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1
Solutions to Chapter 1

1.1 Give an example of a real world problem that fits the general model of learning and

optimization illustrated in Figure 1.1.

[Solution]

In the Internet routing protocols, the routing problem can be viewed as a good example

that fits the general model of learning and optimization.

In the routing problem, the goal of protocols is to find an optimal route from the

source computer to the destination computer. Between the source and destination node,

there are many routers which can relay the data packets. Routing protocol is to choose a

set of routers to relay the packets efficiently.

The input action is the relay probabilities of each router. It is supposed that with

high relay probability, the router would more likely relay these packets. We can adjust

these relay probabilities to get a good routes.
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The destination computer can use the lost-packet rate and transmission delay to qual-

ify the routes’ performance. The performance can be observed through destination com-

puter. These are the output variables.

The optimization problem is to adjust the relay probabilities of each router to get

a good routes performance. The detailed construction and information in the internal

network may be very complicated. We can use the learning and optimization method to

learn the network behaviors and optimize the relay routes.

1.2 A person travels from the star point shown in Figure 1.20 to one of the seven des-

tinations indicated as the circles in the figure. The person may receive a reward shown

as the number in the corresponding circle when she/he reaches a destination. There are

three time steps, l = 0, 1, 2, in this problem. The letters α1,1, α1,2, α1,3 and α2,1, . . . , near

the arrows represent the actions. Develop an optimal policy for the person to receive the

biggest reward. Note that there is more than one optimal policy.

[Solution]

At first we consider the open-loop policy, we can find the best reward is 10. Action

sequences {α1,1, α2,2, α3,2} {α1,2, α2,2, α3,1} can reach this optimal reward.

Next, we consider the policy depending on the action history. We can know the optimal

policy has three sections as below.

Step1: d0(∅) = {α1,1, α1,2, α1,3};

Step2: d1(α1,1) = {α2,2}, d1(α1,2) = {α2,2}, d1(α1,3) = {α2,2} ⇒ d1 = {α2,2};

Step3: d2(α1,1, α2,1) = {α3,2}, d2(α1,1, α2,2) = {α3,2}, d2(α1,2, α2,1) = {α3,1}, d2(α1,2, α2,2) =

{α3,1}, d2(α1,3, α2,1) = {α3,1}, d2(α1,3, α2,2) = {α3,1} ⇒ d2(α1,1, α2,i) = {α3,2}, d2(α1,2, α2,i) =

{α3,1}, d2(α1,3, α2,i) = {α3,1}, i = 1, 2

So the optimal policy is derived: d = {d0, d1, d2}.

1.3 In Example 1.2, at l = 0, there are two possible observations y0 and y1. Thus, the

number of possible sub-policy d0 : {y0, y1} → {α0, α1} is 22 = 4. Next, if we do not follow

any policy at l = 0, then at l = 1, there are eight possible different histories {Y0, A0, Y1}.

In this case, at time l = 1 every policy d1 needs to specify an action for every one of these

eight different action-observation histories. Thus, there are 223
= 28 = 256 possible sub-

policies d1 at l = 1. However, if we follow any sub-policy at l = 0, because A0 = d0(Y0),
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we only have four (instead of eight) possible different histories for each d0. Therefore, if

we follow any sub-policy at l = 0, each sub-policy at l = 1 needs to specify actions for

these four different action-observation histories. That is, for each sub-policy d0, there are

only 24 different sub-policies d1 at l = 1. Thus, there are altogether 22 × 24 = 64 different

combined policies {d0, d1}. Convince yourself about the above argument, and continue to

calculate how many policies there are for d = {d0, d1, d2}.

[solution]

At time l=1 the history sequence is {Y0, A0, Y1}, thus the number of histories is indeed

23=8. But in fact the action A0 is decided by policy d0. Therefore, for fixed policy d0, at

time l = 1, there are only 22 possible different histories.

From this point, we can know that at time l=0, the number of policies is |d0| = 22.

At time l=1, the policy number is |d1| = 222
if we follow the policy d0.

