}, d2(041,2, 042,1‘) =
{043,1}76732(041,3,042,0 = {043,1}, 1=1,2

So the optimal policy is derived: d = {dy, d;, ds}.

1.3 In Example 1.2, at [ = 0, there are two possible observations 3y and y,. Thus, the
number of possible sub-policy dy : {yo,y1} — {0, a1} is 2% = 4. Next, if we do not follow
any policy at [ = 0, then at [ = 1, there are eight possible different histories {Yg, Ao, Y1}.
In this case, at time [ = 1 every policy d; needs to specify an action for every one of these
eight different action-observation histories. Thus, there are 22" — 28 — 956 possible sub-

policies d; at [ = 1. However, if we follow any sub-policy at [ = 0, because Ag = do(Yp),



we only have four (instead of eight) possible different histories for each dy. Therefore, if
we follow any sub-policy at [ = 0, each sub-policy at [ = 1 needs to specify actions for
these four different action-observation histories. That is, for each sub-policy dy, there are
only 2% different sub-policies d; at [ = 1. Thus, there are altogether 22 x 2* = 64 different
combined policies {dy, d; }. Convince yourself about the above argument, and continue to

calculate how many policies there are for d = {dy, dy, ds}.
[solution]

At time (=1 the history sequence is {Yg, Ay, Y1}, thus the number of histories is indeed
23=8. But in fact the action Ay is decided by policy dy. Therefore, for fixed policy dy, at

time [ = 1, there are only 22 possible different histories.

From this point, we can know that at time /=0, the number of policies is |dy| = 2%

At time I=1, the policy number is |d;| = 22° if we follow the policy dy.

At time [=2 the history sequence is {Yp, Ao, Y1, A1, Yo}, the number of histories is
indeed 2°=32. But in fact the actions A, and A; are decided by policy d;. Therefore, for
fixed policy d;, at time [ = 2, there are only 23 possible different histories. Thus, at time
1=2, the policy number is |dy| = 22"

So the total policies space size is |d| = |do| x |di| x |da| = 22 x 22° x 22° = 214 if we

follow policy d.

1.4 Prove that the optimal feedback policy based on observations performs better than

the optimal open-loop policy on average (cf. Example 1.2).
[solution]

As mentioned in Table 1.2, we assume that the observations of the system at time
I =0and [ =1 are fixed as yy and y;, respectively, and the probabilities of Y5 = yo and
Y5 = y; are both 0.5. From Table 1.2, we can know that if we use the optimal open-loop
action sequence (a1, ap, aq), then the optimal reward is %(12 + 8) = 10. However, from
Table 1.2, it is clear that given the history (up to I = 1) {yo, @1, 41,0}, if we observe
Y5 = 1o, we definitely should take action «y at [ = 2 to receive a reward of 12. But, if we

observe Y, = y; at [ = 2, we should take aq to receive a reward of 10 (instead of taking

a; to get 8). Thus, the optimal feedback policy based on observations can obtain a better



6 CHAPTER 1. SOLUTIONS TO CHAPTER 1

performance, which is (12 + 10) = 11 on average.

1.5 Consider an MDP with state space S = {1,2,...,S}. Let the action space be A =
{on, aq,. .., ag}; suppose that when action ¢ is taken in any state, the system will, with

probability one, move to state j, 7 =1,2,...,S.

a. For any ¢ € S, define a distribution on A as v; = {p(1]i), p(2i),...,p(S|i)}. Let
v; = d(i), i € S, be a randomized policy defined as follows: In any state i, ¢ € S,
action «; is taken with probability p(j|i), 7 € S. What is the Markov chain under
this policy v; = d(i), 1 € §7

b. Let o™ and a® represent another two actions: If a®) is taken at state i, then the
system moves according to the probability distribution I/Z~(k) = {p®(1]3), p™ (2]7),
,p®(Sl)), k= 1,2. Let v; = d(i), i € S, be a randomized policy defined as
follows: At any state i, action a(!) is taken with probability p;, and action a® is
taken with probability ¢;, p; + ¢ = 1,1 = 1,2,...,5. What is the Markov chain
under this policy v; = d(i), i € S?

[solution]

a. Since the random policy takes the action a; with probability p(j|i) and the system
will move to state 7 when action «; is taken, we can know the system will move to state j
with probability p(j|i). So, the transition probability matrix of the Markov chain under
the policy v; = d(i),i € S, is P = [p(ji)]7;_,.

b. The transition probability from state i to state j is p*(jli) = pip™ (jli) + (1 —
pi)p® (jli). So, the transition probability matrix of the Markov chain under the policy v

is P = [p”(j|i)]fj:1-

1.6 Consider a two-state process X with history-dependent transition probabilities p[1|(1,1)] =
0, pO[(1, )] = 15 p[1[(0,0)] = 1, p[0](0,0)] = 0; p[0](1,0)] = 1, p[1|(1,0)] = 0; and
pl11(0,1)] = 1, p[0](0, 1)] = 0.

a. Draw a sample path of X . What property does it have?

b. Derive the equivalent Markov chain X as shown in Example 1.3.



c. Suppose that the reward function depends on three consecutive states (X, X1, Xi12)
and is defined as f(1,1,1) = f(0,0,0) = 100 and f(i,5,k) = 0 otherwise. Ex-
plain that the steady-state performance measures for both X and X defined as
=2 ixm(i, 3, k) f(i,5,k) and n =3, ., 7(i, 5, k) f(4, j, k), respectively, are differ-

ent.

[solution]

a. A sample path of X is {0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,...}. The process is peri-
odic and its period is 4.

b. Define Y; = {)?l,l, )?l},l =1,2,.... Then the process Y = {Y}, Y5, ...} is a Markov
chain with state space S = {(0,0), (0,1), (1, 1), (1,0)} and its transition probability matrix
is
0 0
10
01
0 0

The steady state distribution of Y is (1/4,1/4,1/4,1/4). Similarly to Example 1.3, let

= o O O
o o o =

m(0) = > p_oa (K, 0) = 1/2,7(1) = >4, m(K',1) = 1/2. we can obtain the transition
probability matrix of an equivalent Markov chain X with state space S = {0,1}

1/2 1/2

1/2 1/2

by p(klj) = ies { ZELplkI ()]} .k = 0,1

c. For process f, the case ()Afl = 1,)?”1 = 1,)?”2 =1)or ()?1 = O,XZH = O,XHQ =
0) does not occur, so the steady-state performance n = 0. However, for Markov chain
X, we know the steady-state probability that X; = i, X;11 = j, Xj40 = k is (i, 7, k) =
(i) *p(j|i)*p(k|j), so, we have w(1,1,1) = 1/8 and 7(0,0,0) = 1/8, then the steady-state
performance n = 100%1/8+100%1/8 = 25. Thus, the steady-state performance measures
are different for both X and X.

1.7 The exhaustive search algorithm presented in Section 1.1.3 is very “robust”. Suppose

that because of the estimation error, the relationship 7% > 7 cannot be accurately verified.
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a. If dj; is an optimal policy, then the algorithm outputs a correct optimal policy if

only the last comparison is correctly made.

b. Explain that the algorithm outputs the optimal policy as long as the comparisons

n% > 7 are correctly made when n% or 7 is the optimal performance.

c. Suppose n* is the best performance and n* is the next to the best performance,
and set 6 = n* — n*. Then the algorithm outputs the correct optimal policy if the

estimation error for the performance is always smaller than /2.

[solution]

a. Since djs is the optimal policy, that is, n® > n% i = 1,..., M — 1. If the last
comparison is correctly made, i.e., 7 < 7%, then, the algorithm must output d = dyr.
That is, the algorithm outputs a correct optimal policy.

b. When the optimal performance is 7%, since the comparison between 7% and 7 is
correctly made, then, we have d = d; and 7 = n%. That means 7] is the optimal perfor-
mance after this comparison. Because the comparisons between n% and 7 are correctly
made when 7] is the optimal, thus, until the algorithm ends, the 7 is always equal to the
optimal performance n®%. If 77 has been the optimal performance, similarly, since the com-
parisons between n% and 7 are correctly made, then 7 is always the optimal performance.
Thus, the algorithm can output the correct optimal policy.

c. Since § = n* — n*, we have n* —n% > ¢ for n% # n*,i =1,2,..., M. Suppose the

estimations of n* and n% are #* and 7%, respectively, if
7" =0l <0/2
and
7% — ™| < é/2,
then,
7= >t =6/2— (" +6/2) =" —n" -5 20

So, the comparisons can be correctly made when n% or 7 is the optimal performance. By

using the result in part b), the algorithm outputs the correct optimal policy.

1.8 Derive Equation (1.12) by the Poisson equation (1.9) and derive (1.10) by (1.12).



[solution]

We consider the Poisson equation (1.9)
(I = Ph)g" +n'e = f*

under policy d. Left-multiplying the both sides of the above Poisson equation by 7",
which is the steady-state probability of the Markov chain under policy h, we get

(I — PYg? + nine = 7" f.
By n"Ph = 7 7he =1 and 0 = 7" f, we obtain
i — ot = 7h(Ph — P)gl,

This is Equation (1.12).

Define P{" = P4+ §(AP) = (1 — §)P? + §P", where AP = P" — PYand 0 < § < 1.
Let 75 and ns be the steady-state probability and performance measure associated with
Pg’h. We have Pél’h = P4 and Pld’h = P". We can easily prove m; and 7; are continuous
with respect to ¢ and we have 7y = 7% and 1y = n¢. By ns — n? = Wh(Pgl’h — PYg? we
have

ns —n? = oms(AP)g?.
It is equivalent to

775—77d
)

Let 6 — 0, we can obtain the performance gradient at policy d along the direction AP is

= m5(AP)g".

%ﬂ(g:o = lims_o 2" = 74(AP)g?, which is Equation (1.10).

1.9 In the MDP problem, the reward function may depend on the next state; i.e., it may
take the form f(X;, X;y1,a), a € A(X;). Prove that this problem is equivalent to the
standard MDP with f(i, a) replaced by f(i,a) = > ieslf (44, a)p®(51i)].

[solution]

A policy of MDP is a mapping from S to A, i.e., d: d(i) — a € A(i), for all i € S.

nd

L—1
. 1
— nggof ;E[f(Xthﬂ,d(Xl))]



10 CHAPTER 1. SOLUTIONS TO CHAPTER 1

L—1
= lim L3S B X (X)X, = 9] (X = )
=0 €S
EES d(3) ( 517\ .
= Jim - S (i, 3, d(@)p™ (lD)p"(X; = 1)
=0 ieS jeS
= 3 Al A Gli) Jim £ X =)
€S jES =0
= D> f05,d@)p" (Gl (i)
€S jeS
= Y 7)Y i, d@)p" i)
i€S JjES
= > w6 [, d().
€S

Thus, the average performance with performance function f(i, j, ) is equivalent to that

with performance function f(i, a).

1.10 Consider a Markov chain { Xy, X, ...} defined on a finite state space S. In any state
i € S, an action a € A(i) can be taken, which determines the transition probability as
p*(jli), 7 € S. Now, let us assume that the action chosen at X; depends on both X; i,
and X;. Thus, if X; 1 = k and X; = 4, the action is denoted as a = d(k,i) and the
transition probabilities at X; are p?*9(j]i), j € S, where d(k, 1) is the policy.

a. Prove that this problem is equivalent to the standard MDP with an enlarged state
space.

b. Can you find an equivalent standard MDP in state space S.

[solution] a. If we make Y; = (X;_1, X)) as a state at time [, then we can easily prove
the process Y = {¥1,Y5, ...} is also a Markov process. The policy d chooses an action at
time [ according to the state (X;_; = k, X; = 4). Thus, this is a standard MDP problem
with state space § x S.

b. Yes, we can find an equivalent standard MDP in state space S. We only need to
find an equivalent policy that depends only on the current state and under this policy the
performance is equal to that under policy d.

We assume that the initial state Xy = z is fixed. Define a randomized policy £

depending only on X; by

Li(ali) == PHA = a|X; =i, Xo =z}, a € A(i).



11
Next, we show the equivalence between policy £ and policy d, that is, we should show
PHX =j A=alXo =2} =PHX,=j, A=a|Xg=2},1=12,.... (1.1)

By using induction, we show this result holds. Clearly it holds with [ = 1. Assume (1.1)
holds for [ =2,3,...,1 — 1. Then

PUX, =j|Xo=2} = Z Z PUX1 =k, Ay = o|Xo = z}p(jlk, @)
KES acA(k)

= 3% PHX =k, A = alXo = a}p(jlk, o)

keS acA(k)
= PHX, =j| X, =z}

Therefore

PEX =4, A = a|Xg =2} = PYX, =j|Xo = 2}PH{A =alX; = j,Xp = 2}
= PUX, = j|Xo = 2}PHA = a| X, = j, X, = x}
= Pd{Xl = j’ Al = O(|X0 = x}

We have proved the equivalence between policies £ and d.
If we only consider the equivalence under the long run average performance criteria,
we can also show it as follows. Define a randomized stationary policy £ depending only

on X; =1 by

Liali)= 3 ”f’,i).

kid(k,i)=a (@)
where 7¢(k,i) is the steady state probability of the Markov chain {Y,Ys,---}, Y] =
(Xi-1, X)), under policy d, and 7%(i) = Y, g7m(k,7). Under the randomized policy
L, the transition probability from state i to state j is 3 ¢ 4,y £(ali)p(jli, ). Then, we

have

Zﬂ' Z L(a|i)p(jli, @)

€S a€A(1)
ST Y Y Egg
€S a€A(7) k:d(k,i)=c

- YRy W(’“l” (3, d(, )

= ke ™0
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= > ) w(k,i)p(jli,d(k,i))  (cf. (1.5))

i€S keS
= 7(j).
That is to say, the steady state probability 7 (i) under policy £ is equal to 7%(i). Under
the randomized policy £, the performance function is f£(i) = ZaeA(i) L(ali)f(i, a).

Thus, we have

RSOV OED SELGID DD S (i, d(k, 7))
€S €S a€A(i) k:d(ki)=a
= ZZW k,q)f(i,d(k,i)) = n?.
i€S keS

Therefore, we have proved the equivalence between the MDP under policy d and a

MDP under randomized policy L.

1.11 Consider the optimization problem for a discrete time M/M/1 queue. When a cus-
tomer arrives at the server, the number of customers in the system increases by one. The
server serves one customer at a time. Other customers have to wait in a queue. When
a customer finishes its service, s/he leaves the server, and the number of customers in
the system decreases by 1. Let X; be the number of customers in the server at time
[ =0,1,.... If X; =n, then the probability that a customer arrives in the [th period (i.e.,
Xiy1 = X;+1) is a(n), and the probability that a customer leaves (i.e., X;11 = X; —1) is
b(n), and X; stays the same with probability 1 — [a(n) + b(n)]. If X; = 0, then b(0) = 0.
The system has a capacity of V; i.e., an arrival customer will be rejected if there are N cus-
tomers in the system, or equivalently, a(N) = 0. Suppose that a(n),n =0,1,2,..., N —1,

can take M different values: ay,aq,-- -, ay € [0, 1]. We wish to maximize

n = K11 — K272,

where 7); is the average number of customers accepted to the system, 7, is the average of
w(X;), with w being a function of the number of customers in the system, and £y, k2 > 0
are two weighting factors.

Formulate this problem as a standard MDP with random policies.
[Solution)]

The state space is: S ={0,1,2,..., N}.
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The action space is: A = {a,l, s}, where a denotes that a customer arrives, [ denotes
that a customer leaves and s denotes that a customer stays the same.

The policy is a randomized policy with tunable parameters, which chooses action a
with probability a(n) at state n = 0,1,---, N — 1, and a(N) = 0; chooses action [ with
probability b(n) in state n = 1,2,---, N, and b(0) = 0 when state is 0; and chooses action
s with probability 1 — a(n) — b(n). In this policy, a(n),n = 0,1,2,..., N — 1, are the
tunable parameters, which can take M different values: aj,as, -, ap € [0, 1].

The transition probability matrices under actions a, [, s are as follows, respectively,

010 --- 0 a -
0010 O
100 0 O
Pla) = . P =
000 1
0 0 1 0
* ok ok * - -
100 --- 0
0100 0
P(s) =
000 ---1

where * denotes the transition does not occur.
The performance function is: f(X;, A;) = rk11. (X, A) +row (X)), where I,(X;, A4;) =1
for any X; when A; = a, otherwise, 1,(X;, 4;) = 0.
The average performance is: n = hm . Zl f(X, 4) = llm 1 Z [lilfa(Xl,Al) +

Row(X l)] :
The optimization problem is to choose the proper arrival rate a(n) to get the maximum

average performance.

1.12 For an ergodic Markov chain, we have

n = lim —Zf X)), w.p.1.

L—oo I

Develop a “learning” algorithm which updates iteratively the estimates of 1 at every

transition of the Markov chain using the reward observed at the transition. That is, find
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an algorithm
M= -1+ (1 — k1) f(X1),

with 71 = 0 and 0 < k; < 1, such that lim; ., 7, = 1. Determine x; for [ =0,1,.. ..
[Solution)]

!
Define 7, = 1%1 > f(Xk), then
k=0

1 1
k=0 k=0
=l FXD] = i+ (X
BN -1 ! l_i_lmfl 11 !
[ l
= i 1— —)f(X)). 1.2
l+17711+( ] 1)f( ) (1.2)
Therefore, we can let k; = Hil

On the other hand, formula (1.2) can also be written as follows,

=1+ — (f(X0) = M=1) = D=1+ (f(X0) — =) -

We know that p = 1 — #y = 17 which satisfy Y% = oo and >7,%(1u)* < co. In fact

it is the derivation of the stochastic approximation method. The factor p; = is one of

1
I+1

the most classical step size in stochastic approximation algorithm.

1.13 Consider a Markov chain under a deterministic policy «; = d(i), i € S. Drive the

equation for Q-factors:

Wiyen) = 3 p(G10QUG. o) + 0 = f(i, ).

jES

[Solution)]

From the definition of Q)-factor, we have
s
QUi i) = Y _p*(ilD)g" () + f(i,eu) — .
j=1
For deterministic policy, we have

9'() = E{Z[f(XlaAl ’XO_]}

=0
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= E{Z[f(Xl,Az) — )| Xo =j, Ao = @j}

S
= Zpo‘i(j\i)gd(j) + f(i, ;) — 7
= Qd(ja aj)'

Thus,
QG i) = Y p™(111)Q"(, ) + 0 = f(i, ).
jeS

1.14 Consider a Markov chain with state space S. At each state i € S, there are two
available actions denoted as a;; and ay;. Let d be a randomized policy with d(i) = v; =
{p1i,p2:}, PrisD2; > 0, pri + po; = 1, representing the probabilities of taking actions
aq; and ag;, respectively, ¢ € §. We also can view v; as an action, which determines the
transition probabilities of state ¢ (see Problem 1.5). Therefore, we have three actions for
each state: aq 4, ag;, and v, @ € S. Observe a sample path of the system under randomized
policy d. Overall, when the system visits state ¢, it takes action v;. This is equivalent
to a system which takes action «a;; sometimes when the system visits state 4, and takes
action ap; other times when it visits ¢, with probabilities p; ; and ps;, respectively. Thus,
a sample path of the system under policy d contains the information about Q%(i,a ;),

Qd(ia aQ,i)) and Qd(ia Vi)) i €S.
a. Prove Qd(ia Vi) = pl,iQd(ia ai,) +p2,iQd(ia Q).
b. If Q4(i, ar;) > Qi cvg,), then Q4(i, an ) > Q% i, vy).

c. Prove that for every randomized policy d there is always a deterministic policy which

is at least as good as d.

[Solution)]
a.

Qi v) = ZZpupo‘“ (J17)g +szzf i, au)

JGSl 1

= th{Zpaw 3) + f iy on) — 0}

JjES
= qu (i, a14) + p2.:Q (i, ass),
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where p*i(jli),l = 1,2,i,j € S are the transition probability under the action ay; and
g%(j) is the potential at state j under policy d.
b. From Part a),

Qd(’ia v;) = pl,z’Qd(’ia Q) +p2,z'Qd(’ia ag;) < pl,iQd(ia Qi) +p2,iQd(’ia ay;) = Qd(ia Qi)

c. The transition probability from state ¢ to state j under randomized policy d is
p?(ili) = o7, prap®i(j]i). From the performance difference formula 7" —n? = 7h[(P" —
P g+ f* — f7, where h is another randomized policy with h(i) = {p};, ph,}, we can
obtain the following performance difference formula based on Q-factor,

0" —nt = Zﬂh(i) Z [Pl — Pl Q7 (3, auy). (1.3)

€S 1=1,2

From part b), we have maxq, , ;=12 Q%(4, or;) > Q%(4,14). If policy h chooses action

aj; = argmax Q*(i, ay), (1.4)

Qg

at state ¢« with probability 1, we have

Z [p;z - pl,z’]Qd(’ia Oél,i) = Qd(ia Oéz*,i) - Qd(ia I/z') > 0.

1=1,2
Thus, from difference formula (1.3), we have n* > n¢. That is to say, for every randomized

policy d, there is always a deterministic policy h choosing actions as (1.4), which is at

least as good as d.

1.15 Consider a linear control system defined as
Xl+1:Xl—|—ul—|—£l, l:O,l,

The state space is the set of integers S := {...,—1,0,1,...}, the control variable u
can take two values —2 and 2, the random noise ¢ takes values from the integer set
{—4,-3,-2,-1,0,1,2,3,4} with probabilities p({, = 0) = 0.2 and p({ = i) = 0.1 if i # 0.
Describe the system in the MDP formulation.
[Solution)]

The state space of the system is & = {0,1,—1,2,—-2,3,—-3,4,—4,...}. The action
space is A = {—2,2}. If the current state is 0, then the probability that the system



17

transits to state 0 under the action a = —2 is P{{ = 2} = 0.1. In the same way, we can

obtain the transition probability matrix as follows:

0.1 01 01 01 02 0 01 0 01 0 0.1 0 0.1
0.1 01 02 01 0.1 01 01 0 01 0 0.1 0 0

Pla=-2)=
0101 01 0 01 0 020 01 0 01 0 0.1
01 01 01 02 01 01 0 01 0 01 0 01 0
01 01 01 01 0 02 0 01 0 01 0 01 0
Pla=2)=

0.1 02 0.1 01 0.1 01 0.1 01 0 0.1 0 0 O

1.16 Consider an admission control problem of a communication system consisting of three
servers. The system is Jackson type and hence its state can be denoted as n = (nq, ng, n3)
with n; being the number of customers in server ¢, i = 1,2,3. Define an event a4 as:
a customer arrives at the network and finds that there are 4 customers already in the
network. Clearly define this event by a set of state transitions. (Denote the transition
from state n to n’ as (n,n').)

[Solution)]

Denote a4, as the event that a customer arrives at the network and finds that there
are 4 customers already in the network and this customer will be accepted to server 1,
1=1,2,3.

Denote a;4 as the event that a customer arrives at the network and finds that there
are 4 customers already in the network and this customer will be rejected.

We know that a4 = U}_qaq;.

A44,0

= {{(0,0,4),(0,0,4)),{(0,4,0),(0,4,0)), {(4,0,0), (4,0,0)), ((1,1,2), (1, 1,2)),
((1,2,1), (1,2,1)),{((2,1,1), (2,1, 1)), (( )):((3,0,1),(3,0,1)),
((1,0,3),(1,0,3)),((1,3,0), (1,3,0)),{(0, 1,3), (0, 1,3)), {(0,3,1), (0,3, 1)),
((2,2,0),(2,2,0)),((2,0,2),(2,0,2)), {( )

3,1,0),(3,1,0

(
((0,2,2),(0,2,2))}
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£4(0,0,4), (1,0,4)), ((0,4,0), (1,4,0)), {(4,0,0), (5,0,0)), (1, 1,2), (2, 1,2)),
((1,2,1),(2,2,1)), (2,1,1), (3,1, 1), (3. 1,0), (4,1,0)), (3,0, 1), (4,0, 1)),
((1,0,3), (2.0,3)), ((1,3,0),(2,3,0)), {(0,1,3), (1, 1,3)), ((0,3,1), (1,3,1)),
((2.2,0), (3.2,0)), ((2,0,2), (3,0,2)), {(0,2,2), (1,2,2))}

£4(0,0,4), (0, 1,4)), ((0,4,0), (0,5,0), {(4,0,0), (4,1,0)), (1, 1,2), (1,2,2)),
((1,2,1),(1,3,1)), ((2,1,1), (2,2,1),,((3.1,0), (3,2,0)), (3,0, 1), (3,1, 1)),
((1,0,3), (1,1,3)), ((1,3,0), (1,4,0)), {(0,1,3), (0,2.3)), ((0,3,1), (0, 4,1)),
((2.2,0), (2,3,0)), ((2,0,2), (2,1,2)), {( )

0,2,2),(0,3,2))}

{((0,0,4),(0,0,5)), ((0,4,0), (0,4, 1)), {(4,0,0), (4,0,1)),{(1,1,2), (1, 1, 3)),
((1,2,1),(1,2,2)),((2,1,1),(2,1,2)),,

( ( )

( (2, (B3, 1),
((1,0,3),(1,0,4)), ((1,3,0), (1,3, 1)), ((0,1,3), (0,1,4)), (0,3, 1), (0,3, 2)),

( ( 0, )

) )
((2,2,0),(2,2,1)),((2,0,2),(2,0,3)), ((0,2,2),(0,2,3))}



Solutions to Chapter 2

2.1 In Figure 2.2 , the three points Fy, P;, and P, represent three policies. Every point P
in the triangle with the three points as vertices represents a randomized policy denoted
as P(01,01,02) = 00Py+ 61 Py + 02 P, 09+ 61+ 09 = 1, with Py = P(1,0,0), P, = P(0,1,0),
and P, = P(0,0,1).

a. Determine the values of dy, 61, and d, by the lengths of the segments shown in the

figure.

b. Along the line from Py to P;, we have randomized policies Ps = (1—9)Py+dP;,0 <

0 < 1, and we can obtain the directional derivative in this direction, denoted as

dns

2 |p,—p,. Similarly, we can obtain the directional derivative in the direction from

Py to P, denoted as dns |, 5. What is the directional derivative from P, to P?
ds 1 Po—P2
Express it in terms of C%|po,pl and %\po,&. (Hint: Along this direction 01/dy is

fized.)

19
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Solution:

a. Firstly, since P’ is a point in the line segment P P,, we have

PyP'| | PP’
p = 2P + Py, 2.1
PP PRy (21)
where | - | denotes the length of a line segment. Similarly, since P is in the line segment
PyP’, we have
PP BoP| o,
P= P P 2.2
7P AP 22
Putting (2.1) into (2.2), we have
|P'P| |PyP| | PyP'| | P P'|
P P+ P.
2Pt RE " R
|P'P| | PyP| | PyP'| | Py P |P1P’|P
1 2.
PP " |PyP'| | PPy |PyP'| | PP,
_|ppP _ |PyP| |PP] _ |PP| [P P
Thus & = (g o, 01 = 1pprips 20 &2 = {5l oy
b. Since
P5 :PO—F(S(P—P())

= Py + 0(00Py + 01Py + 02 Py — (60 + 01 + 02) Py)
:P0+5(51(P1 —P0)+52(P2—P0))
= PO +5AP,

where AP = 01(P; — Py) + 62(P, — Fy), the directional derivative from Py to P is

dns
— =7mAP
do p—pP ey
:W[(Sl(Pl—Po)—l—ég(Pg—Po)]g
d d
g s dns

dd 1 p—p, dd 1 po—py

2.2 (Random walk) A random walker moves among five positions ¢ = 1,2,3,4,5. At
position ¢ = 2, 3,4, s/he moves to positions ¢ — 1 and ¢ + 1 with an equal probability
p(i—1|i) = p(i+ 1]7) = 0.5; at the boundary positions i = 1 and ¢ = 5, s/he bounces back
with probability one p(4]5) = p(2|1) = 1. We are given a sequence of 20 [0, 1)-uniformly

and independently distributed random variables as follows.
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0.740, 0.605, 0.234, 0.342, 0.629, 0.965, 0.364, 0.230, 0.599, 0.079,
0.782, 0.219, 0.475, 0.051, 0.596, 0.850, 0.865, 0.434, 0.617, 0.969.

a. With this sequence, construct a sample path X of the random walk from X to X

according to (2.3). Set X, = 3.

b. Suppose that the perturbed transition probabilities are p/(i —1|i) = 0.3, p'(i+1|i) =
0.7,i=2,3,4, and p'(4]5) = p'(2[1) = 1. Set ps(j|i) = p(jli) + 8[p'(jl7) — p(jli)]. By
using the original sample path obtained in (a), construct a perturbed sample path
X5, 0 = 1, following Figure 2.5. Use the following independently distributed [0, 1)
random variable when Xj is different than X (use the I[th number to determine the

lth transition of X, if X;,; # X)):

0.173, 0.086, 0.393, 0.804, 0.011, 0.233, 0.934, 0.230, 0.786, 0.410,
0.119, 0.634, 0.862, 0.418, 0.601, 0.118, 0.626, 0.835, 0.361, 0.336.

c. Repeat b) for 6 =0.7,0.5,0.3,0.2,0.1.

d. Observe the trend of the perturbed paths Xjs. In particular, when ¢ is small, most
likely the perturbed parts from the jumping point to the merging point are the same

as if they follow the original transition probabilities p(jl|i), ¢,7 = 1,2,---,S.

Solution:
a. We assume that the initial position is Xy = 3. According to (2.2), since 3_»_, p(k|3) <
0.740 < 3¢, p(k|3), the next state is 4. Similarly, the other subsequent states can be

generated by using (2.2) and the sample path is
3,4,5,4,3,4,5,4,3,4,3,4,3,2,1,2,3,4,3, 4, 5.

The sample path is described in Figure 2.1.

b. We assume that the perturbed parts from the jumping point are generated by
using corresponding random number in the given sequence of 20 [0, 1)-uniformly and
independently distributed random variables. That is, if there is a jump at i-th time, then

next state of perturbed sample path is generated by using i-th [0, 1)-uniformly random
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number in the given sequence. According to (2.2), the perturbed sample path when § = 1
is

3,4,5,4,5,4,5,4,3,4,3,4,3,4,5,4,3,4,5,4, 5.

The sample path is described in Figure 2.1.

Figure 2.1: The original sample path and perturbed sample path with 6 =1

¢. The perturbed sample path when 6 = 0.7 is
3,4,5,4,3,4,5,4,3,4,3,4,3,4,5,4,3,4,5,4,5.

The sample path is described in Figure 2.3. The perturbed sample path when 6 = 0.5 is
the same as the one when § = 0.7. The perturbed sample path when § = 0.3 is

3,4,5,4,3,4,5,4,3,4,3,4,3,4,3,4,3,4,3,4,5,

which is described in Figure 2.3. When ¢ = 0.2, the perturbed sample path is the same
as the one when 0 = 0.3. The perturbed sample path when § = 0.1 is the same as the

original one.

Figure 2.2: The original sample path and perturbed sample path with 6 = 0.7 and 6 = 0.5
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Figure 2.3: The original sample path and perturbed sample path with § = 0.3

d. We may observe the trend of the perturbed paths Xs. When ¢ is small, there are
fewer perturbations on the perturbed sample paths. Moreover, most likely the perturbed
parts from the jumping point to the merging point are the same as if they follow the

original transition probabilities p(jli), i,5 = 1,2,---,S.

2.3 Let X and X be two independent ergodic Markov chain with the same transition

probability matrix P on the same state space S. Define Y = (X, X).

a. Prove that Y is ergodic.

b. Express L;; in Figure 2.6 in terms of the Markov chain Y.

Solution:

a. Proving that Y is ergodic means proving that Y is irreducible and aperiodic under
the condition that X and X are ergodic. Firstly, we prove that Y is irreducible. Since X
and X are ergodic, we know that for any states ¢,7 € S, there is a N > 0 such that when
n > N, p"(j]i) > 0, where p"(j|i) denotes the probability that Markov chain moves from
state i to j at n-th step. Thus, for any states (i, j) and (k, () of Markov chain Y, if m > N,
then p™((k,0)|(7,7)) = p™(k|i)p™(l|j) > 0, where we have used the independence of X
and X. That is, Y is irreducible. Moreover, since for any m > N, p™((i,7)|(i,7)) > 0,
the great common divisor of {k|p*((4,j)|(i,7)) > 0} is 1. Thus, Y is aperiodic. Irreducible

and aperiodic Markov chain Y is ergodic.
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b. Define M = {(4,4),i € S}, then, Lj; = min {l > 0,Y; € M|Yy = (4,)}, which is the
first hitting time of Y to reach set M from state (i, j).

2.4 Consider a three-state Markov chain with

0 05 0.5 10
P=101 06 03], f=15
0.7 0.1 0.2 8

a. Solve the Poisson equation (2.12) (I — P)g + ne = f for g and n (by e.g. setting
9(0) =0).

b. Solve m = 7P and we = 1 for 7 first, then solve (I — P+ em)g = f for g.

c. Compare both methods in a) and b).

Solution:
a. Since the solution g to the Poisson equation is unique up to a constant, we can first
let g(0) equal to a constant and solve the Poisson equation to obtain a special solution.

The general solution g is equal to g + ce. For example, setting g(0) = 0, we have

1 —05 —05 0 7 10
—01 04 —03||g) |+ |n|=1]T5
~07 —0.1 08 9(2) 7 8

Arranging the equation, we have

05 —05 1| | g(1) 10
04 —03 1| | g2 |=1]5
—01 08 1 7 8

Solving this equation, we can obtain g(1) = —5.5963, ¢(2) = 0.1835,n = 7.2936. Thus,
the general solution is g(0) = ¢, g(1) = —5.5963 + ¢, g(2) = 0.1835 + ¢ and 1 = 7.2936.

b. Solving the balance equation 7 = 7P and me = 1, we obtain 7 = [0.2661, 0.4128, 0.3211].
Putting 7 into (I — P+em)g = f and calculating the inverse of I — P+ em, we may obtain
g= (I —P+em) ' f=1[95451,3.9487,9.7286] .
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c. In a), we do not need to compute the steady-state probability =. However, in b),

the steady-state probability should be computed firstly.
2.5 For an ergodic Markov chain X = {X;,l = 0,1,...}, derive the Poisson equation
using

—11mZE{ (X)) —n] | Xo =i},

L—o0

Solution:

g(i) = lim ZE{ F(X) —n]|Xo =i}

L—oo

= lim {f(i) —ﬁ+iE{[f(Xz) — ][ Xo = i}}

L—oo
=1
L—-1

= f() —77+LlijrolozE[f(Xz) — | Xo =1

= f@) —n+> i) hmZE F(X0) = nlXy = j]
jeS

= f(i)—n+ Zp jl9)9(j)

Rewriting it as a matrix form, we have
g=f-ne+tPg. = (I—-Plg+ne=/f

Then we have obtained the Poisson equation.

2.6 The Poisson equation for the perturbed Markov chain is

(I — Ps)gs + nse = fs,

where Ps = P+0AP and fs = f+JAf. Derive the performance derivative formula (2.26)

from the above equation.

Solution: Taking derivative of both sides of the Poisson equation for the perturbed

Markov chain, we have

dgs d
~APgs + (I — Pg)%Jr% e=Af.
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Right multiplying this equation by s, we have

d
775 = 7T5(AP95 + Af)
ds
According to the continuity of w5 and gs with respect to 9, the derivative at § = 0 is

dns

35l = T(APg+ Af),

which is the performance derivative formula (2.26).

2.7 Prove the following results:
a. If f = ce with ¢ being a constant, then g = ce is a constant vector.

b. If p(j|i) = p; for all i € S; i.e., every row in the transition probability matrix is the
same, then g = f.

c. It p(j]7) = p(ilj), for all 4,j € S; i.e., the transition probability matrix P is sym-

metric, then Zle g(i) = 2521 f(@).

Solution:

a). If f = ce, we have

g can be written as

L-1

—hmE{Z f(X) - |X0_z}—hmE{Zc—c\Xo_z}—o

L—oo —o

Since potential g can be added by any constant vector, we have g = ce.

b). Because p(j|i) = p;, from 7 = 7P we have
=D mip(ili) = 3 mp; = i
Thus we have P = er. From Poisson equation
f=U-P+em)g=(—er+em)g=yg,

then g = f is proved.
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c¢). Because PT = P, we have (Pe)T = e = TP = ¢T. And we have 7P = 7
and this equation has unique solution with me = 1. Compare these two equations, we

+e'. For a special potential g such that mg = 7 f, we have ve'g = Le' f, thus

S gli) =300 £().

have 7 =

2.8 Prove et = limg;; “22, in other words,

. . dnﬁé
=1 =1 2
35 Bmna.o] = lim =5

Solution: From equation (2.44)

d
s - or) pres

and from (2.38) and (2.39), i.e.,

limgs = g,
ﬁ“gﬁ g

lim(1 — B)(1 — BP) ™" = em.

then, we have

. dngs ~ dns
15%1 BY; —eW[APg—I—Af]—ed5.

2.9 Assume that P changes to Ps = P + 0(AP), APe = 0, and fs = f. Derive the

2
second-order derivative of the discounted performance 735 with respect to 4, d d’;@é.

Solution:

From equation (2.31),

(L = BFs)ngs = (L= P)f. (2.3)

Taking derivative of both sides of (2.3), we have

dng,s
do

—ﬁAPﬁgﬁ + ([ — ﬁp(;) =0. (24)

Thus, we have dzg"s = (I — BPs)"'BAPnss. By using (2.37) and (2.31), we have ng; =

(1 —0)gss + Bens. Thus,

Yot _ (1 )(1 — BP5) " 3APgss (25)



28 CHAPTER 2. SOLUTIONS TO CHAPTER 2

Taking derivative of both sides of (2.4), we have

d*np.s _
do?

d
—2BAPEIES o (1 — BPy)

. 0. (2.6)

Thus, the second order derivative digg"‘ = 2(I — BP(;)*lﬁAP%. Putting (2.5) into it,

we have

dznﬁa 1 )
g2 2(1 = B)[(I — BFs) BAP gg.s.

and the derivative at 6 = 0 is

d*ng,s
do? ls=o

=2(1-B)[(I - BP)"'BAP gs.

2.10 In Example 2.2 ; we have

B —32 3.2
G =AP(I —P+enm) =
3.2 =32
a. Find the eigenvalues and eigenvectors of G.
b. Verify that
—1
—3.2 32 1 1 0 0 1 1
3.2 =32 1 -1 0 —64 1 -1
c. Prove .
1 1 0 0 1 1
GTll — )
1 1|0 (=64 | |1 =1
and

-1

1 1 0 0 1 1

=1y Gy=7m) (0G1)" =7
27 Lo ] o sraconr | |1 o

d. Determine the convergence region of ms. Extend the discussion to more general case.

Solution:

a. The eigenvalues of G are —6.4 and 0. The corresponding eigenvectors are [1, —1]T

and [1,1]T.
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1 0.5 0.5
b. The inverse of matrix is . Then, computing the left side

1 -1 0.5 —0.5
by using matrix multiplication, it can be found that the both sides are equal.

c. According to b),

- 1r -1 -1

1 1 0 O 1 1 1 1 0 O 1 1
1 -1 0 —64 1 -1 1 -1 0 —64 1 -1

Gy =

- - -1

1 1 0 0 1 1
1 =10 (=64 |]|1 -1

By using (2.54) and the above result, we can obtain

-1

1 1 0 0 1
1 =1 | [0 2 (=646 | |1 -1

—_

Ty = WiG? = Wi(éGl)” =T
n=0 n=0

d. We can find if 0 < 6 < g, then 6.46 < 1, so the series >~ (—6.46)" converges.

. . . 1
For more general case, the convergence domain of 75 is 0 < 6 < r := AP PTer) 1"

2.11 A group is a nonempty set GG, together with a binary operation on G, denoted as
juxtaposition ab, a,b € G, and ab € G, with the following properties: (i) (Associativity)
(ab)e = a(bc), for all a,b,c € G; (ii) (Identity) There exists an element e € G for which
ea = ae = a for all @ € G; and (iii) (Inverse) For each a € G, there is an element denoted

a~t, for which aa™ = a~ta = e, [220].

a. Verify that the set of matrices defined in (2.50) with matrix multiplication satisfies

the above properties.

b. In Example 2.2, we have

—0.10 0.10
0.15 —0.15

B=P—-1=

what is its group inverse? Is the inverse an infinitesimal generator?

Solution:
a. For any By, By € B, we have 1B By = (7By)By = 0 and By Bse = By(Bze) = 0,

so B1 By € B. Since the binary operation on B is matrix multiplication, the Associativity



30 CHAPTER 2. SOLUTIONS TO CHAPTER 2

holds. We can easily verify that [ —em € B. For element I —er € BB, we have B(I—en) = B
by using Be = 0 and (I —em)B = B by using 7B = 0, Thus, the Identity holds. By using
(2.49) and B*e = 0 and 7B# = 0, we know the Inverse holds.

b. By using me = 1 and 7B = 0, we firstly obtain = = [0.6,0.4]. Putting 7 into (2.48),

the group inverse of B is

—1.6000  1.6000
2.4000  —2.4000

B* =
B* is also an infinitesimal generator.

2.12 Assume that the Maclaurin series of Pj exists in [0,6]. Equation (2.57) can be

derived directly by the following procedure: Taking the derivatives of the both sides of

dnm

o5n at 0 = 0. Then we can construct the Maclaurin

75| — Ps] = 0 n times, we can obtain
series of m. Work out the details of this approach and derive the Maclaurin series of n; at

J=0.
Solution: Taking derivative of both sides of 5[/ — P5] = 0, we have
—[I — P(;] = TMg—=. (27)

Multiplying the both sides of the above equation on the right with —B#, which is the
group inverse of I — Ps, and noting that (I — P5)(—B#) = I — er and me = 1, we get

dﬂ'(g . dP(; #

Thus %L;:O = 74L(—B#)f. Continuing taking derivative of both sides of (2.7), we

obtain,

(2.9)

Similarly, multiplying the both sides of the above equation on the right with —B# and
putting (2.8) into it, we get

d27T5 dP5 9
152 :27T5(%(—B#)) + m5——(—B7).

Thus Cis—”ﬂgzo = 2m(E(-B#))?f + W%(—B#)f. We can continue the computation of

d"ns
dé‘n b

n > 3. Putting these derivatives into the Maclaurin expansion of ns; at § = 0, we
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have
1d77 5
ns = 77+Z 'd(S”

dP dp
= 7rf+7TE( B#)(SfWLW(%( )) 00 f + o 2 52 —= (=

_ {1+%§(zﬁm&+k%?@fﬁ»2+%%§k—3#ﬂﬁ+~~}f

2
1 _d°p B#)52f+

2.13 Prove the continuous version of the PRF equation (2.62) from its discrete version

(2.7) by setting B = P — I, and vice versa.

Solution:
The continuous version of Lyapunov equation is BI'+T'BT = —F and discrete version
is ' — PTPT = F. Because B = P — I, we have Be = 0.

From discrete to continuous: Replacing P with B + I, we get

Ir-B+DI(B+N)T'=F
I'-BI'B"—Br-TB"-T'=F

BT +I'B" = —F — BTB"
Since BL' BT = B(eg™ — ge7)BT = Beg™ BT — Bg(Be)™ = 0, we have
BT +TI'BY = —F,

which is the continuous version of the PRF equation (2.62).

From continuous to discrete: Replacing B with P — I, we get

(P-DI'+T(P-DN'=—-F
(P-Nr'+0(P-N'=-F—-(P-DI'(P-1)"

where we have used (P — I)T'(P — I)T = 0. Then, arranging the above equation, we have

[ — PTPT = F, which is the discrete version of the PRF equation (2.7).

2.14 Consider a Markov chain X with transition probabilities p(j|i), i,j € S and reward
function f. For any 0 < p < 1, we define an equivalent Markov chain X’ with transition
probabilities p'(jli) = (1 —p)p(jli), j # 4, and p'(ili) = p+ (1 —p)p(ili), i € S. Set f' = f.

Prove that ' = n and ¢’ = £

1-p°



32 CHAPTER 2. SOLUTIONS TO CHAPTER 2

Solution: Let 7 and 7’ be the steady-state probabilities of Markov chain X and X',
respectively. Define P = [p(j]é)] and P' = [p’(j|¢)]. From the definition of Markov chain
X', we have P = pI + (1 — p)P. Thus, we have

7P =m(pl + (1 —p)P) =m.

This means the steady-state probability of Markov chain X is equal to that of Markov
chain X', i.e. 7’ = w. Since the average performance n’ = 7' f, we have y = n'f =nf =n.

Considering the Poisson equation
(I-P)g+ne=f. (2.10)

Since the solution to Poisson equation (2.10) is up to a constant, we can choose a solution

satisfying 7'g’ = . In this case, putting P’ = pI + (1 — p)P into (2.10), we can obtain

.
(1=p)I = P)g' + (1 —pler'q = f.
Thus, we have
g = L([ — P+en) .
l1—p
Since 7' = m and g = (I — P+ em) ™! f is the potential of Markov chain satisfying g = 7,
g

we have ¢’ = 0>

2.15 Consider a Markov process X with transition rates A(i), and transition probabilities
p(jli), i,7 € S, and reward function f. For any A > A(i), i € S, we define an equivalent

Markov process X’ with transition rates A'(7) = A, and transition probabilities p/(j|i) =
(i), 5 # 4, and p/(ili) = (1= 52) + 22p(ili). Set f'= f.
a. Prove that ' =n and ¢’ = g.

b. Let the discrete time Markov chain embedded at the transition epoches of X’ as

X*. Find the steady state probability 7t and the potential g' of XT.
c. Suppose that 1 =\ > \(i), i € S, prove that g' = g.

d. For any x > 0, we define a Markov process X with transition rates i) = rA(D),

i € S, transition probabilities p(j|i) = p(j|i), i,j € S, and reward function ]7: f.

Prove that 7 =7 and g = £

PR
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e. Given any Markov process X, can you find a Markov chain that has the same

steady-state probability m and potential g as X7 (Hint: use the results in b) - d).)

Solution:

a. From the definition of Markov process X, we have the infinitesimal matrix of X
is A = A[P — I], where P = [p(j|i)], I is the unit matrix and A = diag{\(1),---, A(S)}.
Similarly, the infinitesimal matrix of X’ is A’ = A[P" — I|, where P’ = [p/(j|i)]. From the
definition of P’, we have P’ = I + 4[P — I] = I 4+ 4. Thus, we have A’ = A\[P' — I] =
A % é = A. That is to say, Markov chains X and X’ have the same infinitesimal matrix.
Thus, they have the same steady-state distribution, i.e., 7’ = w. Then, by using n = 7 f
and Poisson equation (2.66), they have the same average performance and potentials, i.e.
7 =nand g =g.

b. From the definition of X', we know the transition probability matrix of embedded
Markov chain X Tis P’ = I —I—é. We assume the steady-state probability of Markov process
X is 7, that is, m satisfies 7A = 0 and me = 1. Then, we have 7P’ = «(I + %) = 7.
Thus, 7 is also the steady-state probability of XT , which means the embedded Markov
chain XT has the same steady-state probability as Markov process X . For the potentials
of X', we have

g = (I—=P +en)'f
= - D ey

A
= A=A+ dem) .

We can test g := (—A+ Aem) ™! f is the potential of Markov process X satisfying mg = 1.
Thus, we have the following relationship between the potentials of Markov chain X' and

Markov process X

gT = \g.

c. From b), we have gf = gif A\=1> \(i),i € S.

d. From the definition of X , we can obtain the infinitesimal matrix of X ,

A = diag{\(1), -, MS)YP — 1] = &k diag{\(1), -+, \(S)}P — I] = kA.
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Thus, we have 7A = kA = 0. That is to say, 7 is the steady-state probability of X , l.e.

7 = 7. For the potential, considering the Poisson equation
~Ag +ije = [,
Since A = kA and n=7f=wnf=mn, we have
—KkAg +ne = f. (2.11)

The solution to equation (2.11) is up to a constant, in particular, we can choose g satisfying

mg = . In this case, the Poisson equation (2.11) becomes
k(—A+em)g=f.
Thus, we have

G=(-Atem) ']

We can verify g := (—=A+em) "L f is the potential of Markov process X satisfying mg = 7.
Thus, we have g = £.

e. From the the above discussions, for any Markov process X with infinitesimal
matrix A satisfying the transition rate A(i) < 1,7 € S, we can find the Markov chain
with transition probability matrix P = A + I, i.e. let A\ = 1 as part c¢), has the same
steady-state probability and potential as Markov process X. If A(i) > 1 for some ¢, it is
difficult to find a Markov chain that has the same steady-state probability 7 and potential

gas X.

2.16 For semi-Markov processes with the discounted performance defined in (2.93), set

ng = (15(1), -+ ,ms(5))" and gg := (gs(1)," -, ga(5))". Prove that (cf.[57])

lim gz =g
oot P ’
lim nz = ne,
oy P

and

ng = Bgs + ne.
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Solution:
T
mli) = Jim B[ [ e (X V)l X =
T ’ TN
- E[ Be Pt (4, Yo)dt| Xo :z} + lim E[ Be~PtF(X,, Vy)dt| Xo :z}
0 Ty
Ti=1
= Be P f (i, j)dtdQ(i, j, dr)
>/
+ lim Z{ /0 e /T X YdQU. . )}
= Y {ray / (1= ™Qddn}+ 3 { [ e Qud.drn)])
JjES JjES 0
= fﬁ(i)/o (1—e"M)Q(i, dr) +;{/ e 7 Qi, j dT)ns(j )} (2.12)
where f3(i) = ZjeS{fji”lfOe 1&6 ZT;?)(LMT)}' Dividing both sides of (2.12) by [7°(1
e PQ(i, dr), we have
1 1
na(i) = fp(i) — B/\ﬁ(i)nﬁ(i) 3 > As(D)Qs(i, s (). (2.13)

JjES

Jé; e~ B7Q(i,dr) *© e=BTQ(i,5,dT)
where A\g(i) = foofol gy and Qp(i,j) = W' Thus, (61 — Ag)ns = f3,

where
gl MO ir i 1)
—As()[1 = Qp(i,0)], if i=j.
So,
ns = B(BI — Ag) ™' f3. (2.15)

We can easily prove that

lim Q(7, j) = Q. j).
lim A (i) = A(0).
tim f5(i) = £().
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Thus, we have Ag — A. Next, we prove that 3(8] — Ag)~! — ep, where p satisfies pA = 0
and pe = 1. From (2.14), we can find Az is a infinitesimal matrix. Thus, the balance
equation pgAs = 0 and pge = 1 has a unique solution pg. With the continuity of pg, we
have pg — p. Similarly to (2.43), we have the following continuous-version equation,

(BI — Ap +eps) ™ = (B — Ag) ™ — ﬁ. (2.16)

Multiplying the both sides of (2.16) with 8 and letting 8 — 0, we can easily prove
B(BI — Ag) — ep. On the bases, using (2.15), we have limg 713 = ne. By using the
definition of gg and ng, we can directly obtain 7z = B¢z + ne. Thus, putting (2.15) into
ng = Bgs + ne, we have

(BI — Ag)gs = fa — ne. (2.17)

we know ¢z is a unique solution up to a constant of (2.18). Let 8 — 0, we know g, :=

limg_.o g satisfies
—Ago = f +ne. (2.18)

From the uniqueness, g = go. Thus, we know that limg_,o gg = g.

Reference: Cao Xi-Ren, “Semi-Markov Decision Problems and Performance sensi-

tivity Analysis”, IEEFE Transactions on Automatic Control, vol. 48 no. 5, 758-769, 2003.

2.17 Consider a two-server cyclic Jackson queueing network with service rates p and A
for servers 1 and 2, respectively. There are N customers in the network. The system’s
state m = n is the number of customers at server 1. The state process is Markov. Let
the performance be the average response time of the customers at server 1, denoted as 7.
Calculate the performance potentials ¢(i), i = 1,2,---,.S, and the performance measure

7, and derive the derivative of 7 with respect to A and p.

Solution:

The average response time of a customer at server 1 is
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where n(t) denotes the number of customers at server 1 at time t and L denotes the

number of service completions at server 1 in [0,77]. We have

(f)
_Ir

17, Nth ’

[T n(t)dt
1L

=f.

where 1, = limy . T—LL is the throughput of server 1 and n(Tf ) — limy,_, e

We have ny, = 20 w(n)p = pu(1 — 7(0)). We can find

[T ) gy
7= lim 2 I
L—oo TL

which is a time-average performance. Thus, this problem has become a sensitivity problem

n(t) .
= o and time-average performance

of Markov process with performance function f(n(t))

7. For this process, the infinitesimal matrix is

I U W 0 |
po —(A+p) A 0
B=| : : (2.19)
0 o=+ A
| 0 0 K B

We can compute m by 7B = 0 and me = 1. Then we can compute the potentials by using
gf = (=B+em)™! f, which is the potential corresponding to performance function f , and

compute the performance measure 7 by using 7 = 7f. The derivative of 7 with respect

to p is
dr dB ; df dB ;  fdnu,
an W[d—gf d_] = W[d—gf - zt ]
1 0 H H Tin
_ B T dB ;T dB . (2.20)
dp M dp dp M dpt

where we have used the derivative of throughput 7y with respect to g and g* is the

potentials corresponding to the performance function p = [0, p, p1, - - -, u]*. By using this

derivative formula, we can compute the derivative.

If we consider the potential g/ corresponding to the performance function f(n(t))

n(t), the potential g/ can be also computed by g/ = (—=B+er)~!f and 7 can be computed

77gﬂf)

Mth

dar

4. can be computed by taking derivative of quotient of

by 7 = , and the derivative
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77(Tf ) and M, as follows:
D
dp nth 77th
f i
9-+TW g 1 dB
- = —r1—(g’ + 79 2.21
TNtk Tth d,u ( ) ( )

In fact, derivative formula (2.20) is equal to (2.21) because g/ = g Similarly, we can

also compute the derivative with respect to A by using the following derivative formula,

d7_' 1 dB
— = —T—— 2.22

2.18 The two-server N-customer cyclic Jackson queueing network studied in Problem
2.17 is equivalent to an M/M/1/N queue with arrival rate A, service rate u, and a finite
buffer size N. (When the number of customers in the queue n = N, an arriving customer
is simply lost.)

a. Suppose the arrival rate only changes when n = 0; i.e., when n = 0, A changes to

A+ A\, and when n > 0, A keeps unchanged. What is the derivative of the average

response time 7 with respect to this change?

b. Suppose the arrival rate only changes when n = n*, with 0 < n* < N. What is the

derivative of 7 with respect to this change?

c. Suppose the arrival rate only changes when n = N. What is the derivative of 7
with respect to this change? (You may view the M/M/1/N queue as the two-server

cyclic queue again to verify your result.)

Solution:
a. Suppose the arrival rate only changes when n = 0, then the infinitesimal matrix B

in Problem 2.17 changes to

[ (VAN A+AN O 0 |
) ) P
B = : : : (2.23)
0 poo—(p+A) A
i 0 0 K e
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Then, the derivative B with respect to this change is

-1 1 0 0
0 0 0 0
dB
dx
0 0 0 0
0 0 0 0

Substituting it into (2.22), we have the derivative of 7 with respect to this change:

o= ((0/(0) = (0 + 7(a"(1) - )

b. Similarly, if the arrival rate only changes when n = n*, the derivative of 7 with
respect to this change is

dr _ m(n")
dA Mth

(g (0" + 1) = g (")) + 7(g"(n" + 1) = ¢"(n"))]

c. Suppose the arrival rate only changes when n = N, this change does not affect the
performance measure and the infinitesimal matrix is still the original one, so the derivative

with respect to this change is zero.

2.19 Consider a Markov chain with one closed recurrent state set S; and one transient

state set Sy (a uni-chain). Let the transition probability matrix be

P 0
Py Py

P =

with P; corresponding to &1 and Py # 0, Py to Sy, and 0 being a matrix with all zero
components. Denote the potential vector as g = (g7, ¢1)" with g, = (g9(1),---,9(S1))"
and g = (9(S1 +1),- "79(5))Ta S1= |81, S2 =[Sz|, S1 4+ 5= S.

Derive an equation for g; and express g, in terms of g; and Py, Pss.

Solution:

S, is a transient state set, then the steady-state probability of this Markov chain is
= (m,0)

where 7 is steady state probability of S; recurrent states and 0 is an Sy dimensional row

vector whose components are all zeros. Thus from balance equation, we have m P, = 7.
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Let f= (fL, f&)T. From Poisson equation,
(I —P+em)g=F,

we have
I 0 P 0 L[ em 0 9 S
0 I Py Py eam 0 92 f2
where e; and ey are S;-dimension and Ss-dimension column vector with all elements equal
1. That is,
I —P+em 0 1 fi
— Py +eam [ — Pa 92 J2

Therefore, we have

g = —P +em) i,

(—Poy + eam)g1 + (I — Pao)ga = fo.

Therefore

g2 = (I — Pa) ' [fo+ (Poy — eam1)g1] -

2.20 Consider a Markov chain with transition probability matrix

B b
0 1

where B is an (S —1) x (S —1) irreducible matrix, b > 0 is an (S — 1) dimensional column
vector, 0 represents an (S — 1) dimensional row vector whose components are all zero.
The last state S is an absorbing state. Clearly, the long-run average performance for this
Markov chain is n = f(S), independent of B, b, and the initial state. Thus, the long-run

average does not reflect the transient behavior. Now, we set f(S) = 0. Define
g(i) = E{) _ F(X)|Xo = i}.
1=0

Let L; s = min{l > 0, X; = S| X, = ¢} be the first passage time from i to S. Then

Lijs—1

g(i) = B{ ) f(X)|Xo =i}.
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a. Derive an equation for g = (g(1),- -, g(S))~.

b. Derive an equation for the average first passage times FE[L; ], i € S.

Solution:
a). Let f = (f,0)T be the performance function and g = (g7, 9(S))T be the per-
formance potential. Obviously, we have g(S) = 0 and 7 = (0,---,0,1). From Poisson

equation, we have

I o) (Bb fes0- 0| [ ) = h
01 0 1 0 0
Then we get g, = (I — B)"Lf1.

b). Let f = (1,---,1,0)T, then f; = es_1, which is a (S — 1) dimensional column
vector whose components are all 1. g(i) = E{X:ZL:Z"(‘;F1 f(X)|Xo =i} = E{L;s}. From
above results, we have

E{Lis} = [(I — B) 'es-1;.
where [ - |; denotes the i-th component of vector.

2.21* (This problem helps in understanding the difference between the discounted per-

formance criteria for both the discrete-time and continuous-time models.) Consider a

S
ij=1

Markov chain X with transition probability matrix P = [p(j|i)] and reward function
f@@),i=1,2,---,S. For simplicity, we assume that p(i|i) = 0 for all t = 1,2,---, 5. Let
X be a Markov chain with reward function f(z) = f(i), i = 1,2,---, 5, and transition
probability matrix P defined as p(ili) = ¢, 0 < ¢ < 1, and p(j|i) = (1 — ¢)p(j|i), j # i,

1,7 =1,2,...,85.
a. Prove that X is equivalent to X in the sense that they have the same steady-state
probabilities: 7(i) = 7(i) for all i =1,2,..., 5.

b. The discounted reward of X is defined as (2.35):

ns(i) = (1= B)E {Z B (0) [ %o = } ,

where 0 < § < 1 is a discount factor. Similarly, the discounted reward of X is

defined with a discount factor 0 < B <1 as

75i) = (1—P)E {lz Blf(f(l)))?o - z} .
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Find a value for B such that ﬁa(z) =ng(i) forall i =1,2,---,S.

c. Let A > 0 be a positive number. Consider a continuous-time (not Markov) process
X = {X,,t € [0,00)}, where X; = X, if IA <t < (I+1)A, [ =0,1,---, with
X ={X,,l =0,1,---} being the Markov chain considered in a). The discounted
reward of X is defined by an exponential weighting factor (cf. (2.93)):

T
7/]01(2) = lim F |:/ Oée_atf(Xt)dt’Xo = ’L:| s TO = 0.
0

T—o00

What is the equivalent 8 such that ng(i) = n,(i) for all i =1,2,---,57?

d. Repeat ¢) for continuous-time process X := {X;,t € [0,00)}, with X, = X, if
IN<t<(I+1)A,1=0,1,---

e. How about in d) we let A — 0 while keeping 5¢ = A\? (where A is a constant).

(Hint: If X = {Xq = i9, X1 =41, -, }, then we have X = (Xo=X1 == X,,_1 =
Z.O;Xno = ~n0+1 = ... = ~n0+n1_1 = i1, -+, }, where n; is the numbers of consecutive
visits to state i, [ = 0,1,---. Note that n; is geometrically distributed with parameter q.
Therefore,

T3(0) = (1= BYE{(L+ B+ -+ B flio) + (B 4+ BN (i) +-- ).

We conclude that 1z(i) = ng(i) if B = %.)

Solution:
a. The steady state probability vector of Markov chain X satisfies the following flow

balance equation:

F(P—1)=0, (2.24)

e = 1. (2.25)

From (2.24), we have (1 — ¢)7(P —1) =0,0 < ¢ < 1. So (P — I) = 0. Combining with
(2.25), we know 7 is also the steady state probability vector of Markov chain X. Thus,
(i) =m(i),i € S.

b. Firstly, we give an intuitive explanation. For Markov chain X with discount

factor B, since the transition probability matrix is defined as p(ili) = ¢, 0 < ¢ < 1, and
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p(jli) = (1 —q)p(jli), j #14, 1,5 =1,2,--+, S, thus, we know the dwell time in each state
follows a geometrical distribution with parameter q. Then, the probability that Markov
chain X transits to one state n times consecutively is ¢"(1 —q). So, the total expected

discount factor is ZZOZ()(l—q)q"g"Jrl (1 q . Therefore, if let 3 = e f=

1— 1— q+qﬁ ’

then 7j3(i) = s (i).

Next, we give a rigorous proof. From (2.31),
n; = (L-B)(1—pBP)'f
= (1-0)>_BPYf
1=0

= (1=p5)>_ Flal+(1—q)P]'f

00 l

= =Y AY ()
= - (L)a-ard ey

n=0 l=n
~ &L/
1 —q)”ﬁ"Zﬁl( J;Ln)qlP"f
1=0

1

(1-5)>(
1-0>(

_ 1— an _ pr
21-a (1= g !
B 1—qﬁ n
- 1—qp §:<1—q5>]3f
. (1-q)8
ge= D0 oy S grpn
a9 =Wy - ); f

= (1= =BP)"'f =15

r+k—1

"~ a* in the seventh equa-

where we have used the Binomial formula ﬁ =30 (
tion.

c. Since

T—o00

T A
hali) = nmE[ / ae—afﬂxt)dﬂxozi}
0

= E{/O e~ dtf(Xo) +/A e Mdtf(Xy) + -}
= (L= E{f(Xo) +e " (X0) + e 2 f(X5) -}

Thus, if 3 = e, ng(i) = n4(i) for all i.
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d. Similarly to ¢), we have equivalent 3 = e~2 such that n3(i) = na(i) for all i € S.

Then by using b), if 8 = %, we have 75(i) = 1,(4) for all 4.

e. If let A — 0 while keeping % = ), then ¢ — 1. Since
g = (-ge?  (1-q)1—ald+o(A?)
1 —ge—b 1—q(1 —alA +0o(A?))
== (1= g)a+o(A)
% + ga+ o(A)
A
A+ a

2.22 Prove that the random variable s generated according to (2.96) is indeed exponen-

tially distributed.

Solution: We have z = —51In(1 — &), then the distribution function is
F(s)=P(x <s)=P(—5In(1—€) <s) =P <1—e3),
for s > 0. It’s obviously that 1 —e~5 < 1, and ¢ is uniform distribution on [0,1), so
F(s)=1—¢"5, s> 0.
If s <0, since —=5In(1 — &) > 0, we have F(s) = P(—sln(l — &) < s) = 0. Then,

1—e 3, s> 0,

0, 5 <0.

F(s) =

Thus, he random variable s generated according to (2.96) is indeed exponentially dis-

tributed.

2.23 Develop a PA algorithm to determine a perturbed path for an open Jackson network
consisting of M servers, with mean service time s;, ¢ = 1,2,---, M. The customers arrive
in a Poisson process with mean inter-arrival time a = % Both a and 5;, i =1,2,---, M,

may be perturbed.

Solution: Algorithm:
Given an original sample path for an open Jackson network.

i. Imitialize: Set A; :=0,1=0,1,2,..., M.
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1. Perturbation generation: At the k-th service completion time of server i, set A; :=
A+ sip, k=1,2,..., i=1,2,....M. s;}, is the service time of the customer. At the k-th
outside customer arriwval, set Ag := Ag + ax, k=1,2,.... ay is the inter-arrival time of the

customer.

1. Perturbation propagation: When a customer from server i terminates an idle
period of server j, set A := A,;. When an outside customer terminates an idle period of

server j, set A 1= Ay.

2.24 Suppose that at some time the perturbations of the servers in a closed network are
Ay, Ag, -+, Ay determined by Algorithm 2.1. What is the perturbation that has been
realized by the network at that time? As we know, if a perturbation is realized, then
the future perturbed sample path looks the same as the original one except shifted to
the right by the amount equal to the perturbation. Can we use this fact to simplify the

calculation in Algorithm 2.27

Solution: The perturbation that has been realized by the network at that time is A =
min(Aq, Ag, -+, Apy).

we can simplify the Algorithm 2.2 as follows: Since the perturbation A has been
realized at some time m, then each of Ay, Ag,---, Ay contains this perturbation. That
is to say, the perturbed sample path is the same as the original one except that the entire
sample path is shifted to the right by the amount A. Then, at the transition times after m,
the update of AF can be set as AF := AF + [f(n) — f(n')]AT], where AT] = AT, — A,
n = N(7,_), and n’ = N(T;). This is because AF;, = AF,, . + S0 [f(N(T,-)) —
FUNTDIAT, = AFpy 1455 [FN(T) = F((NT))AT+LFN (T ) F(N(TL))]A.

5, ont) ~ AFL
n) 95, Tr,

[f(N(T-))— f((N(TL))]A. Thus, we can update AF as AF := AF+|[f(n)— f(n")]AT].

Since performance derivative is , when T7, is sufficiently large, we can omit

2.25 Using the 0-1 vector array (2.105), discuss the situation of the propagation of

M perturbations with the same size, each at one server, along a sample path. Prove

M e(n,i) = 1.

Solution: In the same way, we have M row vectors, each of which represents the prop-

agation of one perturbation. Then we have a M x M unit matrix. From perturbation
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propagation rule, if a customer from server i terminates an idle period of server j, then all
perturbations of server ¢ is propagated to server j. We just need to copy the 7th column
of the matrix to the jth column. Obviously, no matter how the perturbations propagate,
each column of the matrix has one and only one 1, other components are all 0. That
means, each server will have one and only one realized perturbation. Eventually, the ma-
trix may reach a matrix in which one row is all 1. That is, only one of these perturbations
is realized and the others are lost. Then the probability that perturbations are realized

is 1. So the summation of realization probabilities is 1. That is Zi\il c(n,i) =1.

2.26 We further study the propagations of two equal perturbations A; = A at server 1
and A, = A at server 2 simultaneously on the same sample path. Consider the array in

(2.105). Set w(t) = wq(t) + wa(t).
1. What is the meaning of w(t)?
2. What does it mean when w(t) = (1,1,...,1) or w(t) = (0,0,...,0)?

3. How does w(t) evolve?

Solution:

a. w(t) denotes which server has the perturbation A; or Ay at time ¢.

b. w(t) = (1,1,...,1) denotes all severs have a perturbation A, which can be either
Ay or Ay. w(t) =(0,0,...,0) denotes the perturbations A; and A, have been lost.

c. When server i terminates an idle period of server j, the perturbation (either 0 or
A) will be propagated to server j. This is equivalent to simply set w; = w;. The initial
value of w(t) is w(0) = (1,1,0,...,0). Eventually, the array may reach (1,1,...,1) or
(0,0,...,0).

2.27 In addition to (2.94), we may define the system performance as the long-run time

average

1 [T
) = Iim = [ f(N(t))dt.

L—oo TL 0

We have n(Tf) = %

)

a. Derive the derivative of 77(Tf with respect to 5;, 1 =1,2,---, M.
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b. Define the reward function f corresponding to the steady-state probability m(n),

with n being any state, and derive %;), 1=1,2---, M.

Solution:

a. We have n(Tf) =0 /n | thus

ond 1 oY _n(f>(i)2a77(_”
1 U(f)
_ 1 H(n i) — -
5 2 T ) el ) )
1 . .
= — D> am)(e (i) — c(n, i)
Yall n

b. For any state n, let f(n) = 1 and 0 otherwise. Since 7). = Y nes () f(n), we

have n(Tf) = m(n). We can apply the equation in a) to get ag—é).

2.28 Prove that in a closed Jackson network the sample function 77,(€,s,) (with ¢ fixed)

is a piecewise linear function of 5,, v =1,2,---, M (see [46]).

Solution:

For a closed Jackson network, the service time of server v follows an exponential

distribution with mean s, then the service time of the k-th customer at server v is
Sok = =Sy In(1 =& x), k=1,2,....
If 5, is changed to s, + AS,, the service time of the k-th customer at server v is
Sok = —(Sy + A5,) In(1 — &), k=1,2,....

Let t; ;. be the time of service completion of k-th customer at servers,i = 1,2,..., M, k =

1,2,.... Then, we have the following recursive formula for ¢; x:

tik—1+ s, if N(tig—1t) #0

tik =
tin+siy  if N(tig—1+)=0

)

where

’ Sik Zf [ 7& v,
Sik =
—(5y + ASy) In(1 =& p) if i =w.
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and ?; denotes the time of service completion of the h-th customer that has completed its
service at server j moves into server i. If the sample path for different s, is similar, that is,
the embedded Markov chain of closed Jackson network for these different 5, is the same
(or the order of events in the nominal and perturbed paths remains the same), then it is
clear that ¢;;,7 = 1,2,..., M, are linear with respect to 5,. To guarantee the similarity of
the sample path under different s,, we need that s, cannot be changed largely. That is,

if 5, changes in a interval (57" 5m%) which depends on the sample path, the similarity

can be guaranteed. Thus ¢;5,7 = 1,2,---, M, are a linear function on this interval. For
any 5,, there is a interval to make ¢; 5,7 = 1,2-- -, M, linear with respect to 5,. Therefore,
tix,t = 1,2---, M, are piecewise linear functions of 5,. Since there always exists a w

and a k such that Ty (¢, 5,) = twk, T10(€,S,) is piecewise linear with respect to these s,

v=12,..., M.

2.29 Consider a closed Jackson network in which p,q; ; = 154, %, = 1,2,---, M. Prove

that
Ny,
k)= — k=12 M
C(’I’L, ) N, ) 4y ) )
and
Sk 8’17 _i
n &Sk M7
where k =1,2,---, M, denote any server in the network.
Solution:

In order to prove ¢(n, k) = ng/N, we can substitute it into the equations which the
realization probabilities satisfy. If the equations still hold, then ¢(n,k) = ni/N holds
because the equations have a unique solution for irreducible closed Jackson networks.

1. If n =0, then ¢(n, k) =0 =ny/N.

2. 224:1 c(n, k) = 224:1 ng/N = 1.

3. If ny > 0, then €(ny) = 1. The first term on the right side is

M
> e(ni)migije(ni;, k)

1 j=1

ng + 1) ng — 1 n
Z €n; ,uqu + Z nz qu@k(ki + Z nk qumw + E(nk),ukqmgﬁk
Gk

M:

%

N N
i#k i#k

*M
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nk—l 1
- Y e, m%wz o) it +z e(mmai ) el

i#k j 1#k
—1 1
= Z + Z e(n;) ,U/zqm +€(nk),u % +€(nk)Mkakﬁ
i#k i#k
= Sl S e s e (e(m) = 1)
% i#k N N
The second term on the right side is
M
> turgii(1 = €(ni))e(ny, )
i=1
n; + 1 n
= D (1 = e(ni) =5 + (1 — elm)) 57
i#£k
= Z,uk;q;m‘(l —€e(n;)) N (e(nk) =1)
ik
1
= ZMkai(l - G(Hz))ﬁ (ni(1 —€(ny)) = 0)
itk
Therefore,
right
= ZMkai(l - + Z e(n;) Mz L Z €(ni) pidin—~ ! — HE~7 ! + Hrdrk 7 !
o #; N N N

= Z e(n;) ,ul ‘l‘ZHk;Qk;z +MkakN Uk~ +Z €(ni)— quzk [k ki)

i#£k i#£k
1

= Z nz Mz + ZMkaZ N (,Uz'Qik = ,quki>
= ge(ni)ﬂiﬁ

M
= > empeln. b

i=1
= left

From 1,2 and 3, ¢(n, k) = ny/N is proved.
i = Zj\il Wiij = Zj\il [tiqji, SO fi; is one solution of equation (C.5). Let visit ratio
v; = pi, then z; = v;/p; = 1.

?561 a Z p(n)e(n,9) = — Zp(nk = n)% =%
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ny is the mean queueing length of server k, and

Zxk Z

Gg (]z;)" ) is the same for all server. Thus 1y, 1s the same for all server. And 224:1 ng =
N, so i, = N/M. Therefore 2 59,” ==L

2.30 (This problem requires a good knowledge of queueing theory) Consider an M/M/1
queue with arrival rate A and service rate u. The system state is simply the number of
customers in the queue; i.e., n = n. The performance measure is the average response
time 7 = limy o7 f t)dt. Thus f(n) = n. For the M/M/1 queue, there is a source
sending customers to the queue with rate A. Denote the source as server 0, and the server

as server 1. Server ( can be viewed as always having infinitely many customers.

a. Prove that the realization factors ¢/)(n,0) and ¢¥)(n,1), n = 0,1, -- -, satisfy the
following equations:
D(0,0) =0, ¢(0,1) = 0,
A, 0)+cP(n,1)=n, n>0,
A+ )P (n,0) = pcD(n —1,0) + AP (n+1,0) =\, n>0,

and

A+ )P, 1) =X (n+1,10) + pcPD(n—-1,1)+p, n>0.

b. To solve for ¢\¥)(n, ), for i = 0, 1, we need a boundary condition. Using the physical
meaning of perturbation realization, prove that ¢/)(1,1) equals the average number

of customers served in a busy period of the M/M/1 queue; i.e., (see, e.g., [169])

1 A
c(f)(l,l): r_ , p=—.
p—A 1—p
c. Prove
(f) 1) = n
c (n7 ) 1_p’
and
(n,0) = — e
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d. By the same argument as in the closed networks, explain and derive

pdr A p
n dp (1 —A)? (1-p)?%
and
Adr ¥/
nDdx — (p—N)2  (1—p)?*
Solution:

a. When system state is n = 0, a perturbation on server O(perturbation in the mean
arrival interval) will propagate thought the system, and the sample path is the same as
original one except that it is shift to the right by the amount A. So the performance
difference between the two sample pathes is AF, = f(0)A = 0. Then ¢)(0,0) = 0.

When system state is n = 0, a perturbation on server 1 contribute nothing to perfor-
mance of system, thus ¢f)(0,1) = 0.

When system state is n, both server 0 and server 1 are perturbed by the amount
A. Then the next arriving customer and the next leaving customer both delay for A.
Therefore, the perturbed sampled path is shift to the right by A. We have the performance
difference AFy;, = f(n)A. Then the total perburbation realization factor is

A, 0)+cD(n,1) = AF, /A= f(n)=n

When system state is n and server 0 is perturbed, the system will transit to next state
n — 1 with probability u/(u+ A). Then, the perturbation is wholly inherited by the new
state. The system will transit to the next state n + 1 with probability A\/(x+ A). In this
situation, the system performance will have a decreased amount (f(n)—f(n+1))A = —A,

besides influence on the new state. Thus the realization factor satisfies
cD(n,0) = p/(A+ )P (n —1,0) + A/ (A + p)[¢P (n+1,0) — 1]

That is (A + p)cP (n,0) = pc(n —1,0) + A (n +1,0) — A

When system state is n and server 1 is perturbed, the system will transit to the next
state n — 1 with probability p/(+ A). In this situation, the system performance will have
increased amount (f(n)—f(n—1))A = A, besides influence on the new state. The system

will transit to the next state n + 1 with probability A/(x + A). Then the perturbation is
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wholly inherited by the new state. Thus the realization factor satisfies
D (n, 1) = p/ A+ [ (n=1,1) + 1]+ X/ (A + p)e P (n +1,1)

That is (A4 p)c (n, 1) = AP (n+1,1) + pc (n —1,0) 4 p. The results in a. is proved.

b. When system state is n = 1 and server 1 has a perturbation A, we can know this
perturbation will only exist in the current busy period. Every customer’s departure in the
busy period is delayed by A. So we can know the total perturbation propagation number
equals to the number of served customers in the busy period. Denote the number of
customers served in the busy period as N, then ¢)(1,1) = E{NgA/A} = E{Np} = N3,
where Np is average number of served customers in a busy period. We use the sub-busy
period concept to compute Ng. The period from the time that the system enters state
n,n > 0, to the first time that the system state is n — 1 behave statistically similar to a
busy period. Such a period is called a sub-busy period. Sub-busy period has the similar
statistic properties as busy period, e.g, average number of served customers in a sub-busy
period equals to that in a busy period. If n = 1, the sub-busy period is a busy period
because of memoryless of M/M/1 system. From the physical meaning of sub-busy period,
we can get following equation between busy period and sub-busy period:

_ " N _
Np = X1+ -—[Ng+ N
S R

When current state is n = 1, the next event is a customer departure with probability

/(A 4+ p), so it means only one customer in the busy period. The next event is a
customer arrival with probability A/(A 4+ ). Then the next system state is 2. From now
on, the busy period can be divided into two sub-busy periods: the first sub-busy period
is from state 2 to 1, the second is from state 1 to 0. The first sub-busy period serves Np
customers on average. The second sub-busy period also has average customer number
Np. From above equation, we can get the average served customer number in a busy

period is:
w1
p—XA 1—p
1

Therefore the perturbation realization factor is ¢\)(1,1) = Np = 1, b) is proved.

Np =

c. When the system state is n, with the similar analysis we have ¢/) (n,1) equals the

average number of served customers which is counted from state n in a busy period. We
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denote it as N3, with N; = Np. From sub-busy period concept, we can also get the

following equation:

Np = Aj‘_ (14 Np 1)+ﬁ[NB+NB]
So we get: N = Np~ !+ M—f/\ Therefore N& = % = 1%, The perturbation realization
factor is
P(n,1)=Np = o
L=0p
From c¢f)(n,0) + ¢)(n,1) = n, we can know
AN, 0)=n—-cP(n1)= U

L=p
d. The steady state probability p(n) = (1 — p)p™. From the equation of performance
derivative, we have

udT_ _OO NP
-Spnet D (e R =

Similarly, we have

A dr - W onp P
T §:p 0= (=P = Ty

Reference:

L. Kleinrock, Queueing Systems, Volume I, John Wiley, New York,1975.

X. R. Cao, Realization Probabilities, The Dynamics of Queueing Systems, Springer-Verg,
1994.

2.31 The head-processing time of a packet in a communication system, or the machine
tool set-up time in manufacturing, is usually a fixed amount of time. Consider a two-server
cyclic queueing network in which the service times of the two servers are exponentially
distributed with mean 5; and 35, respectively. Suppose that every service time of server
1 increased by a fixed amount of time A. Derive the derivative of performance n/) with

respect to A using performance realization factors ¢f)(n, 1).

Solution:
Let w(n) be the steady-state probability that there are n customers at server 1. From
the PSATA theorem, the probability that the departing customer leaves behind n cus-

tomers in the system is equal to m(n). Let L; be the number of service completions at
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server 1. The number of the service completions when the state is in n+1 is Lym(n). The
total time perturbation generated from state n + 1 at server 1 is Lym(n)A. Since each
perturbation on average has an effect of ¢¥)(n +1,1) on F. Thus the total effect on Fy,

of all the perturbations is
AF, ~ ZLNT YA (n 4 1,1)
= Z Lym(n (n+1,1).

So, we have

. A NZTI'(TL)C (n+1,1).

n

Letting L — oo and A — 0, we have

1 on/

it A (f)
=Y w ) (n+1,1)

n
where v; is the visit ratio of server 1. vy can be easily obtained by (C.5) for cyclic network,
i.e. v = vy. Since vy +vy = 1, we have vy = vy = 1/2. Thus, we can obtain the derivative

with respect to fixed change A as follows:

!
g% = % Zw(n)c(f)(n +1,1).

n

2.32 Prove that Algorithm 2.2 yields a strongly consistent estimate for the sensitivity of
the mean response time in an M/G/1 queue; i.e., in (2.134) we have

o .
%i _KlinooT_LZZZSkl a.s.

k=1 i=1 I=1

Solution: Firstly, we consider the problem for a general M/G/1 queueing system. Then
we consider the problem for the special M/G/1 queueing system with service time s = %
in the above problem, where C' denotes a fixed “length” of a customer, such as a packet
length in communication systems, and p denotes the service rate.

The mean response time of a customer is given by Pollaczek-Khinchin, or P-K formula
in Kleinrock (1975),
AE(s?)

T=EE) S B G)
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where s denotes the service time of a customer, which follows a general distribution
F(s, ). The sensitivity of the average response time to u is then obtained by straight-

forward differentiation to be

dr  dE(s) A dE(s?) N E(s?)  dE(s)
di i 20=2EG) dp o 2(1=E(s))? du

For the M/G/1 queue with determined service time, we have E(s) = % and E(s?) = 5—22,

so, the sensitivity of the average response time to p is

i C AP NE(s) ¢

" T TIABG) i AL AB(s)?
Let Cj,; denote the i-th customer in the k-th busy period and sg;(w, ) denote the
service time of the i-th customer in the k-th busy period. For the general M/G/1 queueing

system, we assume that the derivative ‘fl—‘z of sample function sy ,;(w, ) with respect to
it depends only on the value of the service time sy, i.e. dZZ’i = ¢(sk,). For the special
M/G/1 queue with service time s;; = %, we have d;fj = —=, which satisfies our

assumption.
Next, we prove the following results about a strongly consistent estimate of the above

sensitivity.

_ K ng 7 _
or .1 dar
o = Iglinoo 17 Z Z Z O(Sky) =: @|est a.s. (2.26)
where sj; denotes the service time of the /th customer in the k-th busy period, L denotes
the number of customer completions in the period of [0,77], and nj denotes the number
of customers served in the kth busy period. Let hy = 3.1 S ¢(s1,), then the right
hand side of (2.26) can be written as

T LSS o) = i Skl
—| = lim — Skt) = M S e,
dpplest  K—oo [, £~ &~ £ Koo 23 ey T

From the strong law of large number, we have

1 K
=3 - h E[h
ZIM1TZ§1k:E[¢ wp.l. (2.27)
est K—oo e Zk:l ny [nl]

a7
dp

From Kleinrock (1975, page 217) (cf. Problem C. 2), we have

1

Elml =155
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Thus,

dr
Tl = (1= AE(9)] ). (2.28)

Following the approach in Kleinrock (1975) for busy period analysis, we decompose the
busy period into sub-busy periods.

From (2.27), we only need to analyze the first busy period, therefore, we will omit
the subscript &£ about busy period. We assume m customers arrive during the service
time of ;. As explained in Kleinrock (1975), each of Cy through C,,,; initiates a sub-
busy period statistically identical to the busy period initiated by C;. Furthermore, these
sub-busy periods are statistically identical. Let us define the quantity

g=">_¢(s),
=1

Now, we will number the sub-busy periods in the order that they occur, and we will
number the customers in the order that they are served using the LCF'S discipline. Let m,
be the number of customers in the r-th sub-busy period and define m™ = 1+mq+...+m,

with m©® = 1. Then C, -1 through C,,» are the customers that belong to the r-th

sub-busy period. We consider the quantities

9" = Z¢(Sm(r—1)+z‘) with ¢ = o(s1),
i=1

) = Z > O(smir—1)47)-

i=1 j=1

where s; denote the ith customer in the first busy period. Then, we have

g= 0(s) =d(s1)+ Y Y dlspen +i) =Y g, (2.29)
=1 r=1 =1 r=0
m r—1

hy = ¢(s1) + Y W +m. > g®)]. (2:30)
r=1 s=0

Next, we wish to derive the expected values of g and h;. Taking expected values on both

sides of (2.29), we have
E(g) = E(¢(s1)) + E(m)E(g)-
Noting that E(m) equals AE(s) and solving for F(g) gives

= TG (2.31)
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Taking expected values in (2.30) conditioned on s; and m, we have

m

m r—1
E(h1|81,m) = ¢(Sl) + ZE[h(T)|Sl7m] + ZE[mT ZQ(S)|Sl7m]
r=1 s=0

r=1
Taking into account the fact that quantities referring to different sub-busy periods are
independent from each other and from s; and m and identically distributed to the parent

busy period and also that m, is independent of ¢©*) for s < r, we get

E(hi|s1,m) = ¢(s1) +mE(h1) + kE(mq)¢(s1)
+(Blma] + 2E[my] + ...+ (m — 1) Elmi] ) E(g)

= ¢(s1) +m[E(h) + E(ma1)d(21)] + E(m,)E(g)(m* — m)/2. (2.32)

Taking expectations with respect to m in the above equation conditioned on s;. Then
E(m]|s;) is the average number of Poisson arrivals in an interval of length s; and so it is
equal to As;. Similarly, E(m?|s;) is equal to As;+(As; —1)%. Taking also into account that
m,. is identically distributed to n; (the number of customers in the parent busy period)

and thus E(m,) = E(n;) = 1/(1 — AE(s)), and using (2.31), we get
E(h|s1) = ¢(s1) + As1[B(ha) + ¢(s1)/(1 = AE(5))] + (As1) E(6(s1)) /2(1 — AE(s))2.33)
Taking expectation with respect to s;, we get

E(hy) = E(¢(s))/(1 = AE(s)) + AE(s(s)) /(1 = AE(s))* + N E(s*) E(6(s))/2(1 — AE(s))(2.34)

Using the exchangeability of expectation and differentiation and (2.28), we get

dr. dE(s) A dE(s?) NE(s*)  dE(s)
= T TS AEG)) dp T 30— AE(s)E du

, @.S.

Therefore, (2.26) has been proved.

For the special M/G/1 queueing system in problem 2.31, the proof is simple. Letting
ds; = —s;/ i, the result in problem 2.31 can be obtained.

Reference:
1. L. Kleinrock, Queueing Systems, Volume I, John Wiley, New York,1975.
2. R. Suri and M. A. Zananis, Perturbation Analysis Gives Strongly Consistent Sensitivity
Estimates for the M/G/1 Queue, Management Science, Vol. 34, No. 1, 39-64, 1988.
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2.33 Consider a closed Jackson network with M servers and N customers. The throughput

of server 7 is 1; = nv; where 17 is the “un-normalized system throughput”:

. Gu(N-1)
n= 7GM(N) )

where v; is server i’s visiting ratio: the solution to
M
Uz':§ q;,iVj, j:1727"'7M7
j=1

and (see (A.55) in the Appendix)

Gm(n) = Z H T,

ni+-+ny=n i=1

where x; = v;5;, 1 =1,2---, M. We have

Now we consider the derivative of 77 with respect to the routing probability matrix
Q = [qm]%:l. It is clear that 77 depends on the routing probabilities only through z;,
i=1,2,---, M. Suppose that v; changes to v; + dv;, i = 1,2,---, M. From (2.35), we
observe that in terms of the changes in x;, dx;, 7 = 1,2, ..., M, this is equivalent to setting

dv; = 0 and d5; = 5% for all i = 1,2,---, M.

a. Explain that for closed Jackson networks, the derivative of any steady-state perfor-
mance »_ ., , T(n)f(n) with respect to the changes in routing probabilities can be
obtained through the derivatives of the performance with respect to mean service

times.

dn;
Q)

b. Derive the performance derivative formula by using performance realization

factors c(n,i), i =1,2,---.

Solution:

a. For the closed Jackson networks, from (A.44), the steady state probability m(n)
depends on the routing probabilities and §; only through z; = v;8;, 1 = 1,2,---, M. The
changes of routing probability matrix @ will lead to the change of v;. From (2.35), suppose

that v; changes to v; + dv;, 1 = 1,2,---, M, and §; does not change, we know the change
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dvi for
o

7

of x; is dx; = 5;dv;. The change can be equivalent to setting dv; = 0 and ds; = §;
alli =1,2,---, M. That is, the effect on x; of the change of v; is equivalent to that of the
change of the service rate s;. In other words, the changes of routing probability can be
equivalent to the changes of mean service times. Therefore, the derivative of any steady-
state performance ), , 7m(n)f(n) with respect to the changes in routing probabilities
can be obtained through the derivatives of the performance with respect to mean service
times.

b. Suppose that () changes to Qs = Q + IAQ, where AQ = Q' — Q). From vsQs = vs,
we have vs(I — Q5) = 0, which is similar to m5P; = m;. Taking derivative of both sides

with respect to §, we have
dU5

T = Qo) = 1:0Q.

Then,
dv
0 = 0 AOOT
s |5—0 v QQ )
where Q7 is the group inverse of I — (). Then we can compute the value of %.
Similarly to the discussion in Part a), since 77 depends on the routing probabilities and
5; only through z; = v;5;, i = 1,2,---, M, we know the changes of routing probabilities

are equivalent to the changes of service rates. Thus, we consider the changes of service

rates.
dn dsZ dn Si al’uZ
Z ds; a5 Z ds; v; s’
dv;

P d, is the derivative with respect to service rate, then we
7

where we have used ds; = 3;
can compute it by using perturbation analysis. Since the throughput n;, = v;n,1 =1,2,- -,
where 7); is the throughput of server i, we have n := le‘il N =N sz\il v;, where 7 is the

throughput of the network. Then, j—g = Zﬁélvi j—; = —%g—i > i nT(M)c(n, 7). Thus,

dn dv; )
d—g Z Z'Zdé Z m(n)c(n,i).

zlvlzl all n

we have

dn; dvZ
dQ -

From n; = v;n, we have S1) + v; 4 7%, Therefore, we have

dn;,  dv; n M du;
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2.34 Consider the same two-server cyclic Jackson queueing network studied in Problem
2.17. Let 77(Tf ) = limy o W denote the time-average performance, where n(t)
is the number of customers at time ¢ at server 1, L denote the transition numbers and
performance function f(n) = n. Suppose the arrival rate A and the service rate p change

only when the state is n.

) )
d d
T and 2
dx du

a. Derive in terms of the realization factors c¢\)(n, 1), c)(n,2) and re-

alization probability ¢(n, 1), ¢(n, 2).

) )
b. Express % and % in terms of the performance potentials g(n).

c. Compare both results in a) and b) and derive a relation between the realization

factors and the potentials. Give an intuitive explanation for this relation. (cf.

[260])
Solution:
a. Since
iy
T L—oo TL
T,
o LI ()
L—o0 TL L
= 7/,
T
where n!) = lim;_, TTL and 7 = limy_ Jo Lz(t)dt, which is the average response time of
each customer at server 1, we have
dr —dnD)
dné“f) _ @77(]) — ZH
dp (n"))>
1 dT dn(l) (f):|
= — |— - ny'| . 2.36
@ [du dp " (2.36)
dr

Next, we obtain the derivatives 5~ and dZ—;j) in term of realization factors ¢¥)(n, 1) and

dp
c(n, 1), respectively, by using the method in in Section 2.4.3. (These derivatives can be
directly from the results of Perturbation Analysis.)

Let m(n) be the steady-state probability of state n. Consider a time period [0, T} ] with

L > 1. The length of the total time that the system is in state n in [0, 7] is T7(n). The
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total perturbation generated in this period at serve 1 due to the change of p is TLﬂ'(TL)AS—?l,

where s; is the average service time of server 1, i.e., s; = %, and thus As; = —%Au.

Since such perturbation on average has an effect of ¢f)(n, 1) on Fy, the overall effect on
F, of the perturbation is —Tmr(n)%c(f) (n,1), thus we have
A
AF =~ —TLW(H)—MC(f) (n,1).
I

From this, we have

AFL/L Ty

(f)
Ay MLW(n)c (n,1).

Letting L — oo and Ap — 0, we obtain
dr ()
i - —%W(n)c(f)(n, 1). (2.37)

If performance function f = 1, we have

= ——mn(n)c(n,1). (2.38)

Putting (2.38) and (2.37) into (2.36), we have

dni 1 [ () ()
—— = ——mn(n) |cV/(n,1) —c(n,1)n } 2.39
s . (n) [¢7(n, 1) = c(n, D)ny (2.39)
Similarly, we can obtain
dn') 1
Zi = —Xﬂ(n) [c(f) (n,2) — c(n, 2)77(Tf)] . (2.40)

b. From the potential theory, we have

dnsl dB
= 7=,
du du
where
—A A 0 0
poo —(A+p) A 0
B = :
0 poo—(p+A) A
0 0 ju —p
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If ;o changes only when the state is n,n=1,2..., N, we have

0 0 O 0
0 0 0 0
dB | :
di | o 1 -1 0
0 0 0 O
Thus, we have
dnp” _
yi =m(n)[g(n—1)—g(n)], n=12,...,N. (2.41)
1L
Similarly, we can obtain
dn(f)
di =7a(n)lgln+1)—gn)], n=01,....,N—1 (2.42)

c. Comparing (2.39) and (2.41), we have

—n() [ n.1) = el )] = () o(n = 1) = g(m)].
That is,
A(n, 1) —c(n, 1)77(Tf) =ulg(n) —g(n—1)], n=12...,N.

Comparing (2.40) and (2.42), we have

() [ m,2) ~ e, 2] = wm) lg(n +1) — g(m)].
That is
dD(n,2) = c(n, 2’ = Mgn) —g(n+1)],  n=01,...,N-1.

An intuitive explanation:

n1) = LH%%_E{ / o enar — | " F(n(t))dt}
= lm / "L (0) = Fn()]de)

+L—>}>lolri~>OKE . f( (t))dt (2.43)
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Firstly, we consider the first term.

By ORI
- B 60) - s
+ dm B[ 00) = o) (2.44)

Since the n(t) is a Markov process with infinitesimal matrix A = [a,, ], where

(

(N —n)A, m=n+1,
e(n)w, m=n—1,
Anm = (mn 1,7 =1,2
—e(N —n)X — e(n)u, m=n,
0, others.

0

From Kolmogorov theorem, we have P(t) = e*. Thus, we can obtain the probability
that the original process moves from state n to state (n 4 1) at time A is approximately
equal to (N —n)AA, the probability that the original process moves from state n to state
(n — 1) is approximately equal to ¢(n)uA and the probability that the original process
moves from state n to state n is approximately equal to 1 — (N —n)AA —e(n)uA, where
we have omitted the higher-order terms of A . For the perturbed Markov process, since
the service time was delayed A, we know the probability that the perturbed Markov
process moves from state n to state n — 1 at time A is zero, the probability that the
perturbed Markov process moves from state n to state n + 1 at time A is (N — n)AA
and the probability that the perturbed Markov process moves from state n to state n at
time A is 1 — (N — n)AA.

So, we know that the probability that the original process and the perturbed process
transit to different state at time A is the same order infinitesimal of A. On this basis,

since | f(n/(t) — f(n(t))] is bounded, we have

im  ~B{ [ ) - fn()]dt = 0. (2.45)

L—00,A—0 A 0

For the second term in (2.44), we consider fATL [f(n'(t)) — f(n(t))]dt from the point view

of perturbation realization factor of Markov process.

/ ) — Fn()de

A
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Q

e(N —n)AAd(n+ 1,n) + e(n)uAd(n — 1,n) + (N — n)AAd(n,n + 1)

= ¢e(n)uA(g’(n) — g/ (n —1)).

where we have used d(n + 1,n) = —d(n,n + 1). Thus, we have

lim E{/ L — f(n(®)]dt = e(n)u(g’ (n) - ¢’ (n — 1)). (2.46)

L—00,A—0 A
From (2.45) and (2.46), we know the first term in (2.43) is equal to €(n)u(g’ (n)—g’ (n—1)).

For the second term in (2.43), when L is large enough, we have E[f(n/(t))] = np (D thus,

T, — Ty
= ¢(n, )y

1 ("
lim —F f(n'(t)dt =n hm (2.47)

L—o0,A—0 A T

Thus, we have ¢f(n,1) = e(n)u(g’(n) — g/ (n — 1)) + ¢(n, 1)7)&”. Similarly, we can
intuitively obtain ¢/ (n,2) = e(N —n)A(g/(n) — g/ (n + 1)) +c(n, 2)77(Tf).

2.35 In weak derivative expression (2.125), we may choose P = P’ and P~ = P.

a. Derive (2.126) and express its meaning based on sample paths.

b. Derive (2.127).

Solution:

a. If we choose PT = P’ and P~ = P, then ¢(i) = 1. (2.124) becomes
d776 _ / - l
—5 = TP - P)ZP f

= Y _7(i)Y_(BP'f —piP'f).

icS =0

Thus we have
s S 00
= = E (1) E E[f(X)) — f(X0)| Xy =1, Xo = 1]

S L*
= Yow() DB — 01X =i X0 =]

The meaning based on the sample path: On the sample path, the state is state i, at
which the first jump from X to X} follows transition probability vector p; and the first
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jump from Xy to X; follows transition probability p;. The rest transitions of X/, > 1
and X;,I > 1 all follow transition probability matrix P. In fact, this is similar to the
perturbation at state i.

b. Since

}:E FIX)) = F(X)|X) =14, X =i

= E{ZE[f(Xz/) — F(X)|XT, X1, X =4, Xo = i]| X = 4, Xo = i}
=1

e
= ) p(X{ =4 X =j|X) =14, X =1)Y_E[f(X]) - fF(X)IX] =, X1 = j]
j'eS.jeS =1
= Y PRGNS,
je€8S.,;eS
thus we have
dn S
9 : YSIIr - -
2 =>_n0) Y. PUIRGING.):
=1 jeS.,;eS

2.36 Derive (2.23) from (2.127).

Solution: Since

iy max{Ap(j]0), 0} if efi) >0

(i) =
b if c(i) =
o Gili) = ﬁ max{—Ap(j|i),0} if c(i) >0
if c(i) =

and 3. g Ap(jli) =0, we have >°._¢p*(jli) = 1 and 3>, g p~(j[i) = 1. From (2.127),

we have

S S
d Vel e
% B Z Z (1, J2)p~ (al0)p™ (Jali)
i=1 Ji1.g2=1
S S
= Y@ Y v Gulnt Gali)lg) — 9(i)
i=1 J1,J2=1

(71)]g(5)

I
Arjm
M
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S

= > w(@) > [Pl — p(ili)]g()
i=1 ]ES

= 7wAPy.

2.37 Consider a (continuous-time) Markov process with transition rates A(i) and transi-
tion probabilities p(j|i), ¢,7 = 1,2,...,S. Suppose that the transition probability matrix
P = [p(jl|i]; jes changes to P4+ 0AP and the transition rates A(z), ¢ = 1,2,...,.S remain
unchanged. Let n be the average reward with reward function f. Derive the performance

derivative formula for CZZS‘S using the construction approach illustrated in Section 2.1.3.

Solution: To derive the performance derivative formula CZS‘S, we consider a sample path

X with infinitesimal generator B = [b(3, j)] consisting of L >> 1 transitions, where

i J) = —A(2) ifi=]

A@)p(jli) if i
Among these transitions, on the average the time that the process stays at state ¢ is
Tn(k), where m1 = (w(1),---,7(S)) is the steady-state probability of continuous-time
, then there are Tw(k)\(k)

Markov process. Since the average holding time at state is /\(
times from state k on the average. Each time when X visits state ¢ after visiting state
k, because of the change from P to Ps = p + dAP. the perturbed path Xz may have a
jump, denoted as from state ¢ to j. Denote the probability of a jump from 7 to j after

visiting state k as p(i, j|k). Then, we have

> (i, jlk) = plilk), (2.48)

S
ZW’JI@ = ps(jlk). (2.49)

On the average, in the time interval [0, T') there are Tw(k)A\(k)p(i, j|k) jumps from i to j
on the sample path. Each such jump has on the average an effect of (i, j) on Fy. Thus,

on the average the total effect on Fy due to the change in P to P is

E(Fsr — Fr)

= m( s [ rixoan



Q

Z{ZTW )p(i, jlk)V (i, 5)}

klz]l

= Z{Z Tr(k)A(k)p(i j1F)g(7) —

k=1 14,5=1

From (2.48) and (2.49), we have

E(Fsr — Fr)

Q

= TnA[Ps— Plg = TWA(AP)5Q,

where A = diag{A(1),---,A(S)}. Thus,

1
N5 — 1N = TE(FS,T — Fr) = 1A(AP)dg.

Finally, we obtain the performance derivative formula

dns

5 TA(AP)g.

g(@)]}.

s
T w(k)A Z[Pé (k) = p(1k)]g(5)
k=1

67
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CHAPTER 2. SOLUTIONS TO CHAPTER 2



Solutions to Chapter 3

3.1 Study the potential with g(S) = 0:
a. Prove that the solution to (3.4) satisfies pg.g =n — f(5).

b. Derive (3.4) from the Poisson equation (I — P)g 4+ ne = f with the normalization
condition pg.g =n — f(5).