At time l=2 the history sequence is {Y0, A0, Y1, A1, Y2}, the number of histories is

indeed 25=32. But in fact the actions A0 and A1 are decided by policy d1. Therefore, for

fixed policy d1, at time l = 2, there are only 23 possible different histories. Thus, at time

l=2, the policy number is |d2| = 223
.

So the total policies space size is |d| = |d0| × |d1| × |d2| = 22 × 222
× 223

= 214 if we

follow policy d.

1.4 Prove that the optimal feedback policy based on observations performs better than

the optimal open-loop policy on average (cf. Example 1.2).

[solution]

As mentioned in Table 1.2, we assume that the observations of the system at time

l = 0 and l = 1 are fixed as y0 and y1, respectively, and the probabilities of Y2 = y0 and

Y2 = y1 are both 0.5. From Table 1.2, we can know that if we use the optimal open-loop

action sequence (α1, α0, α1), then the optimal reward is 1
2
(12 + 8) = 10. However, from

Table 1.2, it is clear that given the history (up to l = 1) {y0, α1, y1, α0}, if we observe

Y2 = y0, we definitely should take action α1 at l = 2 to receive a reward of 12. But, if we

observe Y2 = y1 at l = 2, we should take α0 to receive a reward of 10 (instead of taking

α1 to get 8). Thus, the optimal feedback policy based on observations can obtain a better
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performance, which is 1
2
(12 + 10) = 11 on average.

1.5 Consider an MDP with state space S = {1, 2, . . . , S}. Let the action space be A =

{α1, α2, . . . , αS}; suppose that when action αj is taken in any state, the system will, with

probability one, move to state j, j = 1, 2, . . . , S.

a. For any i ∈ S, define a distribution on A as νi = {p(1|i), p(2|i), . . . , p(S|i)}. Let

νi = d(i), i ∈ S, be a randomized policy defined as follows: In any state i, i ∈ S,

action αj is taken with probability p(j|i), j ∈ S. What is the Markov chain under

this policy νi = d(i), i ∈ S?

b. Let α(1) and α(2) represent another two actions: If α(k) is taken at state i, then the

system moves according to the probability distribution ν
(k)
i = {p(k)(1|i), p(k)(2|i),

. . . , p(k)(S|i)}, k = 1, 2. Let νi = d(i), i ∈ S, be a randomized policy defined as

follows: At any state i, action α(1) is taken with probability pi, and action α(2) is

taken with probability qi, pi + qi = 1, i = 1, 2, . . . , S. What is the Markov chain

under this policy νi = d(i), i ∈ S?

[solution]

a. Since the random policy takes the action αj with probability p(j|i) and the system

will move to state j when action αj is taken, we can know the system will move to state j

with probability p(j|i). So, the transition probability matrix of the Markov chain under

the policy νi = d(i), i ∈ S, is P = [p(j|i)]Si,j=1.

b. The transition probability from state i to state j is pν(j|i) = pip
(1)(j|i) + (1 −

pi)p
(2)(j|i). So, the transition probability matrix of the Markov chain under the policy ν

is P = [pν(j|i)]Si,j=1.

1.6 Consider a two-state process X̃ with history-dependent transition probabilities p[1|(1, 1)] =

0, p[0|(1, 1)] = 1; p[1|(0, 0)] = 1, p[0|(0, 0)] = 0; p[0|(1, 0)] = 1, p[1|(1, 0)] = 0; and

p[1|(0, 1)] = 1, p[0|(0, 1)] = 0.

a. Draw a sample path of X̃. What property does it have?

b. Derive the equivalent Markov chain X as shown in Example 1.3.
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c. Suppose that the reward function depends on three consecutive states (Xl, Xl+1, Xl+2)

and is defined as f(1, 1, 1) = f(0, 0, 0) = 100 and f(i, j, k) = 0 otherwise. Ex-

plain that the steady-state performance measures for both X̃ and X defined as

η̃ =
∑

i,j,k π̃(i, j, k)f(i, j, k) and η =
∑

i,j,k π(i, j, k)f(i, j, k), respectively, are differ-

ent.