Solution:

a. Putting P_ = P — epg, into (3.4), we have
g="Pg—eps.g+ [
Multiplying the both sides of the above equation with 7, we have

g =nPg—meps.g +7f_.

69
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Using 7P = m and me = e, we have

S

ps.g =mf =Y w(@D)f (i) = f(S)] =n— f(S).

i=1
b. Since pg.g = n— f(5), we have eps.g = ne— f(S)e. That is, ne— f(S)e —epgs.g = 0.

From the Poisson equation and the above equation, we have

g=Pg—ne+ f=Pg—ne+ f+ne— f(S)e—eps.g=Pg+f,

which is Equation (3.4).

3.2 Let P be an S x S ergodic stochastic transition matrix and v be an S dimensional

(row) vector with ve = 1. Set P_, = P — ev.

a. Suppose that there is a potential g such that vg = n, prove g = P_,g + f.

b. Prove that the eigenvalues of P —ev are 0 and \;,2 = 1,2,---,5 — 1, where \;, with
INi| < 1,i=1,2,---,5 — 1, are the eigenvalues of P.

c. Develop an iterative algorithm similar to (3.7).

d. For any vecotr v with ve = 1, we can develop the algorithm in ¢) without presenting

vg = 1. Prove that the potential obtained by the algorithm indeed satisfies vg = 7.

e. Prove that the algorithm (3.4)-(3.7) is a special case of the above algorithm and

verify pg.g = 1.

Solution:

a. From Poisson equation and vg = n, we have
g—Pgtevg=f.

That is, g =P_,g+ f.
b. Since (P—ev)e = 0, we know 0 is an eigenvalue of P —ev. Let z; be the eigenvector

of P corresponding to eigenvalue \; # 0, 1, i.e., Px; = \jz;. Define x} = z; — )\iiel/xi, since

the eigenvalue of ev is 1 and 0 and 0 is an eigenvalue of S — 1 multiplicity, we have z, # 0.
Moreover,
1

(P —ev)a; = Ni(wi — —eva;) = N\

Ai !
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Thus, the eigenvalues of P, \; # 0, 1, are the eigenvalues of P — ev. Since P is ergodic,
from Lemma B.1 in Appendix B, |)\;| < 1. Suppose 0 is an m-multiplicity eigenvalue of
P and y;,5 = 1,2,---,m are the corresponding eigenvectors, we have Py; = 0. Next we

prove y; are also the eigenvector of P — ev corresponding to eigenvalue 0.
(P — ev)y; = —evy;.

Since ev have a unique nonzero eigenvalue 1 and the corresponding eigenvector is e, we
know for any vector = # ce, where ¢ is an arbitrary constant, evx = 0. From Pe = 1,
we have y; # ce, thus evy; = 0. Therefore, (P — ev)y; = 0. From the above discussion,
we know the eigenvalues of P — ev are 0 and \;;e = 1,2,---,5 — 1, where )\;, with
IANi| <1,i=1,2,---,5 — 1 are the eigenvalues of P, in which \; may be zero. If \; = 0 is
the m-multiplicity eigenvalue of P, 0 is the (m + 1)-multiplicity eigenvalue of P — ev.

c. Similarly to (3.7), we have the following iterative algorithm:

go=rf5 g=Pog+f k>L

d. From the algorithm in c), we know the algorithm converges to g = > (P_,)"f =

S (P —ev)'f=f4+>2 (P"—evP"!)f, where we have used ve = 1 and Pe =1

but we have not preset vg = 7. Then, we have

N
vg = J&l_r)nooy[f + Z(P” — evP" ]
n=1
N
= Jim {yf + Z;(VP” . VPn_l)f}
_ T N
= Jm Py
= vernf

e. Firstly, we have pg.e = e, so pgs is a special v and P_ is equivalent to P_,. From
the result in d), we have pgs.g = 1. Next, we prove the equivalence between f_ and f.
From P e =0, we know P f = P (f — f(S)e) = P_f. Thus, the potential > >~ (P)"f.
obtained from (3.7) is equivalent to potential >~ (P_)" f, which is the result of the above

algorithm. Therefore, the algorithm (3.4)-(3.7) is a special case of the above algorithm.

3.3 For any vector v with ve =1,
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a. Prove g = (I—P+ev)~! f is a potential vector with normalization condition vg = 7.

b. Can you derive a sample path based algorithm similar to (2.16) based on a)?

Solution:
a. We only need to prove ¢ = (I — P + ev)~!f with normalization condition vg = 7
is a solution of Poisson equation. From Poisson equation and normalization condition

vg = n, we have
(I —P+ev)g=f.

Moreover, since the eigenvalues of P—ev are all less than 1, matrix [/ — P+ev is invertible.
Thus, g = (I — P +ev)~' f is a solution of Poisson equation.

b.

g = (I—P+ev)'f

o0

= Y (P—er)'f

n=0

= [+ Z(P” —evP" 1) f.
n=1

Writing it in its components, similarly to (2.18), we have

o) = Jim {ELY 100] - B Fox0)) @)
= {Ei[ 3 fX0) =] - B : f(Xz)—n]}, (3.2)
=0 1=0

where FE; denotes the conditional expectation with respect to initial state Xy = ¢, E,
denotes the conditional expectation with respect to initial distribution v. Since a sample
path with initial distribution » cannot be obtained, it is difficult to design an sample-
path-based algorithm to estimate limy_ . E, [Zf;ol f(X;) —n]. Thus, we cannot design
an sample-path-based algorithm similar to (2.16) to estimate the potential g = (I — P +

ev)"Lf.
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3.4 Consider

0 05 05 10
P=107 0 03], =12
04 06 O 7

a. Calculate the potential vector using algorithm (3.1).
b. Calculate the potential vector using algorithm (3.3).
c. Calculate the potential vector using algorithm (3.7).
d. Calculate the potential vector using algorithm proposed in Problem 3.2.

Observe the convergence speeds and compare them with that of of limy_.., P* = er.

Solution:

a. Using algorithm (3.1), we obtain the potential vector g = [8.7600, 3.7380, 6.4252] if
the algorithm is stopped when the norm of g, and g1 is less than 0.001. The number of
iterations is 18.

b. Using algorithm (3.3), the potential vector obtained is same as that in a) and the
algorithm is stopped when the norm of gy and gxy; is less than 0.001. The number of
iterations is 18.

c. Using algorithm (3.7), we obtain the potential vector g = [2.3348, —2.6872, 0] if the
algorithm is stopped when the norm of gy and gxy; is less than 0.001. The number of
iterations is 18.

d. If we assume v = [1,0,0], using the algorithm in problem 3.2, we obtain the
potential vector g = [6.312,1.2996, 3.9868] if the algorithm is stopped when the norm of
g and ggyq is less than 0.001. The number of iterations is 18.

Computing P", we find P" is approximately equal to er at n = 18. Thus, the

convergence speed is same as that of the above algorithms.

3.5 Suppose a Markov chain starts from state ¢ and we use the consecutive visits to the

state i as the regenerative points (cf.(3.18)). That is, we set

i() = 0, with X() =1

i = the epoch that X, first visits state ¢ after ix_1,k > 1.
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Then we denote the first visit epoch to state j in the kth regenerative period as ji; i.e.,
Jr = min{ig_; <l < : X; = j}. We note that in some periods, such a point may not
exit. Can we use the average of the sum of Y7+~ f(Xi) as the estimate of y(j,4)? If

l—Zk,

not, why?

Solution:

We cannot use the average of the sum of Z{’“Z_kl f(Xi) as the estimate of (3, 4). From
(2.17) in Chapter 2, we know ~(7,7) = E{ZL(]| "£(X;) — n]|Xo = i}, thus, we may use
the average of 3 7¢ Zkl [f(Xi) — n] as the estimate of y(j,7). If we directly omit 7 and
use S0 i, J(Xi) to estimate v(j,4), then the estimate will generate an estimate bias
NE(jr —ix—1) = nE[L(j|i)], where L(j|i) denotes the time that the process moves to state

7 firstly from state 1.

3.6 Let p(1]1) = 0.5,p(2|1) = 0.2 and p(3|1) = 0.3; p(1|2) = 0.3 and p(2|2) = 0.5, and
p(3]2) = 0.2. Suppose X = 1 and X = 2, and we use the same uniformly distributed
random variable ¢ € [0,1) to determine the transition from both X = 1 and X = 2,

according to (2.2). In this case, what are the conditional transition probabilities p (¥]2),

]52|1(>|<|2) and ]53|1(>|<|2)?

Solution: Firstly, we consider pyj1(*|2). Given that the Markov chain X moves from
state 1 to state 1, we know ¢ is in [0,0.5). According to (2.2), we know the Markov chain
X can only transit from state 2 to state 1 or state 2. If £ is in [0,0.3), X transits from
state 2 to state 1. If £ is in [0.3,0.5), X transits from state 2 to state 2. Thus, we have
pip(1]2) = 82 = 0.6, p1)1(2]2) = 2323 = 0.4 and py)1(3|2) = 0. Similarly, Given that the
Markov chain X transits from state 1 to state 2, we know & is in [0.5,0.7). According
0 (2.2), we know X can only transit from state 2 to state 2. Thus, P2 (1]2) = 0,
P21(2]2) = 1 and py1(3|2) = 0. Given that the Markov chain X transits from state 1 to
state 3, we know ¢ is in [0.7,1). If € is in [0.7,0.8), X will transit from state 2 to state
2. If € is in [0.8,1), X will transit from state 2 to state 3. Thus, we have pap;(1]2) = 0,

P (2]2) = %3251 = 1/3 and pspi (3[2) = 152 = 2/3.

3.7 Let X and Y be two random variables with probability distributions F'(z) and G(y),

respectively. Their means are denoted as 7 = E(X) and g = E(Y). We wish to estimate
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T —y = E(X —Y) by simulation. We generate random variables X and Y using the
inverse transformation method. Thus, we have X = F~!(§) and Y = G™(&), where &
and & are two uniformly distributed random variables in [0, 1). Prove that if we choose
& = &, then the variance of X — Y, Var[X — Y], is the smallest among all possible pairs
of & and &,.

Solution: This problem is same as Problem A.4.

3.8 In the coupling approach, Prove the following statement:

a. Let 7 be the S? dimensional steady-state probability (row) vector of 13, ie., 7P = T,
and 7 be the steady-state probability vector of P, i.e., 7P = m. Then, 7(es ® I) =
F(I®es) =, and 7§ = 7f = 0.

b. Equation (3.22) can take the form

~

(I—P+epr)j=f,

with 7g = 0. Therefore, we have

Solution:

b. Since 7(I ® e5) = 7P(I ® eg) = T(P ® eg) = 7(I ® es)P and 7(I ® eg)eg =
T(es ® es) = 1, we have (I ® eg) = m from the uniqueness of the solution of 7P = 7
and me = 1. Similarly, since 7(es ® ) = ﬁﬁ(es ®I) =T7(es ® P) = (es ® I)P and
T(es ® Iesg = T(es ®eg) = 1, we have T(es @ I) = 7. From 7(es @ I) =7(I ® eg) = ,
f: (es@f—f®es)=(es®@—IReg)f and g = (es® I — I ®eg)g, we can easily
obtain 7g = 0 and %\f: 0.

c. From (3.22), 7 = 0, and g = 0, we have

~

(I-P+epn)j=1f

That is, Equation (3.22) can take the form (I — P+ es2T)g = f. From the result of
Problem 2.3, we know Pis ergodic, then we know the fundamental matrix I — Pte 2T IS
invertible, and (I — P+ ee®) ™ = 30° (P — ege7)! = [+ 0%, (P! — eg27). Thus, using
7f=0, we have 3 = f + Z?;(ﬁlf_ egz/ﬁf) =31 P't.
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3.9 To illustrate the coupling approach used in simulation for speeding up the estimation

of v(7, ), let us consider a simple Markov chain with transition probability matrix

0.2 03 0.5
P=102 03 05
0.2 03 0.5
a. Suppose that we generate two independent Markov chains with initial states Xg = 1

and X = 2, respectively. What is the average length from [ = 0 to Lj,, E(L},)?

b. If we use the same [0, 1) uniformly distributed random variable £ to determine the

state transitions for both Markov chain, what is E(L7,)?

c. Answer the question in a) and b), if

0.2 04 04
P=104 02 04
04 04 0.2

Solution:

a. Define stochastic process X = {(Xn, X]),n > 0}, where X,, and X/, are indepen-
dent Markov chain with same transition matrix P, We know L}, = min{n > O,)?n €
Al Xy = (1,2)}, where A = {(1,1),(2,2),(3,3)}. Therefore, this problem can be trans-
formed into a problem about computing the expectation value of first passage time of X

reaching the set A from initial state (1,2). The transition matrix of X is

P=PQP=
[ 0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
| 0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500
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since
B(Li,) = ZPNA—nn—iiPNA—"
n=1 [=1
- ZZP(NA:n):ZP(NAzl),
1=1 n=l =1

where N4 denotes the step numbers that X moves to set A firstly. Since P(Ny > 1) =
P(the first [ — 1 transitions stay at B = A°), where B is the complement set of A, i.e.
B = A° Thus, in a vector way, the expectation of first passage time from any state
i € B toset A is the corresponding component in (I — Pg)~te =Y > Ppe, where Pp is a
matrix that deletes the columns and rows corresponding to the states in set A in transition
matrix P. This result is a generalization of the result of b) in Problem 2.20. (I —Pg)~te =
(2.6316,2.6316,2.6316,2.6316,2.6316,2.6316)7, so E(L},) = [(I — Pg)'e]; = 2.6316.

b. If we use the same [0, 1) uniformly distributed random variable £ to determine the
state transitions for both Markov chains, since the transition probabilities from state 1
and state 2 to any state are the same, two Markov chain will reach the same state in one
step. Thus, F(L7,) = 1.

c. Similarly to a), we can obtain F(L},) = [(I — Pg)'e]; = 3.125. If we use the
same [0, 1) uniformly distributed random variable £ to determine the state transitions
for both Markov chain, two Markov chain transit to the same states in one step when
¢ falls in [0,0.2) or [0.4,1). That is, two Markov chain transit to the same states in
one step with probability 0.8 and transit to different states with probability 0.2, thus
E(Ly) =327,08x%(0.2)" 1n = m = 1.25.

From this example, we can find the coupling approach can reduce the the time that

two Markov chains merge. Thus, this approach can estimate (i, j) with less variance.

3.10 The realization factor 7(i,j) can be obtained by simulating two sample path initi-

ating with 7 and j, respectively, up to its merging point L;;:

E{Z FX)]|Xo =14, Xo = 5}

If the two sample paths are independent, as shown in the text, we can obtain the per-

turbation realization factor equation. However, in simulation, we may use coupling to



78 CHAPTER 3. SOLUTIONS TO CHAPTER 3

reduce the variance in estimating the difference of the mean values of two random vari-
ables (v(i,7) = g(j) — ¢g(4)). In our case, we wish to let the two sample paths, initiating

with ¢ and j, merge as early as possible.

To this end, in simulation we can force the two sample paths to jump to the same
state, from ¢ to j respectively, with a probability as large as possible. We may use the
same random variable to determine the state transitions in the two paths. For example,
if p(kli) = 0.3 and p(k|j) = 0.2, instead of using two independent random numbers
in [0,1) to determine the state transitions for Xy = ¢ and X = j, respectively, we
generate one uniformly distributed random number £ € [0, 1), if £ € [0,0.2), we let both
X; = X{ = k. We use an example to show this coupling method: Let p(1]2) = 0.5,
p(2]2) = 0.3,p(3|2) = 0.2, and p(1]3) = 0.2,p(2|3) = 0.7,p(3|3) = 0.1. The largest
probabilities for the two paths starting from Xy = 2 and X = 3 to merge at X; = X =1
is min{p(1]2), p(1]3)} = 0.2, to merge at X; = X| = 2 is min{p(2/2), p(2|3)} = 0.3, and to
merge at X; = X| = 3 is min{p(3|2),p(3|3)} = 0.1. Thus, the largest probability that the
two sample paths merge at X; = X with the coupling technique is 0.2+ 0.3 + 0.1 = 0.6.
We simulate the two sample paths in two steps. In the first step, we generate a uniformly
distributed random variable £ € [0,1). If £ € [0,0.2), we set X; = X| = 1;if £ € [0.2,0.5),
we set X7 = X| = 2;if £ € [0.5,0.6), we set X; = X| = 3. If £ € [0.6,1), we go to the
second step: using another two independent random numbers determine the transitions

for the two sample paths.

Continue the above reasoning and mathematically formulate it. Work on (i, .S) for

all state ¢ € S and derive the following equation

Prove it is the same as (3.4).

Solution:

From the above reasoning, our objective is to maximize the probability that the two
sample paths starting from different states ¢ and j merge. This problem can be trans-

formed into a linear programming problem:
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Linear Programming: For i # j,

max > pl(k, K)/ (G, )]

keS
st > pl(k, DI, 5)] = p(kl),
les
S pl(k, 106, 7)] = pl),
keS

p[(k,D)|(i,5)] >0, kl€S.

For ¢ = j, we can choose the transition probabilities p[(k,1)|(4,7)],k,1 € S to satisfy

the following equations:

> pl(k, DI(i, )] = p(k|i),

les

> pl(k, 1)), 4)] = p(ili),
keS

Since

7(2,5)
= 9(5) —g(9)
:tholoE{ [f(Xz)—U”Xo:S}—LlLT{)IOE{ [f(Xl)—nHXo:Z}

= f(S) = £G) + > _(0Gi1S) — p(ili)g()-
jeS

thus, we have g(i) —g(S) = f(1) = f(5)+ 22,5 (p(11) —p(i5))g(4), i € S. This equation
is the same as that obtained by subtracting the last row of the Poisson equation from all

the rows.

3.11 One of the restriction of the basic formula (3.32) is that it requires p(j|i) > 0 if

Ap(jli) > 0 for all 7,j € S. This condition can be relaxed. For example, we may assume
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that if Ap(j]é) > 0 then there exists a state, denoted as k; ;, such that p(k; ;]7)p(j|ki ;) > 0.

Under this assumption, we have

d”é L Ap(ili) .
Zezsgs{ﬂ p(kiji)p (J\kz,])p(kim)p(ﬂki’j)g(J)]}-

Furthermore, we have

d Ap(jli .
776 ZSZS{W Zsp (kli)p(j|k) Zk SPZE%L)LW{)Q(J)]}-
1€ Jje ke €

a. Continue the analysis and develop the direct learning algorithms for the performance

derivatives,

b. Compared with (3.32), what are the disadvantages of this “improved” approach, if

any?

c. Extend this analysis to the more general case of irreducible Markov chains.

Solution:

a. We consider the approximation by truncation similar to Algorithm 3.1. Since

dns Ap(jl2) .
@5 ZZ{ [ pkinIh zkespwmp(j\k)g(”]}
- Ap(Xi12| Xi)
= Bl o altopl )}

N-1
1 X,)
hm ( n+2 |

-~ f(Xy)
VN 2 5 p (Kl B k:|X Z

N-1 L-1
. AP(Xn+l+2|Xn+l)
= lim — X .
N—oo N 2 {f( ag ; [Zkesp(k|Xn+l)p(Xn+l+2|k3)}

n+L+1

Q

n=0
Similarly, we can obtain the approximation by discount factor.

N

d775 B — n—l—1 Ap(Xi12]X)
B Z { Xot1) Zo[ﬁ Zkes p(k|Xl)P(Xz+2|k)]}

n=1 =

b. In the “improved” method, the summation ), _ g p(k[X;)p(X;2|k) will lead to the

increment of computation.
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c. For general irreducible Markov chains, we know there is k; ; > 0 such that p*(j|i) >
0 for any two states ¢ and j. Define K = max; jes{ki;}, we have p™(j|i) > 0 for any
states 1 € S and 7 € S. Thus,

e )

€S jES

Then, similarly to a), we can develop the direct learning algorithms.

3.12 In the gradient estimates (3.34), we have ignored the constant term 7 in the expres-
sion of g. A more accurate estimate should be

dns ~ lim i{ E{Ap X1 Xn) }i +it1) ]} w.p.1.

dd  N—oo N p— (Xnt1|Xn) = Ao

Prove

Ap n+1|X
d A}E{;N{Z{ X X }Zf nti+1) }> w.p.1.

and discuss the estimation error caused by a finite Ln.

Solution: Since

i g{mf( SRl
Ap(Xn 1|Xn)
= e[S ni‘m}
= LnY =(i)> p Gl 2 ) 0,
ieS jeS

Thus, we have

dis 1R~ Ap(X] X)) | =
~ lim {nzzo{ p(Xn+1|Xn) };f(Xn—l—l-‘rl)}a Wp]—

Although the omittance of Ln does not result in the bias, it will result in a large
variance. This is because the omittance makes the sum ZZL:_Ol f(Xpnii41) larger, which

results in a large fluctuation of the estimate.

3.13 Discuss the error in the gradient estimate (3.41) caused by ignoring the second term

of (3.40) for a finite N. You may set f = 1.
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Solution: The error is

1= Ap(Xp|Xn), &
error = %{%}l ;nﬁ f(Xnti41)-
If we set f = % < B, we have
ermr<BiNzliﬁl ZﬁNn_Bﬁ(l—ﬁN)
R e ol N N1=p)

When N — oo, the error tends to zero.

3.14 Let 1, be the average performance of a Markov chain with transition probability

matrix P, defined as p,(i[i) = for all i € S and p,(j|i) = (1 — r)g;j,j #4,1,5 € S, with

Zjes gi; = 1 for all i € S. Please prove dd’Zf = 0 for all 0 < r < 1 using performance
derivative formula (3.30).
Solution:

Let AP, = Py — P,, then Ap,(ii) = ' —r and Ap,(jli) = — (' — r)gj,i,j € S,
thus, % is equal to == when X, transits to the same state at time [ + 1 and
is equal to %;T) when X transits to different state at time [ + 1. No matter what is

X, X; transits to the same state at time [ + 1 with probability r and transits to different

state at time [ 4+ 1 with probability 1 — r, thus, % =
Apﬁzgiﬁ)'?g) = _(fi;r) with probability 1 —r. From performance derivative formula (3.30),
we know
dn, Ap(X;11|X))
= & i) }
dr p(Xi41]X0) §(Xis1)
Ap(Xi1]X1) }
- E E[ X )X }
{ p(Xi1]X1) 9(Xin)| Ko
Ap(Xi1]X1) }
- B E[ )X ] X,
{ PNl o)
r—r —(r' =
o (=N R e )

3.15 In Algorithm 3.1, prove that the following equation holds

L-1

lim {) ~ P/(AP)P*™'"'} = ex(AP)(I — P+ em) ™

L—oo
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In addition, prove that at the steady state, we have
L1

(i)pw(i) { (X,) Z Ap Xz+1‘Xz } _ WE{PZ(AP)PL_I_I}&@,
— p(Xi11]| X)) —

where e; is the ith column vector of the identity matrix /. Equation (3.38) and the

convergence of (3.37) follow directly from these two equations.

Solution: For ergodic Markov chain, we have P! — er when [ — oo. Therefore, there
is a N, when [ > N, we have —eE < P! — er < €F, where F is a S x S matrix with all

components equal to 1. Moreover,

L—1
Z PY{AP)P!
=0
L—1

= Y P"" N AP)P™ (Let m=L—1-1)
m=0
L-N-1 L-1
= P AP)YPM 4+ Y PR AP) P (3.3)
m=0 m=L—N-1

When L is large enough, for example L > 2N + 1, we have L — N —1 > N. For the

second item in equation (3.3), we have

L—-1 L—-1
P AP)(em —eE) < Y PYHAP)P
m=L—N-1 m=L—N-1
L—-1
< P Y (AP)(em + €E).
m=L—N-1

From APe = 0, we know the second item Zm 1 n_1 PE"" Y (AP)P™ = 0. For the first
item of (3.3), since L—m —1> N for 0 <m < L — N — 1, we have

_Z_ (emr — eE)(AP)P™ < _Z_ PETm Y AP)P™ < _Z_ (em + €E)(AP)P

m=0

Let L — oo, we have

00 L—-N-1
_ m L—m—1 m m
(em eE)(AP)Z_OP < lim Z P (AP)P™ < (e + ¢E)(AP) ZOP

From the arbitrary property of €, we have

lim {i P{(AP)PF1Y

L—oo
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Because (I — P +em)™!
-1

lim
L—o0

Next, we prove m(i)pr (i) =

Z P(lz+2|21+1

142 ip—1

2 m=0

ZP Zl 1|2L 2
L—1
ZW lo ZP i1]io) ZP in|i1) . ZAP G141 1) ZP ir2iig1) -

CHAPTER 3. SOLUTIONS TO CHAPTER 3

L-N-1

> PN AP P

m=0
T(AP) i pP™.
m=0

Pm

lim
L—o0

—em and APe = 0, we have

{)_P(AP)P"'"'} = en(AP)(I — P+em)™!

A : - -
B{L(X0) T SRERE | = 7 S {PAP) P e

}_

Ap(ml\zl)
(Zz+1 |’ll)

S pliali)

141

p(iliz—1)

-pliliL-1)

=0 o 141 42
L—1
= w{) PY(AP)PL " 1}e,.
1=0
Moreover,
o Ap(Xp| X))
E{L(X el 2
{ (%) — p(Xin|X0) }
L1
Ap(Xi41|X3)
— E{E|L(X ’X
{ ( L); p(Xeaal X)) 17F
= 7(i)pL(i)
Thus, we have
L-1 L-1
AP(X1+1|Xl) L-1-1
(1 1) = E (X =7 AP)P €.
(Dou(i) = B{L(X0) 3 ST > P(ap)
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From the above equation, we know the limit of p (i) exists when L — oo and

L—-1
Llijgo§7f(i)m(i)f(i) = lim wlZ;PZ(AP)PL—I—l f
= werm(AP)(I — P +em) 'f
_ dns
ds

3.16 In Problem 3.15, we set G|, = f;ol PY{AP)PL==1 Prove
GL+1 == PGL —f-GLP - PGL_1P.

with Go = 0,G; = AP. Set G = limy_, ., Gr. Explain the meaning of GG. Finally, letting
L — oo on both sides of the above equation, we obtain G = PG + GP — PGP. Is this

equation useful in any sense?
Solution: When L =1, it is obvious that

Gy = PAP+ APP = PG, + G, P.
When L > 2, we have

PGy +GrP— PGy_P
L—-1 L—1 L—2
— Z Pl-l—l(AP)PL—l—l + Z Pl(AP)PL_l . Z Pl-l—l(AP)PL—l—l
=0

1=0 =0

L-2 L—2
= P*AP+ ) P*YAP)PY 4 PEIAPP + ) P(AP)PY
=0 =0

L—2
o Z PlJrl(AP)PLflfl
=0
L—2
= PYAP+PY'APP+ Y P(PAP+APP— PAP)P* !
=0
L—2
— PLAP 4+ PLIAPP + Z P'APPL

=0

L
= ) PAPP" =G
=0

G is the limit point of the iteration G4 = PG+ G P — PG _1P. We can see that

G'1, denotes the perturbation effect on L-step transition matrix P¥ due to the parameter
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change AP . So the physical meaning of G is the perturbation effect on steady state

dr
s

P> = em due to the parameter change AP, ie. G=¢

The equation have infinite solution, for example, for any row vector v, ev is a solution of
this equation. Thus, from the equation, we cannot obtain the solution we need. However,
the iteration from this equation can be used to compute the performance derivative. By
using the iteration, we obtain G, then Gf = Z—Ze, which avoid the computation of the

inverse.

3.17 Write a computer simulation program
a. to estimate potentials by using (3.15) and (3.19)

b. to estimate the performance derivative by using (3.35), (3.41), and (3.43).

Solution:
a. The algorithm by using (3.15):

Given arrays: StateNum, StatePerf and Statequeue; (StateNum records the num-
ber of visiting state, which is 1 x .S dimension; StatePerf records the total perfor-
mance,i.e. StatePerf(X,) = ZlL;Ol f(X,41) and Statequeue records L continuous
states, that is from X,, to X,,yr_1. We do 10000 transitions.
for £ =1 to 10000 do
if £ <=L then
Statequeue(k)=Xj,
else
StateNum(Statequeue(1))=StateNum(Statequeue(1))+1
for | =1to L do
StatePerf(Statequeue(1))=StatePerf(Statequeue(1))+f(Statequeue(l))
end for
fori=1to L —1do
Statequeue(l)= Statequeue(l + 1)
end for
end if
Statequeue(L)=Xy
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end for
for:=1to S do
Potential(i)=StatePerf(i) /StateNum(z)

end for

The algorithm by using (3.19):

Given arrays:

1. S xS matrix: StateTrNum, whose (m,n)th component denotes “the number from

state m to firstly visit state n”;

2. S x S matrix: SumStateTrNum, whose (m, n)th component denotes “the sum of

the number from state m to firstly visit state n”, i.e. >, Li(n|m);

3. S x S matrix: StatePerf, whose (m,n)th component denotes “the sum of perfor-

mance from state m to state n,” i.e. >, Ri(m,n);

4. S x S matrix: Flag, which is indicator matrix, and its initial value is zero matrix.

We do 10000 transitions.

for 7 =1to S do
Flag(Xo, j)=1;
end for
for £ =0 to 9999 do
StateNum (X} )=StateNum(Xy)+1;
fori=1to S do
for j =1to S do
StateTrTemp(i, j)=StateTrTemp(i, j)+Flag(i, j);
StatePerfTemp(i, j)=StatePerfTemp(i, j)+f( X} )*Flag(s, j)
end for
end for
Generate the next state Xy
for:=1to S do
StateTrNum (i, Xy 1 )=StateNum(i, Xy, 1)+Flag(i, Xj11);
SumStateTrNum(é, Xx41)=SumStateTrNum(i, Xy 1 )+StateTrTemp(i, Xy 11);
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StatePerf(i, Xy 1)=StatePerf(i, Xy 1)+StatePerfTemp (7, Xy11);
StateTrTemp(i, Xy, 1)=0; StatePerfTemp(i, X 1)=0;Flag(i, Xy1)=0
end for
for j=1to S do
Flag(Xy1,j)=1
end for
end for
AllNum=), StateNum(k);
for:=1to S do
7(i)= StateNum(7)/AlltNum;

end for

A

n="xf;
fori=1to S do
for j=1to S do

533, §) = StatePerfu,j)  SumStateTrNumg,j)

7)) = StateTrNum,j) StateTrNum,j)
end for

end for

g =T7T#T,

b. Algorithm by using (3.35):
Set ImportSampQueue be a 1 x L-dimensional matrix, k = 0 and Ay =0
for £ =1 to 10000 do
if £ <= L then

ImportSampQueue(k) = 7AI)I(>§(X]€T)\(X]€,:§)
if k = L then
Ap_r41 =01+ k;—;m[f(Xk) > ImportSampQueue(l) — Ay_p]
end if
else

for[=1to L —1do
ImportSampQueue(l) = ImportSampQueue(l + 1);

end for
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Ap(Xp11|Xy)
P( X1l Xk)

Ap_r41 =01+ k—;l,—f—l[f(Xk) >, ImportSampQueue(k) — Ay_r];
end if

ImportSampQueue(L) =

end for

A} is the value of the derivative.

Algorithm by using (3.41):
Set Zo=0,k=0and Ay =0
for each state X visited do

_ Ap(Xp41]X) .
Zk-i—l - BZk + p(Xpt11Xz)

Apir = Dp + g (F(Xpi1) Z — A);

end for

A} is the value of the derivative.

Algorithm by using (3.43):
Set Zo=0,k=0and Ay =0
for each state X, visited do

Ap(Xpq1]X . "
Zo+ SRR i X #

0, if X ="

Zk+1 =

Apir = Dy + 7 (F(Xii1) Ze — Ag);

end for

Ay} is the value of the derivative.

3.18 The group inverse (2.48) B# = —[(I — P +en)~! —en] (for ergodic chains) plays an
important role in performance sensitivity analysis. Let b (4, j) be the (4, j)th component
of B#. Consider a Markov chain starting from state i € S. Let NZ-(]-L) be the expected
number of times that the Markov chain visits state j € S in the first L stages. Prove

lim (N — N&Y = 0% (k) — b# (5, 7).

L—oo

Solution: Because N- = SF (X, = j|Xo = i), we have NZ-(]-L) S = Pn,;, where

]

J;; denotes the (i, ) component of matrix. Since B¥* = —[(I — P + en)™! — en] =
HJ ) p
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—Y (P—em)"+er=—-1—-3 7 (P"+em)—er=lim; . Zﬁ:o —P"+ (L + 1)em,

= lim {[Z —P" + (L +1)er],; — [Z —P"+ (L + 1)€7T]j,i}

L—o0 =
L L
= nglgo {[an]jz - [an]kz}
n=0 n=0

L—oo

3.19 Given a direction defined by AP, is it possible to estimate the second order derivative

% using a sample path of the Markov chain with transition probability matrix P (cf.

Section 2.1.5)? How about the second order performance derivative of any given reward

function f(0)?

Solution: From Section 2.1.5 in Chapter 2, we have
s _ o (AP)I - P “YAP)(I — P+ er)™!
I T(AP)(I — P+em) (AP)(I — P+em) " f.

From Problem 3.15, we know we can use

N-1 ¢ L—1 Ap(Xnyi141]Xnt1)
Zn:() IZ(XTH—L) 21:0 P Xt 1411 Xntl)

ZnN;01 [z (Xn+L)
as an estimate of m1(AP)(I — P +en) 'e;. Since (I — P +em)~!f is the potential, we can

dji =

estimate it by using a sample path of Markov chain. We use the methods in Section 3.1.2
to estimate the potential (I — P + er)~!f and get potential estimates g, then compute
the value APg, whose ith component is v;. Finally we use 2 25:1 w;V; to estimate the
second order derivative.

Moreover, we can also firstly use one part sample path of Markov chain to get the
potential estimate g. Then making APg as the performance function, we utilize another
part sample path to estimate (I — P+emr) ' APg. Finally, we use 2nAP(I — P+er) ' APg
to estimate the second order derivative. In this method, we need to repeat using one
sample path or make two simulations.

When the reward function is related with parameters, we have n(6) = = (0) f(9), thus,

the second order derivative of n(6) is

d*n(0)  d*=(0) dm(0) df (0) d*f(0)
a2 ~ e g ag T e

(3.4)
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For the first item in the (3.4), we can use the above estimate method of the second order

f()

derivative to estimate it. For the second item, we make as a reward function, using

the estimate methods of the derivative in book, we can obtain its estimate. For the last
item, we view it as an average reward performance, where the performance function is

d2 £(6) .. . .
g5 and can also obtain its estimation.

3.20 Consider a continuous-time Markov process with transition rates A(z) and transition
probabilities p(j|i),,j = 1,2,3,---, 5. Suppose that the transition probability matrix
P := [p(jli))ies,jes changes to P + JAP, and the transition rates A(i),7 = 1,2,...,5,

remain unchanged. Let n be the average reward with reward function f. Develop a direct

dns

learning algorithm for <.

Solution: Suppose that the transition probability matrix P := [p(j|i)]ics jes changes to
P + JAP, and the transition rate A(i),7 = 1,2,..., 5, remain unchanged, we can obtain
Bs = A(P+35AP —1) = B+5AAP. From the derivative formula 2% = 7(AB)g, we have

W 7anPg = 3 S ()M Mp(ila())

€S jES

We consider the importance sampling technique.

dn A1) Ap(jli)
d—(; = ;; 7(;|) 9(5)

: 1 )‘(Xn)Ap(XnJrl‘Xn) /Tn+T
lim — Sh Xy)dt, w.p.1,

Q

where S, is the sojourn time that the process stays at state X,.

3.21 Consider a closed Jackson network consisting of M servers and N customers with

mean service times s;,7 = 1,2,...,.S, and routing probabilities ¢; ;,7,7 = 1,2,..., M. let
i Lo
= lim —
nr = fim - FING)

be the time-average performance. Suppose that the routing probabilities change to ¢; ; +
0Ag; j,1,7 = 1,2,..., M. Develop a direct learning algorithm for the derivative of the
time-average reward using performance potentials. Use the intuition explained in Section

2.1.3 to develop the performance derivative formula.
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Solution: For the closed Jackson network, the state is the number of customers at each
server, which is denoted as n = (ny,...,ny). We assume ¢; = 0 and Ag; = 0. Define
p; = = and p(n) = S M €(ng)p. The infinitesimal matrix of the closed Jackson network

18

€(n)piqij, M =mn,;, i # J;

Upm = —u(n), m = mn;
0, otherwise.
where n; ; = (ny,...,n;—1,...,n;+1,...,ny). Thus, we can easily obtain the elements

of AB, AB(n, m), when the routing probabilities change to ¢; j+0Aq; ;,1,7 =1,2,..., M,

G(ni),uiAQija m=mn,;;,1i vk
AB('I’I,, m) = 07 m=n,

0, otherwise.

and the transition probability of embedded Markov chain

€(nq) piqij _ . .

om0 m = ni, iyl 3

plmfm) = {0 27
0, otherwise.

We assume the station which has a service completion at the k-th transition is denoted
by ¢, and the station which has an arrival right after the k-th transition is denoted by

ap. Then according to the derivative formula and using importance sampling similarly to

(7?), we have

dns
i TABg
= Y 3 #(n)AB(n,m)g(m)
neS meS
= Y anp(min) 22T )
neS meS p(m‘n>
ot LN ) Ag(afer) o T N
< g 3 P ) / FN@)dE,  wpl.

The intuitive explanation of the performance derivative formula is the same as the

solution of Problem 9.14.



Solutions to Chapter 4

4.1 Consider a discrete-time M /M /1 queue. The system state at time [ > 0 is denoted as
X;=n,l=0,1,---, with n being the number of customers in the server. The arrival rate is
reflected by the transition probabilities p(X; 41 = n+1|X; =n) =7r,0<r<1,n=0,1,---
and [ = 0,1,.... The service rate depends on the number of customers in the server and is
reflected by p(X;p1 =n—1X;=n) = p,, 0 < p, <1 —r,n=1,2,.... When the system
is at state n and with service rate u,, the cost is an+ Bu,, in which an represents the cost
for waiting time, and Su, represents the cost for the service. We wish to minimize the
average cost by choosing the right service rates u,,n = 1,2,..., among all the available

choices. Model this problem as a Markov decision process.

Solution:
Markov decision process contains five parts: the state space, the (available) action
space, the transition probability, the cost (reward, gain) and the criterion. For this

problem, the state of MDP is the number of customers n in the server, thus, the state

93
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space is S = {0,1,2,---}. The available action space A(n) at state n is the real space R.
An action p, can be taken from R when the state is n, i.e. d(n) = p,. The transition
probability from state n to n + 1 under policy d is p(X;41 = n + 1|X; = n) = r, which
is not related with action d(n). The transition probability from state n to n — 1 under
policy d is p(X;41 = n — 1|X; = n,d(n)) = pu,. Since p, < 1 —r, the system can transit
from state n to itself with probability 1 — r — u,. The other transition probabilities are
0. The reward is an + [Bu,, when the state is n. The optimization objective is the average

cost vector, whose ith component is defined as

L-1

n) = Jim 7 3" B {aX; + Bd(X)|Xo = i} (4.1)
=0

4.2 A retailer orders N pieces of merchandize every evening based on the stock left on
that day. The every day’s demand on the merchandize can be described by an integer
random variable with distribution p,,n = 0,1,.... The retailer earns c¢; dollars for every
piece sold, and s/he suffers a penalty of ¢y dollars for each piece left in every evening.
The retailer wishes to make the right order to maximize his/her earnings in a long term.

Model the problem as an MDP.

Solution:

The state of MDP is the number of merchandize on the stock left every day, then
the state space is S = {0,1,2,---}. The action is how much merchandize the retailer
orders. So, the available action space at state n is A(n) = {0,1,2,---}. The policy is that
the retailer order d(X;) pieces of merchandize for tomorrow when there are X; pieces of
merchandize on the stock left at time [. The transition probability under the policy is

p[Xi1 = n| Xy =m,d(X))] = Pmtdm)—n- The reward is
f(Xl, Xl+1, d(Xl)) = C1 [Xl + d(Xl) - Xl+1] - CQX[+1. (42)

The optimization objective is his/her earning in a long term. We can use the discounted
reward to measure his/her earning in a long term. That is, the optimization objective is

the discounted reward vector, whose ith component is

L
na(i) = lim B> ol f(Xo, X, d(X))| Xo =i}, 0<a<l. (4.3)
=0
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Figure 4.1: A Wireless Communication System

4.3 A mobile phone user travels through different regions shown in Figure 4.9; each region
is characterized into one of the M classes according to the transmission condition in the
region. In a region with a “bad” condition, the transmission of the signals requires a high
power and the bit error rate is also high; therefore, the mobile phone user may prefer to
delay the transition, by transmitting fewer bits, until s/he reaches a better region. On
the other hand, the transmission can not be postponed for too long. In a class ¢ region,
1=1,2,---, M, if the mobile phone has n bits in its buffer, the user may choose different
level of powers, denoted as d(i,n),i =1,2,---, M, and n =0, 1,---. Time is discrete and
is denoted as [ = 1,2,---. When the mobile phone is in a class ¢ region and there are n
bits in its buffer, if power d(7,n) is used, then the number of the correctly transmitted bit
in the time slot, k£ has a distribution qk k: =0,1,---,n, Y1, qZ(i’n) = 1. When the
user is in class i region in one time slot, s/he will travel to class j region in the next time
slot with probability p;;, 7,7 = 1,2,---, M. In each time slot, the user generates r bits
with probability of p,, > oo p, = 1. The cost function is f(i,n) = an + G;d(i,n), where
0; is the cost per unit of power in a class ¢ region and « represents a weighting factor

between the cost of power and the queue length. Model the problem as a discrete MDP.

Solution: The state of this problem is the region that the user stays and the number
of bits in the buffer. Thus the state space is S = {(i,n)|i = 1,2,...,M;n =0,1,...,},
where ¢ denotes the region and n denotes the number of bits in the buffer. The action is
using the different levels of powers. The user can choose different levels of powers d(i,n)
when the state is (i, n), which is the policy of MDP. The transition probability form state
(i,n) to state (j,m) is p[Xi = (5,m)| X0 = (i.0),d(i,n)] = pig Xy pomn e ",
k=0,1,2,...,n,7 = 0,1,2,.... The cost function is f[(i,n),d(i,n)] = an + Bid(i,n).

We can make the average cost performance as the optimization criterion, whose (i, n)-th
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component is

n'(i,n) = lim 1E {Z f1Xa, d(X0)]| Xo = (z’,n)} : (4.4)

L—oo [,
=0

4.4 Consider a closed network consisting of M single-server stations and /N customers. Let
n; be the number of customers in the server i,i = 1,2,---, M, and n := (ny,ng, -+, ny).
The service rate of server i,i = 1,2,---, M, depends on the system “state” n and is
denoted as f;,. That is, if at time ¢ € [0,00) the system is state n. then server i
completes its service to its customer in [¢, t4+At) with probability p; nAt. After a customer
completes its service at server i, the customer will transit to server j with probability
gij,t,J = 1,2,..., M. We may control the service rates ptjn, 7 = 1,2,---,M, n € § =
{(ny, -+, nn) : 224:1 nry = N}, to optimize a properly defined average reward 7. We

assume that the reward function f is independent of fi; ,.

a. Model the problem as a Markov decision process.

b. Suppose that the service rate of server i, i = 1,2,..., M, depends on the num-
ber of customers in server ¢, n;, and is denoted as p;,,;, and we may control the
load-dependent service rates p;,,, ni = 1,2,...,N,t = 1,2,..., M, to optimize an

average reward. Can we model this problem as a standard MDP? Why?

Solution:

a. For this problem, we need use continuous time Markov decision process to model
it. The state space is S = {n = (n1,na,...,1u)| Sopey 7k = N}. The available action
space A(n) at state n is the real space RM. An action y; , at server i can be taken from
R when the state is n, i.e. d(n) = (f1n, fon, -+, fan). The service rate at server ¢ when
system stays at state n is ji; , and the routing probability is ¢;;. From the results of closed

network, we can easily obtain the infinitesimal generator as follows:

(1) i nQis m=n,;, i #J;

bnm = 2?11 €(ni) HinGiiy m = n;

0, otherwise.
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where n;; = (ng,...,n; — 1,...,n; + 1,...,ny). The reward function is f(n). The

optimization criterion is the average reward defined as follows:

XQZHQ}.

When the system is ergodic, n(ng) is independent of the initial state ny.

1 T
o) = Jim 22 { [ rx)

b. We cannot model this problem as a standard MDP. Since the service rate at server
1 depends only on the number of customers in server 7, the action choice at the different
states is not independent. For example, We consider the case of 3 servers and 4 customers.
The service rates i ,, of server 1 at states (1,2,1) and (1,1, 2) are the same. This point

is different from the standard Markov decision processes.

4.5 Derive the average-reward difference formula for continuous-time ergodic Markov
processes with a finite state space and a finite number of actions, and derive the policy

iteration algorithm from it.

Solution:

For the continuous time Markov chain, we have the Poisson equation as follows:
Bg=—f+ne.
Left-multiplying on the both sides of Poisson equation by 7/, using 7’e = 1, we get
7Bg=—7'f+nen=—7'f+n.
That is,
n=mx'Bg+'f.
By #'B’ =0 and «' f' =7/, we have

0 —n=7'(f—Bg—f)=7(f+B'g) - (f + Bg)].

From the aforementioned average performance difference formula, it is natural to pro-

pose the following Policy Iteration Algorithm.

1. Guess an initial policy dy, set k = 0.

2. (Policy evaluation) Obtain the potential g% by solving the continuous time Poisson

equation B gd = — fdv 4 pire,
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3. (Policy improvement) Choose
dir = arg{max[f* + Bg"]}, (4.5)

component-wisely (i.e., to determine an action for each state). If at a state ¢, action

dr(7) attains the maximum, then set dy. (i) = di (7).

4. If dyy1 = dj, stop; otherwise set k := k + 1 and go to step 2.

4.6 Derive the bias-difference formula for continuous-time ergodic Markov processes with
a finite state space and a finite number of actions, and derive the policy iteration algorithm
from it.
Solution:

On the condition of 7’ = n = n*, by the average performance difference formula in
Problem 4.5 and 7’ > 0, similarly to the proof of Lemma 4.1, we can obtain (in fact, (4.6)

is the sufficient and necessary condition such that ' = n = n*)

B'g+ f'=Bg+ f. (4.6)
By Poisson equation Bg = —f + ne and B'g’ = —f' 4+ ne, we get
Bg+f=Byg+f. (4.7)

Combining (4.6) and (4.7), we get B'(¢' — g) = 0. Since the continuous-time Markov
process is ergodic, we obtain ¢’ — g = ce for any constant c.

Next we need to specify the constant c. Since g and ¢’ are the biases, we have 7'¢g’ = 0.
By 7'’ = 7'(g + ce) = 0, we get ¢ = —n’g. By replacing f by the bias —g in the Poisson

equation, we have the Poisson equation for the 2nd bias
Bw =g.

By using 7’ B’ = 0 and the above Poisson equation, we have the following bias difference
formula:

g —g=ce=7'(B"— B)we.

From the aforementioned bias difference formula, we can derive the policy iteration

algorithm for a bias-optimal policy:
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1. Starting with any gain-optimal policy dy, which may be obtained from the gain-

optimal policy iteration algorithm, set £ = 0.

2. Determine Dy by
DO(.):{QEA ZCL +ZBaj| do fdo +ZBdo ]| do }

3. Obtain the bias g% by solving B¥* g% = —fd% + n¥e and 7% g% = 0, and bias-

potential w by solving Bl w = g

4. Choose

dpr1 = arg{maX[Bd d’“]}
de&y

component-wisely (i.e., to determine an action for each state). If at a state ¢, action

d(i) attains the maximum, then set dy1(i) = di(7).

5. If dxy1 = di, stop; otherwise set k := k + 1 and go to step 3.

4.7 Policy iteration requires the actions at different states should be chosen independently.
Consider the following optimization problem. The state space consists of 25 states de-
noted as (i,7),i=1,2,---,5, 7 = 1,2. The same action has to be taken when the system
is at state (i, 1) or (i,2) for the same 4, i = 1,2, - - -. Thus, if action « is taken at both (i, 1)
and (i,2), then the transition probabilities from both state (i, 1) and (4, 2), p*(-|(¢,1)) and

p*(+|(4,2)) are determined simultaneously.
a. Explain why the standard policy iteration algorithm does not apply to this problem.

b. Let 7(i) := 7 (i, 1) + m(i,2) be the steady-state marginal distribution and 7(j|i) =
% be the steady-state conditional probabilities, ¢ = 1,2,---,5, 7 = 1,2. In this
problem, a policy determines an action based on the first component of the state,
i. Consider any two policies h(7) and d(i). We assume that these conditional prob-
abilities are the same for all policies. Thus, 7¢(j|i) = 7" (j|i) for all i = 1,2,...,S
and j = 1,2. Now we have the average performance difference formula

S 2
Zﬂ {Zw G {10 + 30 D 9, ()"

i'=1j/=1
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[ )+ S5 i) (@3N }'}

i'=1j'=1

The 7?(j]i) and ¢g%(4,7) in the big bracket do not depend on P". Derive a policy

iteration optimization algorithm for the “aggregated” state i.
c. Can you derive a sample path based optimization algorithm for the problem in b)?

solution:

a. From the process of the policy iteration, we can find that the action choices at different
states are requested to be independent, but in this problem, the action choices at different
states are not independent.

b. From the aforementioned average performance difference formula, it is natural to

propose the following Policy Iteration Algorithm.
1. Guess an initial policy dy, set k = 0.