[solution]

a. A sample path of X̃ is {0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, . . .}. The process is peri-

odic and its period is 4.

b. Define Yl = {X̃l−1, X̃l}, l = 1, 2, . . .. Then the process Y = {Y1, Y2, . . .} is a Markov

chain with state space S = {(0, 0), (0, 1), (1, 1), (1, 0)} and its transition probability matrix

is

P =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0



.

The steady state distribution of Y is (1/4, 1/4, 1/4, 1/4). Similarly to Example 1.3, let

π(0) =
∑

k′=0,1 π(k′, 0) = 1/2, π(1) =
∑

k′=0,1 π(k′, 1) = 1/2. we can obtain the transition

probability matrix of an equivalent Markov chain X with state space S = {0, 1}

P =


 1/2 1/2

1/2 1/2


 .

by p(k|j) =
∑

i∈S

{
π(i,j)
π(j)

p[k|(i, j)]
}
, j, k = 0, 1.

c. For process X̃, the case (X̃l = 1, X̃l+1 = 1, X̃l+2 = 1) or (X̃1 = 0, X̃l+1 = 0, X̃l+2 =

0) does not occur, so the steady-state performance η = 0. However, for Markov chain

X, we know the steady-state probability that X̃l = i, X̃l+1 = j, X̃l+2 = k is π(i, j, k) =

π(i)∗p(j|i)∗p(k|j), so, we have π(1, 1, 1) = 1/8 and π(0, 0, 0) = 1/8, then the steady-state

performance η = 100∗1/8+100∗1/8 = 25. Thus, the steady-state performance measures

are different for both X̃ and X.

1.7 The exhaustive search algorithm presented in Section 1.1.3 is very “robust”. Suppose

that because of the estimation error, the relationship ηdi > η̃ cannot be accurately verified.
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a. If dM is an optimal policy, then the algorithm outputs a correct optimal policy if

only the last comparison is correctly made.

b. Explain that the algorithm outputs the optimal policy as long as the comparisons

ηdi > η̃ are correctly made when ηdi or η̃ is the optimal performance.

c. Suppose η∗ is the best performance and η∗− is the next to the best performance,

and set δ = η∗ − η∗−. Then the algorithm outputs the correct optimal policy if the

estimation error for the performance is always smaller than δ/2.

[solution]

a. Since dM is the optimal policy, that is, ηdM > ηdi, i = 1, . . . ,M − 1. If the last

comparison is correctly made, i.e., η̃ < ηdM , then, the algorithm must output d̃ = dM .

That is, the algorithm outputs a correct optimal policy.

b. When the optimal performance is ηdi , since the comparison between ηdi and η̃ is

correctly made, then, we have d̃ = di and η̃ = ηdi. That means η̃ is the optimal perfor-

mance after this comparison. Because the comparisons between ηdi and η̃ are correctly

made when η̃ is the optimal, thus, until the algorithm ends, the η̃ is always equal to the

optimal performance ηdi. If η̃ has been the optimal performance, similarly, since the com-

parisons between ηdi and η̃ are correctly made, then η̃ is always the optimal performance.

Thus, the algorithm can output the correct optimal policy.

c. Since δ = η∗ − η∗−, we have η∗ − ηdi ≥ δ for ηdi 6= η∗, i = 1, 2, . . . ,M . Suppose the

estimations of η∗ and ηdi are η̂∗ and η̂di , respectively, if

|η̂∗ − η∗| < δ/2

and

|η̂di − ηdi | < δ/2,

then,

η̂∗ − η̂di > η∗ − δ/2 − (ηdi + δ/2) = η∗ − ηdi − δ ≥ 0.

So, the comparisons can be correctly made when ηdi or η̃ is the optimal performance. By

using the result in part b), the algorithm outputs the correct optimal policy.

1.8 Derive Equation (1.12) by the Poisson equation (1.9) and derive (1.10) by (1.12).
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[solution]

We consider the Poisson equation (1.9)

(I − P d)gd + ηde = fd

under policy d. Left-multiplying the both sides of the above Poisson equation by πh,

which is the steady-state probability of the Markov chain under policy h, we get

πh(I − P d)gd + ηdπhe = πhf.

By πhP h = πh, πhe = 1 and ηh = πhf , we obtain

ηh − ηd = πh(P h − P d)gd.

This is Equation (1.12).

Define P d,h
δ = P d + δ(∆P ) = (1 − δ)P d + δP h, where ∆P = P h − P d and 0 ≤ δ ≤ 1.

Let πδ and ηδ be the steady-state probability and performance measure associated with

P d,h
δ . We have P d,h

0 = P d, and P d,h
1 = P h. We can easily prove πδ and ηδ are continuous

with respect to δ and we have π0 = πd and η0 = ηd. By ηδ − ηd = πh(P d,h
δ − P d)gd, we

have

ηδ − ηd = δπδ(∆P )gd.

It is equivalent to
ηδ − ηd

δ
= πδ(∆P )gd.

Let δ → 0, we can obtain the performance gradient at policy d along the direction ∆P is

dηδ

dδ
|δ=0 = limδ→0

ηδ−η
δ

= πd(∆P )gd, which is Equation (1.10).

1.9 In the MDP problem, the reward function may depend on the next state; i.e., it may

take the form f(Xl, Xl+1, α), α ∈ A(Xl). Prove that this problem is equivalent to the

standard MDP with f(i, α) replaced by f̄(i, α) =
∑

j∈S [f(i, j, α)pα(j|i)].

[solution]

A policy of MDP is a mapping from S to A, i.e., d : d(i) → α ∈ A(i), for all i ∈ S.

ηd

= lim
L→∞

1

L

L−1∑

l=0

E [f(Xl, Xl+1, d(Xl))]
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= lim
L→∞

1

L

L−1∑

l=0

∑

i∈S
E [f(Xl, Xl+1, d(Xl)|Xl = i)] pd(Xl = i)

= lim
L→∞

1

L

L−1∑

l=0

∑

i∈S

∑

j∈S
f(i, j, d(i))pd(i)(j|i)pd(Xl = i)

=
∑

i∈S

∑

j∈S
f(i, j, d(i))pd(i)(j|i) lim

L→∞

1

L

L−1∑

l=0

pd(Xl = i)

=
∑

i∈S

∑

j∈S
f(i, j, d(i))pd(i)(j|i)πd(i)

=
∑

i∈S
πd(i)

∑

j∈S
f(i, j, d(i))pd(i)(j|i)

=
∑

i∈S
πd(i)f̄(i, d(i)).

Thus, the average performance with performance function f(i, j, α) is equivalent to that

with performance function f̄(i, α).

1.10 Consider a Markov chain {X0, X1, . . .} defined on a finite state space S. In any state

i ∈ S, an action α ∈ A(i) can be taken, which determines the transition probability as

pα(j|i), j ∈ S. Now, let us assume that the action chosen at Xl depends on both Xl−1,

and Xl. Thus, if Xl−1 = k and Xl = i, the action is denoted as α = d(k, i) and the

transition probabilities at Xl are pd(k,i)(j|i), j ∈ S, where d(k, i) is the policy.

a. Prove that this problem is equivalent to the standard MDP with an enlarged state

space.

b. Can you find an equivalent standard MDP in state space S.

[solution] a. If we make Yl = (Xl−1, Xl) as a state at time l, then we can easily prove

the process Y = {Y1, Y2, . . .} is also a Markov process. The policy d chooses an action at

time l according to the state (Xl−1 = k,Xl = i). Thus, this is a standard MDP problem

with state space S × S.

b. Yes, we can find an equivalent standard MDP in state space S. We only need to

find an equivalent policy that depends only on the current state and under this policy the

performance is equal to that under policy d.