2. (Policy evaluation) Obtain the potential g% by solving the Poisson equation (I —
Pa)g¥ +nlke = fo and compute the steady-state probability 7% by 7% P = 7

7k (i,5)
7 (i

and 7%e = e, then obtain 7% (j|i) by 7% (j|i) =

3. (Policy improvement) For i =1,2,---, S, choose

2 S 2
o) = arg mgx {dek GG ) + 30 S b 100, (g™ 0 7)) } (1)

ir=1j'=1

If at a state i, action di (i) attains the maximum, then set dg,1(7) = dg (7).
4. If dyy1 = di, stop; otherwise set k£ := k + 1 and go to step 2.

c. We can derive a sample path based policy iteration algorithm. Based on a sample
path, we can estimate the potential by using the methods in Section 3.1.2 and obtain the

estimation of potential §(i,). The estimation 7% (i,5) of 7% (i,j) can be obtained by

L—-1y¢
B 600 oy 7 (j]7) —

7tk (i,5)
i Ak (ing)”
7 (j]i) into (4.8), we can complete the policy improvement by using these estimates.

limy_ Putting the estimations g% (i, j) and

This method does not need the second step in the above policy iteration.

4.8 Are the following statements true?
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a. When the average reward policy iteration algorithm stops at a policy d, the direc-

tional performance derivative from d to any other policy in D is non-positive.

b. Ifdis a gain optimal policy, then another policy d is gain optimal, if the directional

performance derivative from d to d is zero.

c. Ifdisa gain optimal policy, then the directional performance derivative from d to

any other gain optimal policy d is zero.
d. The bias optimal policy has the largest bias in the policy space D.

e. The difference of the biases of any two policies is a constant vector (i.e. all its

components are equal).

Solution:

a. For ergodic Markov decision processes, this statement is true. The performance

derivative along the direction from dj to any policy d € D is

d775
s

(£ + P — (£ + Plg?)]. (4.9)
Since the policy iteration algorithm stops at the policy d, for any policy d, we have
fé+ Pdg& < fﬁi + P‘Zg&. Otherwise, the algorithm cannot be stopped. Thus, from

4 (3) > 0,Vi € S, the directional performance derivative from d to any other policy
in D is non-positive. For the case of Multiple Markov chain, this statement is also

true. The performance derivative along the direction from policy d to any policy

deDis

% _ (Pd)*[(fd pd d) (fd Pd d + ZPd I)ndA. (4.10)

When the policy iteration stops at policy d, then f4(i) 4+ P d( ) < fd( )+ PdAgdA(z’)

for all recurrent states ¢ and PdnCz < n‘j. Thus, we have % <0.

b. For ergodic Markov decision processes, this statement is not true. From (4.9),

although > 0, but we can not guarantee

Fla plgl = pd 4 pgd, (4.11)



102 CHAPTER 4. SOLUTIONS TO CHAPTER 4

which is the sufficient and necessary condition that d is also the gain optimal policy.
Maybe policy d makes f(i) + Pig?(i) < fi(i) + Pge(i) for some i and f%(j) +
Plgd(5) > fU(5) + Plgi(j) for some j, but @ — () still holds. Thus, this statement

is not true. For the multiple Markov chain, this statement is also not true.

c. This statement is true for ergodic Markov chain. From Lemma 4.1, we know if d

and d are the gain optimal policies, then
Fl4 plgl = pd 4 pigd, (4.12)

So the directional performance derivative from d to any other gain optimal policy
d is zero. Thus, this statement is true for ergodic Markov chain. For the case of
multiple Markov chain, this statement is not true. Since n‘i = n4, then, Pdn‘i = n‘i

and Pd*ncz = n‘j. From the average performance difference formula, we have
0=n'—n' = (P)[(*+ Plg") = (4 + Plg). (4.13)

For different polices d and d, the classes of recurrent states may be different. We
cannot draw a conclusion that (P‘i)*[(fd—i—Pdg&) —(fd4 Plg)] = 0 from (Pd)*[(fd—i—
Pigdy — (fd + Plgd)] = 0. Thus, the directional performance derivative from d to

any other gain optimal policy d may not be zero.

d. This statement is not true. The bias optimal policy has the largest bias only in the

set of gain-optimal policies Dy.

e. This statement is not true. We know the difference of the biases of two policies in
the set of gain-optimal policies Dy is a constant. However, if one of two policies is

not the gain optimal policy, this conclusion cannot hold.

4.9 Let d and d be two ergodic gain optimal policies in Lemma 1. We define a randomized

policy ds by setting P% = P4 4 §(P4 — P, fds = fd 4 5(fd — fd),

a. Let n% be the average reward of ds, prove ng, = n*.

dgs

b. Derive a directional bias-derivative equation from d to d, denoted as 2.
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c. When the bias policy iteration algorithm stops at a policy h, what are the directional

derivatives from this policy to other policies in Dy?

d. Calculate the bias derivative between various policies in Example 4.1.

Solution:

a. From the performance difference formula, we have

N =t = wh(f% 4+ Pyt —(f'+ Pg"))
= 7o[(f?— £ + (P — Py, (4.14)

Since d and d are two ergodic gain optimal policies, we have f d 4 pdgd = ¢+ Plg? from
Lemma 1. Thus, we have n% = n?. That is, d; is also a gain optimal policy.
b. Similarly to the method in Section 4.1.2, we can obtain the following difference

formula:

g® —g' = {x%(P" - PYu'}e

= {7Td55(PCz — Pd)wd}e,

where 7% is the steady-state distribution of P%. Dividing by 6 on both sides and letting

0 — 0, we have

% = {7%(P — PHw}e.

c. When the bias policy iteration algorithm stops at a policy iz, the directional deriva-
tives from h to other policies in Dy is non-positive.

d. Using Poisson equation, we have w® = (—1,1)T, w® = (-0.64,0.96)", w® =

(—0.8889,1.7778)T and w™ = (—0.5,1.5)T. The bias derivative along the direction from
d1 to dg is

0.5 0.5 0.5 0.5 -1
(0.5, 0.5){ - } e = —0.25¢,
0.75 0.25 0.5 0.5 1
where e = (1,1)7.
Similarly, we can obtain the bias derivative %le_,dg = —0.25¢, %|d1—>d4 = —0.5e,
s ay = 0.16e, 95|44 = —0.08¢, 22|y, _q, = —0.2de, 95|, 4 = 0.4445e, 9|, 4, =

0.2222¢, %8|, = —0.2222¢, L |, _; = 0.5¢, L, 4, = 0.375¢, %, _ 4 = 0.125e.
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4.10 In Section 4.1.1, we proved that at an optimal policy the performance derivatives
along the directions to all other policies are non-positive.

a. Suppose d”— > 0 at policy d along a direction defined by ds: P% = P? 4+ SAP,
o= f14+5Af with AP = P" — PY Af = f* — 2. Can we claim n" > n?? If not, give
a counter example. If yes, what does this imply in terms of policy iteration?

b. Prove that a policy d € D is average-reward optimal if and only if at this policy
the performance derivative along the directions to all other policies are non-positive.
Solution:

a. If d” > 0 along the direction defined by ds: P% = P% + §AP, f0 = 14 §Af
with AP = P" — P Af = f*» — ¢ we cannot claim n" > n?. If there exist some state

i such that (APg? + Af)(i) > 0 and some state j such that (APg? + Af)(j) < 0, but

dn‘s

= 7d(APg? + Af) > 0. For this case, we cannot claim 7" > n¢. For example,

0.2 0.1 03 04 1 0.2 0.2 0.2 04 1
pi _ 0.5 0.2 0.1 0.2 fd: 2 ph _ 0.1 04 04 0.1 fh: 2
0.2 0.3 0.1 04 3 0.3 0.3 0.2 0.2 2.9
04 0.2 0.2 0.2 4 0.3 0.1 04 0.2 4
We have
1.3957 —0.1496
1.6010 0.3138
g' = ,(P" = Pg"+ (f* = ) =
3.0966 —0.4050
3.7711 0.3196

and % = 0.0297 > 0, but we have n" = 2.4789,n% = 2.4809, and n" —n? = —0.002.
b. We firstly prove the necessary condition (“="). We use the contradiction method.

If there exists a policy d such that the directional derivative & d6 is positive. From 7¢ > 0

5
and d25
d—d

[Plg? + £)(i) > [P4g? + f9(i). Then, we create a policy d* by setting d*(i) = d(i) and
d*(j) = d(j) for all j # i. We have

=T [Pdgd + fh— (Plg? + fd)] > 0, there must exist a state ¢ such that

Pd*gd—f— fd* - Pdgd—I—fd.

By using the performance difference formula, we have %" > n?. This contradicts the fact

that d is an optimal policy. Thus, the necessary condition is proved.
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Next, we prove the sufficient condition with the contradiction (“<"). If d is not the

average-reward optimal, then there exists an average-reward optimal policy d* such that
P gl 4 4" plgd 4 pd.

d

From 7* > 0. Thus, the performance derivative from P to P* is positive. This is a

contradiction. Therefore, d is average-reward optimal.

4.11 Suppose that d is the gain-optimal policy with potential gg in Lemma 4.1. Then for
any policy d € Dy, we have f¢ + Pig d— fd + Pdgd From this, prove that for any other
policy d' € Dy, we have f¢+ Plg? = f¥ + P¥¢? for all d € D,.

Solution: Since f?+ P4 d— fg+ ngg holds for for any policy d € Dy, we have
fd+Pd dA: fd/ —f-Pd/gg: fg‘f’ PdAgg’ (415)

for any policy d’ € Dy . From (4.13), g% — g‘i: ce. Putting gg = g% — ce into (4.15), we
have fd Pd d _ fd Pd/ d

4.12 Prove that the second policy iteration algorithm for bias optimality in Section 4.1.2
converges to a bias-optimal policy in a finite number of iterations.
Solution:

In the process of policy iteration, dj.; € D. By the gain-optimal policy iteration
algorithm, we know nd+1 > nd before dj, becomes a gain-optimal policy. Since the
number of policies is finite, we know d; must be a gain-optimal policy in a finite number
of iterations. After that, D is the set of gain-optimal policies Dy. According to the bias
difference formula (4.15), we know the bias increases at each iteration before it stops
because of dyy; € arg {maxdeﬁ Pdwdk}. Since the number of gain optimal policies is
finite, the iteration procedure has to stop after a finite number of iterations. Suppose it
stops at a policy denoted as d. Then d must satisfy the optimality conditions fCZ+ PdAg‘z =
fd+ Pdgcz and Pyl > Pdw‘i, for all d € Dy, because otherwise for some i, we can find

the next improved policy in the policy iteration. Thus, by gain difference formula and

bias difference formula, we have g‘j > g? for any d € Dy, that is, policy d is bias optimal.

4.13 Calculate the bias-potential w in Example 4.1 for policy dy and then find the bias-
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optimal policy by policy iteration.

Solution: The bias-potential in Example 4.1 for policy ds is w® = (—0.64,0.96). Thus,
from [p°2(:]1) — p*(:|]1)]jw® = —0.4 < 0 and [p™2(:]2) — PP (-|2)Jw® = —0.4 < 0, we

conclude that d; = (a1, £1) is a bias-optimal policy.

4.14 Consider a two-state Markov chain. There are two actions at state 1, corresponding
to transition probabilities (0.5,0.5), and (0.25,0.75) and rewards 1 and 1.5, respectively;
and there are three actions at state 2, corresponding to transition probabilities (0.5,0.5),
(0.25,0.75), and (0.75,0.25) and rewards —1, —0.5, and —1.5, respectively. Apply policy

iteration to obtain the set of gain-optimal policies and a bias-optimal policy.

Solution: From the problem, we know there are 6 policies in the policy space, which is

denoted as {dy, -, dg}.

1. Start the policy iteration from an initial policy

0.5 0.5 1

dl ): Pl = sy J1 =
0.5 0.5 -1

2. Obtain the potential gy = (I — P, +em) ' fi = (1,-1)T.

3. Since [(0.5,0.5) — (0.25,0.75)] % (1, —1)T + (1 — 1.5) = 0, [(0.5,0.5) — (0.75,0.25)] *
(1,-1)" + (=1+1.5) =0, and [(0.5,0.5) — (0.25,0.75)] * (1, =1)* + (=1 +0.5) = 0,

we know d; is a gain-optimal policy.

From the third step in the above policy iteration algorithm, we can find any policy
d in the policy space satisfy f¢ + Plgh = fd 4 pdigh  Thus, the set of optimal gain
policies is the whole policy space, in which there are 6 policies.

By using (4.14), we obtain the 2nd potential of policy dy, w¥ = —(I — P, +em; ) tg; =
(—1,1)%. Since [(0.5,0.5)—(0.25,0.75)]x(—1,1)T = —0.5 < 0, and [(0.5,0.5)—(0.75, 0.25)] »

, 0.25 0.75 1.5 ,
(—=1,1)T = 0.5 > 0, we know policy , has a better bias than

0.25 0.75 —0.5
dy, whose 2nd bias is (—1.5,0.5)7. Since [(0.5,0.5) — (0.25,0.75)] x (—=1.5,0.5)" = —0.5 <

0, and [(0.75,0.25) — (0.75,0.25)] * (—1.5,0.5)" = —1 < 0, the bias-optimal policy is
0.25 0.75 1.5

I

0.25 0.75 —0.5
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4.15 For multi-chains, prove
a. There are more than one solution to (I — P)u = 0.

b. The Poisson equation (I — P)g +n = f and the normalization condition P*g = 0

uniquely determine the bias of the Markov chain.

Solution:

a. Suppose that P is in a canonical form. Then P can be writhen as

[ P 0O 0 - 0 |
0O P, 0 - - 0
P =
o o0 0 .-+ P, 0
| Ri Ry Ry -+ Ry BRpg |
For any constant group of ¢1, . .., ¢y, thenu = (cref, ..., cmel . — (007 ci(I—Ryi1) " Rie;)T)T
is one of the solutions to (I — P)u = 0, where e¢; = (1,...,1)T whose dimension is the

same as P, i =1,...,m.

b. By P*g = 0 and the Poisson equation, we obtain (I — P + P*)g = f —n. Since
I — P+ P* is invertible (cf. (B.12) in Appendix B.3), then the bias of the Markov chain
is uniquely determined by g = (I — P+ P*)~'(f —n).

4.16 Suppose d and h are the two policies satisfying conditions (a) and (b) in Comparison

Lemma (4.41). Prove

a. If in addition to (a) and (b), we have v(i) = [f"(i)+ (P"g%)(i)] — [ f4(i) + (P%g?) (i)] >

0 for some recurrent state i of P", then n* = n?.
b. If in addition to (a) and (b) , we have P"nd # n?, then nh = nd.

[solution]

a. From condition (a) in Lemma (4.41), we have u = P"n¢—n¢ > 0. Because P"" P" =
P" we have P""u = 0. Thus, from Lemma (4.41), u(i) = 0 for all recurrent states i of
Ph. Next, it follows from condition (b) that v(i) = [f'(i) + (P'g)(i)] — [f (i) + (Pg)(i)] > 0
for all recurrent states of P". If in addition to (a) and (b), we have v(i) = [f"(i) +
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(Phg)(4)] — [f2(i) + (P%g?)(i)] > O for some recurrent state i of P". From the canonical
form of P"*, we have P"*v > 0. On the other hand, since P"n¢ > n?, and so Phknd > nd
for all & > 1. Therefore, by (4.27) we get P"" n? > n?. Finally, by the average performance
difference formula, we have 0" — n¢ = P""v 4+ (P — I)n® > P"v = 0.

b. From Lemma (4.41), we know n" > n¢. Now we just prove that n" # n¢. Suppose
n" = n?, then P'n? = P"n" = nh = n?, which conflicts with P"n? # n?. Moreover, we can
also prove this problem as follows:

From (a), we know P"n? > n¢. If Php? # n? we know P'n? = n?. Because (P"" —
Dyt = 322, PPY(P" — I)n, we have (P"* — Iy > (P* — I)n? = 0. From (b), we can
prove P""v > 0. Thus, we have n" > n¢ from the average-reward difference formula

(4.36).

4.17 Find both the gain- and bias- optimal policies using policy iteration for the multi-
chain MDP in Example 4.6.

Solution:
Denote policy P if we choose a; at state 1, policy P*? if we choose ay at state 1.

Then we have

0.1 0.9 100 . 1 0 100
Pa = 7fa = 7(Pa2> = ,77012: 7ga2—

0 1 0 01 0 0
. 0.99 0.01 | 100 o 01| o . 10000
P = S = ,(P)T = N = gt =

0 1 0 01 0 0

1. Suppose we start from policy P*? in the policy iteration.

2. solve Poisson equation, we get %2 = (P*2)*f*2 = (0,0)7 and ¢g*2 = (I — P** +
(P2 (o2 = ) = (192, 0)7

3. Since f* + P1g* »= f* 4 P*2¢*? and there are only two policies, then we get the

gain-optimal policy P!, which is also the bias-optimal policy.



109

4.18 Consider a Markov chain studied in Problem 2.20 with transition probability matrix

P= :
0 1

where B is an (S —1) x (S —1) irreducible matrix, b > 0 is an (S — 1) dimensional column
vector, 0 represents an (S — 1) dimensional row vector whose all components are zero.
The last state S is an absorbing state. Set f(S5) = 0. Clearly, the long-run average reward
for this Markov chain is 7 = 0. The total reward obtained before reaching the absorbing
state, £ {3 2, f(X1)|Xo =i}, can be viewed as the bias for the problem:

g(i) = E {Z f(Xz)’Xo = ’l} :

The Poisson equation for g = (g(1),...,¢(S))” has been derived in the problem 2.19.
a. Derive the bias-difference equation for any two policies h and d.
b. Derive a policy iteration algorithm for the bias-optimal policy.

This problem indicates that optimization of the total reward of Markov chains with ab-

sorbing states can be solved by the policy iteration for bias optimal policies.

Solution:

a. For the Markov chain with an absorbing state in the problem, the steady state
probability under any policy is 7 = (0,0,...,0,1). Thus we have g¢(S) = 0 for the bias
g% under any policy d from 7?g? = 0. Denote ¢g? = ((¢0)*,0)" and f = ((f)T,0)”. From
Problem 2.19, we have (I — B%)g{ = fi. Next, we derive the difference equation for

gt — gt

gt —gt = (B¢l + ") — (B + f%)

= (B'g{ + f1) — (B9 + f{) + B"(g1 — g1).
Thus, we have the following bias difference formula

gt —gi = = B")(B"g! + f') — (B'g{ + f)]- (4.16)

b. Policy iteration algorithm:
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1. Guess an initial policy dy, set & = 0.
2. (Policy evaluation) Obtain the potential g% by solving (I — B%)g{k = fiik.
3. (Policy improvement) Choose

djy1 € arg{max[f{ + B%g{*]},
deD

component-wisely (i.e., to determine an action for each state). If at a state 7, action

d(i) attains the maximum, then set dy1(7) = di(7).

4. If dyy1 = dy, stop; otherwise, set k = k + 1 and go to step 2.

4.19 For the MDPs with discounted performance criterion,

a. Prove the performance difference formula (4.73) and (4.74),
b. Prove that in (4.77), if d’ # d, then ngl > 1

c. Prove the convergence of the policy iteration algorithm.

Solution:
a. We have 1§ = (1 — 0)(I — 8P?) ' f9. That is, n§ — 8P4 = (1 — () f?. We obtain
mi—n5 = (1=B)f"+BP'ns—[(1—B)f' + 8P
= (1=B)f"+ 6P = [(1 = B)f* + BPE] + BP"(nfs — ).
= (I = BP")(ns —ng) = (1= B)(f* = f*) + B(P" — Py,
Since I — BP" is invertible, we obtain
s —ng = (= BPY) (1= B)(f" = 1) + BP" = P)ng). (4.17)
This is (4.73).

Since we also have 1% = (1 — 8)g4 + An® (similar to (2.41)), then

(s — )

(T BPY (L= B — 5+ BP" — PYI(L - B)gt + B}

(1= B BPMY (I — ) 4 BP* — PUygE) 4 51— BPM (P — Py
(L= B)I = BPY) (" + BPMGE) — (4 BPY)] + B2 — BPM) N (P* — Iy
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We have obtained (4.74).

b. Since d' # d, from (4.77), we have Q%(i,d'(1)) > Q%(i,d(i)),i € S and for at
least one state 7, Q4(i,d'(i)) > Q%(i,d(i)). In a vector form, we have Q%(d') = Q4(d),
where Q4(d') = (Q%(1,d'(1)),...,Q%(S,d'(S)))". From the discounted reward difference

formula (4.73), we have
ng = = (L= BP")"HQj(d) - Q5(d).
Since (I — BP%)™ =1+ 372, B¥(P")* > I, we obtain 1} = 3.
c. From the result of Part b), we know ng’““ >~ ng’“ if dyy1 # dj. That is, the discounted

reward strictly increase during the policy iteration procedure. Since the policy is finite,

we know the policy iteration algorithm must stop in a finite number of steps.

4.20 In (4.53), the bias potential w is defined as the potential of the bias g satisfying
P*g = 0. We can also define a potential of potential by using the potential g, which is

only up to an additive vector u satisfying (I — P)u = 0, as follows:
(I — P)w— P*g = —g.
a. Prove that the potential of potential defined in this way is the same as the bias

potential defined in (4.53).

b. Define the nth potential by using the (n — 1)th potential g,_;, and prove that this
definition is the same as (4.78).

Solution:
a. The potential is up to an additive vector u satisfying (I — P)u = 0. From u = Pu,
we have u = P*u. We assume g is a bias. Then, any potential g = g + u. If we define a
potential of potential by
(I —Pw—Pg=—g

which can also be rewritten as
(I = P)w— P*(g+u) = —(g+u).
From P*u = u and P*§ = 0 (from the definition of the bias), we have

(I = P)w = —3g,
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which is the same as the definition in (4.53).
b. We can also define the nth potential by using the (n — 1)th potential g,_;, which

is only up to an additive vector u with (I — P)u = 0, as follows:
(I - P)gn - P*gn—l = —gn-1-

The potential is up to an additive vector u satisfying (I — P)u = 0. From u = Pu, we
have u = P*u. We assume g,_; is a bias. Then, any (n — 1)th potential g, 1 = §,—1 + u.

If we define a potential of potential by
(I = P)gn— P gn-1=—Ggn1
which can also be rewritten as
(I = P)gn — P (gn-1+u) = —(gn1 +u).
From P*u = u and P*§,_1 = 0 (from the definition of the bias), we have
(I = P)gn = —Gn-1,
which is the same as the definition in (4.78).
4.21 Derive a general bias difference equation for g" — g%, when n"* # n¢, for ergodic
chains. Discuss whether we can use this equation to derive policy iteration algorithm.
Solution: From the Poisson equation (4.9), we have
g"—g" = (f"+P'" —n'e) = (f'+ Pg’ —ne)
= (f"+ Pty - (fd + Plgh) + P(g" = ¢) = (" — n")e.

Thus, we have

(I = P")(g" = g%) = (f" + P'g") = (f* + Pg") — (" —ni%)e. (4.18)

From the definition of the bias, we know 7"*(¢" — ¢¢) = —n¢? = 7"(P" — PHw?. Com-
bining with (4.18), we have

(I—P"+er")(g" — g

= (f"+ P"g") = (f1+ PY") — (" —nTe + ex"(P" — PY)w?
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From (I — P" + en)~le = e, we have

g — g
= (I—P'+e™)(f" + P'g?) — (f*+ Pg")] + [«"(P" — PHw? + 1" — nd.19)

We cannot use this equation to derive policy iteration algorithm. On one hand, we
cannot determine whether (I — P" + en")~! is non-negative, so we cannot determine
whether the first item in this equation is larger than 0. On the other hand, we cannot

decouple the effect of two terms on the right hand side of (4.19).

4.22 This problem helps to understand the bias optimality. First, if d and its gain and
potential (not necessary bias) n? and ¢¢ satisfy (4.60) and (4.61), then ne = n* is the
optimal gain (and g‘z may not be optimal), and
A(i) = A3 (i) = {a e AG): Y p Gl () = 77*(1')} ,
jes
and
Aii) = { € Ao(i) : 1'(i) + (i) = f(3,0) + Zp%mg%)} .
jes

Now let d € Xies A, (7). Then by definition we have

Py = o,

fd+Pdgc7 = 4 g%
a. Let g¢ be the potential of d. Prove n? = n* and ¢¢ = gg+ u with (I — P)u = 0.

b. Let g% and gg be the biases of d and c;l\, respectively. Prove ¢g? — gg = —(Pd)*gg.

c. From b), the bias can be improved by optimizing P4 (—g?) (cf. (4.13) for the ergodic
case). Can we develop the policy iteration algorithm for bias optimality by using

this property? What, if any, are the problems with this approach?

Solution:

a. Pre-multiplying the both sides of f? + Pdgg =n*+ gg by (P?%)*, we have

(Pd)*fd + (Pd)*Pd J: (Pd)*ﬁ* + (Pd)*gg
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By (P?)*P? = (P%)* and Pin* = n*, we obtain n? = (P?)*f¢ = (P4)*n* = n*.

We prove g¢ = g%+ u with (I — PYu = 0. From the Poisson equation and f?+ P? d
n* + g%, we have g¢ — g9 = fd + Plgd —p* — g4 = Pi(g? — gg). Denote u = g% — ¢4, then
(I — PHu = 0.

b. From part a), we have u = P%u. Then, we get that u = (P%)*u. That is,
9! = 9" = (P (9" = g) = —(P')g" since (P')g" = 0.

c. Let gg also denote the bias of policy d with (PJ)*gE = 0. Pre-multiplying on the
both sides of (I—Pg)w‘i = —g67 (Poisson Equation) by (P%)*, we get —(Pd)*gg = (PH)*(I—
P = (P?)*(P?— PY)@. Combining with b), we get g% — g% = (P?)*(P?— P4)@. We can
develop the policy iteration algorithm for the bias optimality but this algorithm may not
converge to the bias-optimal policy. This is because in this algorithm d is chosen only from
.Zl. That is, we only search the bias optimal policy in {d|n* —I—g‘i = Pdg‘i}, which will
lose the policy improvement by choosing action a satistying f(i, ) +3 ;g p* (i) gg( j) >
n* + gg(j). That is, in (4.69) we only consider the policies satisfying ) _; po‘(j|z')wg(j) >
> pg(j|i)w‘7(j) when Qg(i,a) = Qg(i,c%\(i)) but do not consider the policies satisfying
Qg(i, a) > Qg(i, c;l\(z)) Under this iteration, the policy iteration may stop before it reaches
the bias-optimal policy.

4.23 Prove (I — P)(I — P+ P*)™"n = 0, and therefore from (4.80) g, = (—1)"'(1 — P +
P*)~1f is a solution to (4.78) with P*g, = (—1)""'n.
Solution:

Byn=Pfand (I — P+ P*)"'P* = P* weget (I —P)I—-P+P)"™=(—
P)(I—P+P*)™"P*f = (I - P)P*f = 0 noting PP* = P*. Denote the nth bias g°. Then
gn= (1) I=P+P)(f=n) = (1) (I =P+ P)"f=(=1)" (I =P+ P") "y =
(=) Y I —P+P)Y™f—(=1)"'n =g, — (=1)""!n. Since (I — P)(=1)""'n =0
and ¢° satisfies (4.78) with P*¢g? = 0, we know that g, is a solution to (4.78) with
Prgn = P (=1)""In = (=1)""'n.

4.24 Derive (4.81) recursively.

Solution:
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Gor1 = (1)1 =P+ P (f =)

= I+Z = PO (f =)
= (=1)")_Cu(P*=P)(f —n)
= (=" > Cw(P*f—n).

Where Cj, is the coefficient of P¥ — P* in the expansion of [I + > 7 (P™ — P*)]"*!. The
computation of C} is equivalent to the number of solutions of x; + 2o + -+ + X1 =

k,x;=0,1,2,---,1=1,2,...,n+ 1. Thus, from the results in combination mathematics,

n+1)+k—1 n+k
we know O}, = ( ) =

(n+1)—1 n

Next, we prove it by induction.

For n = 0, we know that

[o.¢] (o] k
g=Y (P'f-n=> . (P*f —mn).
k=0 k=0

For n = 1, we obtain

g2 = =) Plo= ZPlZ Pf=m)==> > (P'f =)
=0 k=0

=0 k=0
= SernEr-m=c (T @)
=0 k=0 1

We can see that (4.87) holds for n = 0, 1. Now we assume that (4.87) holds for n = m,

that is
o m-+k
G = ()" Y (P*f —1).
k=0 m
Forn=m+1,

[e.9]

Im+2 = _Zplgm—i—l
=0
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= =) Py (P*f —n)
1=0 k=0 m

_ (_:Um-l—lZZ (Pk-i-lf _n)
1=0 k=0 m
[ m+1+1

= (=) y (P'f =)
1=0 m+1

4.25 Suppose that a sequence of vectors gg, gf, ey grd; and gg 41 satisfies the optimality

equations (4.90)-(4.92). Find a policy that has gg, ng, Cn gg, and ngH as its kth biases
k=0,1,---,n+1, respectively. Then by the sufficient optimality equations (4.90)-(4.92),
gg is the optimal kth biases, & = 0,1,---,n, respectively. Therefore, in the sufficient
optimality condition (4.90)-(4.92), we may replace the sentence “A policy d is nth optimal
if ...”7 by “If a sequence of vectors gg, gf, e gf:, and ggﬂ satisfies (4.90)-(4.92), then
g,‘z are the optimal kth bias, £k =0,1,...,n.”
Solution:

We prove that if policy d € Dn+2(g67, ng, . ,gg, g§+2), then policy d has g,‘z as its kth
biases, k =0,1,---,n + 1, respectively.

Recall that

Dn+2(gg7 gga e agg+2)

= {alld: P'gf = gi, /" + P'g{ = 9§ + 91, P'gi\s = g + gif1, 1 =1, n+1}.

Pre-multiplying the both sides of f? 4 Pdgf = gg—I— gf by (P9)*, we get g = (P?)*f4 =
(P?)*g5 = gg since (P*)*P? = (P*)* and P’gg = gj.

In the similar way, pre-multiplying the both sides of Pdg‘g = g‘lf—I— gg by (P%)*, we get
(Pd)*gf = 0 since (P9)*P? = (P%)*. Combining with f¢ + Pdgf = gg—i— gf, we obtain
gt = [I = PT+ (P71 (f* = g) = gf.

Suppose g = glg, 1 <1 < n. Pre-multiplying the both sides of Pdgf;rz = g§+1+g§+2 by
(P?)*, we get (Pd)*gf;rl = 0 since (P?)*P? = (P4)*. Combining with Pdgffﬂ = gf:—l—gfl;rl,
we obtain ¢4, = —[ — P4+ (Pd)*]flgg = ggﬂ'

From the aforementioned, in the sufficient optimality condition (4.90)-(4.92), we may

replace the sentence “A policy d is nth optimal if ...” by “ If a sequence of vectors gg, ng,
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. gg, and gf;Ll satisfies (4.90)-(4.92), then g,‘Z are the optimal kth bias, £k =0,1,...,n.”

4.26 Develop a policy iteration algorithms that myopically maximizes the expected mth
potentials, m = 1,--- . n, of the actions at each iteration, as illustrated on the right-hand
side of Figure 4.8. Prove its convergence.
Solution:

This is stated as the the second policy iteration algorithm for an nth bias optimal

policy:
1. Starting with any policy dy € D, and set k = 0.

2. Obtain the bias gf’“, [=0,1,---,n and (n + 1)th potential gg’fH by solving

Plgy = g*
(I — Plygle = fo — g

(]_Pdk)gldk = _gldED l:273a"'an+]—7
subject to (P¥)*gd =0,m=1,2,...,n.

3. Set (component-wisely)

Dy = {d = arglupal P2} |

deDy

D, : {d = arg{max|[f* + P’g" ]}} ,

D, :{ —arg{max[Pdgl ]}}, 1=2,3,---,n,

deD;_y

and choose

diy1 = GTQ{ZH%X[PdQnH]}

n

If at a state ¢, action di (i) attains the maximum, then set dj1(2) = di(7).
4. If dyy1 = dj, stop; otherwise set k£ := k + 1 and go to step 2.

Firstly, since dj,; € Dy and dii1 € D, according to the policy iteration algorithm for
the gain-optimal policy, we know policy sequence {dy} must converge to a gain-optimal

policy in a finite number of iterations. After that, Dy is the set of the optimal polices
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Dy. Since dyy1 € 152 - f)l C Dy, according to the policy iteration algorithm for the
bias-optimal policy, we know {d;} must converge to a bias-optimal policy. Similarly,
after that, D, = Dy. Going on this process, since dj 1 € D, € D,_; and dpi1 =
arg{max; s [Peg® ]}, we can find the second policy iteration algorithm can converge to

an nth-bias optimal policy.

4.27 A weak version of Lemma 4.7 can be easily established by the well-known Cayley-
Hamilton theorem [154]: For any n X n matriz A, define its characteristic polynomial as
r(s) = det(sI — A). We have r(A) = 0. Use the Cayley-Hamilton theorem to prove
that if policy (P, f¢) is an (S + 1)th bias optimal policy, then it is also an n-bias optimal
policy for all n > 0. (Hint: set A = (I — P4+ (P%)")~! in the Cayley-Hamilton theorem.)

[solution]
Denote A = (I — P44 (P)")™! and r(s) = Z::O brs®, bs = 1. We know that
r(A) = 220 b A¥ = 0, where A° = I. That is, A5 = — 5;3 brA*. Then
S—1 S+1
AST = 2N " AR = Y Ty, A (4.20)
k=0 k=2
Similar to (4.109), we have
(P" — PH[I — P 4+ PT)R(f = gi) =0, Vi<k<S+1. (4.21)

Combining with (4.20), we get
(P — PY[T — P14 PUTSR(f i) =0,
Further, we obtain
(P" — PHYT — P+ PYTF(fe - gi) =0, Vk>S+2

That is, (P" — P%)g? =0 for all n > S + 2.
Finally, from the nth-bias difference equation (4.90) and by induction on n, we can

prove

= gn = [ = P"+ PV]{(P" — P)gy + P"(P" = P)gi,, = 0,

for all n > S 4 2. That is, the nth-biases of the policies in Dg,; are all the same for

all n > S + 2. Since (S 4 1)th bias-optimal policy must be nth bias optimal policy,
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0 <n<S+1, then an (S + 1)th-bias optimal policy is also an n-bias optimal policy for

all n > 0.

4.28 Let d, h € D be two policies.

a. Prove that the following expansion holds for any N > 1:

"

fd+Z

b. Give the conditions under which (P" —

c. What do a) and b) indicate?

Solution:

— PYgi 4+ (P"— D™ (gk — g%).

DN (gh — g%) converges to zero as N — oo.

a. For any policy d, we have the following Poisson equations.

Then we can get

n" —n?

= i+ Pyl — g -

— f'h 4 Ph fd

= f fd+(Ph—Pd)gf+(
= P =f1+ (P = Pyl + (
= "= (P" = PYgi + (
= "= [T+ (P" = P)gi + (
= P = fT+ (P = Pyl + (

g1

95

94

94

fr=n"+ Pyl
—g{ + P%g§
_92 +Pd d

g+ Pt

—92—1 + Pdgg

(fd + Plgf — gf)

¢+ Ph(gt — gl — (gt — g

— ) (g} - g1)
— (g1 - 9f)
— D)[P"gy — g5 — (P95 — 5)]
— D[(P" = P")g5 — (95 — g3) + P"(g5 — 95)]
— D[(P" = P")g3 + (P" = I)(g5 — 93]

)

—I)(P" — PYg3 + (P" —1)*(95 — 93)
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= "= [ (P" = Pgi + (P" = I)(P" - P")g3
+H(P" = 1)*[P"gy — g5 — (P95 — g5)]
= "= (P" = PYgi + (P" = I)(P" = P")g5
+(P" = I*[(P" — P")g5 — (g5 — 95) + P"(g5 — 95)]
= "= (P" = Py + (P" = I)(P" — P%)g5
+H(P" = D?[(P" = PY)g3 + (P" = I)(g5 — 95)]
= [ [T+ (P" = P)gl + (P" = I)(P" — P%)g5
H(P" = I)*(P" = PYgg + (P" = 1)*(g5 — ¢5)
= [" = [T+ (P" = PY)g + (P" = I)(P" — P")g5
+(P" = 1)*(P" — PY)gg + (P" = I)’[P"g} — gi — (P’g{ — ¢7)]
= [ 1+ (P" = Pg{ + (P" = I)(P" — P*)g5
+H(P" = 1)*(P" = PY)gg + (P" = I)’[(P" — P")g{ — (95 — g4) + P"(g7 — 97)]
= [" = [T+ (P" = PY)g] + (P" = I)(P" — P")g5
+(P" = DY(P" = PYgg + (P" = I)’[(P" — P*)g{ + (P" = I)(g} — g1)]
= [ = 1+ (P" = P)g{ + (P" = I)(P" — P%)g5
+H(P" = 1)*(P" — PY)gg + (P" = I)*(P" — P")g{ + (P" = I)*(g1 — )

= = f+ Z = PYgi+ (P" = DY (g} — g3),

for any N > 1.

b. If all the eigenvalues of P" — I are within the unit circle, then (P" — I will
converge to 0 matrix. Assume that the eigenvalues of P* are 1 and \. Then eigenvalues
of P — I are 0 and A — 1. If we would like (P" — I)¥ converge, then we need |\ —1] < 1.

c. By b), we see that the convergence of (P" — I)™ (g% — ¢%,) does not depend on P?.
Based on a) and b), we know the difference of the gains under two different policies can

be expressed by all nth biases under one policy, n =1,2,....

4.29 The results presented in this chapter are strongly related to the sensitive discount

optimality (n-discount optimality and Blackwell optimality), see [194, 216, 248, 249].
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For any Markov chain with transition prbability matrix P and reward function f, the

discounted reward is defined as (cf. (4.72)):
vy(i) = E {Zﬁlf(xl))xo - z} , 0<pB<l.
1=0

Denote vg = (vg(1),...,v5(S))T. Set B=(14p)Horp=(1-03)/3. 0< 3 <1 implies
p > 0. Let py be the non-zero eigenvalue of I — P with the smallest absolute value. We

have the Laurent series expansion:

vg = (1+p) Zp”yn, 0 <p < po,

n=-—1
where y 1 = P*f and y,, = (=1)"Hp"'f, n=0,1,..., Hp = (I — P+ P*)~'(I — P*).
a. Explain the meaning of p. (Hint: inflation rate)

b. Prove the Laurent series expansion (cf. Theorem 8.2.3 of [216]).

c. Prove y, = gn41 be the (n + 1)th bias of (P, f), n = —1,0,1,.... Thus, we have

vp=1+p)Y 0" g, 0<p<p
n=0

Solution:

a. p can be viewed as the inflation rate (or the interest rate). One dollar today will
become 1+ p dollar tomorrow. Contrarily, one dollar tomorrow is equal to (1+ p)~! dollar
today. If the rewards in the future are all converted into the current rewards, the reward

f(X,) at time n is equal to (1 + p) " f(X,) at current time. Thus the total reward is
va(i) = B{ D_ B'F(X)| Xo = i},
1=0

if the initial state is ¢, where 8 = (1 + p)~'.
b. From (2.31), we have

vg = (I—pBP)'f.
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Putting 8 = (1 + p)~! into the above equation, we have

vs = (I—BP)'f
= (I-BP)Y(f—n)+(I—-pP)"
= (I=BP) ' (f=m)+>_B"P'
= ([-BP)' (I~ P")f + (14 p)"

n

= (I-BP+BP)'(I-P)f+(1 +P);

)

= (L+p)pl +1 =P+ P ) (I =P )f+(1 —i—,o)g.

Define Hp(p) = (pl +1— P+ P*)~Y(I — P*), then, Hp = Hp(0) = (I — P+ P*)~'(I — P*)

and
vg = (1+p) lHP(p)f + %} :
Since
(oI +1— P+ P")Hp=pHp+ (I —P)Hp=p(I — P")Hp+ (I — P") = (I - P*)(I + pHp),

where we have used P*Hp =0 and (I — P)Hp = I — P*. Left-multiplying (p/ +1 — P +
P*)~1 and right-multiplying (I + pHp)~! on both sides of the above equation, we have

Hp(p) = Hp(I + pHp)™'
Thus,
vg = (14 p) [HP(I +pHp) ' f+ g} .
If the spectral radius of pHp, i.e., o(pHp) < 1, we have
vg = (1+p) [g + Hp(I + PHP)lf]
+Z ) H ] .

The Laurent series is obtained. Next, we need to consider the eigenvalues of Hp to find

the condition such that o(pHp) < 1. We can prove that if the eigenvalues of P are
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{1,1,...,1, A1, - -, As}, then the eigenvalues of Hp is {0,0,...,0, 17)\1m+1 ey 171)\5}.
Thus, to guarantee o(pHp) < 1, we need 0 < p < min{|l — \;|,i=m+1,...,S}.
Moreover, we can obtain Laurent series as follows:
From Theorem A.5 in [216], for any transition probability matrix P with m recurrent

classes, there exists a nonsingular matrix W for which

0
P=w™! @ W,

0 I
where I is an m x m identity matrix and @ is an (|S| —m) x (|S| —m) matrix with the

following properties:

1. 1 is not an eigenvalue of Q).

2. The spectral radius of @, o(Q) is smaller than or equal to 1 and if all recurrent
sub-chains of P are aperiodic, o(Q) < 1.
3. (I — Q)" exists.

and W satisfies

00 I-Q)' 0
Wt W=p, W (I=Q) W = Hp. (4.22)

0 I 0 0
Next, define the resolvent of P — I by

R = (pl +[I — P))~".

From (2.31), we have

Let B=1— (. Then
| pPL+B 0
pl+1—-—P=W" W,
0 pl
so that
I+B)"" 0
o o | ) -
0 p i
00 I+B) 0
— pwt wawr | TP W, (4.24)

0 I 0 0
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Since
(pI+B)'={I+pB)"'B,

and whenever o(pB~!) < 1 or p is smaller than the non-zero eigenvalue of I —Q or I — P

with the smallest absolute value,

o0

(pI+B) =) (=p)"(B~)", (4.25)

n=0
Putting (4.22) and (4.25) into (4.24), we have
RP=p ' P+ (—p)"HpH. (4.26)
n=0
Putting (4.26) into (4.23), we can obtain the Laurent series expansion.
Reference:
1. B. L. Miller and A. F. Veinott, Discrete Dynamic Programming with a Small Interest
Rate, The Annals of Mathematical Statistics, vol. 40, no. 2, 366-370, 1969.
2. M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming, John Wiley & Sons, New York, 1994.

C.

Yn = (_l)nH?ﬁlf = (-1)"(I - P+ P*),(er)(l _ P*)(n+1)f
= (-)"(I-P+P) "1 -pP)f
= (M= PPy ()

= OGn+1-

Thus, we have

vg=(1+p)> " gn,  0<p<pp
n=0

4.30 A policy dj, € D is called a (stationary and deterministic) Blackwell policy if there
exists a 0%, 0 < 3* < 1, such that

vl >, foralld € D andall 8 €[5, 1).
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a. Prove that if d € Dg, then d is a Blackwell optimal policy.

b. Prove d, € D,, for all n > 0.

Solution:

a. Since p — 0 when 8 — 1, the definition of Blackwell optimality is equivalent to
the following: A policy d, € D is a Blackwell optimal policy if there exists a p* for which
vgb > Ug for 0 < p < p* and any policy d.

From Lemma 4.7, if d* € Dg, we know d* is an nth bias for all n > 0. This is, d*
maximizes all g,,n > 0. Let d € D and suppose that for some n = —1,0,1,..., d€D,,.
Let n’ be the minimal n for which this holds. n = —1 means d € D.

L+p) W — vl =g =gt + D e — b, (4.27)

k=n'+1

Since d is not the n'th bias optimal, for some state i, z = g%, (i) — g% (i) > 0. From (4.27),
it follows that

(14 p) "5 (1) = vf(@) = p" e+ > ool (1) — gi(D):

k=n'+1
We can find a p,; for which the above expression is positive for 0 < p < py.
Repeating the above argument, we obtain a pg for each d € D. Set p* = min,_p pa.

Since D is finite, p* > 0. Therefore,
d* d
vg 2 Vg

forall d € D and 0 < p < p*. Thus, d* is a Blackwell optimal policy

b. If dy is a Blackwell optimal, we have
(1+p) " p " D — g >0,

for all 0 < p < p*, and all d € D for n = 0,1..., From (4.27) and let p — 0, we have
g% > g4 for all n=0,1.... That is, d, € D, for all n > 0.
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Solutions to Chapter 5

5.1 Repeat Example 5.1 by using the continuous-time Markov model.

Solution: We consider the infinitesimal generator of continuous time Markov model. The

infinitesimal generator can be expressed by the transition probability matrix as follows:
A=AP-1),

where A is a diagonal matrix, whose (7,7)th component is the equivalent service rate at
state 7. From the transition probability of embedded Markov chain given in the textbook,

we can obtain

al(n, 1), 0+ 1, 1)) = O+ X0+ 155 = A
al(n,1), (n,2)] = (A + \g) * ™ ;M =\,
al(n, 1), (n,1)] = — (O + M),

al(n,2). (n+1,2)] = O+ X ¥ 15 = A

127
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A2
2), (n,3)] = (Ao + A )
a[(na )7 (na )] ( 2 4) * Xo -+ Ay 2,

a[(n’ 2)7 (TL, 2)] = _()‘2 + /\4)7

al(n,3),(n+1,3)] = (A3 + Ay) * ﬁ = A4,
al(n,3), (1 = 1] = (g + Ae) # 22 () = N (),
al(n,3),(n,1)] = (A3 + \g) * )\3:?)\4 [1—0b%(n)] = A3[1 — b*(n)],

a[(n’ 3)7 (TL, 3)] = _()‘3 + /\4)7
for 0 <n < N; and

al0, (1,1)] = Ay, al0,0] = — 4,

al(N, 1), (N, 2)] = Ay, al(N, 1), (N, 1)] = — Ay,

al(N.2), (N,3)] = Ao, al(N,2), (N,2)] = =),

al(N,3), (N, 1)] = As[L — 0°(N)], a[(N, 3), (N — 1,1)] = Asb*(N), a[(N,3), (N, 3)] = —As.

The transitions from states (n,1) and (n,2) also do not depend on the actions. The
comparison of actions in the policy improvement step for state (n,3), 0 < n < N is the

same as (5.1).

5.2 A machine produces M different products, denoted as 1,2, ---, M. To process product
i, the machine has to take N; different operations, denoted as (i, 1), (¢,2),-- -, (i, N;). We
use discrete time model. At each time [, [ = 0,1,---, the machine can only process
one product and undertake one operation. If at time instant [ the machine is producing
product ¢ and is at operation (7,7), j # N;, then at time instant [ 4+ 1 the machine will
take operation (i,j') with probability p;(j'|j), ¢ = 1,2,---, M, j = 1,---,N; — 1, and
j'=1,---, N;. If the machine is at operation (i, IV;), then it will pick up a new product 7'
and start to process it at operation (', 1) at the next time instant with probability p®(i'|7),
i,i' =1,2,---, M, where a € A(i) represents an action. The operation (i, 1) is called an
entrance operation and (i, N;) is called an exit operation. The system can be modelled as
a Markov chain with state space S := {(i,5),i = 1,2,---,M;5 = 1,---, N;}. Let f be
the properly defined performance function. Derive the policy iteration condition (similar

to (5.1)in Example 5.1 ) for this problem and show that with the sample-path-based
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approach we do not need to estimate the potentials for all the states.
Solution: The transition probabilities are
pl(i, 31 9] = pil5'15),
wheni=1,2,--- M, j=1,--- N;—1,7/=1,2,---, N;, and
pl( DI, N3)] = p*(@'ld), 4,i"=1,2,---, M.

The other transition probabilities are zeros. For simplicity, we assume the performance

function f depends only on the states and does not depend on the actions. From the above

transitions probabilities, we can find the transition from states (i,7),i =1,2,---, M, j =
1,2,---,N; — 1 do not depend on the actions. The comparison of actions in the policy
improvement step for state (i, N;), i =1,---, M, is

p” (1i)g(1,1) + p* (2)g(2,1) + - - - + p* (M]i)g(M, 1)

> p (g1, 1) +p*(2l0)g(2,1) + - - - + p*(M[i)g(M, 1). (5.1)

From (5.1), with the sample-path-based approach, we do not need to estimate the poten-
tials for all the states and only need to estimate the potentials of g(i,1),i =1,2,---, M.

5.3 In Problem 4.1, prove that if we use the sample path based approach then we do not

need to know the value of r.
Solution: The comparison of actions in the policy improvement step for state n is
cn+ B, +rg(n+1) + (1= py — r)g(n) + ppg(n — 1)
> en+ By, +rgn+1)+ (11—, —r)g(n) + pag(n —1).
This is equivalent to
Bty + pylg(n = 1) — g(n)] > Bus, + pralg(n — 1) = g(n)].
Thus, we do not need to know the value of r.

5.4 As discussed in Section 5.1 , to save memory and computation at each iteration, we

may partition the state space S = {1,2,---,S} into N subsets and at each iteration we
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may only update the actions for the states in one of the subsets. In the extreme case, at
each iteration we may update the action for only one state. That is, at the first iteration,
we update d(1); at the second iteration, we update d(2), ... , and at the Sth iteration,
we update d(S). Then at the (S + 1)th iteration, we update d(1) again, and so on in a
round robin manner. In such an iteration procedure we cannot stop if at some iteration
there is no improvement in performance. We let the iteration algorithm stop after the

performance does not improve in .S consecutive iterations.
a. Formally state this policy iteration algorithm,
b. Prove that the algorithm stops after a finite number of iterations,
c. Prove that the algorithm stops at a gain-optimal policy, and

d. Extend this algorithm to the general case where § is partitioned into NV subsets.

Solution:

a. Policy Iteration Algorithm:

1. Select an initial policy dy and set i =1, ¢ = 0, and k = 0.

2. (Policy evaluation) Obtain the potential g% by solving the Poisson equation (I —
Pl)gh + e = f.

3. (Policy improvement) If i = S + 1, then set i = 1; otherwise, choose

diy1(i) = arg{ max [f(i,d(i)) +p" (i, )g™ ()]}
d(i)eA)

If action dj (i) attains the maximum, then set dj1(i) = di(i). Set i =i+ 1.

4. If dgyq = dg, set ¢ = ¢+ 1; otherwise, ¢ = 0. If ¢ = S, stop; otherwise, set k =k +1

and go to step 2.

b. The convergence of the above policy iteration algorithm: In S consecutive steps, if

there is at least one step such that the policy is different, then we have fkd _’fss + Pets gdr -

f,f’“ + P g% Thus, we have n%+s > % This is to say, the policy can be improved if
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the algorithm does not stop. Since the policies are finite, thus the algorithm must stop
after a finite number of iterations.
c¢. When the algorithm stops at step k, we set d:= dpi1 =di = -+ = dp_g4o. From

the above algorithm, we have
de arg{mazlxx[fd + Pdgcz]}.
or
Flp plgd > fiq plgd  forall d e D.

By the optimality condition (4.5), d is the optimal policy.

d. If the state space S is partitioned into N subsets, we may only update the actions for
the states in one of the subsets. For example, we assume the state space S is partitioned
into N subsets defined as S1 = {1,---,n1},S2 = {n1 +1,---,na}, -+, S = {nm_1 +
Lo nmb, .Sy ={nny_1+1,---,S}. At the first iteration, we update d(1),- - -, d(ny);
at the second iteration, we update d(n; + 1),---,d(ns), and at the Nth iteration, we
update d(ny_1 +1),---,d(S). Then, at the N + 1th iteration, we update d(1),---,d(n;)
again, and so on in a round robin manner. We let the iteration algorithm stop after the

performance does not improve in N consecutive iterations.

5.5 To illustrate the idea behind Lemma 5.2 , we consider the following simple problem.
There are N different balls with identical appearance but different weights, denoted as
mi, My, - - -, mpy, respectively, m; # mj, i # j. These weights are known to us. You have
a scale at your hand which is in-accurate with a maximal absolute error » > 0. Under

what condition you may accurately identify these balls using this scale?

Solution: Let m = min{|m; —m;|:i# j,i,7=1,2,---, N}. If r < 'm, we can accurately

identify these balls by using this scale.

5.6 Suppose that when the sample-path-based policy iteration algorithm 5.2 stops the
estimation error of the potentials satisfies |r| = |g — g| < 0/2, where 6 > 0 is any positive

number. Let 7 be the optimal average reward thus obtained. Prove
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where 7* is the true optimal average reward.

Solution: We assume that policy d* is the optimal policy, then n?" = n*; and d is the
policy obtained by the sample-path-based algorithm. From the definition of ¢(g), we have
fé+ Plg > f¥ 4+ P?g. From this equation, we have

[P+ Plg+ (P = P")g—g) = f* + Py
Therefore,
(f" +P¥g) — (f*+ Plg) < (P"— P") (g —g).

According to the difference formula, we have

Since n* > 7, we have |7 — n*| < 4.

5.7 If we use

Sonco (X[ f(Xns) — n}
ZnN:OL—i_1 IZ(Xn)

gr.n (i) =
to estimate the potentials,

a. Convince yourself that the results in Section 5.2.2 still hold, and

b. Revise the proofs in Section 5.2.2 for the sample-path-based policy iteration with

the above potential estimates

Solution:
a. We consider the biased estimate

SN ) (Xasn) = 1]}
ZN L+1 [z(Xn)

n=0

grn(i) =

From the proofs of the results in Section 5.2, these proofs do not need to know the
estimate methods of the potentials. We only assume the estimate error should satisfy
some conditions with probability 1. Using the fundamental ergodicity theorem in Chapter

3, we have

lim gz n(0) E{Z Xoy1) = ]| Xo =i},

N—o0,L—00
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Thus, as long as N and L are large enough, the estimation error can satisfy the conditions
in Section 5.2.2. Thus, the results in Section 5.2.2 still hold.

b. In the proof of the sample-path-based policy iteration in Section 5.2.2, we also only
require that the estimate error should satisfy some conditions with probability 1. Thus,

the proof under the new potential estimate is the same as the original proof.

5.8 With the sample-path-based policy iteration algorithm 5.1. Suppose that the Markov
chain is ergodic with a finite state space under all policies, and the number of policies is
finite. If |r| = |g? — ¢¢| < (k/2)e, where g% and g¢ are the potential of policy d and its

estimate. Following the same argument as that in Lemma 5.3 | prove
(3") S o(g).
Solution: Let h € ¢(g?) and I/ € ¢(g?). By the definition of ¢(g) in (5.11), we have
P4+ Phgt> M 4 P"g?and f¥ + P"gé > fh+ PPge. From the latter equation, we have
¥+ PYgt 4+ (P = P (g" - g%) > "+ Py
Therefore,
(f" + Phg") = (f" + P"g") < (P — P")(g" - ¢).

This, together with "+ P'¢? > " + P ¢? leads to

(" + Pg®) = (f" + P"g")| < (P = P")(g" — ). (5.2)

From (5.2), if |r| = [g¢ — ¢%| < (k/2)e, then |(f" + P'g?) — (f" 4+ P ¢%)| < re. By the
definition of x, we must have f"+ P'g? = f* + Phg? In other words, h' € ¢(g%). Thus,
$(g%) € o(g).

5.9 In Problem 5.8, we proved that ¢(g?) C ¢(g?).

a. On the surface, it looks like that the same method as that in Lemma 5.3 can be

used to prove ¢(g?) C ¢(g?). Give a try.

b. If you cannot prove the result in a), explain why; if you feel that you did prove it,

find out what’s wrong in your proof.
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c. Suppose that h, ' € ¢(g?), and thus f* + P"g? = f* + P"¢?. Because of the error
in g%, we may have f" + P"g¢ # f* + P" g% Therefore, one of them cannot be in
#(g?). Give an example to show that no matter how small the error r = g¢ — g¢ is,

this fact is true.

Solution:

a) and b) On the surface, similarly to the method in Lemma 3, we can also obtain
((F"+Phg") = (f" + PYg")| < [(P" = P")(g" — g*)| + ve.

In the textbook, s can be defined because ¢ is determined. However, since §¢ is a random

variable, we cannot define a constant similar to . Thus, we cannot prove ¢(g?) C ¢(g%).

1
c. We consider Example 4.1 in Chapter 4. Under policy d;, the potential g; =
-1

We can easily verify that fo + Pogi = f1 + Pig1 = maxg{fs + Pyo1}, that is, d; and dy
are all in ¢(g;). However, when we consider the estimate g;, Because of the error in

g1, we may have fy + Pog1 # fi1 + Pigi. For example, for any § > 0, if the estimate

1+0
g1 = , we have |r| = |g1 — g1| < d, but we can easily obtain
—1+46/2
1+36/4 1+36/4
Jo+ Pagi = # i+ Pig1 =
—1+76/8 —1+36/4

Since 0 is arbitrary, no matter how small the error r = |g; — g1| is, we have fo + Pyg; #

f1 + P1g1. Therefore, one of them cannot be in ¢(g?)

5.10 Are the following statements true? If so, please explain the reasons:

a. Suppose we use di1 € ¢(g%) to replace (5.14) in step 3 of Algorithm 5.1 (i.e., set
v = 0 in (5.12) . Then the algorithm may not stop even if ¢(g%) C ¢(g%) for
K’ > K consecutive iterations k =n,n+1,---,n+ K — 1, where K is the number

of policies in D.

b. Algorithm 5.2 may not stay in Dy even after ¢(§§l\}“k) = ¢(g%) for K consecutive

iterations, where K is any large integer.
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c. The above statement b) is true even if we add the following sentence to step 3

of Algorithm 5.2 : “If at a state 4, action di(i) attains the maximum, then set

disr(i) = dy(i).”

Solution:

a. The performance increases every iteration and the policy iteration must reach the
optimal policies if ¢(g) C ¢(g%) for K’ > K consecutive iterations. but after it reaches
the optimal policy set, it may happen that dj, & ¢(g%). In this case, the policy may
oscillates and never stops.

b. Although the performance increases every iteration and the policy iteration must
reach the optimal policies when qﬁ(gjl\}“k) = ¢(g%*) in K consecutive iterations, after that it
may happen that qﬁ(gjl\}“k) # ¢(g¥). At this case, the policy may go out of Dj.

c. Even if we add the following sentence to step 3 of Algorithm 2 : “If at a state i,
action dg(7) attains the maximum, then set dy,1(i) = di(i)”, we cannot guarantee that
qﬁ(g}j\?k) # ¢(g%) does not happen after qﬁ(giﬁk) = ¢(g%) for K consecutive iterations.
Thus, the policy can still go out of Dy.

5.11 Can you propose any stopping criteria for the sample-path-based algorithms to stop

at an optimal policy in a finite number of iterations with probability 17

Solution: The answer is depressed. Because we can only guarantee the algorithms stop
in a finite number of iterations with a certain probability po defined in (5.18), but not

with probability 1.

5.12 In Lemma 5.4, °° (1 — yx) < oo implies limy_.. yx = 1, which, however, is not
enough for lim,, sz” yr = 1. For the latter to hold, y; has to approach 1 fast enough.
a. Fory, =1— %, k=1,2,---, we have limy_,, yp = 1. What is lim,, sz” Yi!

b. Verify the lemma for y,, =1 — kl—Q, k=1,2,---. What is lim,,_ sz” Yi!
c. For a sequence yy, 0 < yp < 1, k = 1,2,---, if Y72 (1 — y) < oo then we have

Y peo(l —y5) < oo for any ¢ < 1 and we can apply this lemma. How about ¢ > 17

Solution:
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1 n—1 n n+1
— 1—2) = R—
Hyk H( k‘) n n+ln+2

k>n k>n
Thus, lim,, Han yr = 0.
b.

Iy = H(l—%)

k>n k>n
1 1
= 1— =) (1+ =
[Ta-pa+p)
k>n
B n—1n+1 n n+2n+1n+3 _n—l
a n n n+ln+ln+2n+2 n

Thus, lim,,_, e Han yp = 1.

c. Since 0 < y; < 1, then y; is a decreasing function with respect to c¢. Thus, if
¢ < 1, we have y; > y, and 1 — y; < 1 — y,. On this basis, if > 77 (1 — yx) < o0,
Yool —y5) <302 0(1 —yx) < oo holds. When ¢ > 1, since 1 — yf > 1 — y;, we cannot

determine the convergence of > "7 (1 — v§).

5.13 Write a simulation program for the “fast” Algorithm 5.3. Run it for a simple
example with, say, S = 3, and each A(i), i € S, containing three to five actions. Record
the sequence of di, £k =0,1,2,---, and observe its behavior, e.g.; how it changes from one

policy to another one. Run it for a few times with different N’s.

Solution: We consider a simple example: There are 3 states in S and 4 actions in each

A(7), i € S§. The transition probability matrix under action i is P; defined as:

[ 0.3 0.3 04 | [ 02 05 03 ]
Pi=102 05 03|, =05 02 03 |,
05 0.1 04 0.5 0.2 0.3
[ 06 02 02| [ 03 04 03
Psy=105 02 03 |,Pi= |03 02 05
| 0.3 04 03 | | 0.5 03 02 |

The reward function is f(i) = 4,7 = 1,2,3 € S. For this example, the optimal policy is
d(1) =2,d(2) = 4,d(3) = 3. We simulate this example and have the simulation results as

follows:



a. When N = 10, the policy sequence is dy = (1,1,1),d; = (1,4,3),ds = (1,4,1),d3 =

(1,4,3),dy = (1,4,3),ds = (1,4,3),ds = (1,4,3).d; = (2.4,3),ds = (2,1,3),dy =
(2,4,3),d10 = (2,1,3),d11 = (2,1,3),d12 = (2,1,3),d13 = (2,1,3),d1s = (2,1,3),d15 =
(2,1,3),dis = (2,4,3),di7r = (2,1,3),dis = (2,4,3),dro = (2,4,3),dso = (2,4,3),doy =
(2,4,3),d2s = (2,4,3),dog = (2,4,3),dog = (2,4,3),dos = (2,4,3),dss = (2,4,3),da7 =
(2,4,3), d28:(2a473)7""

b. When N = 100, the policy sequence is dy = (1,1,1),d; = (1,4,3),dy = -+ - = d3s =
(1,4,3),d3g = dyo = -+ - = dy3s = (2,4, 3).

From the above simulation results, we can find that the policy always keeps invariable
for several iterations, which can collect more information under this policy. Moreover,
when N is small, there are more oscillations, this is because the estimates of potentials
are not very accurate. A large N will give us more accurate potential estimate but bring

more computation simultaneously.

5.14 This problem is designed to help to understand the remark on the proofs in Section
5.3.1. Consider an ergodic Markov chain X = {Xg, X3, -, X,---} with state space S
and reward function f(i), 1 € S. Let i* € S be a special state. Suppose that we let the
Markov chain stop when X; = X, = ¢*, and when it stops, the total reward is f(X;,1).

Prove
a. The expected total reward is 7 = Y, s p(k[7*) f (k).

b. We may prove that the Markov chain stops w.p.1 under the special condition

pli*]i) # 0.

Obviously, p(i*|i*) # 0 is not a necessary condition, and this special condition does not

change the expected total reward 7 in part a.

Solution:

a. When the Markov chain stops, we have a total reward f(X;;1), where X,y = k
with a probability p(k|i*). Thus, the expected total reward is ), _g p(k[i*) f (k).

b. Since the Markov chain is ergodic, if the Markov chain does not stop, when [ is large

enough, there is a constant p > 0 such that the probability that X; = X;,; = X0 ="
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is m (¢*)p(a*|i*)p(i*|i*) > p > 0, where m(i*) is the probability that the state stays at i*
at time [. Now, we divide the sample path into many intervals. Each consists of three
consecutive states. Therefore, the probability that in the first k intervals there is no such
interval that three consecutive states are all i* is less than (1 — p)*. As k — oo, this
probability goes to zero. That is, the case that 3 consecutive states are all ¢* can occur

with probability 1. Thus, the Markov chain stops with probability 1.

Obviously, the condition that three consecutive states are all ¢* is not a necessary
condition because if there exists a state j such that p(j|i*) > 0 and p(i*|j) > 0, the
Markov chain can also stop with probability 1.

5.15 If we implement Algorithm 5.3 for a few reference states ¢* in parallel, then we can
update the policy whenever the system reaches one of these states. In the extreme case,
if we implement the algorithm for every state, we may update the policy at every state

transition.

We need to study the convergence of such algorithms. Consider, for example, the case
where we have two reference states ¢* and j*. Whenever we meet states ¢* or j*, we will
update the policy. Therefore, if in a period starting from one ¢* to the next i*, the sample
path visits state j*, then the policy used in this period before visiting j* is different from
that used after the visit. Does this cause a major problem in the convergence of the

algorithm? How about the algorithm in which we use all states as reference states?

Solution: For simplicity, we consider two reference states ¢* and j*. Firstly, We can-
not simultaneously use ¢* and j* as reference states to estimate the potential. Different
reference states may lead to different potentials. If we use ¢* as reference state, then we
can obtain the estimation of potential g such that g(:*) = 0. However, if we use j* as
the reference state, we obtain the estimation of potential g such that g(j*) = 0. Two
potentials are up to a constant. we cannot mix these two different potentials to carry
out the policy improvement. Of course, we may only choose i* (or j*) as reference state.
When j* is met, the estimation of potential is not updated.

Secondly, when the policy used in a period before visiting j* is different from that used
after the visit, the new policy generated after the visit generally would not make a big

impact on the estimations of potentials, thus, the subsequent policies are most likely same
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as the new policy until the potential estimates under the new policy are more accurate.
The policy gets update once enough data under this policy is collected. The case that all

states as reference states is the same as the above case.
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Solutions to Chapter 6

6.1 Let us revisit the stochastic approximation algorithm (6.1) when the function f(x)

is known. In the proof of convergence, we have assumed that the function is convex and
df (x)

dx

Modify the proof in the text to fit this case.

> 0. Consider the convex function f(x) = x? with a zero at x = 0 at which Cil—”f =0.

Solution: Suppose xzy > 0, we have f(xy) > 0. Since (dfd(gj”))x:ggO = 2xy > 0, we have

xo > x1. By the same argument, we have xp > x5,1. Because the function is convex,
the curve of f(z) always lies on the same side of the tangent lines. Therefore, we have
xp > 0 forall k=0,1,2,---. Since f(x) is increasing when z > 0, we also have f(x;) >

f(zks1),k=0,1,2,.... Thus, we have two decreasing sequences
To> L1 > > Tp > Tpyq > >0
f(xo) > f(x1) > -+ > f(xr) > f(z41) > - > f(0) = 0.

df (x)
dx

Suppose g < 0, we have f(zg) > 0. Since ( Jo=zy = 279 < 0, we have zg < z1. By

141
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the same argument, we have two sequences

To< T < < T < T < -+ <0
flzo) > f(x1) > -+ > f(xr) > f(wps1) >+ > f(0) =0.

Next, we continue the argument of the case that xy > 0. The same argument can
be carried out for the case that zy < 0. The decreasing sequence xg, 1, -, Tp -«

monotonously converges to a point denoted as £. Then, 2 > 0. Next, we prove £ = 0.

Otherwise, £ > 0, thus we have f(z) > 0 and (d{l(:))z:£ = 22 > 0. Similarly to the

argument in the text, we can define € = Wf(i‘) > (. Since limy_,o, 7 = Z and
Gz Ja=t

1 1

k;h—{& (M f(xk) = df (z) Af(i') =€> Oa

dx )90:901@ ( dx )m:x

There must be a point denoted as zj such that z; — & < €/2 and ——— f(27) > €/2.
k

Thus, we have

x,;H::E,;—(dfo(x,;) <z —€/2 < 1.

dx )xszc

This is impossible. Thus we have & = 0.

6.2 Study the convergence property of the sequence xx, £ = 0,1,..., in Example 6.1, for
the following cases 1 > k > 0,2 > k > 1,k = 2, and k > 2, respectively, by using the

figure illustrated in Figure 6.1.

Solution: Firstly, we consider the case that 1 > x > 0. Since & is equivalent to ﬁ

)
dx |z:zk
d];(:) |z=z, > 1. We can approximately draw Figure 6.1 similarly

)

from 1 > k > 0, we have
to Figure 6.1. Thus, we can find the sequence xp, k = 0,1, 2, - - - converges.

We can use contract mapping theorem to strictly prove the convergence of sequence
xy. Defining a mapping g(z) = x — k(x — b) = (1 — kK)x + kb, we can find |g(x) — g(y)| <
(1 — Kk)|z —y|. Thus, g(x) is a contract mapping when 0 < x < 1. From the contract
mapping theorem, we can prove the convergence of sequence xy,k =0,1,---.

d
ral

Next, we consider the case that 1 < k < 2. From 1 < k < 2, we have % <
1. We can approximately draw Figure 6.2. Thus, the sequence also converges when
1 < k < 2. Similarly, we can draw Figure 6.3 and Figure 6.4 when x = 2 and K > 2,

respectively. We can find the sequence circles when x = 2 and diverges when x > 2.
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Jxy=x-b Jxy=x-b

v

v

Figure 6.1: When 1 > x > 0 Figure 6.2: When 1 < xk < 2

A PR S)=xb

Xy T e

\ 4

1 Xy

Figure 6.3: When xk = 2 Figure 6.4: When 1 <k < 2

6.3 The algorithm in (6.12) can be used to estimate the mean of a random variable w.

This has been verified for step sizes ki = k%rl, k=0,1,---,in Section 6.1.2.

a. Study the case for step sizes ki = m, k=0,1,---

b. Choose a few sequence of ki, k = 0,1, -, that satisfy conditions (6.11) or (6.10)
and run simulation to see whether the sequences of xy, k = 0,1,---, converge and

compare their convergence speeds, if possible.

Solution:
a. If we take ki = m, k=0,1,---, then we have
Tk4+1
(1 1 Vg + 1
= — )T+ ——w
2k+1)"" T2k +1) "
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2k+1 n
= x w
2k +1)""F " 2(k+1)
2k+1 2k—1 2k —3 1 4 1 L
— e —:E 711}
2k +1) 2k 2(k—1) 27" Y2k+1) "
2k+1 1 2k+1 2k—1 2k—3 1 ) (6.1)
- o .. —w . .
o(k + 1) 2k *! 2k+1) 2k 2(k—1) 2°°
Firstly, we prove 22(211) 2’;21 2%::?) o % = HZ:O 2%211) — 0 when k — oco. Since
k
o128 =10 g = S0
n k
and In(1 — Q(nlﬂ)) < -1 +1 , we have In Hn 0 22(7;:) < =D 0 Q(n—lﬂ) — —o00, Thus, we
have In Hn 0 22(211) — —o0 and Hn 0 ;Zﬁ) — 0.

Next, if we assume w with a finite mean E(w) < ¢ and a finite variance E[w—E(w)]* =

2

o?, we prove the convergence of x,,,n = 0,1, ---, under the more general condition (6.10).

Here, we need a lemma from Loeve [1]:

Lemma 1 Let {v,} be a sequence of random variables such that Y - | Ev2 < co. Then

> imavi = E(vjlvr, -+ vj-1)] converges to a random variable with probability one.

Firstly, we can prove the sequence {,11+ Y ,_; kx[xr, — E(w)]} converges to a random
variable with probability one.

Let vy, = kp[wy — E(w)], then E{v}} = r2FE{[w; — E(w)]?} = kio?. Then, we have
S E{vi} = 0> 07 ki < oo. Moreover, since wy, k = 1,2,
Elwy — E(w)|w; — E(w), - - -

are i.i.d, we have
,Wg—1 — E(w)] = 0. Thus, from the above lemma, we obtain

- ZL K (Th —

wy), then we obtain z,41 + Y ,_, kilzey — E(w)] = a1 + > _, ki[wr — E(w)] converges

that ">~ | kx[w, — E(w)] converges with probability one. Since 11 = 23

with probability one.
Next, we prove the convergence of x,. Firstly, we prove P{lim, .., x, = +oo} +
00. Then for n

E(w)]} = +oo,

but this can only happen with probability zero from the above argument. Thus, we have

P{lim,_ x, = —oo} = 0. Suppose {x,} is a sequence with lim,, ., x, =

sufficiently large we have z,,—E(w) > 0, Then lim,, oo{Zn41+Y p_; Kr[zr—

proved P{lim, .., x, = +oo} + P{lim, .z, = —oo} = 0. Now, we suppose that z,

does not converge. Then, there exists a set of sequences of positive probability with the



following properties:

(@) Ty + D>y Klzp — E(w)] converges to a finite number

(b) liminf, . x, < limsup,,_,. Tx.
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for every sequence in the set. Let {z,} be such a sequence and assume limsup,,_, . =, >

E(w). (A similar argument handles the situation limsup,,_, . z, < E(w).) Then we can

choose numbers a and b satisfying
a> E(w), liminfz, <a <b < limsup z,.
Since lim,, . Kk, = 0, we may choose N so large that N < n < m implies
. 1 b—a
(a) Kin < mm{§7 3[c+\E(w)|]}
(b) |wpm — 2y + Z;n;zl k(e — E(w))| < b_Ta
Now choose m and n such that
(a) N<n<m
(b) Tp < @y Ty >b
(¢) n<j<mimplies a<z; <b.
Then, we obtain

(b—a) = (b—a)
3

If E(w) < x,, we obtain
T — T < (b—a)/3

which is a contradiction to (b) in (6.3). Suppose then E(w) > z,,, we have

|20 — E(w)] < ¢+ [zn] < ¢+ |E(w)] + |E(w) = 20| < ¢+ |E(w)] + (2m — 20).

Hence, by applying (6.4), we have

T —Tp < (b—a)/34 kpc+ |E(w)|] + kn(@m — ).

+ kn(E(w) — zp,).

(6.2)

(6.3)

(6.4)

Thus, 2, — x, < 2(b—a)/3(1 — k,) < b—a by (6.2). But this is again a contradiction

to (6.3), we prove the convergence of zx. Combined with the convergence of {x, 1 +
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Y pey Bkl — E(w)]}, we know Y, ki[x, — E(w)] converges with probability one. Then
by using Y., Kk = 00, we have z, — E(w) with probability one.

References:

[1] M. Loeve, “On Almost Sure Convergence”, Proceedings of Second Berkeley Sym-
posium on Mathematical Statistics and Probability, University of California Press, 1951,
pp. 279-303.

2] J. R. Blum, “Approximation Methods which Converge with Probability one”, The
Annals of Mathematical Statistics, vol. 25, no. 2, pp. 382-386, 1954.

b. Considering a [0, 1]-uniformly distributed random variable w and letting xy =

1 1 1
k+17 2(k+1)° Vkt1’

as Figure 6.5 and Figure 6.6.

respectively, we simulate them respectively and get the simulation results
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Figure 6.5: The comparison of x;, when k£ = 175 and x = 56 T)

6.4 Let us revisit Section 6.1.2 “Estimate Mean Values”. Assume that the step sizes

satisfy > oo kk = o0 and Y po ki < co. Working on (6.12) recursively, we may obtain
Thy1 = agZo + &k,
a. Derive an expression of a; and & in term of kg, - - -, kg and wq, - - -, Wy

b. Prove limy_. ax = 0, limy_o F(&) = F(w), and limy_. var(&) = 0.

Solution:
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Figure 6.6: The comparison of z; when xk = k%rl and Kk = \/kl?

a. Going on the iteration (6.12), we have

—
|
X

>
—
|
X
T
El
T
+
X
>
L
&
>
e
+
X
Eoy
&
>

1 — Kp_1)xp—1 + (1 — Ki)Kp—1wik—1 + Krwy

1 — K1) [(1 = Ki—2)Tp—2 + Kr—owi—2] + (1 — Ki)Kg—1wi—1 + Krwy

N

1= kg-1)(1 = Fp—2)@p—o + (1 — k) (1 — K1) Kp—2Wr—2

+(1 — Hk)/ikflwkfl + KpWg

= (1—re)(1—=kp_1) (1 —ro)wo+ (1 — k) -+ (1 — Ky )kowo + (1 — k) - -+ (1 — Ki1) Kiwy

_|_ N + KWk
Thus, we have
ar = (1 — k) (1 — K1) -+ - (1 — Ko)
=1 —=re) (1= K1)rowo + (L = kg) - (1 = Kigr) mgwy + -+ + Kpwy,

b. Set f(z) = e — 1+ x, we have f'(r) =1— e >0 when x > 0. Thus, f(z) is

increasing and we have f(z) > f(0) = 0 when x > 0. Therefore, 1 —x < e for z > 0.
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Taking the logarithm on both sides, we have In(1 — z) < —x. Since

Ina, = Zln (1—ry) Z/il,

we have

0<a, < e’zf:om.

From ) 72 ki, = 00, we have a; — 0.
Next, if we assume w with a finite mean E(w) and a finite variance E[w — E(w)]?, we

prove limy_,, var(&,) = 0. Firstly, we consider E[zgy1 — E(w)]?.
b1 = Elrgy — Bw)]? (6.5)
= B{B[(xpn — Ew))*|lzi]}
2
= E{E[(mk + kp(Tp — wi) — E(w)) |xk] }
= BE(ry — BW))* + kR E{E(w, — wi)’|2i]} — 26 E{E[(xy — E(w))(w), — wi)|za]}
By using the result in the proof of Problem 6.3, we know x; converges with probability

one. Thus, we can prove E{E|(z; —ws)?|7x] is bounded for any ;. We assume E{FE|(z; —

wi)?|zx] < C. Summing (6.6), we obtain

b1 =bi+C Y Kp =2 rply
k=1 k=1

Since b, > 0, it follows that

n 1 (e 9]
by < =by+C ? < 0.

= kVEk . I k ) 9
— k . k .

From zy1 = arxg + &, we have
Elagzo + & — E(w)]® = ajaf + 2a20E[& — E(w)] + E& — E(w)]*> — 0. (6.7)

Since xj converges to a random variable with probability one, then E[§, — E(w)] is

bounded. From (6.7), we have E[§ — E(w)]* — 0, which means limy, ., var(&) = 0.
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From Cauchy’s inequality, we have E[¢, — E(w)] < {E[¢ — E(w)]*}/? — 0, which means

6.5 Consider the estimation of a continuous time average reward. Let {7y, Ty,---, T}, -}
be the sequence of transition times of a continuous Markov process with 7, = 0. The
state in the time period [T}, T;41) is X;,0 = 0,1,---, and set 7, = Tj.y — 1,0 = 0,1, - .
The reward rate function is f(X;) and the average reward is defined as

1 [h

l—o0 T} 0

We wish to develop a recursive formula for 7, as follows:

M+1 ="M +Hl[f(Xl) _nl]a = 07177W1th Mo = 0.

Please find the value of x;,1 =0,1,---, in term of Tj, etc.
Solution:
1 T4
M+ = T fIX(0))dt
+1 Jo
1 g
= —{ [ fIx@a+ )T - T}
+1 0
T T —T
= LT Tl
Tl+1m Tii1 f&)
T — T,
=+ () )
I+1
Thus we get k; = TZ%J;TZ

6.6 Derive the TD(0) algorithm for the discounted performance criterion:
moli) = B A (X [Xo =i}, 15650
1=0
Solution: Denote X; = 7, we have
wli) = BB R |Xo = 1)
k=0

= 1)+ B{B{Y. A" (Xi) | Xii} X = i}

= f(i) + BEMs( X)Xy =]
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From this, we have

np(Xi) = E{f(Xi1) + Bns(Xip1) | Xi}-

Therefore, we can use f(X;)+ 0ns(X;+1) as an estimate of 73(X;). Thus, by the stochastic
approximation algorithm (6.12), we can obtain the 7"D(0) algorithm for the discounted

performance criterion:

ns(X1) = np(Xh) — ki{ns(Xy) — [f(X0) + Bns(Xiga)]}
= np(Xi) + rlf (X)) + Bns(Xigr) — np(X0)].

6.7 TD(0) with random steps: For any two states i,7 € S, set So = {i,7}. Consider a
sample path of a Markov chain {Xj,---, X}, --}. Denote the time sequence at which the
Markov chain is in Sg as lg, Iy, -+, g, - - -. We may set g(i) = 0.

a. Develop a T'D(0) algorithm for estimating ¢(j), by using the temporal difference
obtained in the periods from I + 1 to 41, K =0,1,---

b. Explain that the algorithm converges to the right value, compare it with the real-

ization factor v(i,j) = g(j) — g().

Solution:

a. Forany X;, =j € 80,k=0,1,---, we have

9(X,) E{Z (Xiyen) = 1|0 }-

Therefore,
lk+1 1
Xlk E{ Z + g(Xlk+1)|Xlk}
k=1,
Then, the T"D(0) algorithm is
lk+1 1
9(X1) = g(X) +rmd D 1S )+ 9(Xi,,) — 9(X,)}- (6.8)

=1,
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b. From (6.8), we have

g(Xlk> - g(Xlk+1)

lk+171

= g(Xlk> - g(Xlk+1) + ’%k{ Z [f(Xl) - 77] - [g(Xlk) - g(Xlk+1>]}

1=},

lk+1—1

= g(Xlk> - g(Xlk+1) - ﬁk‘{[g(Xlk) - g(Xlk+1)] - Z [f(Xl> - 77]}

1=},

Thus, according to realization factor v(X;,,,, Xj,) = E{Z;S;fl[f()(l) — |}, the above
TD(0) algorithm in fact estimates the realization factor v(X, ,,, X;,) = g(X;,) —9(Xi,,,)
by using the Robbins-Monro algorithm (6.6). Thus, the algorithm converges under some
conditions that Robbins-Monro algorithm requires.

6.8 Consider a two-state Markov chain with transition probability matrix

0.5 0.5
0.5 0.5

and reward function f(1) =1 and f(0) = 0. We have n = %

5-
a. What are the potentials for the two states?

b. Write a computer program applying algorithm(6.15), (6.22) and (6.24), and observe
the trends of the convergence of the sequences generated by these algorithms. (For

Algorithm (6.22), observe the trend of convergence of g(1) — ¢(0).)

Solution:

a. From the balance equations, we can obtain 7 = (0.5,0.5). From (2.13), the poten-

0.5
tials defined as (6.13)is g= (I — P+em) ' f —n=
—0.5

b. We apply algorithm (6.15), (6.22) and (6.24) to this problem with initial value
g(0) = g(1) = 0, respectively. In applying algorithm (6.22), we set G = 0.5 and i* = 1. In
applying algorithm (6.25), we set i* = 1. The simulation results are Figure 6.7, 6.8 and
6.9, respectively.

6.9 The T'D(0) algorithm (6.15) and (6.16) can only determine the potentials up to an

additive constant. That is, starting from different initial values, the algorithm converges to
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different sets of potentials that have the same perturbation realization factor (i, j), 4,7 €

S.

a. Can we fix a reference state ¢* and set g(i*) = 0 in the 7'D(0) algorithm (6.15) and

(6.16)?

b. If so, modify the algorithm.

o

o

Solution:

. Explain your algorithm using g(i) = v(i*,i) = £ { Zfz(g‘i)fl[f(Xl) — 77]’ Xo = z}

. Apply this algorithm to the Markov chain in Example 6.5.

a. Yes, we can fix a reference state and set ¢g(:*) = 0 in algorithm (6.15) and (6.16).
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b. We can directly set g(X;) = 0 when X; = ¢*. The updates at other states are still
similar to that in algorithm (6.15).

¢. Denote X; = i, we have g(i) = v(i*,i) = E{F D7 (Xipw) — n]|1 X, = i} =
E{[f(X;) — n+ g(Xi11)]|X; = i}, From this, we have

g(X1) = E{[f (X)) —n] + g(Xi11) | X0}

Thus, we can use [f(X;) — 1] + g(Xi4+1) as an estimate of ¢g(X;). This results in the
algorithm (6.15). The algorithm (6.15) can converges to different potentials if we use
different initial values. We directly set g(i*) = 0 when X; = i*, which limits the algorithm
to keep ¢(i*) = 0, thus, this algorithm converges to a special potential with g(i*) = 0.

d. We apply the algorithm to Example 6.5. The simulation result is as Figure 6.10,

where i* = 0 and the initial potential is (1,1).
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Figure 6.10: The simulation result in

Problem 6.9 d)
6.10 Consider the modified algorithm (6.22).

a. Can we fix a reference state i* and set ¢g(i*) = 0 in (6.22), as we considered in

Problem 6.97 (to find the answer, apply it to the Markov chain in Example 6.5.)

b. If not, why?

Solution:
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a. We cannot fix a reference state. Let’s apply the modified algorithm to Example
6.5. Consider an approximate sample path 1,0,1,0,1,0,---. We assume that state 0 is
the reference state and initial values g(1) = g(0) = 0. We obtain

at1=0: g(1)=(1-1)g(1) +[f(1) +g(0)] = 1
atl=1: ¢(0)=0,
at1=2: g(1)=(1-)g(1)+5[/(1) +9(0)] = 1
atl=3: ¢(0)=0;
at1=4: g(1)= (1= D)g(1) + £ [F(1) + 9(0)] = 1

Thus, we have g(1) — ¢g(0) = 1, which does not converge to the true potential difference.

b. Since in algorithm (6.22), each update will result in a different potential, that is,
the potentials at different times are up to a constant. If we fix a reference state, the
potential at this state remains unchangeable, but the potentials at other states may be
changed. Thus, the modified algorithm cannot converge to the true potential difference.
6.11 Derive an iterative numerical algorithm similar to the algorithm in (6.20) for poten-
tials by using Equation (3.4).

Solution: From (3.4), we have

g=P g+ f_.

We can apply the stochastic approximation algorithm (6.6) to obtain an iterative numer-

ical algorithm for the potential by using Equation (3.4):

grs1() = 0u0) = ki 3 9u(0) = | 1) = 1(S) + 3G = p(71S)]gn()]
jeS

6.12 Consider a finite state discrete-time birth-death process {X;,l =0, 1,---}: The state
spaceis S = {0,1,2,---,S}. The state is the population n € S. The transition probability
from state n to n 4 1 (the birth rate) is p(n + 1|n) = a,n =1,---,S — 1, and the death
rate is p(n — 1|n) = byn =1,2,---, 8 —1,a+ b = 1; and p(1]0) = p(S — 1]5) = 1. Let
the reward function be f(n) = n, the performance is defined as the average population

n=E[f(X)] = 35 _y7(n)f(n).
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a. Derive a formula expressing the performance 7 as a function of the birth rate a.

b. Set a = % Using the derivative formula (6.43) to derive the performance derivative

dn
da
a

1
2

c. Develop a TD(0) algorithm for estimating 22

1

2

Solution:

a. When a = 1, the process will eventually cycle between S — 1 and S. Thus, the

25—-1

average population is =%

. When a = 0, the process will cycle between 0 and 1, thus

the average population is 1/2. Next, we assume a # 1,0. By using the balance equation,

we can obtain 7(1) = =m(0),7(2) = ﬁﬂ'((]),ﬂ'(?)) = ﬁW(O),---,W(S —-1) =
aS—2 S—1

WW(O),W(S) = Gfaﬁw((]). From, me = 1, we have [1 + = + Tz ﬁ +

R (le;;,l + (lfi;,l]w((]) = 1. Thus, if a # 3, then 7(0) = % The average
: S —2a)(1—a)5—1 a a2 —1)aS—2
population n = Y °_ w(n)n = %[ﬁ + uz—a)g + (13_—a)3 + -+ % +
(ﬂg:_l] = (172?()3;?3;(2(32%35)7 U Ifa= 5, then 7(0) = 35, the average population
_ S
n=3-
b. From the derivative formula (6.43), we have
k

dn dp(Xi| Xi—1)/da

sl )

da [f( k) 77] l:uz(k) p(Xl‘leﬁ
where u,,, m = 0,1, - - -, are a sequence of regenerative points with Xg =0 € §, up = 0, and

U1 = min{n : n > u,,, X, = 0}, and for any integer & > 0 we have Um@k) < K < Up(k)+1-

Thus, we have

dn N dp(X;|X;—1)/da
— = —nES > Xp=i
R IO g
¢ ieS [=tm (k) P Xi-)
= > w()[f(i) —n]
icS
dp(Xum(k) |Xum(k)—1)/da n dp(Xum(k)+1 |Xum(k))/da n
p(Xum(k) |Xum(k)*1) p(Xum(k)+1 |Xum(k))

dp(Xk\Xk,l)/da
p(Xk\qu)

Xi=i}.
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c. The TD(0) algorithm:

1. Set 7y =0and Ag =0and k=0

2. For each state X visited, do

o dp(Xy| Xk—1)/da : L
= Th-1F P(Xp|Xk-1) if X # %
0 if Xy ="
Xo|X_
where we assume 2EX-v)/da _

p(Xo|X_1)

Api1 = A + s [f(Xk) — 07k — Ag}

6.13 Consider a randomized policy d,. Denote A(i) := {ai1, -+, ;) gy}, where |A(7)]
is the number of actions in A(i),i € S. At state ¢ the system takes action o, € A(7)
with probability p;x, k= 1,2,---,|A(7)[, and ZL“:‘Y” pir = 1,7 € S. If action a € A(7) is
taken at state i, then the transition probabilities are p*(jli),j € S, and the performance

function is f(i,«),i € S. The Q-function are defined in (6.28) as follows
S
Q™ (i,a) = {D_p*(ili)g™ ()} + fli,a) —=n™, a € A(i),i €S,
j=1

where g% (i),i € S, are the performance potential of the system under this randomized

policy d,.

a. Determine the performance function and transition probabilities for the system un-

der this randomized policy; Derive the Poisson equation for it.

b. Prove g% (i) = Z';géy)‘pi,der (4, Qi)

c. Given a deterministic policy d(i) = of € A(i),i € S, we define an e-randomized
policy: with probability 1 — € the system takes action o] and with probability
(\_Am it takes any other actions in A(i),7 € S. Let g(i) be the potentials of the
deterministic policy d, and g(i), and Q(i,«),a € A(i),i € S, be the potentials and

Q-function of the e-randomized policy. Prove

lim g(i) = g(i), 1€8

e—0

lin%Qe(i,oz;k) =g(i), i €S,
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and
S
lim Qc(i,0) = {D_p*(jl1)g()} + [(i,a) = na #af,i€S.
j=1
Solution:
a. The performance function under the randomized policy is f% (i) := lkéy)‘ Pikf (i, ap)
A

and the transition probability from state i to state j is p¥(jli) = S22 pixp®i= (5]7).

Then, we have the following Poisson equation
g () = > ™ (ili)g™ (G) + 0™ = f*(i). i€S (6.9)
jeS
b. From the definition of performance potential, we have g% (i) = E4{>" 2 [f(X;, 4;)—

n]|Xo = i}, where E% denotes the expectation under the randomized policy d,. We have

E*{> [f(X1, A) = )| Xo = i}

_ Ed*{Ed*{Z[f(Xl,Al) — ]| Xo =4, A} Xo = z}
=0
A 00
= > kBT (X, A) =l Xo =i, Ao = i}
k=1 =0

1A
= Z Pik@ (i, ).
k=1

c. We firstly prove g.(i),i € S are continuous with respect to e. We assume P, is
the transition probability matrix under the e-randomized policy, whose (7, j) component
is p(jli) = (1 — e)p~ (jli) + m ZQEA(i)_{a:}p“(ﬂi). From the balance equation
m.P. = m. and m.e = 1, where 7. is the steady-state probability under the e-randomized
policy, we can prove m, is continuous with respect to e since each component of P, is
continuous with respect to e. We consider a specified potential satisfying m.ge = 7., where

7 is the average performance. From Poisson equation (6.9), we have
ge= (I —P.+em) ' f..

From the continuity of inversion of matrix with respect to €, we can easily prove g.(i),i € S

are continuous with respect to e. Thus, we have lim._ g.(i) = g(7),7 € S.
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Since Q. (i, ;) = Zilpaf (719)ge(?) + f(i, aF) — e, ,from the continuity of g.(i),i € S
and 7. with respect to €, we have lim. o Q.(i,a}) = Z;g P g() + fi, o) —m, i€
S. Then, from the Poisson equation g(i) = Zflp i(719)g(@) + f(i,f) — n, we have
lim_o Qc(i, o) = g(i),i € S. Similarly, we have lim._o Qc(i,a) = {325, p*(jli)g(j)} +
fli,0) =m,a#af,i €S.

6.14 Suppose that we can only control the actions in the states in a subset of the state
space So C S of a Markov chain, which is under a randomized policy that visits all the
state-action pairs when the state is in Sy. Denote the time sequence at which the Markov
chain is in Sy as lo, {1, -+, lg, - -+ i.e. X;, € So,k=0,1,---. Develop a T'D(0) algorithm
for Q-factors Q(i, «),i € Sy, with random steps K.

Solution: Denote X;, =i € Sp. From (6.33), we have

= E{Z[f(Xla Al) - n”Xlk = iv Alk = a}

1=l
lk+1—1
= E{ Z le Al ] + Q(Xlk+1’ Alk+1)|Xlk = i’ Akk = a}'
1=l

We can use Zl’““ TFXLA)) =) + Q(Xi,,,,Ai,,,) as an estimate of Q(X;, A;). Thus,
from (6.12), we can obtain the following 7"D(0) algorithm:

Q(Xy,, Ai,) = Q(Xy,, Ay) + Ky,

lk+171

5lk B Z [f(Xl’ Al) - 77] + Q(Xlk+l’ Alk+1) - Q(Xlka Alk)y k= 0,1,---.

1=},

6.15 Develop a K-step algorithms for estimating the Q-factors (c.f. (6.33) and (6.34)).

Solution:

I+K-1

QX1 A) = B Y [F(Xi, Ae) =] + Q(Xiyxe, Avpsc) [ Xo, A}

k=l
Thus, we can use ZHK "F(Xe, Ar) — 0] + Q(Xi4k, Aii i) as an estimate of Q(X), 4)).
From (6.12), we obtain the following K-step T"D(0) algorithm:

K-1

QX1 A = QX0 A) + se{ DU (Xevks Avn) — 1+ QXex, Avire) — QUi A}

k=0
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6.16 In (6.33) and (6.34), we may set the Q-factor of a pair of reference state-action to
be zero; i.e. Q(i*,a*) = 0. Develop a T'D(0)-learning algorithm.

Solution: The 7'D(0) algorithm with Q(i*, a*) = 0:

QXi, Ay) = Q(X;, Al)+/fz{[f(Xza Ap) =+ Q(Xip1, Arr) — QX Al},
if Xy #i"and A #a*,1=1,2,---
Q" a") =0, if X;=14"and 4, ="

6.17 We partition the the state space S into Sy subsets: § = UfozlSk, SiNSy =0,k k' =

1,2,-+-,5p. Let 7(i),i € S, be the steady-state probability, and let 7 (i|Sy) = #Z)m)
JEO

be the conditional steady-state probability of ¢ given that ¢ € S;. The potential associated

with the aggregation Sy, is defined as (6.39):
9(Sk) = Y w(ilSk)g(i).
iGSk

We wish to establish a Poisson equation for the aggregations:

So
9(Sk) = D p(SwlSk)g(Sw) + f(Sk) —n, k=1,2,---,5. (6.10)

k=1
a. According to their physical meanings, determine the transition probabilities p(Sy/|Sk)

and the performance function f(Sg), k, k' =1,2,---, Sp.

b. Prove that the Poisson equation (6.10) holds for the aggregations if and only if for
any Sp, k' =1,---,8p, and any j € Sy, we have

) TespGld)
Zj/eSk, m(j) Zj’eSk/ Zz’eSk 7T(¢)p(j’|i)’k =1+, 5. (6.11)

c. Set

>ies, T()p(jli)
Zj’esk/ Ziesk W(Z)p(]"l) .

Then (6.11) becomes 7(j|Sy/, Sk) = 7(j|Sk). Prove that (6.11) is equivalent to the

71-(j|$k/7 Sk> =

following condition:

7(J|Sk, Sk) is independent of k. (6.12)
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d. Explain the meaning of 7(j|Sy/, S) and condition (6.12).
e. Derive a T'D(0) algorithm for ¢(Sg),k=1,---,So.

f. Explain that the algorithm developed in e. may not work if the condition (6.12)
does not hold.

Solution:
. p(i € Sk,j € Sk/) . Zzesk 7T(Z) ngSk, p(j|l)
AV T Ges) T T s
F(Sk) =Y m(ilSk) f(i).
i8Sy,

b. For the original Markov chain, we have Poisson equation:
= > _p(ilg) + (i) = .
jeS

Pre-multiplying 7(i|Sy) and summing them over Sy, we have

S w(ilSngli)
ieSy
= ST w1S0) Y plili)g() + S wilSk) f@) —
iESk jeS ieSy
- Z 2‘98 ((j”gowf(sk)—n
= ZZ 285 (<j')g<j>+f<sk>—
v z,eg Zzesk )p(j'li) Ses, T(0)p(ili) |
- Z Zzesk Z XS, Lies, 0P GV
f(Sk;)
- Zpsmsk Es: Zjes Ziesk () G eu) + 1S
If
tG) s, m(0)p(ili)

Zj’ESk/ W(j/) B Zj/eSk, Ziesk W(i)p(j"i)7
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we have the Poisson equation (6.10).
c. From (6.11), it is obvious that 7(j|Sk/, Sk) is independent of Si. That is, we have
(6.12) from (6.11). If 7(j|Sk, Sk) is independent of Sy, for any Sy, we have

7(j|Sk, Sk)
>oes, TOp(li)

> e, s, TP
SO0 s, w(i)p(li)

S e, Lies, Tp(10)
s T(0)pGili)

2 eS8, 2ies T(1)p(5']i)
7(j)

2 ieS,, ™)

= 7(jISk).

Thus, (6.11) is equivalent to “m(j|Sk/, Sk) is independent of Sy”.

d. 7w(j|Sk,Sk) denotes the conditional steady-state probability that the system is
in state j given that the system is in subset Sy in the previous time and in subset S,
in the current time. Condition (6.12) indicates the conditional steady-state probability
7(j|Sk, Sk) does not depend on the subset that the previous state belongs to. This means
this conditional steady-state probability has a memoryless property.

e. Since

9(Sk) = E{f(X1) —n + g(Si11)| X € Sk},

we can use f(X;) —n+ g(S;41) as an estimation of g(Si). The T'D(0) algorithm can be

developed as follows:

9(81) == g9(S) + mlf(Xi) =n+9(Sip1) —9(S)],  if X1 €8,

f. If the condition (6.12) does not hold, the Poisson equation will not hold. Thus, we
cannot use f(X;) —n + ¢g(Si+1) as an estimation of g(S;). The algorithm in e. cannot

work.

6.18 In perturbation analysis of Markov chains, we have two Markov chains with transi-

tion probability matrices P and P’, respectively. Let AP = P’ — P and P; = P + 0AP.
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Let ns be the long-run average reward of the Markov chain with transition probability
matrix Ps. Assume that the reward function f5 are the same as f for all 0 < 6 < 1. Let
7 and g be the steady-state probability and performance potential of the Markov chain
with transition probability P. Then the directional derivative of ns is (2.23):

dns

— 1(AP)qg.
75 T(AP)g

a. Write the performance derivative in the form of Q-factors.

b. Suppose that we do not know the values of P and P’ and only know the correspond-

ing actions. Develop a T'D(0) algorithm for the performance derivative.

Solution:

a. We can view P and P’ as two transition probability matrix under two different
policies v and v', respectively.
% =7[Q" = Q'] =) _w(@)[Q(. V(i) — Qi v(@))]. (6.13)

ieS

where QV = P'g + f and Q" = Pg + f.

b. We consider the Markov chain with transition probability matrix Ps. The policy
corresponding to Ps chooses action v(i) with probability ¢ and chooses action v'(i) with
probability 1 — § when the state is i. From (6.13), we have % = E.[Q(X;,v (X)) —

Q(X;,v(X)))]. Thus, we can firstly estimate Q-factor by using 7D (0) algorithm, then use

the T'D(0) algorithm to estimate the expectation. We can develop the following algorithm:

QUX1, A) = QX1 A) = re{ [ (X1, A) = 1] + Q(Xi1, Auin) = QX1 A) .

= S0 s QX (X0) — QX (X)) — L

‘l+1

6.19 Develop two T'D(0) algorithms, similar to (6.44) and (6.45), based on the perfor-

mance derivative formula (3.44).

Solution: Since

a,  BOS (e )
ans _ k1l Xk) (6 14)
do Eltmy1 — U] '
AP(Xk+1|Xk) A
p(enlX, "
(X | X)) (6.15)
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where

Um(k+1)+1—1

B = S LFX) )

I=k+1

Based on (6.14), we can develop an algorithm to estimate the numerator of (6.14) similarly

to (6.44),

Vsit1 = Vsy + K0, 1=0,1,---,

u 1—1
HZ AP(Xk+1|Xk) A

0 = W — Usg.
J P (Xn | Xr) k-+1 5,1

k:ul

Similarly to (6.45), we can develop an algorithm based on (6.15):

d d
%‘Prl = %‘l_'_ﬁl(sla lIO,l,"',
5 = Ap(Xi41]X0) %h

—w —
p(XlH\Xl) o do

6.20 Suppose that algorithm (6.62) and (6.63) converge to optimal Q-factors. Are the

following statements true? If so, please explain

a. With (6.62), when the algorithm converges we have Q(i*,a*) = n*, the optimal

performance.