We assume that the initial state X0 = x is fixed. Define a randomized policy L

depending only on Xl by

Ll(α|i) := Pd{Al = α|Xl = i, X0 = x}, α ∈ A(i).
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Next, we show the equivalence between policy L and policy d, that is, we should show

PL{Xl = j, Al = α|X0 = x} = Pd{Xl = j, Al = α|X0 = x}, l = 1, 2, . . . . (1.1)

By using induction, we show this result holds. Clearly it holds with l = 1. Assume (1.1)

holds for l = 2, 3, . . . , l − 1. Then

Pd{Xl = j|X0 = x} =
∑

k∈S

∑

α∈A(k)

Pd{Xl−1 = k, Al−1 = α|X0 = x}p(j|k, α)

=
∑

k∈S

∑

α∈A(k)

PL{Xl−1 = k, Al−1 = α|X0 = x}p(j|k, α)

= PL{Xl = j|X0 = x}.

Therefore

PL{Xl = j, Al = α|X0 = x} = PL{Xl = j|X0 = x}PL{Al = α|Xl = j,X0 = x}

= Pd{Xl = j|X0 = x}Pd{Al = α|Xl = j,X0 = x}

= Pd{Xl = j, Al = α|X0 = x}.

We have proved the equivalence between policies L and d.

If we only consider the equivalence under the long run average performance criteria,

we can also show it as follows. Define a randomized stationary policy L depending only

on Xl = i by

L(α|i) :=
∑

k:d(k,i)=α

πd(k, i)

πd(i)
.

where πd(k, i) is the steady state probability of the Markov chain {Y1, Y2, · · ·}, Yl =

(Xl−1, Xl), under policy d, and πd(i) =
∑

k∈S π
d(k, i). Under the randomized policy

L, the transition probability from state i to state j is
∑

α∈A(i) L(α|i)p(j|i, α). Then, we

have

∑

i∈S
πd(i)

∑

α∈A(i)

L(α|i)p(j|i, α)

=
∑

i∈S
πd(i)

∑

α∈A(i)

∑

k:d(k,i)=α

πd(k, i)

πd(i)
p(j|i, α)

=
∑

i∈S
πd(i)

∑

k∈S

πd(k, i)

πd(i)
p(j|i, d(k, i))
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=
∑

i∈S

∑

k∈S
πd(k, i)p(j|i, d(k, i)) (cf. (1.5))

= πd(j).

That is to say, the steady state probability πL(i) under policy L is equal to πd(i). Under

the randomized policy L, the performance function is fL(i) =
∑

α∈A(i) L(α|i)f(i, α).

Thus, we have

ηL =
∑

i∈S
πL(i)fL(i) =

∑

i∈S
πd(i)

∑

α∈A(i)

∑

k:d(k,i)=α

πd(k, i)

πd(i)
f(i, d(k, i))

=
∑

i∈S

∑

k∈S
πd(k, i)f(i, d(k, i)) = ηd.

Therefore, we have proved the equivalence between the MDP under policy d and a

MDP under randomized policy L.

1.11 Consider the optimization problem for a discrete time M/M/1 queue. When a cus-

tomer arrives at the server, the number of customers in the system increases by one. The

server serves one customer at a time. Other customers have to wait in a queue. When

a customer finishes its service, s/he leaves the server, and the number of customers in

the system decreases by 1. Let Xl be the number of customers in the server at time

l = 0, 1, . . .. If Xl = n, then the probability that a customer arrives in the lth period (i.e.,

Xl+1 = Xl + 1) is a(n), and the probability that a customer leaves (i.e., Xl+1 = Xl − 1) is

b(n), and Xl stays the same with probability 1 − [a(n) + b(n)]. If Xl = 0, then b(0) = 0.