*

b. With (6.63), when algorithm converges we have maxaEA(i*)Q(z’*, a) =n*.

Solution:
a. Under some standard stochastic approximation conditions, the algorithm (6.62)

converges to the solution of the following equation:
~ S ~
Qi) = D p"(jl)maz,. 4, QG B} — QU ") + fli, o), a € A(i), i € S(6.16)
j=1

where d is the optimal policy. We have d(i) = argmar,, A(i)Q‘j(i, «). Taking the maxi-
mum among the actions in .4(i) on both sides of (6.16), we have

S

maz, g, Q" ) = QG d(i)) = {3 p™ (i) maz .4, Q"G B)} — QG a) + f(i, d(i)),

J=1
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for all ¢ € §. Pre-multiplying W‘Z(i) on both sides of the above equation and summing
them over all i € S, we have Q(i*,a*) = _._g 7(i) f (i, d(i)) = 1".

b. Under some standard stochastic approximation conditions, the algorithm (6.63)
converges to the solution of the following equation:

~ S ~
Qi) = {3 p°Gili) maz 4 4, QGL B} — max Q) + f(i,a), a € Adi)i€S.

j=1 a€A(*)

~

Similarly to the discussion in part a), we have max,_ g, QUi ) =Y..s ﬂ‘i(i)f(z', d(i)) =

*

n

6.21 In this problem, we derive a performance derivative formula for closed Jackson
networks in the form of sample path expectation. Consider a closed Jackson network
consisting of M servers and N customers. The service times of server i are exponen-
tially distributed with mean §; = 1/p;,4 = 1,2,---, M. The state of the system is
n = (ny,---,ny), n; is the number of customers in server i, Zf\il n; = N. Suppose that
the system is in the steady state, and let 7(n) be the steady-state probability of state
n. Denote pu(n) = M €(ny)ps, with e(n) = 1if n > 0 and 0 if n = 0. The system
throughput is n = >, p 7(n)p(m), its derivative with respect to 5,, v = 1,2,..., N, is
(2.109):

5, On

=— Z m(n)c(n,v),

n 05, - all M
where ¢(n, v) is the realization probability of a perturbation of server v when the system

is in state m, and “E,” represents the steady-state mean.

a. Consider a sample path of the system. Denote the sequence of transition times as
To,T1,--+,T},---. Suppose that the system is in state n in [1},T}11); i.e., X; = n.
Assume that in this period server v obtain a (infinitesimal) perturbation. We define

a perturbation realization index for this perturbation as follows:

1 if the perturbation is realized on the sample path,
RI(l, X;,v) =
0 otherwise;

and set ¢(t) = RI(l, X;,v) for t € [T}, T;+1). Then by definition, we have

E[RI(l, X;,v)|X; = n] = ¢(n,v),
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where “E” denotes the expectation with respect to the probability space generated

by all the sample paths. Explain the following equation:

5, 0n

—E[RI(l,X;,v)] = —FE[s(t)] := — lim S /TL s(t)dt,a.s.  (6.17)

; 8§U B L—oo TL

. Can you determine the function ¢(t) based on the sample path in Figure 2.18 of

Chapter 2 (Note: ¢(t) depends not only on the current state m, but also on the

future behavior of the system.)

Derive a sample-path based estimate of the performance derivative by using the

above result.

Apply this equation (6.17) to a two-server closed Jackson network and verify the
results. Can this be extended to networks with non-exponentially distributed service

times?

. Derive a recursive algorithm (c.f. Problem 6.5).

Discuss and compare your results with other algorithms.

Solution:

a.

E[RI(l, X;,v)] = E{E[RI(l, X;,v)|X}]}
= Y a(n)E[RI(I,X;,v)|X, = 7]

all M

= ) m(n)c(n,v).

all M

Thus, we have

Next, we prove that
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Since limy,_,o0 7= B f t)dt = limy_, 7 B Zf:}l SiRI(l, X;,v), where S;,l = 0,1,---, de-
note the durations the system stays state X, thus we only need to prove

lim —ZSZRI (1, X1,v) = > w(n)e(n,v). (6.18)

L= T, all
We can find whether a perturbation is realized or lost depends on the initial state X
and the customer transitions afterwards. It does not depend on the durations the system
stays in all the states S, S;11, - --. Therefore, RI(I, X;,v) is function of X;, Xj,q,- -
Let xn(X;) = 1if X; = n; xn(X;) = 0, otherwise. For all [ with xn(X;) =1, 5; are

independent and identically distributed. By the law of large number, we have

m o SIRI(L, X, v)xn(X))

= S50 RI(L Xi, v)xn(X))

From this, we have

= E{Sl|Xl =N, R(Z,Xl,’l]) = 1}

L—1
LIEEO_ZSlRI (L, X1, v)xn(X1)
1 L—1
= E{S|Xi=n RI(l,X,v) =1} x lim EZRI(Z,XI,U)Xn(XZ)
=0
1 L—1
= E{S|X;=nRI(, X;,v) =1} x Lhm — Y,

=0

where
Y, = RI(l, X}, v)xn(X)) = o(Xy, Xiga, - )xn(Xy) == (X, Xigq, -+ +).

From the fundamental ergodicity theorem in Chapter 3, we have

lim — ZY E(Y)) = E[RI(I, X;,v)xn(X))] = m(RI(l, X}, v)xn(X;) = 1).

L—oo I

where m(RI(l, X;,v)xn(X;) = 1) is the steady-state probability that RI(l, X;,v)xn(X;) =
1 for Markov chain Y = {Yp, Y3, - -}. Therefore,

L-1

ngg@—ZSZRI (1, X1, v)xn(X)
= E{Sl‘Xl =Mn, RI([,X[, ) = 1} X W(R[(Z,XZ,U)XT),(X[) = 1)
= E{Sxn(X)RI(l,X;,v)}

= E{SlRI(l,Xl,U)|Xl = 'n,} X ﬁ'('ﬂ),
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where 7(m) is the stationary probability of state n of the embedded chain X = {X,, X3, - - .
By using the Markov property, given X; = mn, the two random variables S; and RI(l, X;,v)

are independent. Thus, we have

B{S,RI(l, X;,v)|X; = n}
= E(Sl|Xl = n) X E{R[(Z,XZ,U)|X1 = n}

_ cn0)
p(n)
Finally, we have
1< #(n)
A 17 ; SIRI(l, Xi,v)xn(X1) = c(n, U),u(n)’ w.p.1.

According the relationship between the steady-state probabilities, 7 and 7, of embedded

chain and continuous time process, i.e.

7(n)
™n) =n—-=,
™) =1
we obtain
1t 1
Jim — ;SZR](Z,XhU)Xn(Xz) = m(me(no),  wp.l.

Summing up both sides of the above equation over all n and noting that Y, pxn(Xi) =

1, we get

~
=

1
lim

1
lim — l SIRI(l, X;,v) = ; Z m(n)c(n,v), w.p.l.

I
o
g
=
S

On the other hand, we can similarly prove

= Lll_{IOlo% Z ZSlX'I’L(Xl)

all T 1=0

L—-1
o1
- Z {nglgo 17 ; Sixn(X1)

all T

= S Eln(X)] x B(S|IXi=n) wpl

= Z @:l w.p.1.
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Noting that
L—1

lim — ZSlRI (1, X,

L—oo T} L—oo 17,

Thus, we have proved (6.18).

Reference:

Xi-Ren Cao, Realization Probability: The Dynamics of Queueing systems, Springer-

Verlag, London, 1994.

b.
.
0,
0
0
s(t) =
1
?
\
c. and e. Denote
Sy On o
1 95, L+1 =

n 05y

recursive algorithm.

CHAPTER 6. SOLUTIONS TO CHAPTER 6

L-1

L—oo [,

v) = lim T£ x lim —ZSZR[ (1, Xj,v) = Z m(n)c(n,v).

all

To<t<Ty
T <t <T
Ty <t<T;
T3 <t<T,
Ty <t <Ts,

1 Tpi1
s(t)dt,
TL+1 /0 ( )

Then, we have limy_, gn o Ly, = 200

w.p.1. For 2.2

. a-| 41, we have the following

5, On 1 T
? %% = _TL+1 { ; g(t)dt + (TLJrl - TL)R(L7 XL7 U)}
SU 877 TL+1 — TL [ Sy 877
= R L7 X ? T a2 :|
n 3Sv| T ( ) n 05, -

f. Since this algorithm uses the function ¢(¢), which depends on the future information

on the sample path, it is difficult to use this algorithm in an on-line way.



Solutions to Chapter 7

7.1 Repeat Example 7.1 with the data listed in Table 7.3.

state Transition prob. p®(j|i)

1 action | j =1 2 3 Perf. func.
a1 0.3 0.6 0.1

1 1,2 0.4 0.2 0.4 10
a3 0.2 0.3 0.5
Qg1 0.6 0 0.4

2 Q29 0.4 0.3 0.3 0
as, | 04 02 04

3 Q39 0.3 0.5 0.2 -5
ass | 0.2 01 0.7

Table 7.1: The Actions and Performance Function in Problem 7.1

169
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Solution: We first solve the finite-step optimization problem by using (7.12). The values
of mi_, (i), de— (i), and g;_, (i) in (7.11), (7.12), and (7.15) for L = 1,2,3,4, are listed in
Table 7.2. As shown in the table, the optimal decision-rule sequence dy,—; converges to

Ci = {d(l) =011, CZ(Q) =021, CZ(S) = 0[372}.

L 1 2
state @ | 771(0) | i, (0) | dem() | mia(d) | 9io(0) | de=a(i)
1 10 15 Q11,002,003 12.5 15.5 o1
2 0 5 Q21,099 4 7 Q2,1
3 -5 0 Q31,032,033 -3 0 Q31,03
L 3 4

state i | mj_s(1) | gis() | dees(i) | mis (i) | giia(i) | dea(i)
1 15.85 15.7 Q1,1 18.55 | 15.615 Q1,1
2 6.3 6.15 Qg1 9.57 6.635 Qg1
3 0.15 0 Qg2 2.935 0 Qg2

Table 7.2: The Results for the L-step Optimization Problems

Now, let us solve the problem by policy iteration. Firstly, we choose an initial station-
ary policy dy and then determine the potentials under this policy. Suppose that we pick

up do = {a1,1, 021, a31}. The transition probability matrix is

0.3 0.6 0.1
PP=106 0 04
04 02 04

We use the approximation

gn = Z Pff_,
k=0
where P_ = P — epgs, ps« is the Sth row of P, and f_(i) = f(i) — f(S),i =1,2,---, 8,
to approximate the potentials. From P% we have
-0.1 04 -0.3

P =1 02 —02 0
0 0 0
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The values for gy to g5 are:

i Go(1) 91(i) G2(1)  gs(i)  Ga(d) g5(1)

1 15 155 16.25 16.055 16.1585 16.1157
2 5 7 6.7 6.91 6.829  6.8659
3 0 0 0 0 0 0

By using the policy improvement

d1 (i) € argmax{f(i, @) +p*(j)g5(7)}, €S,

we can obtain d; = {1, @21, a32}. We have

0.3 0.6 0.1
P"= 106 0 04/,
0.3 0.5 0.2
and therefore
0 0.1 -=0.1
P"=103 —05 02
0 0 0

The values for gy to g5 are:

i go(i) G1(i) g2(4)  g3(d) ga(i) gs(1)

1 15 15.5 15.7 15.615 15.6635 15.6367
2 5 7 6.15 6.635 6.367 6.5155
3

0 0 0 0 0 0

Applying the policy improvement, we obtain the same policy dy = dy = {a11, 091, a32}.
Thus, this policy is optimal.
7.2 For any three operators Py, P», and Pj, prove

a. For any function h(z) on R", we have (P, Py)h(x) = Pi[P2h(z)](assuming the inte-

grations exist); and

b. (P1P;)Ps = Pi(P,Ps); and
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c. P*=PpPkl=pip,

Solution:

a. For any x € R", we have

APohe) = [ PR = [ )Rl Pl

n

PP(a) = [ Pab)Pi(dyle) = [ [ ) Pulazly) Pldylo)

Thus, we have (P, P2)h(xz) = Pi[Pyh(x)] for any function h(x) on R".

b. For any = € ®" and R C B, we have
(AP)PARID) = [ PuRI)(PP)(dyle)
= [ | PRI Pyl) Pr(dlo),
and
P (PyP3)(R|x) = /n(Png)(R|z)P1(dz|x)
= [ [ PRI Pyl Pr(dle).

Thus, (P1P2)Ps = Pi(PaDs).
c. From the definition of kth power of P, we have P* = PP*~!. Thus

pPlp—ppk2p—...=pp...pP
k
and
Pk = pptl = pppF2—...=pp...P
S——

k
So we have P¥ = p+-1p,

7.3 For any probability distribution v, transition function P, and any function h, prove

v(Ph) = (vP)h. Explain the meaning of both sides.

ven) = [ [ bwplo fvian

Solution:
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and

wPih= [ w) P = [ h) [ Pyjen(ds),
So we have v(Ph) = (vP)h.

Ph(x) is the expected performance at the next time epoch when current state is x,

which can be written as E{h(z1)|xo = x}. For any probability measure v,

v(Ph) = /n v(dz)E{h(x1)|zo = 2} =: E{h(x1)|v}.

It is the expected performance at the next time epoch when current state distribution is
v. It is the physical meaning of left side.

vP is state distribution at the next time epoch when current state distribution is v.
Let vy = vP. Therefore v1h = [}, h(z)vy(dz) represent the expected performance at the
next time epoch when current state distribution is v. This is the physical meaning of

right side. From their physical meaning, we can also obtain they are equal.

7.4 With the forward-time index used in (7.9), from (7.14) and (7.15), we can define the

finite-step perturbation realization factor for any policy d = {dy, ds,---,d;_1} as follows:

™~
—

910 = D2 B (X0 i) = FOXL diX))IXo = . g = i* .

Il
=)

where X = {Xo, X1,---} and X' = {X{, X],- -} are two independent sample paths with
initial state Xy = i and X{ = i*, respectively. Note that the decision rules d; may be
different for different [ = 0,1,---. Let L;+ be the time at which the two sample paths
merge together, i.e. Xy . = X7

5%

a. Prove that if E(L;+) < oo, then limy_, ., ggL(i) exists.

b. Find a condition under which E(L;+) < oc.

Solution:
a.
L—1
g ,() = B{Y PG d(X0) - F(XL d(X0)] X0 = i, Xp = 1"}
=0
L,.«—1
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L-1

30 X di(X0) = FOXE (X)) X0 = i, Xg = 1" }.

By the strong Markov property, two Markov chains X and X’ behave similarly statis-
tlcally after L”* Thus, thHooE{ leiLlii* [f(Xladl(Xl)) — f(Xlladl(Xl/))”XO = Z’X(l) =
2*} = 0. Therefore,

lim g, (1) = B S [f(Xl,dxXl))—f<X;,dl<X;>>J|Xo:z',Xazz'*}.

L—oo
=0

Since performance function f is bounded and E(L;+) < oo, E{ 1[f(Xl,dl(Xl))
F( X, di( X)) Xo =1, X[ = z*} is finite and limy .., gZdL( ) exists.

b. If the Markov chain under policy d has a absorbing state, then F(L;+) < oo.
7.5 Prove Lemma 7.1.
Solution:

Putting (7.32) into the left side of (7.29), we have
{I+Z b em)} f(x P{I+Z b em)}f(z) + n(x)
= fl@)+ (Pf)(z) - +{Z —em)}f(z) — (Pf)(z)

—P{Z —em)}f(x) +n(x)
= flz )—(Wf) () +n(x)
= [fl@).

7.6 For any bounded function f(x),z € R, we define the e-norm || f(z)| = sup, |f(x)].
The e-norm of a linear operation P(R|z) is defined as ||P|| := sup{||Pu|| : |Ju|| < 1}. A

transition probability matrix P is called e-ergodic, if

lim [|(P* —em)|| = 0.

k—o0

Prove if P is e-ergodic, then

klim g =g, and klim Pg, = Py,



175

where g, == {I + 3.1, (P! — en)} f, for any bounded function f.

Solution:

From the assumption that limy .. ||(P* — en)|| = 0, there is an integer K > 0 and an
6,0 < e < 1 such that ||(PX —en)f| < e|lf]l. Then ||(P*) —en)f|| = ||(PX — em)[(PX —
em) flll < el (P*—em)fl < €| fl],- - and ||[P* —ex|| < €| f||. Since P*—er = (P—em)*,
we have

(n+1)K—1
I > (P—en fH—H{Z —em) }(P —em)" /|
I=nK
K—1 K-
< Y lIP—en) Z —em)'[[I[(P — em)"  f]|
1=0 1=0
K—1

< €”ZII —en)|lfll = "G
l=

where G = 325 ||(P — em)!||| £|, which is bounded because f is bounded, and

o (n+1)K—1 o (n+1)K-1 0

I Y o< Y Poemifl <Y o6 S

n=0 [=nK n=0 I=nK n=0

Therefore,

lim g, = [+Z —em)

k—o0
= E E — €7T =9,
n=0 [=nK

exists. Since |[P(gx —9)|| < ||P||llgx — g|| and || P|| is bounded, we have limy_,o, Pgx = Pg.

7.7 Consider the two steady-state probability distributions 7w and 7" defined as shown in
Figure 7.7. The two distributions have discrete masses as follows: 7(—0.2) = 7(—0.4) =
7(—0.6) = 7(—0.8) = 7(—1) = 0.1, and 7(0.2) = 7'(0.4) = 7'(0.6) = 7'(0.8) = 7'(1) =
0.1. The total probabilities on these discrete points are % for both distributions. The
other 1/2 is evenly distributed on the interval [—1, 1]. Explain that these two distribution
functions have the same state space, but they do not have the same support.

Solution: It is clear that these two distribution functions have the same state space.

Since m(—0.2) > 0,7(—0.4) > 0,7(—0.6) > 0,7(—0.8) > 0,7(—1) > 0 and 7(R) > 0 for
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any R C [0,1] with a positive volume and 7/(0.2) > 0,#(0.4) > 0,7'(0.6) > 0,7(0.8) >
0,7'(1) > 0 and 7'(R") > 0 for any R’ C [—1,0] with a positive volume, the supports of 7

and 7’ are different.

7.8 Consider a non-linear control system
Xl+IZUXl+§la l:())la"'a

where w is a control variable. Let pe(...) be the distribution density function of the

independent and identically distributed random noises &,l =0,1,.. ..

a. Derive the transition probability function P*(dy|x).

b. How do we estimate the discrete approximation p(jli),7,7 = 1,2,---,57 Can we

reduce the number of the transition probabilities to be estimated?

Solution: a. P*(dy|z) = pe(y — ux)dy.
b. p(j|i) can be estimated with equation (7.69). Indeed, we needn’t estimate S x S

transition probabilities. Assuming that Ax; = A, for any 4, is very small, we have
p(]h) %pﬁ[y_ux]Aa y e Ajax € Az (71)

For simplicity, we consider a one-dimensional system. We divide R with the points kA,
k=—(S—-1),---,—-1,0,1,---,9 — 1. There are 25 states corresponding to intervals
Ay = (=00, —(S—1)A], Ay = (—(S—1)A, = (S —=2)A],- -, Ags 1 = ((S—=2)A, (S—1)A]
and Ags = ((S — 1)A,00). We assume that the probability that the random noise £ in
Ay and Ayg is very small. From (7.1), if we know pe(y), we can calculate the transition
probability matrix p(j|i). This means we can convert a problem of estimating a two-

dimensional matrix P to a problem of estimating a one-dimensional vector pe(y),y € S.

As an example, if we take action u = 0, P(jli) = pe(y)A,y € Aj,z € A;. Thus, P°(1]i)
Pe[—(S—=1)AJA, PO(2]i) = pe[—(S—2)AJA, - -+, PY(25 = 1]i) = p¢[(S —2)A]A, PO(25]0)
pe[(S — 1)A]JA,i € S. Therefore, for any i = 2,3,---,25 — 1, p*(j|i), which can be

estimated by using (7.69), correspond to the probabilities of the random noise £ in the
intervals (—(S — 1)A, —(S — 2)Al,---, ((S — 2)A, (S — 1)A]. That is, we need only to
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estimate 2(S — 1), rather than 2(S — 1) x 2(S — 1), values. Thus, we can reduce the
number of the transition probabilities to be estimated. For other control laws, we can use

the similar method to reduce the number of the transition probabilities to be estimated.

7.9 Consider a JLQ problem.

a. Suppose that the modes changes slowly. That is, p(i]i) ~ 1 and p(i|]i) =~ 0 for
j # 1. Show that the coupled Riccati equation is decoupled into M Riccati equations
corresponding to M LQ problems.

b. We consider another extreme case: the mode changes rapidly. As an example, we
consider a 2-mode system (M = 2). Suppose p(2|1) = p(1|2) = 1 and p(1]1) =
p(2]2) ~ 0. What are the coupled Riccati equation in this case? Explain your

results.

Solution:
a. If p(ili) ~ 1 and p(jli) =~ 0 for j # i, then H; = ZjeMp(jﬁ)Sj ~ S;. Coupled

Riccati equation becomes
S; = AT S;A; + AT S;B,(V; + Bf S;B;) ' Bl Si4; + Qi i=1,2--- M

These are M Riccati equations.
b. Suppose p(2|1) = p(1]|2) =~ 1 and p(1]1) = p(2|2) =~ 0, the Coupled Riccati equations

are

Sy = ATS, A1 — ATS,By(Vy + BY S, B)) ' BY S, Ay + Q, (7.2)
Sy = ATS 1Ay — ATS By (Va + BY S By) ' BYS1 Ay + Q. (7.3)

Substituting (7.2) into (7.3), we can obtain the Riccati equation of the combined system
X1 = AdA1 Xy + A Byuy + Bousg + ¢y,

where e, = A&, + (i, & and (, are i.i.d.
7.10 Prove that in (7.48),
Z(Ck —n) = —/ (27U 2]pe(2)dz,
e n

1
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with U =37 | kWj. Prove

U-ctuc =ctsc.

Solution:
k-1
L = / 2T Z W, 2pe(2)dz
" n=0
and
- _ T
n= kh—{go Ck = /n 2 % W, 2pe(2)dz
Therefore
Ccr—1n= —/ 2T Z W zpe(2)dz
" n=~k
Z(Ck -n) = - Z/ 2T Z W, 2pe(2)dz
k=1 k=1"R" =k
= —/ 2T Z kWizpe(2)dz
" k=1
_ T
= —/ 2 Uzpe(2)dz

The first equation is proved.
U-C'UC = Y kW, —CT"Y kW,C
k=1 k=1

— i kC"W,_,1C — i cTEw,.C
k=1 k=1

[e.9]

= Y (k=DC"W, 1O+ )Y C"W, O =) CTkW,C
k=1 k=1

k=1 = =

— i CTEW,C — i CTEWLC + i c'w,.C

k=0 k=1 k=0
- Z C"w,C
k=0

= CT'sC

So we have U — CTUC = CTSC. The second equation is proved.
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7.11 Consider a linear system
Xl+1:CXl+€la lIO,l,"',

with a discounted quadratic performance criterion

L
n(z) = lim B{> A(X/WX)|Xg=1}, 0<B<1,

L—oo
=0

with W being a positive semi-definite matrix. Determine the performance potential of

this LDQ (Linear-discounted-quadratic) problem.

Solution: Let performance potential g5 = {I + > -, 8%(P* — em)}f. Then we have

discounted Poisson equation:

(I — BP + Pem)gs = f.

gs(z) = f+ Zﬁk(cke(:p) + 2" Wi — nfe(x))
k=1
=3 B - mhele) + 3 dTB Wia
k=1 k=0
where Wy = W. Let Sz = >, "Wy, then
gs(x) = Zﬁk(ck —7f)e(z) + 2" Spx.
k=1

7.12 Consider a linear control problem

XlJrl :AXl—i-BU(Xl)—'—&, lZO,l,"',

with a discounted quadratic performance criterion
L
n(l')thm E{Zﬁl[XFQXZ+ufvul|X0:$}’ l:())laa
1=0

Applying policy iteration to this LD(Q control problem to derive the (discounted) Riccati

equation for the optimal policy.
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Solution: Let h(z) = gs(z) = 27 Ssz in (7.43). From policy iteration approach for
discounted MDP, we have

u' = argmin{GP"gs(w) + f*(2)}
= argmin{(Az + Bu)'3Ss(Az + Bu) +u'Vu}

= —Dx
where D = (BY3S3B + V) 'BT353A. From the definition of Sg, we have

CTBSC = BHCTWLC =D B Wi = S5 — W

k=0 k=0
Substituting C = A — BD, W = Q + DTVD, and D = (BT3S3B + V) 'BT3S3A into

the above equation, we obtain the discounted Riccati equation
Sg=ATBSsA + ATBSsB(V + BT3S3B) 'BT3S3A + Q
7.13 Consider the JLQ problem
X1 = A, Xi + Buywi + &y, (7.4)

in which the noises {, 1, M; = 1,2, ..., M, have different probability distribution P, (y),y €

R™. Derive the solution to this problem.

Solution:We assume P, (y),y € R™ has probability density pg, (y), i.e. P, (dy) = pe, (y)dy.
For any quadratic function h(i, z) = 27 W;z, where W;,i = 1,2,--- M are positive semi-
definite matrices, and a control law w(i, z), we have
(P"h)(i,x) = > {p(ili)h(i, y) P (dylx)}
JEM
= > {p(jli) /

Y Wiype{y — [Asz + Byu(i, @) }dy |
JEM

= Y {pUl) [ {2+ A+ Bl 9)} WLz + A + Biu(i, 2)]pe, (2)dz .
JEM L

n

From [, pe,(2)dz =1 and [}, zpe(2)dz = 0, we have

(P"R)(i, ) = cr(i)e(z) + Y p(jli)[Aw + Byuli, )" Wi[Aiw + Byul(i,x)],
JEM
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where ¢;(4) :== 3,0 co(d, 5)p(jli) with
colig) = [ [T Wil (e
For a linear control w; = —D);, X, the system (7.4) becomes
Xip1 = Cm, X0+ &y,

where C; = A; — B;D;,i = 1,2,--+-, M. The performance function f(i,z) = 27 W;x with
W; = Q; + DiTVZ-Di. Following the method in Section 7.3.2, we can obtain the similar

results expect that pe(z) is replaced with p,(2).



182 CHAPTER 7. SOLUTIONS TO CHAPTER 7



Solutions to Chapter 8

8.1 In a discrete-time birth-death process, the system transits from state n to n + 1 with
a birth probability p,, 0 < p, < 1, n =0,1,---and from state n to n — 1 with a death
probability ¢,, 0 < ¢, < 1 and p, + ¢, < 1, or stays in the same state n with probability
1 —pn — qn. When n = 0, the death probability is ¢y = 0. Define the events representing:
a birth (denoted as event b), a death (denoted as event a), and no population change

(denoted as event c), respectively.

Solution: A birth event b can be defined as
b={<nn+1>n=0,1,2---}
A death event a can be defined as

a={<nn—-1>n=12---}

183
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No population change can be defined as
c={<nn>n=0,1,2,---}.
8.2 In the discrete-time birth-death process considered in Problem 8.1, we set p,, = p for
alln > 0 and ¢, = ¢q for all n > 0.
a. Find the steady-state probability w(n), n =0,1,---.

b. Suppose that we know a prior that at time [ the system is at steady state, and
we observed a birth event b at time [ — 1, what is the conditional distribution

P(Xl|61_1 = b)?

c. What is the conditional probability of X; if we have observed two consecutive birth

events?

d. What if we observed a death event at steady state; i.e., what is P(X|e;—; = a)?

Solution:

a. From the balance equation, we have

2 3 m
p p p p
m(1) = =7(0), 7(2) = —57(0),7(3) = =57(0),- -, m(n) = —m(0),
q q q q
Since Y2, (i) = 1, we have
2
p D
I+=+=+--)m(0)=1
( PR ) (0)
and
p
m0)=1-~.
(0) .
Thus, m(n) = (1 — g)g—:,n =0,1,2,

w(n—1)p(njn — 1)
Yo m(n—1p(njn —1)
(1-be=

q’/q"
- n—1
Do (1= )

n—1

b.\p
= 1-5HE_
q qn—l
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c. The conditional probability of X; if we have observed two consecutive birth events
is

w(n—2)p(n —1|jn — 2)p(njn — 1)
Yo m(n—2)p(n —1n —2)p(njn — 1)

n—2

AN
= 1-5HE_
q qn72

P(Xl = n\el,g = b, €1 — b) =

m(n+ Dp(n|n + 1)
> oo m(n+ 1)p(nln +1)
_ _pyp
= U=

P(X; =nle_1 =a)

8.3 Please define the following events in Problem 4.2 (the state of the system is the stock

in every evening before the order):
a. the retailer ordered more than the next day’s demand,
b. the retailer ordered less than or equal to the next day’s demand, and

c. the retailer does not or may not have enough merchandise to sell.

Solution:

a. The event that the retailer ordered more than the next day’s demand can be denoted
as {<n,m>n=0,1,---m=n+1n+2--}.

b. The event that the retailer ordered less than or equal to the next day’s demand
can be denoted as {<n,m >n=0,1,2--- . m=0,1,---,n}.

c. The event that the retailer does not or may not have enough merchandise to sell
can be denoted as {<n,—1 >:n=0,1,2,---}, where —1 is a logical state to denote that

the retailer does not or may not have enough merchandise to sell.

8.4 We modify and restate the retailer’s problem (Problem 4.2 and Problem 8.2) as
follows: The system state x is the stock left every evening. We only consider threshold
types of policies. That is, the state space {0, 1, - - -} is divided into N intervals I := [0, n4],
I :=[ny 4+ 1,ng], -+, In_1 := [ny_2,nn-1], IN = [nn_1,00). The retailer is allowed

to order M pieces of merchandise, or 2M pieces of merchandise, or not to order at all.
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Assume that we can only observe that the state is in a particular interval and cannot
observe the state itself. Based on the observation x € I;, ¢ =1,2,---, N, the retailer may
choose different probabilities of ordering 0, M, or 2M pieces of merchandise. Every day’s
demand on merchandise can be described by an integer random variable with distribution
Pn, n=0,1,---. Describe the three types of events: the observable, the controllable, and

the natural transition events.

Solution: The observable events include
{<z,y>2xel,yeS}ti=12--- N.
The controllable events include

{<zx,c—n>2eln=0,1,2,-- -} {<z,2+M—-n>ze€l;,n=01,--}

{<zx,24+2M —n>z€l;;n=0,1,2,---}.
The natural transition events include

{<zr,z—n>}{<z,2+M—-n>}{<z,2+2M —n>},2€8Sn=0,1,2,---

dffléi) lo—o is known. Derive a sample-path-based formula

8.5 Suppose that the derivative

for the event-based average

dfa i dfa(i))
k1) df le=o |’
=1
Solution:
dfo(k1) . Zl o Lewn () =" fQ( : 0=0
— hm I—1 — 9 Wp]‘?
do 6=0 L—oo 1=0 Ie(kl)(el)

where I, (e;) = 1 if e, = e(ky), otherwise o) (e;) = 0.

8.6" Derive equation (8.31), by using the arrival theorem and the steady state probabilities

of the open Jackson networks.

Solution: From the arrival theorem, the conditional probability 7(n|n) at the arriving

times is equal to the time-average conditional probability. That is to say, m(n|n) is equal
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to the steady-state conditional probability that the system stays at state m when the
total number of customers in the system is n. Thus, we can use the results about the
product-form solution in Section A.3.2 to conditional probability 7(n|n) in (8.31).

Let A; be the overall arrival rate (including both external and internal arrivals) of the

customers to server ¢. Then,
M
/\i:/\O,i+Z)\ij,i>i:1a2>"'>M' (81)
j=1

where )\, is the external arrival rate to server ¢. Generally,
Ao,i = AGojis (8.2)

where A is the total external arrival rate and gu; is the probability that the external
customer joins server ¢. The admission control policy can only affect the total external
arrival rate X. The total arrival rates \* and A under different policies h and d have the

following ratio relationship.
M= N, (8.3)

Putting (8.3) and (8.2) into (8.1), we can obtain A\ = kX4 i = 1,2,.-. M. Define

v = % From the product-form solution of queueing networks (C.11), we have

(3

1 v;
) = G L 2o
SN
where Gr(n) = ZZieF ni—n L Lier AZL;) Since v} = k™dvd and A;(n;) does not change

under different policies h and d, the ratio Grl(n) [Lcr A:'}Zni) remains the same under different

policies. Therefore, (8.31) holds.

8.7 In Chapter 3, we derived a few sample-path-based direct-learning algorithms for

the performance derivatives %, e.g., (3.30), (3.33), and (3.35). Derive similar direct-

learning algorithms for the aggregated potentials (8.26) and the event-based performance

derivatives by using formula (8.25).

Solution: Since

991(60 = 60(]{31), €c = €C(k2)) = Ey, {Z f6’1 (Xl)|62 = €O(k1)> e(c) = eC(kQ)} )

=0
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we can view Zf;ol fo, (X)) as an estimation of potential gy, (k1, k2) when events e, (k1) and

ec(ka) occur, where L is a truncation parameter. From (8.25), we have

dn(9) dfa(Xz)

’ Lpglet|el]
do 6:61

’661 poleLlel]

961( €o; lc)}

0=01

6’1{

where ¢! and el denote the observable event and the controllable event at time [, respec-

tively. If the system is ergodic, we have

dn(6) ’ : dfs(Xn) aopoletley]
JRY —  lim — dpFOc ol
df lo=o, Voo N Zo df  lo=o, - poler|er] 9:9199(60, )
—1 ntL-1
.1 dfo(Xn) aopoletles]
= lim — (X))
Noo N Z{ df  lo=o, T pelerlen] poler|er] lo=6, Zn Jo(X2)

L-1

i df&( ) N f % n+l|en+l] ’
e 1m — TL .
N—oco N ZO Ao lo=g, O ZO polenttentt] lo=o,

8.8 Suppose that in an MDP problem, we can only apply control actions when the system
is in a subset of state space, denoted as Z C S. The observable events can be defined as

when the system leaves any state ¢ € Z or leaves the non-controllable set S — 7.
a. Precisely define the observable events.
b. What are the controllable events?
c. Apply the event-based approach to this problem to derive the performance difference

and derivative formulas for any two policies.

Solution:
a. The observable events can be defined as e,(i) := {< i,j >: j #i € S}, i € Z,
eo(Z) :={<i,j>i€8—1I,j€I}and Ugze (i) Ue,(T).

b. The controllable events are {<i,j >},i € Z,j #i € S.
c. Since the states in set S — Z cannot be controlled, the transition probability from
observable event e,(Z) to any controllable event are 0. Then, according to the difference

formula (8.19), we have

n" —n’

D@ Y "Il - p" VT ()

i€l j#ieS
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Defining p°(j]i) = p*@ (ji) + 6 (p" ¥ (jli) — p™@ (j]7)),7 € Z, we have
=t =706 Y APl - p" i e ()
i€ j#ieS

Let 6 — 0, we have the following performance derivative

W N agg RO oA

35l = > 7)Y A"Vl - p* L1} ).

- i€l jeS

8.9 This problem is designed to further illustrate the ideas of natural transition events
and potential aggregation. Compared with Example 8.1, there are two additional rooms
7 and 8, as shown in Figure 8.1. As in Example 8.1, after passing the green light on the
right, the robot moves to the top; however, it will enter room 3 with probability u; and

enter room 7 with probability us. Likewise, after passing the red light on the right, the

robot will enter room 4 with probability v; and will enter room 8 with probability vs.

a. Formulate this problem with the event-based approach, and define the observable,

controllable, and natural transition events.

b. Derive the performance difference and derivative formulas.

5 I 1 1 31 7
o pa,r. Dy g UI[ U2
1_U:j@< UT >®—|:|l,2/\ :In—

e [ )
(%)
6 T2 1T 41 8

Figure 8.1: Extended Moving Robot Problem

Solution:

a. Similarly to formulation in Example 8.3, the process of the robot passing through
a passage consists of three phases: First, the robot moves to the front of a light, either
on the left or the right. (The robot moving to the front of the left light is called event
a, and the robot moving to the front of the right light is called event b.) Second, an

action is taken (turning on the red or the green light). We can control the probabilities of



190 CHAPTER 8. SOLUTIONS TO CHAPTER 8

the actions (red or green), by using the information obtained in the first phase (i.e., the
robot moves to the front of the left, or the right, light). Third, the robot moves on to its
destination following the instruction of the light, where the robot chooses the destination
room with a natural probability distribution. These three phases can be modelled as three
types of events: the observable events, the controllable events and the natural transition

events. The observable events are:

the event that the robot moves to the front of the right light:
a={<1,3><1,4>,<23><24><1,7><1,8><2 7> <28>}
the event that the robot moves to the front of the left light:
b={<1,6><1,6><25><26>},

and the event of “not an arrival”:

IS
-
o

The controllable events are:

the event that the robot moves to room 5:
aq={<1,5><25>}
the event that the robot moves to room 6:
e ={<1,6><2,6>},
the event that the robot moves to room 3 or room 7:
c3=1{<1,3>,<2,3><1,7><2,7>}
the event that the robot moves to room 4 or room 8:
cp={<1,4><24><1,8><28>}.

We can choose different o to control the transition probabilities when an observable event

occurs. The transition probabilities are:

plei|b) = a,p(02|b) =1—-0,p(csla) = UaP(C4|a) =1l-o
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The natural transition events are:

n=4{<1,3><23>}n={<1,7><2,7>}n3={<1,4><2,4>}
ng=9{1,8><2,8>}ns={<1,5><25>}ng={<1,6><26>},

nr={<51><6,2><31><42><73><84><7,8><87>}
b. Using the performance difference formula (8.19), we have
77/ -n = Z 60 Z[p €c|60 - €c|€o)] (eoyec)
= (a)(0’ - 0)[9(6% cs) = gla,ca)] + 7' (0)(0" — 0)[g(b, c1) — g(b, c2)], (8.4)

where

g(eo, ec) Z Z (ieo)p(edles, eq)g(y), (8.5)

ZEI eo et

with 7 = O;[e, Ne. Ne]. From (8.5), we have

g(b,cr) = Y (ilb)g(5) = g(5),9(b,c2) = > _ 7' (i[b)g(6) = g(6),

€S €S

gla,cs) = w(ila)[urg(3) + uag(7)] = wr19(3) + u2g(7),
€S

gla,ca) = Y (ila)[vig(4) + v29(8)] = vig(4) + v2g(8).
1€S

Thus, the performance difference formula is

' —n=mr'(a)(0 = o){ug(3) + uzg(7) — [v1g(4) + v2g9(8)]} + 7' (b) (0" — 0)[g(5) — 9(6)].

From (8.4), we can obtain the following performance derivative formula:

;Z—Z = m(a){u1g(3) + u2g(7) — [v19(4) + v29(8)]} + 7(b)[9(5) — 9(6)].

8.10* A robot takes a random walk among four rooms, denoted as 1, 2, 3, and 4, as shown
in Figure 8.2. When the robot is in room 3, in the next step, it moves to room 1. When
it is in room 4, in the next step, it moves to rooms 2. There is a special passage that

connects the four rooms as shown in the middle of Figure 8.2. When the robot is in room
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1 L 3
1—o0
O ag
i
2 T 4

Figure 8.2: The Moving Robot System in Problem 8.10

1, in the next step, it moves to room 2 with probability 1 — pq, or it tries to go through
the passage with probability p;. There is a traffic light, denoted as ® in the figure, in the
passage. If it is red, the try fails and the robot moves back to room 1 in the next step; if
the light is green, the robot passes the light and moves to room 3. The robot behaves in
a similar way when it is in room 2: In the next step, it moves to room 1 with probability
1 —pq, or it tries to go through the passage with probability py; and the robot moves back
to room 2 in the next step if the light is red, and it passes the light and moves to room 4
in the next step, if the light is green. Denote the reward function as f.

Denote the probabilities of the light being green and red as ¢ and 1 — o, respectively.
We may control o when we observe that the robot is in front of the light; we, however, do
not know which room does the robot come from. Our goal is to determine the probability

o so that the long-run average reward is the maximum.
a. Formulate this problem with the event-based approach.
b. Derive the performance difference and derivative formulas.
c. Derive a policy iteration algorithm.

d. Show that one of the boundary points, o, Or i, must be an optimal policy.

Solution:
a. The process of the robot passing through a passage also consists of three phases.

These three phases correspond to three types of events. The observable events are

a={<1,1><1,3><22><24>} and a.
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The controllable events are
aq={<1,3><24>}ce={<1,1><22>}
The natural transition events are

n={<1,3>}no={<1,1>}n3={<2,4>},ny,={<2,2>},
ns ={<3,1>}ng={<4,2>}n={<1,2><2,1>}

b. Using the performance difference formula (8.19), we have

77/ -n = Z 7T/(eo) Z[p/(ec|60) - p(60|60)]g(60, ec)

€o

= '(a)(0’ = 0)[g(a,c1) — g(a, c2)],

where

g(eo, €c) = Z ' (ile,) Zp(€t|60> ec)9(j), (8.6)
1€leo] et
with j = O;(e, Ne.Ney). From (8.6),
g9(a,c1) = 7'(1]a)g(3) + 7' (2la)g(4), g(a,c2) = 7'(1]a)g(1) + 7'(2]a)g(2).
Thus, the performance difference formula is
N —n=mn'(a)(o" — o){[x'(1la)g(3) + x'(2a)g(4)] — [7'(L]a)g(1) + '(2]a)g(2)]}. (8.7)
For this problem, the transition probability matrix is
pil—0o) 1—p1 po 0
1-— l1-0 0 o
P(o) = p2 pa( ) D2
1 0 0 0
0 1 0 0
From the balance equation 7P(c) = 7, we have
m(1)(1 = p1) = w(2)(1 = pa),
for any o. Thus, the conditional steady-state probability
(1 1 (1 (1 1—
TP ) ) em o
m(Dplall) +7'(2)p(a2) (1) +7'(2)  «(1)+a'(1)=2  2—p1—ps
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and

ol — 7' (2)p(al2) O A O = B
IO = el + @)~ R 47 ® ) ) 2

The conditional steady-state probability 7’(1]a) and 7’(2|a) do not depend on ¢’. We can
design the policy iteration algorithm for this problem. The difference formula (8.7) can

be written as

' —n=m'(a)(o" —o){[r(1]a)g(3) + m(2|a)g(4)] — [r(1]a)g(1) + 7(2|a)g(2)]}

c. Policy Iteration Algorithm:

1. Select an initial policy dy = ¢® and set k = 0;

2. Compute the potentials g% (1), g% (2), g% (3) and g% (4) by using the Poisson equa-
tion (I — P¥)g% + nie = fd% and compute 7(1|a) and 7(2|a) by (8.8) and (8.9).

3. If n(1]a)g®(3) + 7 (2]a)g®(4) > m(1|a)g®(1) + m(2|a)g™(2), set o**+) = oy,
otherwise, set ¢*+1) = g0

4. If dpyq = dg, stops; otherwise go to step 2.

d. From the process of the above policy iteration algorithm, the improved policy must
be one of the boundary points, oy OF Opmin. Since the number of such policies is finite,
thus the policy iteration must stop at such a policy. If we assume the algorithm stops at

policy d*, for any policy d = o,
(0" = o™ ){[r(1]a)g” (3) + m(2la)g” (4)] — [r(1]a)g” (1) + 7(2]a)g™ (2)]} < O

Thus, from the difference formula, we have n? < n?". d* is the optimal policy.

8.11* Derive equation (8.59), by using the arrival theorem and the product-form solution

to the steady state probabilities of the closed Jackson networks.

Solution: For a closed network, equation (C.5) holds, that is
M
Ui:ijvivﬁ 1= 1,2,"',]\/[. (810)
j=1

where Gj; = pjn,;Gij, if j # 1, and ¢;; = 1 —p; ;. Writing the above equations in a matrix

form, we have

v =00,
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where v = (vq,v9,...,vp) and @ = [G;,]. If we only change the server rates of server k to
pl,};’nk =+ pzynk and set pzhm = pﬁni for all n; and ¢ # k, then only the kth row in () will change.
That is, G ; = pf.,, ki, k # i and G, = 1 —p{, are changed to ¢ ; = p}. , qr,i, k # i and

d
~h R h,d P,y : d ,.d d dy ; :
Qs =1 =g, Let " = = We can prove if (vf,vg, -+, vg, -+, v§) is a solution of

pk,nk

(8.10) under policy d, then (v{,vd, - -, vl .. vd) is a solution of (8.10) under policy h.

For the closed network, the conditional probability m(n|a_x(ny)) at the departure times

is equal to the time-average conditional probability, that is,
w(nla_(ng)) = w(ng| N — ny).

where my denotes the state of other M — 1 servers except server k and m(ng|N — ny)
denotes the conditional steady-state probability that the state of other M — 1 servers
except server k is ny, when the total number of customers at these servers is N —ny. From
the product-form solution (C.11) and the fact that the solution of (8.10) under policy h

is (v, vd, - Phd o o)) we have

Wh(nk‘N — nk) = Wd(nk|N — nk)
Therefore, (8.69) holds.

8.12 Develop a sample-path-based estimation algorithm for gla_(ny), fb] in (8.61) and
gla—r(ng), dp] in (8.62).

Solution: Consider a sample path of the closed Jackson network with L transitions under
policy d. Denote the sequence of the time instants at which events a_x(nx) and fb happen
(A customer at server k moves back to server k after the completion of its service) on the

sample path as 7, (n,) = {l1,l2,--+,lz_,, }. Choose a large N and set

N-1
G = Y F(Xi,10)-
=0

Next, we group the set 7, ,(n,) into sub-groups 7, ,(n,) = Uncs with n,Za_(n), Where
7. ,(n) denotes the time instants at which events a_;(n)) and fb happen and the state
is n and the subscript “n € S with n;” denotes all the states m with the number of

customers at server k equal ng. Let L_, be the number of instants in 7, , (). We have

k

L—nk = ZnES with ny L_n‘
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Then
R 1
- Z G, = 7 Z i,
Nk op=1 Tk n€Ta_(ny)

- Y Y

T neS with ny lneT,

_k(n)
DR S
— I
VR g
neS with ny, lnET _h()

Similarly to the argument in Section 8.4.2, when L is large enough, we have

Z G, ® Z m’[nfa_i(ni)]g"(n) = ¢%[a—r(nx), f].

"k np=1 all n with ny

L_

Thus, we can estimate the potential g%[a_(nk), fb] by using —— Zk 1 a,-
Similarly, denote the sequence of the time instants at Wthh events a_x(ny) and dp
happen (A customer at server k leaves the server after the completion of its service) on

the sample path as {i1,ls, - -, lLfnk}, we have

L, Z i, = Z mlmla_k(n)lgr 9% (n k. +5) = gla_r(ni), dpl,

Mk =1 all n with ny
where g, = 21111 f(Xi,+1). Thus, we can use L%nl Zi]’“ g, to estimate the potential
gla—r(ni), dp).
8.13 Consider the policy iteration Algorithm 8.1 in the service rate control problem in

Section 8.5.2.

a. Prove that the algorithm reaches a local optimal policy in a finite number of itera-

tions. Why is this policy not a “global” optimal policy?
b. If we change the policy improvement step to

3. (Policy improvement) For i =1,--- M, do for n; =1,---, N, do
i. if g% [a_;(n;), fb] > g%[a_s(n;), dp] then set p?”j;l = maxi<i<k, . Pin;(l);
i. if g%[a_;(ny), fb] < g%[a_;(n;),dp] then set p?”j;l = mini<i<k, . Pin;(1);

If plert £ pi’;li for any ¢ and n;, then set k := k + 1 and go to step 2; If

1,1

pf’;;;l —pi’;li foralli=1,...,M,and n; =1,..., N, stop.
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What is the difference that such a change makes to the algorithm? Will this algorithm

stop? Will it reach a local optimal policy?

Solution:

a. From the algorithm, we know if i # M, we have n%+1 > nd . Thus, the average
reward increases at each iteration before it stops. Because the number of policies is finite,
the iteration procedure has to stop after a finite number of iterations. When the algorithm

stops at a policy a?, since for any policy h,

Thus, for any policy h, the directional derivative

ZZ{ (1), — P g Tai(ne). 8] — a'la(my). dpl} } <

i=1 n;=1

But we cannot determine 1" — n‘i < 0 because condition (8.69) may not hold under policy
h and d. Therefore, d is only a local optimal policy.

b. The algorithm does not only change the service rate of one server at each iteration,
but change the service rates of all the servers. Under this change, condition (8.69) cannot
hold. Thus, this algorithm can not increase the average reward at each iteration and

cannot stop. It will also not reach a local optimal policy.

8.14 In the policy iteration algorithm in the service rate control problem in Section 8.5.2,
at every iteration we always start from server 1, in the order of server 1, server 2, and
so on, to update the service rates of the servers. We may try to update the service rates
of the servers in a round-robin way: e.g., if server 1’s service rates are updated at an
iteration, then in the next iteration, we start from server 2 to update the service rates,

etc. Develop such an algorithm and discuss its advantages, if any.
Solution:
1. Guess an initial policy dy, set k£ :=0, i :=1 and ¢ := 0.

2. (Policy evaluation) Estimate the aggregated potentials g%[a_;(n;), fb] and g%[a_;(n
for j =1,---, N defined in (8.61) and (8.62) on a sample path of the system under
policy dj..

j)’dp]
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3. (Policy improvement) for n; = 1,2,---, N, do

(a) if g%[a_i(n:), f0] > g*[a_i(n;), dp] then set Pf,’i;l = MaxXi<i<k; ,, Pin(1);

(b) if g%[a_;(ny), fb] < g%[a_;(n;), dp] then set p?”j;l = mini<i<k, ,. Pin; (1)

4. If plett = pff;i for all n; = 1,2,---, N, set ¢ := ¢+ 1, otherwise, set ¢ := 0.

1,4

If c = M, stop;
otherwise, set k:=k+1and¢:=7+1,if i > M, set ¢ := 1, go to step 2.

The advantage: This algorithm does not need to start from server 1 at every itera-

tion. It can update the service rates of the servers in a round-robin way.

8.15* (Options [15]) This problem is closely related to the time aggregation formulation.
Consider a Markov process X with state space S, and let Z C S be a subset of S. As
in Problem 8.8, we may define an observable event as when the system leaves a state in
Z. Let us call the period between two consecutive events (i.e., two consecutive visits to
7) as an option period. The control problem is described as follows. There is a space,
denoted as II, of a finite number of options. An option corresponds to a state transition
probability matrix in S (i.e., equivalent to a policy); however, it is only applied to an
option period. After the system visits a state ¢ € Z, the system may evolve with any
option in the available option set II; C II until it reaches the next state j € Z. We assume
that under any option in II, the set Z is reachable.

We consider randomized policies. Thus, in this problem for any given ¢ € Z a policy
specifies a probability distribution on II;. Precisely, let 0;1,0;2, -, 0;,, be the options in
II,. A policy d specifies a probability distribution d(i) := (pi1, ..., pin,). With policy d,
the system operates under option o; ; with probability p; g, > 1oy pix = 1. Our goal is to
determine the policy that achieves the maximum long-run average reward. For simplicity,
we assume that the reward function f is the same for all policies.

The standard event-based optimization approach discussed in this chapter does not
directly apply to this problem. However, the basic principles and concepts can be easily
modified and extended to this problem. In the standard formulation, a control action

taken at a time instant only affects the transition to the next state and therefore the
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controllable event can be defined. In the option problem, however, a control action affects
the transitions in the entire option period.

Please formulate this problem in the framework of event-based optimization.

a. What are the observable events?
b. What are the aggregated potentials? (Hint: it can be denoted as g(i, 0;).)

c¢. Derive the performance difference and derivative formulas for the two policies in the

problem.

d. Comment on this event-option based optimization approach.

Solution:

a. The observable events are e,(i) == {< i,7 >: j #i € S},i € T and Ueze,(i).

b. From (8.37), the aggregated potential is g(i,0i1) = >_;c7pljli, 0i4]g(4).71 € T,1 =
1,2,---,n;, where p[j|i, 0;;] denotes the probability that the process X transits from state
1 to state j in an option period.

C.

ng

W=t =7 @) Y Il = plet G 0i).

1€l =1

If we assume the policy depends on a parameter 6, then the performance derivative is
d’;—(:) — ; " (i) ; alp;’i;(e)gd(i, 011)-

d. For this problem, we can find that condition (8.36) holds naturally. This is because
for any observable event e, := {< i,j >: j # i € S}, the conditional steady-state
probability 7"(ile,) = 1 for any policy h. However, for the option problem, it is difficult to
define the controller events and natural transition events by using state transitions. This
is because there exists many state transitions in an option period. If we only consider
the time instants that the observable event occurs, the process is still Markovian and the
event-based method can be directly utilized. This idea is the same as the time aggregation

formulation.

8.16* Consider a partially observable Markov chain with the structure shown in Figure

8.3. The 15 states are grouped into three functionally similar groups. Group 1 consists
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of 5 states denoted as 1, 111, 112, 121, and 122; Group 2 consists of 5 states denoted as
2, 211, 212, 221, and 222; and Group 3 consists of 5 states denoted as 3, 311, 312, 321,
and 322. States 1, 2, and 3 are completely observable. The other 12 states are grouped
in to 6 super-states, denoted as 11, 12, 21, 22, 31, and 32; each consisting of two states
as shown in the figure; e.g, the super-state 11 consists of two states 111 and 112. Only
the super-states are observable; for example, after the system transits out from state 1,
we only know that the system is in super-state 11 or 12 and cannot know which exact
state the system is in. The state transition probabilities are indicated in the figure. The
transition probabilities from the observable states 1, 2, and 3, e.g., p111, P1,12, P1.21, and
D1,22, are fixed and known. The transition probabilities from the non-observable states
are controllable by actions and are denoted as pfi;.4, P11, Plar2, and piy 3, etc. The
superscript a denotes any feasible action for the corresponding state. Because we cannot
determine the exact state in a super-state, we need to assume that the sets of the feasible
actions for the two states in a super-state are the same. For example, if we know that the
system is in super-state 12 and decides to take action «, then this action must be feasible
to both 121 and 122.

A sample path of the Markov chain may look like: X = {2,221,1,112,2,211,3,322, 1,
111,---}, with an observable state followed by a non-observable state and followed by
another observable state, etc. The corresponding observed random sequence is Y =
{2,22,1,11,2,21,3,32,1,11,---}.

Suppose that when the system is at state z, a random reward is received with f(x)
being its average. In addition, we assume that the function f is unknown but the reward
at any time instant is observable. We consider the optimization of the long-run average

reward. Please formulate this problem in the event-based formulation.

a. Explain that in this POMDP problem, a memoryless policy is a mapping from the
space {11,12,21,22, 31,32} to the action space.

b. What are the observable events?
c. What are the aggregated potentials?

d. Derive the performance difference and derivative formulas for the two policies in the
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Figure 8.3: The POMDP in Problem 8.16

problem.

e. Can we develop a policy iteration algorithm for the performance optimization of

this problem? If so, please describe the algorithm in detail.

Solution:

a. In POMDP, a memoryless policy is to choose action according to the current
observation. Thus, this policy is a mapping from the space {11,12,21,22,31, 32} to the
action space. For example, when the system is in supper state 12, we choose an action from
the action space according to the current supper state 12. A memoryless policy may also
be a stochastic policy. For example, when the system is in supper state 12, we can choose
an action from the action space with a probability distribution determined by super state
12. At that time, the memoryless policy is a mapping from the space {11, 12,21, 22, 31,32}
to the probability distribution set on the action space. The stochastic memoryless policy
may be better than the deterministic memoryless policy. We consider the stochastic
memoryless policy in this problem.

b. The observable events are e;; = {< 4,5 >: ¢ € {111,112},5 € {2,3}}, e1n = {<
i,7 >0i € {121,122}, € {2,3}}, ea1 = {< 4,5 >0 € {211,212},5 € {1,3}},e20 = {<
i, >0 € {221,222}, 5 € {1,3}}, es1 = {< 4,j >: 1 € {311,312},5 € {1,2}},e3 = {<
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i,j >0 € {321,322},] S {1,2}} and e;; Uegg - - - €32.

m(1)p(ijk|i)p(ijlijk) _ Pijk
m(4) 22 j—1,2 P(7K|D)p(i] 1K) 2k=1,2Pijk’

1,2,3,,k = 1,2, which do not depend on the policy. Therefore, the aggregated potentials

7 =

c. For this problem, we have 7(ijkle; ;) =

are gd(em'? O‘) = Zk W(ijk‘eiJ) Zm;ﬁz’,m:l,Z,B p%k,mgd(m)vi =1,2,3,7=12

d. The performance difference formula is
=t = Z " (e 5) Z " (alei;) —p(alei)lg (e, @),
i=1,2,3,j=1,2 a€A(e; ;)

where p"(ale; ;) and p?(ale; ;) denotes the probabilities that the stochastic memoryless
policies h and d choose action o when the observable event e; ; occurs and A(e; ;) denotes

the available action space when event e; ; occurs. The performance derivative is
dn(0) dpg(alei;)
= > ey D g% (eig, @),
de , / do
1=1,2,3,j=1,2 acAle; ;)

when the probability p(ale; ;) depends on parameter 6.
e. Since m(ijkle; ;) does not depend on the policy, we can develop the policy iteration
algorithm for the performance optimization of this problem.

Algorithm:
1. Select an initial policy dy, and set k£ =0

2. Estimate the potential g% (e; ;, a) based on a sample path under policy dj. (The

estimation is similar to Problem 8.12).

3. Choose a policy di,1 such that

d d d
i1 € argmax ; p(ales) =™ (el g™ ),
acAle;,

for all e; ;.

4. If dyy1 = di, stop; otherwise, set k:= k + 1 and go to step 2.

8.17° We consider a POMDP problem with the structure shown in Figure 8.4. The
4 states 1, 2, 3, and 4 are grouped into 2 super-states a and b, with a = {1,2} and
b = {3,4}. The super-states are observable, but the states are not. A sample path
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may look like X = {1,2,4,2,3,4,1,2,4,1,4,1,2,3,2,3,4,1,---}, and the corresponding

observed random sequence is
Y ={a,a,b,a,b,b,a,a,b,a,b,a,a,b,a,b,b,a,---}. (8.11)

Unlike in Problem 8.16 where a super-state completely determines the probability distri-
bution of the system state, here the state distribution may depend on the history of the
observed super-states. For example, if we observe two a’s in a row, from Figure 8.4 we
know that the system must be in state 2. Similarly, two consecutive observations of “b”
lead to a state 4. Therefore, after two consecutive a’s or b’s, denoted as (a,a) or (b,b),
the system “regenerates” from state 2 or 4.

The regenerative property simplifies the analysis as well as the notation. Let x, or
x', denote any sequence of super-states. Then an observation history (2, a,a,z) can be
denoted as (a,a,x), and (2/,b,b,x) can be denoted as (b, b, x), because the past history
2’ does not contain any extra information. Furthermore, if z is non-null, we may further
omit the prefix (a,a) or (b,b) and simply denote them as x (if x starts with a, the prefix
cannot be (a,a), and vise versa). Therefore, the observation histories correspond to the
following cases: (a,a), (b,0), (a), (b), (a,b), (b,a), (a,b,a), (b,a,b), and (a, b, a,b), and so
on. In general, the sequence alternates between a and b.

If at a time instant the observation history is Y = {2/, a,a,2} or Y = {2/, b,b, 2}, then
x (or (a,a) and (b,b) if x is null) completely determines the probability distribution of
the states at that time instant. For example, z = (a) implies that the system just transits
from state 4 to state 1 or 2. Thus, the state probability distribution is p(3) = p(4) = 0
and p(1) = Pii_ and p(2) = Pz

- pff,lerg,z o pg,1+pff,2 '

Therefore, in terms of the state probability distribution, the history Y in (8.11) is

equivalent to

{e,2,(b), (b,a), (b,a,b),4,(a),2,(b),(b,a), (b, a,b), (b a,ba)?2 (b)), (ba),(bab)d (a), -}

(1P

where “o” represents the initial probability.

Suppose that when the system is at state ¢, a random reward is received with f(7)
being its average. In addition, we assume that the function f is unknown but the reward
at any time instant is observable. We consider the long-run average reward, its existence

is guaranteed by the regenerative property.
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Figure 8.4: The POMDP in Problem 77

a. Derive the state probability distributions corresponding to (b), (b,a) (a,b) and so

on.
b. What are the observable events?
c. What are the aggregated potentials?

d. Derive the performance difference and derivative formulas for the two policies in the

problem.

e. Can we develop a policy iteration algorithm for the performance optimization of

this problem? If so, please describe the algorithm in details.

Solution:
a.
m(1)p(bli)
2 ies m()p(bli)’
Since p(bli) = 0 when ¢ = 1,2 and p(bli) = 1 when ¢ = 3,4, then m(1|b) = 7(2[b) = 0 and
P@3|b) = =8 P(4]b) = L)). For the observation history (b, a), we have

m(3)+m(4)’ m(3)+m(4
2ies T(O)p(bl1)p(j|1)p(alj)

> ics T(@)p(b]i) 3= s p(dl0)p(als)

Then, p(1|(b,a)) = ~FoB - p(2|(b,a)) = ELDEHCRCED a0 p(3|(b,a)) =

p(4](b,a)) = 0. For the observation history (a,b), we have

> ies m(@)p(ali)p(j1i)p(bl7)
> ics T(@)p(ali) 3 s p(ili)p(bli)

T « i < i (4
Then, 7(3](a,b)) = simtnyiam: m(4(@.0) = "ELERITIEA. and w(1](a,b)) =
n(2l(a,)) = 0.

7(ilb) =

m(jl(b,a)) =

m(jl(a, b)) =
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b. The observable events are a = {< i,j >: i € {1,2},7 € S}b={<i,j > i €
{3,4},j € 8}

c. Let e denote a sequence of observable event, then, from the regenerative property,
€< {(aa a’)) (ba b)7 (a)a (b)7 (aa b)7 (ba CL), (aa b7 (l), (b7 a, b)7 (aa b7 a, b)} we have the fOHOWng
aggregated potential

g Ue,a) = D 7 (ile)p™(ili)g" ()
icS
d. The performance difference formula is
=t =Y 7€) " (ale) — pHale)] D w(ile)p” (jli)g" (),
e @ €S
where p"(ale) and p?(a|e) denote the probabilities that the policies h and d choose action
« when the observable event sequence e occurs. The performance derivative formula is

W 3wy 32 BN S i G1ing ).

e «a €S

e. Since 7 (i|e) # w(i]e) when h # d in general, we cannot design the policy iteration

algorithm for the performance optimization of this problem.

8.18" Suppose that in Problem 8.17, for simplicity we only take (a,a), (b,b), (a), (b),
(a,b), and (b,a) as the possible events; i.e., we aggregate the histories according to the
latest two super-states. For example, history (a, b, a, b, a) is aggregated into (b, a) and so
on. In this formulation, the action taken at a time instant depends only on the last two

super-states in the observation history.

a. Derive the performance difference formula.

b. Explain that in general, policy iteration cannot be developed from such a perfor-

mance difference formula.

c. Do this problem and Problem 8.15 help you understand the POMDP problems?

Solution:
a. Define €& = {(a,a), (b,b), (a), (b), (a,b), (b,a)}. The performance difference formula
is

W=t =Y a(e) Y [ (ale) = p(ale)] Y a"(ile)p” (jli)g (j)-

ec& iES
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b. In general, the conditional steady-state probability 7(i|e) cannot be equal to
74(ile). For example, from part a) in Problem 8.17, we can find 7(3|(a,b)) depends on
7(3) and 7(2), which are different under different policies in general. Thus, policy iteration
cannot be developed from such a performance difference formula.

c. From this problem, we can find the policy of POMDP generally depends on the
history. To obtain the optimal policy, e may depend on the whole history. If we only
want to obtain a suboptimal policy, we can consider the finite history. For example, in

this problem, histories (a,b,b,a) and (b, a, b, a) can be truncated into history (b, a).

8.19" In Problem 8.17, if we can trace back from the observation history, we can estimate
the earlier system state better. For example, as shown in (8.11), the observations from
l=0tol=5are {a,a,b,a,b,b}. We know that at [ = 1, the system is at X; = 2, and
the state probability distributions at times [ = 3, [ =4, and [ = 5 can be calculated, see
Problem 8.17. However, at [ = 5 we have observed (b, b) and therefore we know that the
system state is X5 = 4. Knowing so, from the structure shown in Figure 8.4, we may

trace back to [ =4 and assert that X; = 3. Similarly, we can know for sure that X35 = 2.

a. Update the state probability distribution at [ = 2 after observing {a, a,b,a,b, b} at
[ =5.

b. Does this posterior information help in determining the optimal policy?

Solution:

a. From observed histories (a,a) and (b,b), we can completely determine X; = 2 and
X5 = 4. From the structure shown in Figure 8.4 or Figure 8.17 in the textbook, we can
trace back to [ = 4 and assert X, = 3. Similarly, we can know for sure that X3 = 2. Since

the observation is b at [ = 2, we can assert X; = 3 or X; = 4. From X; = 2 and X3 = 2,

the state probability distribution at [ = 2 is p(3|(a,a,b,a,b,b)) = 7 (32)p%(213)

p(3]2)p(2]3)+p= (4]2)p= (2]4)
o a o (42)p(2/4)
and p®(4(a, a,b,a,b,0)) = SrmAERsEDEED

b.This posterior information does not help in determining the optimal policy because

the policy depends only on the history and cannot depend on the future information.

8.20* In the analytical approach for MDPs, the reward function f(7) is assumed to be

known; and in the reinforcement learning approach, the reward at every time instant is
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assumed to be observable. In MDPs, the state ¢ is assumed to be completely observable,
therefore, both assumptions are equivalent. In POMDPs, however, the state is not ob-
servable; therefore, knowing the form of the function f(i) does not allow us to know the
actual reward at every instant. As such, we may have four different situations regarding

the rewards:

i. The function f is known, and the reward at every instant is observable;
ii. The function f is known, but the reward at every instant is not observable;
iii. The function f is not known, but the reward at every instant is observable; and

vi. The function f is not known, and the reward at every instant is also not observable,

but the final reward at the completion of each sample path is known.

In Problems 8.16 and 8.17, we take the learning approach and therefore we were
dealing with the third situation. In addition, we assumed that the reward is random with
a unknown mean f(7).

Now, let us further assume that the reward at any state ¢ is a fixed deterministic
number f(7), which is an unknown function but the reward received at every time instant
is observable. In this case, we may determine the state ¢ by the reward received. For

instance, in Problem 8.16, when super-state 11 is observed, the system may be in either

P1,12

i respectively.

state 111 or 112 with probabilities o111 = ]#11711,12 or o112 =
Thus, the reward received is either f(111) or f(112) with probabilities o111 or o112, re-
spectively. To be more precise, suppose o117 = 0.4 and o112 = 0.6. Let us observe the
sample path for a while. We may find that when 11 is observed, we have 0.4 chance of
obtaining a reward of 0 and 0.6 chance of obtaining a reward of 1. Then we can easily
know that f(111) = 0 and f(112) = 1, and later on when 11 is observed, if we receive 0

we know that the state is 111 and if we receive 1, we know it is in 112. The following

questions are for your further investigation:

a. Can we develop an algorithm from this reasoning?
b. Can we apply the same reasoning to Problem 8.177

c. Can we apply the same reasoning to the general POMDPs?
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Solution:

a. If have known that f(111) = 0 and f(112) = 1, then we have p(f = 0|111) = 1,
which denotes we can obtain the reward 0 with probability 1 when the state is 111.
Similarly, we have p(f = 0|112) = 0 and p(f = 1)|/111) = 0,p(f = 1]112) = 1.
After that, we can use the reward information to estimate the state information. In
problem 8.16, when super-state 11 is observed, we only use the observation informa-

tion from the super-state to estimate the state and obtain the system may be in either

P1,12

PRRTETY respectively.

state 111 or 112 with probabilities o111 := 1#1;112 or 0119 =

If the reward information is added, there are two types of observations: super-states

and rewards. Thus, if we receive a reward f = 0, the system may be in state 111
p1,11p(f=0[111) _ pLu1
p1,11p(f=0[111)4+p1,12p(f=0[112) ~ p111

p1,12p(f=0[112) _ 0 _ . : : _
PO D) tpr a2 F=0[13) — iy — O Similarly, if we receive a reward f = 1, then the

system is in state 111 with probability — np(fgilllﬁ(){;i|1121;()f:1|112) = 0 or in state 112 with
p1,12p(f=1[112)

PP =TI o e =TT — 1. The general algorithm will be given for the

POMDP problem in part c).

with probability = 1 or in state 112 with probability

probability

b. We consider a simple case in Problem 8.17 . If at a time the observation history is

Y = {2/,b,b,z}, x = (a) implies that the system just transits from state 4 to state 1 or

(e
Pi1

and
pff,lerff,Q

2. Thus, the system may be in either state 1 or 2 with probabilities p(1) =

p(2) = Piﬁzb’ respectively. We may find that when (b,b,a) is observed, we have p(1)
chance of obtaining a reward of f(1) and p(2) chance of obtaining a reward of f(2), then
we can easily know that f(1) and f(2), and later on when (b,b,a) and f(1) is observed,
we know the state is 1 and if f(2) is observed we know that the state is 2.

c. We can apply the same reasoning to the general POMDPs. For the general
POMDPs, we can firstly compute the steady-state probability 7 (i), then we have 7 (i)
chance of obtaining a reward f(i),i € S. Then, if the rewards are different for differ-
ent states, we can know p(f = f(i)|i) = 1. Then, we can update the state probability

distribution that the system is in state ¢ € S as follows:

(i) = —olDP(o0li)p(fol?)

> ies mo(@)p(ooli)p(foli)’
bi(i) = bi—1()p(or0)p(f1l%)

> ieS bica(@)plali)p(fili)’

where 0; and f; denote the observation and the reward at time [, respectively.

:1a27"'7



Solutions to Chapter 9

9.1 As explained in Section 9.2, in the performance difference construction approach

shown in Figure 9.1, the construction is done in the following way:

i. On the perturbed sample path A — B — E — D, we use the same random variable

& to determine whether or not there is a jump at each transition /; and

ii. when a jump is identified, we use another independent sequence of random variables

to generate an auxiliary path, e.g., W — C.

While the above construction is convenient, it is not necessary. Convince yourself that
we can derive the same results as those in Section 9.2 if we construct the sample paths in

the following way:

i. On the perturbed sample path A — B — E — D, we use two independent random

variable & and & to determine whether or not there is a jump at each transition /;

209
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i.e., a jump from j to j' occurs if after visiting state 7, the system moves to state j

according to & and P, but it moves to state j’ according to & and P’; and

ii. we generate the auxiliary paths by using the same sequence of random variables as
the perturbed path, e.g., we generate W — C' by using the same sequence as that
used for generating the perturbed path G — D.

Solution: On the sample path A — B — E — D, we may use two independent random
variables £ and £ to determine whether or not there is a jump at each transition. If after
visiting state 7, the system moves to state j according to & and P, but it moves to state
j" according to & and P’, a jump from j to j' occurs.

When we use the same random variable & to determine a jump, the probability of a
jump from w to v after visiting ¢ is p(u,vli), with 37 g p(u,vli) = 1. When we use
two independent random variables & and &/, the probability of a jump from u to v after
visiting ¢ is p(uli)p(v[i), with 37 s p(uli)p(v|i) = 1. In fact, in the latter case, we have
p(u,v|i) = p(uli)p(v]i). On this basis, even if we use two independent random variables
& and & to determine the jump, this does not affect the results in Section 9.2.

For the generation of the auxiliary paths, we use the same sequence of random variables
as the perturbed path. In fact, this is a coupling in realization factors, which can reduce
the variance of the estimation of realization factors and does not affect the value of

realization factors. We can refer to Section 3.1.3.

9.2 For two ergodic transition probability matrices P and P’, set P(d) := P+ (P’ — P).
Assume that 0 is very small. Apply the construction approach described in Section 9.2
by following a sample path of the Markov chains with P(d). Show that this is equivalent
to the performance derivative construction described in Section 2.1.3 . (In Section 9.2,

we follow the perturbed sample path, while in Section 2.1.3 , we follow the original path.)

Solution: When 4 is very small, the transition probability matrices P and P(J) are very
close. Thus, the transition according to P(9) is the same as the transition according to
P in most cases. Following the construction described in Section 9.2 , we start from a
sample path, Xs, of the Markov chains with P(6). When the transitions according to

P(9) and P are different, a jump is generated, for example, states u; and v; at time 4
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in Figure 9.1 . After the jump, two sample path are generated according to Ps and P,
respectively. Since Ps; and P are very close, the two sample path will generally merge
before a new jump is generated. For example, in Figure 9.1, X5 and X merge at time
7. Then at time 9, a new jump is generated. We can also follow the sample path X and
generate similar perturbations in Figure 9.1 by using the construction method in section

2.1.3. Therefore, the two methods are equivalent.

Figure 9.1: The Effect of Two Perturbations

9.3 Suppose that the transition probability matrices of all the policies in an MDP problem
are uni-chains on the same finite state space S. (A uni-chain is a special case of a multi-

chain defined in (B.1) with m = 1.)

a. Apply the construction approach shown in Section 9.2 to any two uni-chain policies
and derive the performance difference formula. Show that it is a special case of the

performance difference formula (4.36) in Chapter 4 for the multi-chain case.

b. Derive the Poisson equation for a uni-chain policy, prove that its solution exists,
and express the potentials of the transient states in terms of those of the recurrent

states.

c. Develop the policy iteration algorithm for uni-chain MDPs, and show that it is the

same as that for ergodic chains.

d. Explain point (c) using the policy iteration algorithm for the general case of multi-

chain MDPs.
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Solution:

a. We consider two uni-chains with transition probability matrices P* and P? and
the same state space S = {1,2,---,5}. We assume {1,2,---,S} are the recurrent states
under policy h. For a uni-chain, we know the long run average performance n"(i) is
independent of the initial state, i.e. n"(i) = n". Applying the construction approach
shown in Section 9.2, we can obtain the performance difference formula similarly to (9.3)-

(9.5).
S S’
o=t = 3@ "Gl PGl ) + 1) — 1) CRY
For a uni-chain,

h
esm 0
Py = ,
65/_57Th 0
where eg denotes a S-dimensional row vector in which all components are 1, 7" =
(7"(1),---,7"(S)) and 7"(i) is the steady-state probability of state i under policy h.

Putting (P")* and n¢ = ne into (4.36), we have

’

S
o=t = D] Do) — Gl ) + 1) — £ |

j=1
Thus, (9.1) is a special case of (4.36) in Chapter 4 for the multi-chain case.
b. For a uni-chain, we assume {1,2,--- S} are the recurrent states. We have the

Poisson equation

P 0 esm 0
(IS’ B " s ) g1 _ fi ’
Ri R, esr—sm 0 g2 f2
where [ is a S’-dimensional unit matrix and 7 = (7 (1), ---,7(5)). Thus, we have

(Is + P+ esm)g = fi
(esr—sm — R1)g1 + (Isr—s — R2)g2 = fa.
Since Ig + P 4+ egm and Is:_g — Ry are invertible, we have
g1 = (Is+ P +esm)  fi, (9.2)

92 = (Isy—s — Ro) '[f2 — (esi—sm — R1)g1).- (9:3)
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c. Policy Iteration Algorithm:
1. Guess an initial policy dy, set k£ = 0.
2. Obtain the potential g% by using (9.2) and (9.3).
3. Choose
diy1 € arg Zfé%{{fd + Plg™}.

component-wisely (i.e., to determine an action for each state). If at a state i, action

dr(7) attains the maximum, then set dy. (i) = di (7).
4. If dyy1 = di, stop; otherwise set k := k + 1 and go to step 2.

This algorithm is the same as that for ergodic chains.
d. From the point view of policy iteration for the general multi-chain MDPs, since
n? = ne is independent of the initial state, then we have P"n? = n¢. Therefore, from

comparison lemma (4.41), we should choose actions for all state as that in the step 3.

9.4 Prove that the policy iteration algorithm developed in Example 9.2 converges to an

optimal policy.

Solution: From the step 3 of the algorithm, if (v, ,, Bi,,,) # (a,, B, ), then
ﬁik+1 - 6Zk

04 0(0) = 9(U)] oy [G(N) — g(N 1)
> g 0) — g(1)] + py (V) - g(N - ] =

Using (9.7), we have g1 > nx, where 141 and 7 are the performances under control
pairs (c, ., B3i.,,) and (a,, B, ), respectively. That is, the average reward increases at
each iteration before it stops. Because the number of policies is finite, the iteration
procedure has to stop after a finite number of iterations. When it stops at step k, we set

(@, B) = (Qipsrs Binyy) = (@i, B, ). From the step 3 of the algorithm, we have

A a—a B-p
@B =arg o omax o Aw T 10(0) 9] + TS lo(N) — (N — 1]}

Thus, for any control pairs («, 3), from (9.7), we have n — 77 < 0, where n and 7 are the

performances under control pairs («, 3) and (@, B\), respectively. That is to say, for any
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policy (a, 3), it performance 7 is less than 7. Therefore, the policy (@, B) is the optimal
policy.

9.5 In this exercise, we modify the random walk problem studied in Examples 9.1 and
9.2 as follows. First we simplify the problem by assuming that the random walker can
take only N 4 1 = 5 positions denoted as 0, 1,2, 3, and 4. When the walker hits the wall
0 or 4, s/he stays there with probability ag, or ay, respectively, and jumps to position
1, or 3, with probability 1 — ag, or 1 — a4, respectively. Second, we assume that when
the walker is at position 1, 2, or 3, s/he will also stays there with probability oy, s,
and ag, respectively, and leaves the position with probability 1 — ay, 1 — as, and 1 — ag,
respectively. If s/he leaves position i, i = 1,2, 3, s/he will have an equal probability of
0.5 to jump to one of its neighboring position i — lor¢t+1,7=1,2,3.

Now suppose that at each position ¢ we may choose «; from a finite set denoted as

ai,laai,27”'7ai,Ma22071a"'a4'

a. Derive the performance difference formula (similar to (9.6)) and the policy iteration

algorithm for this problem.

b. Furthermore, we assume that ag; and a4, (with the same i), ¢ = 1,2,---, M, have
to be chosen together, and o ;, as;, and as,; (with the same i), i =1,2,---, M, have
to be chosen together. Derive a performance difference formula (similar to (9.7))

for this problem.

c. Based on the performance difference formula derived in (b), develop a policy iter-
ation algorithm for the optimization problem in which actions at different states

cannot be chosen independently.

Solution:

a. We consider the Markov chain X' under policy («f, o}, o4, a4, ofy) (without loss of
generality, we assume o} > «;,7 = 0,1,2,3,4). At state 0, X’ may jump from state 1 to 0
with probability af, — ap, and at state 4, it may jump from state 3 to 4 with probability
aly — ayy. Moreover, at state 4,7 = 1,2, 3, it may jump from state A; to ¢ with probability

ai — ay, A; is a stochastic state, which is ¢ — 1 with probability 1/2 and i + 1 with

2
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probability 1/2. Thus, the potential g(A;) = 2[g(i —1) + g(i +1)]. Then, by construction,

we have

' —n = #(0){lab - adllg0) — 9] } + 7 ()] [0h — aullg(4) - 9(3)]} +
S° @) {laf — adlgli) — g0}

i=1,2,3
Based on the above difference formula, similar to the method in Chapter 4, we obtain

the following policy iteration algorithm.
1. Guess an initial policy dy = (af, a?, a3, a3, al), set k = 0;

2. Obtain the potential g% by solving the Poisson equation (I — P%)g% + ndke = fdr,

or by estimation on a sample path of the system under policy dy.

3. Choose dj41 such that

k+1 A 0
o € ar max ap — Q 0) — 1],
’ gaoe{OéOj,jzl,Q,m,M}[ 0 0”9 ( ) 9 ( )]

k+1 k1pd 0
Q € ar max a4 — Q 4) — 3)],

! ga4€{a4j7j=1,2,--,M}[ 4 ilg™(4) — g™ (3)]
o earg max ;= afllg (i) — g (&) i = 12,3

aje{a;j,j=1,2, M}

4. If dyy1 = di, stop; otherwise set k£ := k + 1 and go to step 2.

b. Similar to Example 9.2, we have

7 = 700 {50 - s0] + G5 o) - a3 | +
#(1,2.3)0 {n S5 a0) = oA + 15 0(2) ~ o(Bull+
P 5000) - g(2a}

1—af
where 7/(0,4) = 7'(0) + 7n'(4),7'(1,2,3) = «'(1) + 7'(2) + 7' (3),k1 > 0,k > 0 and
Do, P1, D2, P3, P4 1S similar to pg, py in Example 9.2.

c. The policy iteration can be designed similarly to Example 9.2.

9.6 Study the random walk problem in Example 9.3 by using the system with N + 2
positions as the original system and the system with N + 1 positions as the perturbed

one. Derive the performance difference formula similar to (9.32).
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Solution: Suppose that in Example 9.3 the number of positions of the random walker
decreases from N + 2 to N + 1. According to (9.32), we need to determine (AP)".
Comparing P and P, we can find that [P,0] and [P}, P[] differ only on the last rows.

Thus, (AP)" is zero everywhere expect its last row is

(05"'a071_5_0Naﬁ70-N_1)'

From the difference formula (9.32), we have the following difference formula:

!/

n—n

= 7(N)[Q =B =on)g (N —1)+B¢'(N) = (1 —on)g'(N +1)].

9.7 Extend the performance derivative formulas (9.29) and (9.33) to the case with f(i) #
fl@),i=1,---,8.

Solution: From the difference formula (9.28), the performance difference formula with

f@) # f(i),i=1,---,5is
n —n=71_{(P.—[P,0))g+ (fL - f)}. (9.4)

where P’ = [P}, P},] and f” = (f'(1),---, f'(S))T. For performance derivatives, we define

Ps=P+6[P' — P fs=f+3[f — f]

where P was defined as (9.14) and f = (f(1),---, f(S), f(S+1),---, f'(S")". Applying
(9.4) to Ps and P, we obtain ns—n = ms_0[AP_g+h_], where ms_ = (ms(1),- - -, ms(5)), AP =
[P/, Pl,] —[P,0] and h_ = f' — f. Letting 6 — 0, we get

dns .
E = W[AP_g + h_]

Similarly, we can obtain the performance derivative formulas with f(i) # f'(i), ¢ =

L,---, 8 for (9.33),

dné o o /
T n [(AP).g W,

where (AP) = —AP_and b’ = —h_.

9.8 In Section 9.4.2, suppose f'(i) # f(i), for i = 1,---, M. Modify the performance
difference formula (9.37) (i.e., derive the formula similar to (9.5) and (9.28).
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Figure 9.2: The jumps of the parameterized system in Section 9.3.2

Solution: If f'(i) # f(i), fori=1,---, M, we should consider the effect of one-step per-
formance for the performance difference ' —7. Similar to (9.37), we follow the sample path
X’ with L, L >> 1 transitions, which has transition probability matrix P’. Considering

the effect of one-step performance, we have

E(F,—Fi)~ ) {Z > L' (D)p(u, vli)i(u, v) + f(i) - f(’i)]} :

1€So \ueS ves’

where y(u,v) = §(v) — §(u). Following the same argument as (9.37), we can obtain the

following difference formula:
n'=n=a[AP_g+ (fL - )],

where AP_ = [OaPO/aPO/fl] - [POlaPOaO]afL = (f,(SO)a e '7f(1))T7 [ = (f(‘Sb)’ e '7f(1))T'

9.9 Draw a sample-path diagram to illustrate the effect of one jump in the example of
the parameterized system in Section 9.3.2.

Solution:

A sample path of the parameterized system in Section 9.3.2 is as Figure 9.2. At state
(n,4), the customer will prepare to leave M; with probability p;, i = 1,2,3 with p3 = 1.
After that, it will move back to M; with probability 1 — 6, which means the state transits
to (n, 1), and go to My with probability 6, which means the state transits to state (n—1, 1).
If §(n) change to 6(n) + d,,, then this change in the system parameter may cause “jumps”
of the system state on the sample path from (n,1) to (n — 1,1) (the original sample path
transits to state (n, 1) but the perturbed path transits to state (n — 1, 1)), for example,
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Figure 9.3: The Transition Probabilities in Problem ?7?

at time 4 and time 9, the jumps occur.

9.10 Consider a discrete-time Markov chain consisting of three super states denoted as
1, 2, and 3, respectively; each of them is further composed of three phases a, b, and ¢, as
shown in Figure 9.3. Each phase represents a state of the Markov chain and thus it has
altogether 9 states denoted as la, 1b, 1c; 2a, 20, 2¢; and 3a, 3b, and 3c. The transition
probabilities between any two phases in the same super state are denoted by p(1b|1a),
p(3al3c) etc. When the system leaves a phase, it does not feed back immediately, i.e.,
p(la|la) = 0, etc. At each super state, phase a is an input phase, i.e., the system enters
phase a to start its journey in the corresponding super state. Phase ¢ is an exit phase,
i.e, the system leaves a super state from phase c¢. At super state 1, for example, we have
p(1b|1a) + p(1le|la) = 1 and p(la|ld) + p(1lc|1b) = 1. At phase lc, there is a positive
probability p(0|lc) to leave the super state 1. Thus, p(la|lc) + p(1b|lc) + p(0|lc) = 1.
When a system leaves a super state ¢, 1 = 1,2, 3, it transits to super state j, or enters
phase ja, j = 1,2,3, with probability p(j|i), Z?le(ﬂi) = 1. The reward function is
denoted as f(la), f(1b), etc.

Suppose that the transition probabilities p(j|i) depend on a parameter 6 and are

denoted as py(jli), 7,7 = 1,2,3. Construct the performance derivative and difference

formulas for this system, similar to (9.12) and (9.13).
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Solution: Following the same procedure as in Section 9.2, we consider a perturbed
sample path X’ with super-state transition probabilities py (j|i) for L >> 1 transitions.
Let 7'(ic),i = 1,2, 3 be the steady-state probability that state is in state ic under super-
state transition probabilities py (j|i). A jump can occur only when the system stays at
states ic,i = 1,2,3. Suppose that after visiting state ic, X’ has a jump from ua to
va, u,v = 1,2,3. Denote the probability of a jump from ua to va after visiting ic as
p(u,v]i). Then, S2_ p(u,v|i) = p(0lic)pe (v]i) and S°_, p(u,v|i) = p(0|ic)pg(uli) . On
the average, on the sample path there are L7’ (ic)p(u, v|i) jumps from ua to va that happen
after visiting ic. Since each jump has on the average an effect of vy(ua,va) on Fp, on the

average the total effect on F, due to the change from py(j|i) to pe (jli) is

E(F], — F1) = Z{ Z L7’ (ic)p(u, v|i)y(ua,va)}

=1 wu,v=1

= Y {D La'(ic)p(u,v]i)[g(va) — g(ua)]}

i=1 wu,v=1
3

= > {Liop(0lie) Y lpw (1) - plillglio} }

i=1
Finally, we have

3

W == Jim TE(F, - F) = Y {rGp0lie S low (1) — pali1lgte)} )

i=1 j=1

Letting #/ — 6, we have the performance derivative

oy DY W) ooy,

i=1

9.11 Consider a discrete-time M/M/1/N queue with capacity N. The system state is the
number of customers in the system (in the queue plus in the server), denoted as n. The
transition probabilities are p(1|0) = p, p(0|0) = ¢, p(N — 1|N) = ¢, p(N|N) = p, and

p(n+1jn) =p, p(n —1n) =q,p >0, ¢ > 0, p+ q = 1. Suppose that
a. the capacity changes to N — 1, or

b. the capacity changes to N + 1.
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Construct the difference formula for the mean response time.

Solution: For the discrete-time M /M /1/N system, the mean response time is

where n; denotes the number of customers in the system and K denotes the number of

customers that have been served until time L. It is a customer-average performance. From

P _(e\N
the long-run point of view, we have K = L(1—7(0))g = L (1 - %) q= ML.

-(5)7
Therefore,
L\ VH
R >t B ©),
A 5 n="N(N)n
(1= (2)

() Sigin

where h(N) = "7)N> and 1 = limj_,, =5 is a time-average performance. For

-2

time-average performance 7, we can apply the construction approach in Section 9.4 to
obtain the difference formula.

a. We consider the case that the capacity changes to N —1. We assume the potentials
of M/M/1/N system with capacity N are ¢(i),7 = 0,1,..., N. Moreover, the transition

probability matrix of discrete-time M/M/1/N system with capacity N — 1 is

qgp 0 0 --- 0 0 0
0O p 0--0 0 0
0 0 -0 0 0
S (95)
00 0 0 --q 0 p
00 0 0 ---0 ¢qg bp
and its steady-state probability and time-average performance are 7’ = (7/(0), -+, 7' (N —

1)) and 7/, respectively. The transition probability matrix P for the M/M/1/N queue
has the same form as (9.5) except that its size is larger by one. Let 1’ be the average

performance of P’. From the performance difference formula (9.32), we have

7 —n=7'(N—1)[pg(N —1) — pg(N)].
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Thus, the performance difference formula of the mean response time is
=i = A )
( )" = h(N = 1)n+ (N = 1)n — h(N)n
= (N =10 —n)+ (AN = 1) = h(N))y
( )7 (N = 1)[pg(N = 1) = pg(N)] + (h(N = 1) = h(N))n.
b. We consider the case that the capacity changes to N + 1. We assume its time-

average performance and steady-state probability are i and 7/, respectively. Comparing

P and P’, we can construct P in (9.14). Indeed, we have
Py =10,0,--+,4q]
and P}, = p. Therefore, from (9.25), we have
JN+1) = TN+ 1=+ ag(V)]
From the performance difference formula (9.27), we have

' —n=m'(N)[-pg(N) +pg(N +1)].
Thus, the performance difference formula of the mean response time is

~/

i =i = h(N+1)n"—h(N)n
= W(N+1)n"—h(N+1)n+h(N+1)n—h(N)y

— BN + ) (N)[=pg(N) + pg(N +1)] + [h(N + 1) = h(N)]n.

9.12 Suppose that we have two independent M/M/1/N queues with parameters py, ¢, Ny
and po, g2, and Nj respectively, as explained in Problem 9.11. If we have one more buffer
space, to which queue should we allocate this extra buffer space to maximally reduce the
customers’ mean response time? Please develop an on-line approach.

Remark: Because the mean response time is

p(1 —m(N))’

where 7 denotes the average queue length and 7(/N) denotes the steady-state

7=

probability that the system in state N, it will increase if the buffer space
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becomes larger. Thus, for this problem, we should consider the increment of

the mean response time. Here, we only describe the idea to solve this problem.

Solution: If we have another buffer space N3, we can allocate this extra buffer space
to every queue and obtain two independent M/M/1/N queues with parameters p1, ¢i,
Ny + N3 and ps, 2, and Ny + N3. We assume the mean response times of the M/M/1/N
queues with parameters p1, ¢1, N1 and py, ¢1, Ny + N3 are 77 and 7, respectively, and
the mean response times of the M/M/1/N queues with parameters pa, g2, N2 and ps,
¢2, No + N3 are 7}, and 7, respectively. Then, we need to compare 7] — 7; and 775 — 7
to determine which queue we allocate this extra buffer space to. Similarly to part b) in

Problem 9.11, we have the difference formulas:

i — 7 = (N1 + N3)7'(N1)[=p1g(N1) + p1g(N1 + 1)] + [h(Ny + N3) — h(Ny)]n,

My — 2 = h(Na + N3)7'(Na) [=p2g(Na) + pag(No + 1)] + [A(Ny + N3) — h(Na)]ng,

where g(Ny + 1) = ﬁ[Nl +1—m+ qg(N)] and (N2 + 1) = ﬁ[]\@ + 1=+
029(N2)]. We can estimate 7y, g(Ny) and 72, g(N2) based on the sample paths of the
queues with parameters pi, ¢; and Ny and pa, g2 and N, respectively. Computing h(N; +
N3), h(Ny),7'(N1),g(N1 + 1) and h(Ny + N3), h(Ny), 7' (N2), g(Ny + 1) , where 7'(Ny) =

(-pi/a) ()" (1-p2/a2)(22) ™
k((,%)—zvfiwg and 7'(Ny) = k(%)—zvﬁwga
and compare them.

we can obtain the values of 7] —7; and 7, — 72

9.13* Extend the construction approach in Section 9.2 to (continuous-time) Markov pro-
cesses. (Hint: This extension is not as straightforward as what it may appear. To develop
a construction approach to the changes in transition probabilities of the embedded Markov
chains p(jli) in (A.12) may be easy; the extension to the changes in transition rate A(i)
may be more involved. )
Solution: Consider an ergodic Markov process X = {X;,¢ > 0} with a finite state space
S =1{1,2,---,5} and an infinitesimal generator B = [b(i, j)|, where
—A(@)  ifi=
A@)p(li) if i#j

for all 7,5 € §. As we know, Markov process X stays at state i for an exponentially

b(i, j) =

distributed period with distribution F(t) = 1 — exp(—A()t) and then transits to state j
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with probability p(j|i). Let X;,l =0,1,---, be the embedded Markov chain and 7;(7) be
the holding time at state X; = i. The holding time 7;(i) can be simulated by using the

inverse transform method. That is,

Tl(z’):—ﬁlm(l—&),iES,Z:O,LQ,---, (9.6)

where £ is a uniformly distributed random variable on [0,1). The transitions of states
can be simulated as (2.3).
We consider another perturbed Markov chain X’ with transition rate A'(i) and tran-

sition probability p/(j|i). Thus, its infinitesimal generator is B’ = [/ (i, j)], where

—N@) ifi=g
N@p'(Gli) if i 7]

b/(iaj) =

We firstly consider the effect of a perturbation of transition rate from A(¢) to X'(i) at one
stage. We follow the perturbed sample path of Markov process X’. At state X, = i,
by using the transition rate X (i) and A(i), respectively, and the same &, in (9.6), we
have different holding time T and 7. We assume N (i) > A(i), then T{(i) < To(7).
The perturbation from A(7) to X (i) results in the change of holding time at state i,
ATy(i) == To(i) — T5(i). From (9.6), we have

N(i) = A()

X ()

The effect on Fr = E{ LZ f(X;)dt} due to this perturbation in the holding time is

A = E{ / o FXD)dt + / e F(XD)dt + / ' f(Xg)dt}

ATy(i) = To(i). (9.7)

to TO/ (Z) T—ATy (Z)
T5(9) To (i) T
B{ [ e [ pGdes [ el
to T5(0) To()

In the right side of the above equation, the first and second items in the first bracket are

equal to the first and third items in the second bracket, respectively, thus,
T To(i)

A, = BY FOX)dt / F(X)dt.

T—ATo(i) ! (i)

When T is large enough, for ¢t € [T — ATy(i), T], we have E[f(X])] = 7 f = n, thus,

A; ~ E[ATy(i)](n — f(2))-
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From (9.7), we have
X)) = M)
From Poisson equation Bg = —f + ne, we have n — f(i) = \(i )[Zjegp(j\ i)g(j) — g(1)].

Since E[Ty(i)] = ﬁ, we have

(To(2))(n — f(@)-

A;

Q

ij\ — 9(3)

]GS

= Zp (518)y (98)

jeS
Now, we consider the effect of all these perturbations at different states and all stages.
Let 7'(i) denote the steady-state probability that X' is at state ¢ € S. During the time
interval [0, 77, the time that the perturbed process X' stays at state ¢ is T'7'(i) on the
average. Since the mean holding time is )\%(i), then, there are on the average T'n' (i) (7)
transitions from state i. Each of them has an effect as (9.8) on Fr on the average. Then

the total effect on Fr due to all the perturbations in the holding times is
E [F% — Fr]

= Z T (i)N (i Zp jliyy
jeS
— RN - AP - 1]y,
where A" = diag{N(1),---,N(S)} and A = diag{\(1),---,A(S)}. Dividing by T on
both sides of the above equation and letting T — oo, we have the following performance

difference formula
n' —n=x(N—A)[P—Ig. (9.9)

From (9.9), let N'(i) — A(¢) and X' (j) = A(j),j # 4, we can obtain performance derivative

formula

(> plili)g(i) — g(i)}.

jeS
Next, we consider the effect of perturbation in the transition probabilities. After

visiting state i, X transits to state u based on the transition probabilities p(jli),,j € S,
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while X’ transits to v according to p'(j|i),4,j € S. Define the probability that following
visiting state 7 such jumps happen from state u to state v as p(u,v|i), i,u,v € S. Since
there are on the average T'7'(i)\ (i) transitions from state ¢, then on the average, on the
sample path there are T'7'(7) N (7)p(u, v|i) jumps from u to v that happen after visiting 7.
Since each jump has on the average an effect of v(i,j) on Fp, on the average the total

effect on Fy, due to the change from p(j|i) to p'(jli),4,j € S is

E(Fy — Fr)
~ Ty w@ON(E) Y plu,vli)y(u,v)
i=1 u,vES

S
OO ARSI

i=1 j=1

Mm

=T

Dividing by T on both sides of the above equation and letting T — oo, we have the

performance difference formula under two different transition probabilities,
n' —n=xN(P — P)g.

If we consider the perturbations of transition rates and transition probabilities simul-
taneously, we can decompose these perturbations into perturbations of transition rates

and perturbations of transition probabilities, then we have

n—n = 7N —-A[P—Ig+aN(P —P)g
= 7 [AN(P'—=1I)— AP —1)yg

= 7'[B'— Blg.

9.14* Propose a construction approach for the performance differences and derivatives for
a (continuous-time) closed Jackson (Gordon-Newell) network (Section C.2) with respect
to the changes in routing probabilities. (Hint: Use the results in Problem 9.13 for the
transition probability matriz of the embedded chain.)

Solution: We consider a closed Jackson (or Gordon-Newell) network. There are N cus-
tomers circulating among M servers according to routing probabilities g; ;, with Z]Ail Gij =
1,2 =1,2,---, M. Let n, denote the number of customers at server k., k = 1,2,---, M.

The state of the network can be denoted by n = (ny,ns,--+,ny). Viewing the network
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as a continuous time Markov process, the effective service rate is u(n) = Zf\il (i) i s
where €(n;) = 1, if n; > 0, otherwise €(n;) = 0. The probability that a customer com-

pleting the service at server i transits to server j # ¢ with probability %
i=1 i )JHiny

and
transits to itself with probability g;;.

We consider a sample path of Jackson network with perturbed routing probabilities
q;j on time interval [0, 7]. On the sample path, the time that the system stays at state n
is T'w’'(n) on the average. Since the average time that the system stays at state n is (n)
there are Tn'(n)u(n) times that the system transits from state m. After visiting state
n, the system transits to state u based on the original routing probabilities ¢; ;, while it
transits to state v based on the routing probabilities ¢; ;- Let b(n, u, v) be the probability

that such jump will happen from w to state v at state m. Similarly to the argument in

Problem 9.14, we have

E{F, — Fr} = ZT?T/ an’u,v (u, v)
= ) Tr'(m)u(n) Y o' (uln) — p(uln)lg(u)
= ZTﬂ' {Z Z (1) i s qm i jlg(mi ;) + Zﬁ(nz‘)m,m [qu - Qi,i]g(")}-
n i=1 j=1,ji i=1

Dividing by T on both sides of the above equation and letting T" — oo, we have

M
77/_77—2 {Z Z €(n:) i qu Gij19(mi ) "‘Z ey Nznz[qzz Giilg( )}
=1 j=1,j%#i =1

If let Q° =Q + 6(Q" — Q), we have

M
—n=6) m(n {Z Z e(ni)ttin |0 — qigl9(nig) + Y €(ni)ptin, 6] — a1l )}-
n

i=1 j=1,j7#1 i=1
Thus, dividing by ¢ on both sides and letting 6 — 0, we have the performance derivative

formula:

M

s M M
L S22 3 clnnaly — o) + 3 clnl  aido(m }

i=1 j=1,j7#1 =1



Solutions to the Appendix

Appendix A

A.1 Consider the Coxian distribution shown in Figure A.1.
a. Derive the probability distribution density function for the Coxian distribution.
b. Derive the Laplace transform of the density function.

c. Construct a Coxian distribution such that the Laplace transform of its density

function is the rational function given below:

24 1.08s +0.257
24554452+ 3

F(s) (9.10)
[Solution] a. Suppose that the Coxian distribution has k stages. See Figure A.1. And the
service rate in stage 7 is \; = gi Denote the probability distribution density function for
the Coxian distribution as g(x) and denote the probability distribution density function

for the exponential distribution with parameter \; as f;(z) = ;e . Then,

g(x) = qfi(x) +pigafi(x) * fa(x) + pipags fr(x) * fo(z) * f3(x)
+o A pipe - Pr—2 Q-1 1 () * folx) %ok ()

+pip2 - -1 f1(x) * fo(x) * - % fr()
k-1

= Z HPlefl(l") * fa(@) - fi(2),

j=11=1

Wy ”

where “x” denotes the convolution.