The system has a capacity ofN ; i.e., an arrival customer will be rejected if there areN cus-

tomers in the system, or equivalently, a(N) = 0. Suppose that a(n), n = 0, 1, 2, . . . , N−1,

can take M different values: a1, a2, · · · , aM ∈ [0, 1]. We wish to maximize

η = κ1η1 − κ2η2,

where η1 is the average number of customers accepted to the system, η2 is the average of

w(Xl), with w being a function of the number of customers in the system, and κ1, κ2 > 0

are two weighting factors.

Formulate this problem as a standard MDP with random policies.

[Solution]

The state space is: S = {0, 1, 2, ..., N}.



13

The action space is: A = {a, l, s}, where a denotes that a customer arrives, l denotes

that a customer leaves and s denotes that a customer stays the same.

The policy is a randomized policy with tunable parameters, which chooses action a

with probability a(n) at state n = 0, 1, · · · , N − 1, and a(N) = 0; chooses action l with

probability b(n) in state n = 1, 2, · · · , N , and b(0) = 0 when state is 0; and chooses action

s with probability 1 − a(n) − b(n). In this policy, a(n), n = 0, 1, 2, . . . , N − 1, are the

tunable parameters, which can take M different values: a1, a2, · · · , aM ∈ [0, 1].

The transition probability matrices under actions a, l, s are as follows, respectively,

P (a) =




0 1 0 · · · 0

0 0 1 0 0
...

...
...

...
...

0 0 0 · · · 1

∗ ∗ ∗ · · · ∗




, P (l) =




∗ ∗ ∗ · · · ∗

1 0 0 0 0
...

...
...

...
...

0 0 · · · 1 0




P (s) =




1 0 0 · · · 0

0 1 0 0 0
...

...
...

...
...

0 0 0 · · · 1




where ∗ denotes the transition does not occur.

The performance function is: f(Xl, Al) = κ1Ia(Xl, Al)+κ2w(Xl), where Ia(Xl, Al) = 1

for any Xl when Al = a, otherwise, Ia(Xl, Al) = 0.

The average performance is: η = lim
L→∞

1
L

L−1∑
l=0

f(Xl, Al) = lim
L→∞

1
L

L−1∑
l=0

[
κ1Ia(Xl, Al) +

κ2w(Xl)
]
.

The optimization problem is to choose the proper arrival rate a(n) to get the maximum

average performance.

1.12 For an ergodic Markov chain, we have

η = lim
L→∞

1

L

L−1∑

l=0

f(Xl), w.p.1.

Develop a “learning” algorithm which updates iteratively the estimates of η at every

transition of the Markov chain using the reward observed at the transition. That is, find



14 CHAPTER 1. SOLUTIONS TO CHAPTER 1

an algorithm

η̂l = κlη̂l−1 + (1 − κl)f(Xl),

with η̂−1 = 0 and 0 < κl < 1, such that liml→∞ η̂l = η. Determine κl for l = 0, 1, . . ..

[Solution]

Define η̂l = 1
l+1

l∑
k=0

f(Xk), then

η̂l =
1

l + 1

l∑

k=0

f(Xk) =
1

l + 1

[
l−1∑

k=0

f(Xk) + f(Xl)

]

=
1

l + 1
[lη̂l−1 + f(Xl)] =

l

l + 1
η̂l−1 +

1

l + 1
f(Xl)

=
l

l + 1
η̂l−1 + (1 −

l

l + 1
)f(Xl). (1.2)

Therefore, we can let κl = l
l+1

.

On the other hand, formula (1.2) can also be written as follows,

η̂l = η̂l−1 +
1

l + 1
(f(Xl) − η̂l−1) = η̂l−1 + µl (f(Xl) − η̂l−1) .

We know that µl = 1 − κl = 1
l+1

which satisfy
∑∞

l=0 µl = ∞ and
∑∞

l=0(µl)
2 < ∞. In fact

it is the derivation of the stochastic approximation method. The factor µl = 1
l+1

is one of

the most classical step size in stochastic approximation algorithm.

1.13 Consider a Markov chain under a deterministic policy αi = d(i), i ∈ S. Drive the

equation for Q-factors:

Qd(i, αi) −
∑

j∈S
pαi(j|i)Qd(j, αj) + ηd = f(i, αi).