227
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b. First, we consider the Laplace transform of f;(z). Denote Fj(s) the Laplace trans-
form of f;(x).

Fi(s) = / fi(x)esxdx:/ e TS ]y
0 0

B /OO Ne~QXits)z gy — A
0 )\z + s

Denote G(s) the Laplace transform of g(z).

G(s) = qFi(s) + pigaFi(s)Fa(s) + pip2gsFi(s) Fa(s) F3(s)
+ o pip2 - Pr—aQe—1F1(s)Fa(s) - - Fr_1(9)
+p1pa - pr—1F1(8)Fa(s) - - - Fi(s)
)\1)\2 + )\1)\2)\3
Mt s)ets)  PPBERITTO00+ 50+ 5)
Hfz_ll Ai
Hi‘:f()‘i + )

= )\ + quQ(

+ -+ D1p2c Pe—2Qk—1

Hf:l Ai
Hf—l()\' + )
kE j—1

Y
- Zleq] J

1 )\+3)

Zj T2 2y T A Hm ir1(Am + )
Hz 1()‘ +‘3)
Z] 1Hl 1291( pi) ITi=i i Hﬁl:jJrl()‘m—i_S)

= 9.11
Hi:l()‘i + 5) ( )

+p1P2 -+ Pr—1

c. From part b), we may firstly find A;, i = 1, 2, 3 such that H?:1()\z‘+3) = 2+5s+4s+
s3 =: f(s). Ttis easy to find f(—1) = 0. So, we know that s+1 is a factor of f(s). By using
the division with residue, we have f(s) = (s+1)(s*+3s+2) = (s+1)(s+1)(s+2). Here,
we can make different choices about the values of \;, i = 1,2, 3 and different choices may
correspond to different Coxian distributions. For example, we may choose A\; = 1, Ay = 2
and A3 = 1. Putting them into the numerator in (9.11) and letting the numerator be
equal to 2 + 1.08s 4+ 0.2s2, p; = 0.8,p, = 0.7 can be obtained and ps = 1 is obvious.

It is noted that the Coxian distribution corresponding to (9.10) is not unique since the
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different choices of \;,2 =1, 2, 3.

A.2 Consider an independent random sequence X,, with P(X,, = 1) = + and P(X,, =
0)=1-— % Does the sequence converge in probability, w.p.1, in mean, or in mean square?
[Solution]
The random sequence {X,} converges in probability to a random variable X, if for
any € > 0,
lim P[|X, — X| > ¢ =0.

n—oo

Obviously, we can see that X = 0.

1
lim P[|X,| > ¢ = lim P(X, =1)= lim — =0.

n—oo n—oo n—oo M,

Therefore, the sequence converges in probability.

Next, we show that this sequence does not converges to zero with probability 1. To
establish that fact, we assume that the convergence with probability 1 holds true and
then obtain the contradiction. If the convergence with probability 1 holds true, then

lim P(sup Xz = 1) = 0.

n—oo k>n

Notice that {supy>, Xy =1} = U5, {Xx = 1}. Hence, taking into consideration the fact

that {X,,} is the sequence of independent random variables and

Pt 1) = g f1-P(O -0
k>n k>n

= 1-lim [[P(Xx=0)=1- lim H(l—%)zl,

n—o0 n—o0
k>n k>n

we arrive at announced contradiction. Therefore, the sequence {X,,} may not converge

with probability one.

1
lim E[|X, — X|] = lim E[X,]=lim 1 xP(X,=1)= lim — =0

n—oo n—oo n—oo n—oo M

and

1
lim E[|X, — X|*] = lim E[|X,|?] = lim 1> x P(X, =1) = lim — =0,

n—oo n—oo n—oo N
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so, the sequence converges in mean and in mean square.

A.3 Consider a random sequence X,, with P(X, = 1) = 5 and P(X,, =0) =1 — 5.
Does the sequence converge in probability, w.p.1, in mean, or in mean square?
[Solution)]

It is obvious that for every € > 0,

1
lim P[|X,| > ¢ = lim P(X, =1) = lim — =0.

Therefore, the sequence converges in probability to zero.

{X,} converges with probability 1 to a random variable X, if

Plw: lim X, =X)=1,

n—oo

or equivalently, for every € > 0,

lim P(sup | Xz — X| >¢€) =0,

where {supy>,, [Xi—X| > €} = {Ups,, [Xx—X[ > €} = {|Xs—X| > € for some k >n}.

For every € > 0, we have

lim P(sup | Xk| > €)

n—oo k>n

lim | Y P( X > e>]
Lk=n

IN

= lim [} P(Xy= 1)]
Lk=n

= i%] =0
Lk=n

Therefore, the sequence { X, } converges with probability 1 to zero, of course converge in

probability.
Jim B, = X1 = fiy EIX] = fim 1x PO, =1) = Jim 5 =0
and
Jim B, X = i B[ = fim 12 P, 1) = i 5 =0
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so, the sequence converges in mean and in mean square to zero.

A.4 Let X and Y be two random variables with probability distributions ®(x) and ¥(y),
respectively. Their means are denoted as z = E(X) and g = E(Y). We wish to estimate
T —y = E(X —Y) by simulation. We generate random variables X and Y using the
inverse transformation method. Thus, we have X = ®71(§;) and Y = ¥ 71(&,), where &
and & are two uniformly distributed random variables in [0, 1). Prove that if we choose
& = &, then the variance of X — Y, Var[X — Y], is the smallest among all possible pairs
of & and &,.
[Solution)]
VarlX =Y] = E[(X -Y) - E(X -Y))*| = E[(X - Y)’] - (E[X - Y])*

= E[X?|+ E[Y? - 2E[XY] - (E[X - Y])?
For given distribution ®(z) and ¥(y), E[X?]|, E[Y?] and E[X — Y] are determined. Thus,
to minimize Var[X — Y] is equivalent to maximize E[XY].

Denote H(z,y) = P(X <z,Y <y). We have
H(z,y)=P(X <2,V <y) < P(X <2) = D(2)

and similarly, H(z,y) < ¥(y). Therefore, H(z,y) < ®(x) A ¥(y). We know X = &~1(&;)
and Y = U1(&), and @, ¥ both are non-decreasing functions. We have
H(z,y) = P(®7H(&) < 2, 971(&) <y) = P(& < B(2), & < ¥(y))

If & = &, we have H(x,y) = P(& < ®(x) A ¥(y)). Because & is uniformly distributed
on [0,1), then H(z,y) = ®(x) A ¥(y). That means, if {; = &, then H(x,y) reaches its

maximum. From Hoeffding’s Lemma in the reference,

+oo +oo
BOYY) = BQOEW) = [ [ (H(ny) - 02 0()jdndy
E(X),E(Y),®(z),¥(y) are all determined. Thus if H(z,y) reaches its maximum, then

E(XY) reaches its maximum. Therefore, if we choose & = &, the variance Var[X — Y]

is the smallest among all possible pairs of & and &;.

Proof of Hoeffding’s Lemma:
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Let (X1,Y1), (X5,Y3) be independent, each distributed according to H(z,y). Then

E(X1Y1) — E(X1)E(MW)] = E[(X; — X)(Y1 — V)]
(/ / I(u, X3) — I(u, Xo)|[I(v, V) — (v, Y3)|dudv

where [(u,z) = 1 if u < 2 and = 0 otherwise. Since E(XY), E(X) and E(Y) are finite,

we can take expectation under the integral sign, then above equation becomes

E /_:O /—;OO [ (u, X1)—1(u, Xo)|[I(v, Y1)—1(v,Ys)]dudv = 2 /_:O /—:O [H(z,y)—®(2)¥(y)]dedy

This completes the proof.
Reference: Lehmann E.L., “Some concepts of dependence,” Ann. Math. Statist.,

vol. 37, pp. 1137-1153, 1966.

A.5 Consider a sequence of independent and identically distributed random variables
{X,,n=1,2,---} with mean E(X,) = E(X). Define another sequence of 0 — 1 valued
independent and identically distributed random variables {x,,n = 1,2, --} where x,, = 1
with probability 1 > p > 0 and y,, = 0 with probability 1 — p. Let

k=1

be the number of 1’s in the first n samples. Define

1 n
M, = — X5).
N, ;(Xk k)

Prove M,, converges to F(X) with probability 1 as n — oo, i.e.,

lim M, = E(X), w.p.1,

n—oo

and M,, converges to E(X) in probability as n — oo, i.e., for any € > 0,

lim P[|M, — E(X)| > € = 0.

n—oo

[Solution)]
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According to the strong law of large numbers, LZ? Xk

converges to p with probability 1
and L 37 (xx X)) converges to E[x;X;] = pE(X) with probability 1. So, M, converges
to E(X) with probability 1.

From the property of convergence with probability 1, the convergence in probability

can be easily obtained.

A.6 Consider a sequence of independent random variables {X,,,n =1,2,---}. The mean
value of X,,, F(X,), converges to a constant X, lim, .., F(X,) = X, and Var(X,) < occ.
Prove that the mean sample M, = %22;1 X, converges to X both with probability 1
and in probability .

[Solution]

Denote a, = E(X,). We have lim,_.. a, = lim, .. E(X,) = X. Let Y,, = X,, —a

Since a,, X are constant and {X,,,n = 1,2,---} are independent random variables, we
know that {Y,,,n =1,2,---} are also independent random variables and F(Y,,) = 0. From

22:1 Yk
n

the strong law of large numbers, we know that — 0 with probability 1 and in

. . "y, noX n_ . S . n >
probability. Since Z’“;ll E— Z’“—nl B Z’“;ll im0 @ = X and lim,,_, @ =X,

M, = % S n_ X converges both with probability 1 and in probability to X.

A.7 Let X be an irreducible but periodic Markov chain with transition probability matrix
P. The asymptotic stationarity (A.8) does not hold. However, we may define 7 (i) as the

time average

m(i) = lim E{sz (X)|Xo =3}, i,j€S, (A.17)
with x;(x) = 1, if z = ¢, and x(¢) = 0, otherwise. Prove
a. Prove that the (i) in (A.17) indeed does not depend on j.

b. Let m = (w(1),---,m(5)), then

ngglo ZPl—eW
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c. 7P = m, and me = 1 .

CHAPTER 9. SOLUTIONS TO CHAPTER 9

steady-state probability.

That is, the time average m plays the same role as the

d. Prove limy L{Zl o xi(X))}, i €S, converges with probability 1 to (). There-

fore, (i) can also be defined as the limit of the sample-path average of x;(X)),

[=0,1,- -

[Solution] a. Let f*(j|i) be the probability that the Markov chain transits firstly to state

j from initial state ¢ at time k. Since the Markov chain is irreducible and periodic, we

have
> Gl
k=0

Moreover,

Then,

Let L — oo, we have

1 L—1
o4 !
Jim, 7 219

Thus,

Pl = RGP G

Z FEGl0) hm—Zp (ili) =

k=

= P(Markov chain transits to state j early or late from initial state i) =

(i) = lim E{sz X)X =j} = lim —Zp il7)

is independent of the initial state j.

b. From (9.12), we naturally have the following matrix form

L-1

1.

(9.12)
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c.
S S L-1
d_m(@)P(kl) = ) lim E{sz (X0) P (kli)
i=1 i=1 =
= nggo—E;E{sz (X0)}P(k|i)
= ng{)lOE;E{sz (X;)P
= nggo—ZE{sz (X)) P
= Jim % ;E{mxlm} — (k)
S
Te = Z?T(’L)
zgl
= Z I oo LE{ZXZ Xl
- L-1 S
= Lle E{ZZXZ X))} = llm E{Zl}—l
=0 i=1
d. Proof: Set

L-1

Ni(L) = xilX0).
1=0
Let us fix a reference state ¢ and define the r-th passage time to state i as
Ti(r)=inf{l > T;(r — 1)+ 1: X; =i},
where T;(0) = 0. Suppose the period is d for P, then,

Yi(r) :=Ti(r) = Ti(r — 1) = nd < oo,

and Y;(2), Y;(3), - - - are independently and identically distributed with mean p;. Now note
that

V(1) + Yi(2) 4+ Yi(Ni(L) — 1) S L— 1,
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the left side being the time of last visit to ¢ before time n. Also,

Yi(l) + Yi(2) + -+ Yi(Ni(L)) = L.

Then we have
DDA 1100 NN NI Sris b (1()
Ni(L) Ni(L) = Ni(L)

(9.13)
By using the strong law of large number, we have

L
1
- > Yi(r) = i, wpll.

r=1

and also, since P is recurrent, we have

N;(L) — o0, as L — oo with probability 1.

So, letting L — oo in (9.13), we can prove % converges to ui = 7(4) with probability 1.

Therefore, m(i) can be also defined as the limit of the sample-path average of y;(X;),l =
0,1, -

A.8 (Uniformization) Consider a Markov process X with transition rates A(i), i € S =
{1,2,---,5}. Let P = [p(j]7)] be the transition probability matrix of the embedded

Markov chain, with p(i|i) = 0. Define another Markov process X’ as follows: the transi-
A(D)

1—c;’

tion rate at state i changes to \'(i) = where ¢; € (0,1) is a fixed number, i € S; the

transition probabilities change to p'(i|i) = ¢; and p'(j]i) = p(j|i)[1 — ¢, @ # 7.

1. Prove the steady-state probabilities of the both processes are equal; i.e., 7'(i) = 7 (i),

1€S.
2. Explain the relation between the sample paths of both processes.

3. Find the values for ¢;, i € S, such that the embedded Markov chain of X', X'T, has
the same steady-state probabilities as those of X’ and X; i.e., 7'(i) = /(i) = (i),
ieS.

[Solution)]
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1. Denote B as the infinitesimal generator of the Markov process X. We have B =

diag(A(1), ..., \(S))(P — I).

From p/(i]i) = ¢;, p'(j|i) = (1 — ¢;)p(jli) for all j € S — {i} and X (i) = 2% we have

1—c;’

B = diag(N(1),...,N(S))(P' —I)
1 1

P

= diag(A(1),..., A(S))diag( Ydiag(l —¢1,...,1—cg)(P—1) = B.

l—c’ " T1—cg

Since the Markov process X has the same infinitesimal generator with the Markov process
X' they must have the same steady-state probabilities, i.e., 7'(i) = (i), i € S.
2. Since the Markov process X has the same infinitesimal generator with the Markov
process X', they must have the same statistical behaviors. Compared with X, since
the transition probability is p/(i|i) = ¢;, Markov process X' can transit back to state
1 € § with probability ¢; after it stays at state ¢ for a time with exponential distribution.
Thus, the times that the process stays at state i follows a geometric distribution with c¢;.
(i)

Moreover, the sojourn time at state i is exponential distribution with rate 1’\7—6

T

From

the sample path, we cannot observe the state transits to itself, thus, the total sojourn

11 1
o, 20— X)) Therefore,

l—c;

these two processes have the same sample path statistically. The only difference is on the

time at state i follows the exponential distribution with mean

sample path of X’ there are some points the state of Markov process transits to itself,
which cannot be observed by the observer.

3. Since we know P’ = diag(l —¢q,...,1 —cg)P + diag(cy, ..., cs) and P =gt
rTdiag(1 —¢1,...,1 —cs)P = 7'"'diag(1 — ¢1,...,1 — cg).

That is,
wdiag(1 —¢1,...,1—cg)(P— 1) =0. (9.14)

By B = 0, we have
mdiag(A(1),..., A(S))(P—1)=0. (9.15)
Comparing (9.14) and (9.15), we get

7diag(1 — c1,...,1 - cg) = Krdiag(A(1),...,A(S)),
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where K is a constant. That is, 7' (i) = Kw(z)f‘flc), for all i € S. If #'1(i) = = (i), for all

i € 8, we obtain K2 = 1 for all i. Then ¢; = 1 — KA(i), which also need to satisfy

1—c;
0< K < —L1— since 0 < ¢; <1 for all i. We also can get X(i) = f\flc) = =

max A(2)

A.9 Let X' be the embedded Markov chain of Markov process X. Assume X is ergodic.
Let \(i),7 € S = {1,2,---, S} be the transition rates of X; and (i), 7(i), i € S, be the

steady-state probabilities of XT and X, respectively. Prove

where

[Solution]
We assume PT is the transition probability matrix of the embedded Markov Chain XT.

From the definition of infinitesimal generator, we know:
B = diag(\;, Ay, ..., Ag)(PT = I).

Since 71 = 7T PT, we have

(Pt —1)=0. (9.16)

Moreover, for Markov process X we have 7B = 0 and me = 1, which have the unique

solution. Then, we get

rdiag(A1, Aa, ..., Ag)(PT —I) = 0. (9.17)

Comparing the aforementioned two equations (9.16) and (9.17), we obtain

Wdiag()\l, )\2, vy )\S) = C7TT.
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A.10 Consider an ergodic Markov chain X = {Xj, Xj,---} with transition probability
matrix P = [p(j]i)]. Let m be the steady-state probability vector. Define a performance
function that depends on two consecutive states: f(i,7j), i,7 € S. Prove that the following

ergodicity equation holds:

nhj&{% y f(XlaXlJrl)} = Efr,P[f(XlaXlJrl)]
= Z Z{f(i,j)ﬂ(i)p(j\i)} = Z[f(’i)ﬂ(’i)], w.p.1, (9.18)

where f(i) = Zle[f(z,j)p(ﬂz)] Extend this results to function f(X;, X;iq1,- -+, Xin)
for a finite integer N.
[Solution)]

We define Z; = (X, X;11), then we can easily prove Z = {Z;,1 =0, 1,2, ...} is Markov
chain. Since X is ergodic, Z is also ergodic. By using the ergodicity theorem for ergodic
Markov chain, we have

L-1

T {73 F(Xe X)) = Ee plf(Xi, i)

1=0
where E; p is the steady-state expectation of Markov chain Z. Because the steady state

probability of Z is 7 (i, j) = 7(i)p(jli),i,j € S. Thus we have

T (37 (00 X000)) = B plf (X0 X0)]
S ;:O S B
= 3 S UGl = @), wpl

For the function f(X;, X;y1,- -, Xi1n), we can define Z; = { X}, X;11,..., Xj1n). Sim-

ilarly, applying the ergodicity theorem, we can obtain

L-1

1
lim = B [f(Xp, X, -, X))

1=0
=E, plf( X1, X151, o, Xign))]

=SS ST FGg e )R @GS G i)

1€S j1ES INES
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where .f(l) = Zjles e ZjNES f(iv.jl) cee 7.]N)p(j1|Z)H]kV:_11p(jk+1|jk)

A .11 Prove that the sojourn time that a Markov process stays in a state ¢ is exponentially
distributed, using the Markov property (A.10).
[Solution)]

Let Ty = 0, T1, T3, - - -, be the instants of transitions for the Markov process X = {X;}
and Xy, X1, Xy, - -+ be the successive states visited by X. T;,1 — T} is called the sojourn
time in state X;. We assume that the sample paths are right-continuous, i.e., X; = Xr, o,
and X; = ¢, then T}y — T} is the sojourn time in state i.

Next, to prove the result, we prove
P{T,1 — T, > t|X; = i} = exp(—A(i)t),

where A(7) is the transition rate of Markov process at state i. Because of the right-

continuous property, we have
P{Ti — T > t|X; =i} = P{X, =i, [y <u < Ty + t|X; = i}.

Firstly, set B 1= {X,, = 4,7} <u < T} +t} = \g,cper, 11 Xu = i}. Dividing [0, 7] into 2"

equal parts, set

211
A= {Xp e =ik =0,1,...,2"} = ({ X, = i}.
k=0

Since A,.1 C A,, set A :=lim, .A,. Obviously, B C A. On the other hand, from the

right-continuous property, we have P(A — B) = 0, so,

P{lin—Ti>2t|X; =i} = P{Xu=iT <u<T+tX; =1}
= P{B|X, =i} = P{A|X, =i}
= lim P{A,[X; =i}
= lim P{XTﬁ;_; =i, k=0,1,...,2"| X, =1}

n—oo

= lim P;(t/2")* (Markov property)
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= 7}5120 exp{2"In[P;(t/2")]}

- LA
= exp(—A(0)t).

A .12 Is the following statement true?

If the inter-transition times of a semi-Markov process are exponentially distributed,
ie, if Pl —Ti < t|1X; =i =1— e i €8, then the semi-Markov process is a
Markov process.

4

If your answer is “yes”, prove it; if the answer is “no”, explain why and give a counter
example.
[Solution)]

This argument is wrong.

From the definition of Semi-Markov process, we have

PXis1=7T41 — T <t|Xo,....X; =4Tp,...,T)]
= PXi1=74T41— T <t X, =1
= Pl — T <X, =i|P X1 =j| X1 =14, T — T < 1]

= [1—e*MPXy = j|1X =i, T — T < 1.
As we know, by the Markov process definition, we have
PlXi =, Tpr = Th < t[Xo,... . Xy = i; To,..., Ti] = p(jli)[1 — e ).

As we can see from these two definitions, the state transition probability in the Markov
process p(j]i) will have no relation with state sojourn time 7,1 — T;. Therefore, although
the state sojourn time 7}, —7T; of Semi-Markov process has memory-less property, we can-
not assert it is Markov process. Here is a counter-example. Suppose the state transition
probability P(X;,1|X;) of Semi-Markov process is related to T;.; — T;. In this situation,
although Tj,1 — T} is memory-less, the Semi-Markov process is still not a Markov process.

If we have further condition that P[X;41 = j|X; = 4,111 — T; < t] = p(jli), then this
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semi-Markov process is a Markov process.

Appendix B

B.1 In the canonical form (B.1), what if R,,; may be further irreducible.
a. Write R, in a canonical form, and

b. Explain the meaning of this canonical form in terms of the transitions of the transient

states.

[Solution]

R,,.1 may be further reduced to

—Ql o o --- - 0 ]
0 @ 0 --- - 0

Ryy1 = . . Ceee . ,
0O 0 0 -+ Q@ O
Ty I3 - T Tenn

b. This canonical form means the transient states can be further divided into ¢ + 1
parts. The part corresponding to Q;,7 = 1,2, ..., ¢, can only transit to itself. The ¢+ 1th

part can transit to any part.

B.2 Derive a general form for the solution to (B.6) and (B.7).
[Solution)]

Denote P as it’s canonical form:

(P, 0 0 - - 0 |
0 P, 0 - - 0
P=| . . . .. . . (9.19)
0 0 0 P, 0
| R R, Ry Ry R |
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Recall that (B.6) and (B.7) are respectively
Pre=ce, (9.20)

and
P*P = PP* = P*P* = P*. (9.21)

Denote the solution to (9.20) and (9.21) as

Pry Pry Pry e ) P*(m—f—l)
Py Py, P2*3 T ) P*(erl)
P* = . . . .. . . , (9.22)
P Pro P;:L:S e Prm P;L(mﬂ)
P(tn—i—l)l P(*m+1) P(*m+1)3 P(tn—i—l)m P(tn-l—l)(m—l—l)

Then from PP* = P*, we get

PP =P, j=1,2,-mi=12-- m+1, (9.23)

m—+1

> RyPy =Py 1=1,2- m+1. (9.24)
Since P;, i = 1,2, - - are irreducible non-negative matrix, then it is well-known that 1

is the simple eigenvalue of P;. Combining with Pe; = e; and (9.23), we know that
P;i:[cl(ja )6]762(.77 )6],"',67”(]',7;)6]'], j:1727"'7m7i:1727"'7m+17 (925)

and

Plonpin = (I = Rysr)” ZRI@PI:Z’ l=1,2,---m+1, (9.26)

where ¢; = [1,1,---,1]T and it’s dimension is the same as P;, denoted by n; and ¢ (j, %)
is a constant scalar.

Noting that P*e = e, we know that

m+1 n;

YD aljiy=1forj=1,2,--,m

=1 [=1

Then from P*P = P*, we get

PSP+ Pl Ri= Pl i=1,2,-,mj=1,2,--,m+]1, (9.27)

Ji

Py Bt = Pigsnys §=1,2,---,m+1, (9.28)
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By (9.28), we know P

myny = 0 noting Rye Xe, j =1,2,---,m+ 1. Then (9.27)

becomes

PP, = P;,

Juv

i=1,2,mj=12- m+ Ll

Combining with (9.25), we get that
PJ*Z =c(j,i)ejm, 1=1,2,--- m,j=1,2,---,m+1, (9.29)

where 0 < ¢(7,4) < 1 is any constant and 7; is the steady state probability of P;. That is,
c(j,1) = c(4,4)m(l). Noting that P*e = e and ¢(j,m + 1) = 0, we know that

m+1 n; m+1 n; m+1 m
Z Zc(ja 2)77'@(0 = Z C(j, ’L) Zﬂ'@(l) = Z C(j, ’L) = Zc(j, Z) =1 for ] = 1’ 2’ ceem.
i=1 [=1 i=1 =1 i=1 i=1

Finally from P*P* = P*, we obtain

m+1
k=1

Since we have proved that Pj*(m-l—l) =0and P}; = c(j,1)e;m;, we get
ZC(j)kj)C(k,i):C(j,Z.), Z.,j:]_’Q’...’m’
k=1

and

c(m+1,k)e(k,i) =c(m+1,i), i=12--- m.

NE

i

1

Combining (9.26) and (9.29), we know that

Z Rye(k, Deym = (I — Rpg)e(m + 1, Dempam, [ =1,2,---,m.

k=1
| c(1,1)eym c(1,2)eymy Coeee c(l,m)eymy, 0 1
c(2,1)eqm c(2,2)eyms R c(2,m)eamy, 0
P = ,
c(m,1)e,m c(m,2)e,,ms Coeee c(m,m)ey, 0
clm+1,Depm c(m+1,2)eppame - - - c(m+1,m)epmm 0



where ¢(7,1) satisfy

Y ei)y=1, j=1,2,--m+1

ZR’“C(k’ Depm = (I = Rnp1)c(m + 1, Depam, Il =1,2,- -+, m.

k=1
The following is a group of solutions

[ c(l)eym c(2)eymy c(3)eims - - c(m)em, 0
c(1)egm c(2)eqms c(3)eams -+ - c(m)eam,, 0
P =
c(Depm  c(2epnm c(B)epms -+ - c(m)eym, 0
I c(Demprim c(2)emirma c(3)emprms -+ - c(m)emirmm 0 |

where 0 < ¢(i) <1and Y ", c(i) = 1.
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(9.32)

B.3 Many results for a series of real numbers have their counterparts in matrix form.

1

For example, for real number series we have — = 1+ x + x2? + -+ if |z| < 1; and for

1

matrix series we have (I — P)™' = I + P+ P?+ --- if p(P) < 1. In real analysis we

have the following Stolz theorem: for two series of real numbers z,, and y,, n =1,2,- -,

if Ynt1 > Yn, N = ]-7 2a T hmn—>oo Yn = OO, and hmn—>oo Yntl—Yn

. Tn, . :L‘n—i—l — Tn
lim — = lim ———.
n—=o0 Yp o M0 Yntl — Yn

a. Prove the Stolz theorem.

b. Prove if lim,,_. x,, exists, then lim,,_, % S opy Ty = limy, o T

c. Prove the matrix formula (B.8).

Tnt1—Tn

[Solution] a. Denote lim,, R

= a.

In+l1—Tn

exists, then

From the definition of convergence, for every ¢ > 0 there is N(e) € N such that

Vn > N(e), we have :

Tpn+1 — T
a—e< LT g te

Yn+1 — Yn



246 CHAPTER 9. SOLUTIONS TO CHAPTER 9

Because y,, is strictly increasing we can multiply the aforementioned equation with

Yn+1 — Yn tO get :
(a - 6) (ynJrl - yn) < Tpy1 — Ty < (a + 6)(yn+1 - yﬂ)

Let k > N(e€) be a natural number. Summing the last relation we get :

k k k
(a—e€) Z (Yir1 —yi) < Z (Tiy1 — (a+e€) Z (Yit1 —
1=N(e) =N (e) =N (€)

= (@ = )(Wrt+1 — YN(O) < Thr1 — Tn(e) < (@4 €)(Yrt1 — Yn(e))-

Divide the last relation by yx11 > 0 to get :

€ x X € €
(a—e)(1— L9y o Tl IN@ g 4 ¢y(1 — Oy,
Yk+1 Yk+1 Yk+1 Yk+1

€ TN (e € TN(e
e)(1— @y L INO o Thtl (4 )(1 — @y 4 IV

— (a —
Yk+1 Yk+1 Yk+1 Yk+1 Yk+1

Since lim,, .. ¥, = 00, this means that there is some K such that for £ > K we have:

Tk+1
a—€< a < a-+e.
Yr+1
Therefore,
. Tp . Tnp+1 — Tn
lm — =a¢= lim —.
n—0o0 Yp n—=%0 Yni1 — Yn

b. Let y, =n and z, = Y _,_, x. From part a, we know

. Zn “n+l — Zn
lim — = lim ———
n—0o Yy M0 Ypil = Yn
That is,
1 n
nll_}rlgo - Zxk = lim 2,4, = nhm Ty
k=1
c. Denote real matrix A(n) = (a;j(n))sxs. If for any i,j = 1,..., 5 and for two series
of real numbers a; ;(n) and y,, n = 1,2, -, if Y01 > yp, n =1,2,- -, lim,, oy, = 00,

a;,j(n+1)—a;, (n)
Yn+1—"Yn

i (M) _ @i+ 1) —ai(n)

oo Yn n—eo Ynt1 = Yn

and lim,,_, . exists, then from part a) we have

, foralli,j=1,...9.
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We write the aforementioned equation in matrix form,

A — A
lim =% = i et

n—oo yn n—o0 ynJrl — yn

(9.33)

If let A, = Z;(l) P* and y,, = n, then by using (9.33), we can easily obtain

n—1 pk
) P )
P* = lim Zk_io = lim P".
n—oo n n—oo

B.4 Let P be an irreducible periodic stochastic matrix. We have p(i|i) = 0 foralli € S. To
break the periodicity, it is enough to simply introduce a “feedback probability” p(i|i) = €
for only one state i, not all the states. Therefore, we define an aperiodic matrix by setting
p(ili) =€ p'(jli) = (1 —€)p(jli), j # i for one particular state i, and p'(k|j) = p(kl|j) for
keS8, j#i.

1. Express the steady-state probabilities 7’(i) of P’ in terms of € and the steady-state
probabilities 7 (i) of P.

2. Let f denote the reward function and n = 7w f be the long-run average reward for
the Markov chain with transition probability matrix P. Define a reward function
f' so that the long-run average performance of the Markov chain with transition

probability matrix P’, n' = 7' f’, equals .

[Solution)]

1. We can get that

P’ =diag(1,...,1—¢,...,1)P + diag(0,...,€,...,0).

By n'P' =7,
n'diag(1,...,1—¢,...,1)P + 7'diag(0,...,¢,...,0) =7
That is,
w'diag(l,...,1—¢,...,1)P = 7'diag(1,...,1—¢,...,1).
By this, we can know n’diag(1,...,1—¢,...,1) = cm, where cis a constant. Finally, we get
7' = erdiag(l, ..., =,...,1). Noting that % w(i) = 1, thus ¢ = ! ;

$1- YRt (R4 () T
Then, 7'(k) = cr(k) for k # i and 7'(i) = em (i)

1—e”
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2. f" should be such that 7’ f" = wf. That is,

S

S° enlh)f/(k) + ex); !

k=1,k#i k=1

If we define f/(k) = 2f(k) for k # i and f'(i) = L=5f (), then g/ = 7'f =« f = 1.

Mm

(i) f(2)

Appendix C

C.1 Write the steady-state probability flow-balance equation for M/M/1 queue.
[Solution)]

Suppose A and p are the arrival rate and the service rate of M /M /1 queue respectively.
Denote p(n) as the steady-state probability of event that there are n customers in the

system. We have the following flow balance equations,

Ap(n) = up(n+1) for n > 0.

Let p = ﬁ We know that p(n + 1) = pp(n) = p"*'p(0) for n > 0. By > 02 p(n) =1, we
get p(0) =1 — p. Then p(n) = p"(1 — p) for n > 0.

C.2 Consider an M/G/1 queue with arrival rate A\ and mean service time 5. Prove that
the average of the number of customers served in a busy period is )\,
[Solution] Let Ny, be the number of customers served in a busy perlod and f, = P[Nyp, =

n]. Next, we obtain a functional equation for f,’s z-transform defines as

F(z) = E[2""] Z fa?"

The term for n = 0 is omitted from this definition since at least one customer must be
served in a busy period. Let © denote the number of arrivals during a service period.

We firstly consider ©’s z-transform defined as

Then we have
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o (& )t
= /0 e <Z u b(z)dx
k=0
= / e e M h(x)da
0
= / e~ AT (1)de =: B* (A — \2),
0
where B*(s) = [ e *“b(x)dx and b(z) denotes the service time probability density func-
tion. We assume that k customers arrive during the service period of the first customer.
Moreover, since each of these arrivals will generate a sub-busy period and the number of

customers served in each of these sub-busy periods will have a distribution given by f,.

Let M; denote the number of customers served in the ¢th sub-busy period. We have

B[N |§ = k] = B[t Mt Mot My

and since the M; are independent and identically distribution we have

k

B[N |o = k] = ZHE[ZM’]

i=1

But each of the M; is distributed exactly the same as Ny, and, therefore
E[N|o = k] = 2[F(2)]F.

Removing the condition on the number of arrivals we have

F(z) = > E[N7|0=kP[i =k

Thus, we have
F(z) = zB*[A — AF(2)].
Then, we have

E(Ny) = FO1)=BW(0)[-AFV(1)] + B*(0)

= ASE(Ny,) + 1,
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thus,

1

EWNy) =755

Reference: L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley & Sons,
New York, 1975.

C.3 An M/M/1 queue with arrival rate A and departure rate p can be constructed as
follows. Choose an initial state ny at time 0 and a rate o > A\ + u. Generate a Poisson
process with rate o, denoted as tg,t1,...,%,.... An instant #;, [ = 0,1,..., is chosen as
an arrival point with probability % and as a departure point with probability £. At an
arrival point, we increase the population by one: n := n + 1, and at a departure point
if n > 0 then we decrease the population by one: n := n — 1, and at other points we
keep the population unchanged. Prove that the discrete-time Markov chain embedded
at t;,l = 0,1,..., is the discrete M/M/1 queue described on Page 526. Determine its
parameters p, and p, [148].

[Solution] When n > 0, we have p(n + 1|n) = 2 and p(n — 1|n) = £. Thus , p, = 2 and

py = £. when n = 0, we have p(1|0) = g and p(0[0) =1 — %

C.4 Many results in this book are stated only for discrete-time Markov models, but the
queueing systems are usually modelled by continuous-time Markov models. Therefore, we

need to use the embedded Markov chain.

a. Find the transition probabilities of the Markov chain embedded at the arrival and

departure instants of an M/M/1 queue with arrival rate A and service rate p.

b. If we use the reward function f(n) = n, does the long-run average of the embedded

chain equal to the mean length of the original M/M/1 queue?
c. If the answer to (b) is “No”, what can we do? (cf. Problem C.9)

[Solution)]
a. It is easy to know that the transition probabilities of the embedded Markov chain
of M/M/1 queue is that, p(n + 1|n) = F’\M,p(n —1|n) = 3, for n > 0; p(1]0) = 1; and

all the other probabilities are zero.
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Figure 9.4: An M/M/1 Queue with Feedback

b. It is obvious that the steady-state probability of embedded Markov chain is not
equal to that of the original queueing system. So the long-run average of the embedded
chain is not equal to the mean length of the original M/M/1 queue.

c. This problem can solved by the idea of uniformization in Markov process. We
should change the transition probability of embedded chain to p(1]0) = ﬁ,p(0|0) =
>\MTM and keep the other probabilities unchanged. The steady-state probability of this
embedded chain will be equal to the original queueing system and the corresponding

system performance will also be equivalent.

C.5* Consider the queueing system with an M /M /1 queue and a feedback loop shown in
Figure 9.4. This is the simplest non-acyclic open queueing network. The external arrival
process to the system is a Poisson process. After the completion of its service at the
server, a customer leaves the system with probability 1 — ¢ and returns back to the queue
with probability ¢, 0 < ¢ < 1. The total arrival process to the queue at point A is a
composition of both the external arrival process and the feedback process. Explain that
this total arrival process at point A is not a renewal process. (Hint: When the server is
wdle, the inter-arrival time is larger on average. Fxplain that the consecutive inter-arrival

times at point A are not independent.)
[Solution)]

It is known that the renewal process requires the inter-arrival time sequence should
be independent and identically distributed. In this problem, if we think the situation
where the server is idle, it is easy to know that during the idle period the inter-arrival
process is only contributed by the external arrival process. So the inter-arrival time is
larger than the average. Thus, the inter-arrival time sequence does not have the same

distribution in the combined arrival process. The total arrival process at point A is not a
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renewal process is not a renewal process. Moreover, we can find the distributions of the
inter-arrival times, when there are customers in the system, are different from those when
there are no customers. That is to say, the inter-arrival time depends on the current state.
Thus, according to the Markov property of state transitions, the internal-arrival time will
also depend on the previous state. Therefore, the consecutive inter-arrival times at point

A are not independent.

C.6 A nonblocking cross-bar switch can be modelled as a closed queueing network. Figure
9.5 illustrates the structure of a nonblocking packet switch consisting of N input links
and M output links. Packets arriving at each input queue are put in a buffer waiting
to be transmitted. Suppose that all packets belong to the same class in terms of the
statistics of their destinations: A packet arriving at any input has probability g; ; of being
destined for output j given that the previous packet at that input was destined for output
1,1,7 =1,..., M. Every packet destined to output j requires an exponentially distributed
transmission time with mean 5;. At a time, only the head of line (HOL) packet (the first
packet) in an input queue can be transmitted and the switch can only transmit one packet
to every output queue at a time. The HOL packet of an input queue contends with the
HOL packets of other input queues that have the same destination in a FCFS manner. We
wish to determine the maximum throughput of this N x M switch, i.e., how much packets
that this switch can transmit to their destinations per second if there are always packets
at every input waiting for transmission. Develop a queueing model for this problem [52,
68]. (Hint: The HOL packet of an input queue makes a request to the switch asking for
being transmitted to its destination at the time when it moves to the head position. All the
requests to the same destination output queue form a logical queue called a request queue.

The M request queues constitute a closed queueing network.)
[Solution]

Although the packet served by the switch will leave from output link, we can consider
the packet turn back to the input queue equivalently. This problem can just be modelled
as an M-server N-customer closed Jackson network. The routing probability is ¢; j,, 7 =

1,---, M. The service time of each server is exponentially distributed with mean service
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Figure 9.5: The Model of a Nonblocking Switch

time 55,5 = 1,---, M. Our objective is to maximize the throughput of the queueing

network. It can be solved by the classical algorithm of closed Jackson network.

C.7 A cyclic queueing network of M servers is a closed network that contains M servers
connecting as a circle. A two-server cyclic network is a network of two servers with routing
probabilities g1 2 = ¢21 = 1 and ¢11 = ¢22 = 0. Consider a two-server cyclic network with
service rates A and u, and a population K. Show that this closed network is equivalent

to an M/M/1/K queue with arrival rate A and service rate p.
[Solution)]

Denote the number of customers in server 2 is n. Since this is a closed network, then
the number of customers in server 1 is K — n. From the memoryless property, the state
of this closed network can be denoted as n. Since ¢12 = @21 = 1 and ¢11 = g22 = 0,
there are no feedback loops. Then the arrival process to each server is a Poisson process.
For server 2, the arrival process is a Poisson process with rate A and it’s service time is
exponentially distributed with rate p. Moreover, the customers in server 2 can not exceed

K. In the physical meaning, this closed network is equivalent to an M/M/1/K queue with
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arrival rate A and service rate u. We also get the flow-balance equations for this closed

network,
Ap(n) =pup(n+1) for0<n <K —1.
Solving it, we get p(n) = il:p’ﬁfi, n< K, p= 3 # 1, and if X = g, p(n) = &5,

0 < n < K. This steady-state probabilities are the same as an M/M/1/K queue with

arrival rate A\ and service rate p.

C.8 Consider an open Jackson network with M servers. The service times at server 7
are exponentially distributed with mean s;, 1 = 1,2, ---, M; the routing probabilities are
Gij, t,J = 1,2,---,M; the external arrival rate to server ¢ is Ap; and the leaving rate

from server i is g, i = 1,2,---, M. The state of the network is n = (ny,---,ny). Let
N = Zi\il ng.

1. Find the conditional steady-state probability p(n|N).

2. Show that this conditional probability is the same as an equivalent closed Jackson

network with a population N.

3. Find the routing probabilities of this equivalent closed Jackson network and give

your explanation.

[Solution]

1. Let p(n) be the steady-state probability of state n, we have

M
k=1
with
pln) = (1 —pe)pp*s  po=—, k=12, M,
Hoke
where
M
Ak = )\O,k—’_Zquj,k) k= ]-72a"'aM (935)
j=1
and py, = =

Sk

This shows that in an open Jackson network, each server behaves as if an independent

M/M/1 queue with arrival rate A, and service rate ug, k = 1,2, -, M, respectively.
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Then,

Ilﬁilp(nk)
anJr---JrnM:N lengl p(nk)
H]szl(l — PPy
> ity Llimy (1= 1) o1
H/iwzl P

i .
ZTL1+---+TL1\4=N Hk=1 pzk

2. Let Gu(N) = X2 4 fnyen [TL, pi*, then p(n|N) = #(N)HQ; pr. We can see

that p(n|N) has the same formula as p(n) in a equivalent closed Jackson network with

p(n|N) =

a population N if pp = cxy, that is, \p, = cvg, k = 1,..., M, where ¢ is any non-zero
constant.

3. We need to have \, = cvi, k = 1,..., M. Let \g = 22/[:1 Ao, and qo; = ’\;(’)i, for
t=1,..., M. Suppose the routing probabilities of this equivalent closed Jackson network

isq;, 4,5 =1,...,M. Then

M
V; :Zq}ﬂ'?}ja j: 1727"'7M' (936)
j=1
Let
G = Gij+ G0ty Jj=1,2,..., M. (9.37)

(9.36) can be rewritten as
M M
v = qu,ivj_'_ij,oqo,ivja Jg=12--- M.
j=1 j=1
Summing (9.35) from i = 1 to ¢ = M, we get
M M
Ao = Z )\O,i = Z /\iQi,O~
i=1 i=1
By the aforementioned two equations and (9.35), we can prove that \; = cv; satisfies
M
AZ:ZQ;’ZA], j:1a277M
j=1

Therefore, if the routing probabilities of this equivalent closed Jackson network is defined
as (9.37), then we show that this conditional probability is the same as an equivalent

closed Jackson network with a population N.
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Observing (9.37), we can see that the routing of the customers in this closed network is
the same as that in the open network with the following modification: When a customer
completes its service at server i, he/she will leave the network with probability ¢; ¢ and
then be immediately routed to server j with probability gy ; or will be directly routed to

server j with probability ¢; ;. Thus the routing probability from server ¢ to server j is

G = Gij + 2090,

M/M/1

[
[
[
[
[
[
Y

Figure 9.6: The Arrival Theorem and PASTA

C.9 Figure 9.6 illustrates a sample path N(¢) of an M/M/1 queue, in which the upward
arrows indicate the departure instants and the downward arrows indicate the arrival
instants. Let the arrival rate and service rate be A\ and pu, respectively. We simulate the

M/M/1 queue with the uniformization approach (cf. Problem 10.8):

i. Generate a Poisson process with rate A + p, shown in Figure 9.6 as {t1, s, t3,...}.

Set N(0) = ng being the initial state (no = 0 in Figure 9.6)

ii. At t,, K = 1,2,..., generate an independent and uniformly distributed random

variable &, € [0,1),

(1) If & < ﬁ, then ¢ is an arrival instant; set N(tx+) := N(tx) + 1.

(2) If & > ﬁu and N(tg) > 0, then t; is a departure instant; set N(tx+) =

N(ty) — 1.
(3) If & > ﬁ and N () = 0, do nothing.
The process N(t) thus generated is left-continuous. In Figure 9.6, 7, k = 1,2,.. ., indicate

the arrival instants and 7¢, k = 1,2, ..., indicate the departure instants; at ¢3 and ¢4 the

server is idle and nothing changes, these instants are call “dummy instants”.
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a. Explain that the process N(t) generated by the above algorithm is indeed an M/M /1

queue with arrival rate A and service rate pu.

b. Define X; := N(t;). Prove that the embedded chain X := {X;, X5,...} is a
Markov chain and its steady-state distribution is the same as that of the M/M/1
queue process N (t)(PASTA).

c. Prove that the average of the number of visits where the arriving customer or the
departing customer sees n customers in the queueing system at the non-dummy in-
stants tq, t9, ts5, tg, - . ., equals the steady-state probability of the staten, n =0,1,....
Further, prove that the average of the number of visits where n customers are seen
by the arriving customer in the system at the arrival instants 7¢, k = 1,2,..., (or
the departure instants 7, k = 1,2,...) equals the steady-state probability of the

state n, n =0, 1,... (the arrival theorem).
d. Extend this explanation to (open or closed) Jackson networks.

[Solution)]
a. It is known that these processes are generated independently. Since the total rate

of the generated process is A + p and we adopt it as arrival process with probability

A

yemt with the memoryless property of Poisson process we know that the arrival process

is a Poisson process with rate (A + p) - ﬁ = A. We assume a customer begins to be

served at time t,. After that, the service will be completed at ty,; with probability

n—1
at tp,o with probability —2-<£ ... at t,,, with probability ( A ) £ ...

K A _H A K
Ap? Ap A4 A-p A+p?

and so on. We assume ¢ is a random variable which is exponential distributed with

rate A + p. Then from the construction of the process, we know the service time is

n—1
ﬁf + F’\uﬁ% + o4 (ﬁ) ﬁnf += iﬂ”f Since £ is is a random variable

which is exponential distributed with rate A + p, we have

o
A+ p

I
A+

A+ p

P( §<z)=P( <

7) =1 — exp(—(A + )

,ux) =1 — exp(—pzx).

The service time is also an exponential distribution with rate p. So, the generated process
N(t) is indeed an M/M/1 queue with arrival rate A and service rate u. If a customer leave

the system and there are no customers in the system at t;, then we can similarly obtain
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the arrival time is

)\+u
A

n—1
p B Iz
+ 264+ (+—
)\+u§ )\+,u)\+u£ ()\+u) A+

ng + - = ——~¢.

Thus, the arrival process is Poisson process with rate A when there are no customers in
the system.

b. From the generation of process N(t) we can see that the next state X, is only
dependent on the current state X,,, i.e., X has the Markovian property and X is a
Markov chain. It is easy to know that the transition probability of X is p(n + 1|n) =
ﬁ,p( —1fn) = 55, n > 0;p(1]0) = )\+M7p(0|0) 3i; others probabilities are all zero.
From the equation of steady-state probability 7P = 7, me = 1, we can easily know that
the steady-state probability of X is m(n) = (1 — p)p”, where p = A\/u. It is equivalent
with the steady-state probability of the M/M/1 queue.

c. Let ad(n) be the average of the number of arrivals or departures where the arriving
customer or the departing customer sees n customers in the queueing system at the
non-dummy instants ti, to, t5, tg, ... and m(n) be steady-state probability of the state n.

Viewing ad(n) and 7(n) as the limiting probabilities, we have:

m(n) = lim P{N(t) =n},

ad(n) = lim P{N(t) = n|an arrival or a departure just after time ¢}.

t—o0

This is right since time average probabilities are equal to limiting probabilities for ergodic
systems
Let A(t,t46) be the event an arrival or a departure occurs in the time interval [¢,t4-9).
Then,
ad(n) = tlir})lo lgn P{N(t) = n|A(t,t+0)}
= tllrl& (1513% P{N(t) =n, A(t,t + 9)|A(t,t + )}
P{A(t,t+ §)|N(t) = n}P{N(t) = n}

= lim lim

o000 P{A(t,t +0)}
i 1y PIAW T+ 0} PN () = n}
t—o0 6—0 P{A(t,t—l— 5)}
B tlgglo P{N(t) = n}

= m(n).
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Further, from the above result, we can proved that the average of the number of visits
where n customers are seen by the arriving customer in the system at the arrival instants
8 k = 1,2,..., (or the departure instants 7¢, k = 1,2,...) equals the steady-state
probability of the state n, n =0,1,...

d. We may also simulate a (closed or open) Jackson network with uniformization
approach. We only consider the open Jackson network. In the network, we have more
than one arrival rates Ap;,¢ = 1,..., M and service rates g,k =1,2..., M. We may
generate a Poisson process with rate R = 3.0 Ao; + S opy Mk, 85 {t1,t2,...}. Set the
network state at epoch ¢ as N(tx) = (ni,ne,...,ny). At each epoch t;, generate an

independent and uniformly distributed random variable &, € [0, 1),

LOIf ZEA <o B o ]9 M with Mg = 0, then #, | ival
. - < & = m = 1,2,..., with Agp = 0, then %, 1s an arriva

instant and the customer arrives at server m; set N(tx+) = (n1,n2, ..., Mp—1, N +
1, Nm+1, - - - ,7’LM).
ivi Aoi+ ﬁi_lu-n, 5\1 Aoi+>. 0L Hjn .
2. If Zizi o %J‘l L& < Ziz1 o sz’l 24 with g, = 0 and n,, > 0, then

is an instant when the service of a customer at server m is finished. The customer
transfers according to routing probability ¢,,;. If [ = 0, the customer leaves the
network; set N(tx+) = (n1,n2,...,7ym —1,..., 0y, ..., nyp); otherwise, the customer

enters server [; set N(tx+) = (n1,ne, ...,y — 1,...om + 1,00 npy).

S Mo+ T My
R

If S Mo+
R

< & < with pon, = 0 and n,, = 0, do

nothing.