[Solution]

From the definition of Q-factor, we have

Qd(i, αi) =
S∑

j=1

pα(j|i)gd(j) + f(i, αi) − ηd.

For deterministic policy, we have

gd(j) = E

{ ∞∑

l=0

[f(Xl, Al) − η]
∣∣∣X0 = j

}
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= E

{ ∞∑

l=0

[f(Xl, Al) − η]
∣∣∣X0 = j, A0 = αj

}

=
S∑

j=1

pαi(j|i)gd(j) + f(i, αi) − ηd

= Qd(j, αj).

Thus,

Qd(i, αi) −
∑

j∈S
pαi(j|i)Qd(j, αj) + ηd = f(i, αi).

1.14 Consider a Markov chain with state space S. At each state i ∈ S, there are two

available actions denoted as α1,i and α2,i. Let d be a randomized policy with d(i) = νi =

{p1,i, p2,i}, p1,i, p2,i > 0, p1,i + p2.i = 1, representing the probabilities of taking actions

α1,i and α2,i, respectively, i ∈ S. We also can view νi as an action, which determines the

transition probabilities of state i (see Problem 1.5). Therefore, we have three actions for

each state: α1,i, α2,i, and νi, i ∈ S. Observe a sample path of the system under randomized

policy d. Overall, when the system visits state i, it takes action νi. This is equivalent

to a system which takes action α1,i sometimes when the system visits state i, and takes

action α2,i other times when it visits i, with probabilities p1,i and p2,i, respectively. Thus,

a sample path of the system under policy d contains the information about Qd(i, α1,i),

Qd(i, α2,i), and Qd(i, νi), i ∈ S.

a. Prove Qd(i, νi) = p1,iQ
d(i, α1,i) + p2,iQ

d(i, α2,i).

b. If Qd(i, α1,i) ≥ Qd(i, α2,i), then Qd(i, α1,i) ≥ Qd(i, νi).

c. Prove that for every randomized policy d there is always a deterministic policy which

is at least as good as d.

[Solution]

a.

Qd(i, νi) =
∑

j∈S

2∑

l=1

pl,ip
αl,i(j|i)gd(j) +

2∑

l=1

pl,if(i, αl,i) − ηd

=
2∑

l=1

pli{
∑

j∈S
pαl,i(j|i)gd(j) + f(i, αl,i) − ηd}

= p1,iQ
d(i, α1,i) + p2,iQ

d(i, α2,i),
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where pαl,i(j|i), l = 1, 2, i, j ∈ S are the transition probability under the action αl,i and

gd(j) is the potential at state j under policy d.

b. From Part a),

Qd(i, νi) = p1,iQ
d(i, α1,i) + p2,iQ

d(i, α2,i) ≤ p1,iQ
d(i, α1,i) + p2,iQ

d(i, α1,i) = Qd(i, α1,i)

c. The transition probability from state i to state j under randomized policy d is

pd(j|i) =
∑2

l=1 pl,ip
αl,i(j|i). From the performance difference formula ηh − ηd = πh[(P h −

P d)gd + fh − fd], where h is another randomized policy with h(i) = {p′1,i, p
′
2,i}, we can

obtain the following performance difference formula based on Q-factor,

ηh − ηd =
∑

i∈S
πh(i)

∑

l=1,2

[p′l,i − pl,i]Q
d(i, αl,i). (1.3)

From part b), we have maxαl,i,l=1,2Q
d(i, αl,i) ≥ Qd(i, νi). If policy h chooses action

α∗
l,i = argmax

αl,i

Qd(i, αl,i), (1.4)

at state i with probability 1, we have

∑

l=1,2

[p′l,i − pl,i]Q
d(i, αl,i) = Qd(i, α∗

l,i) −Qd(i, νi) ≥ 0.

Thus, from difference formula (1.3), we have ηh ≥ ηd. That is to say, for every randomized

policy d, there is always a deterministic policy h choosing actions as (1.4), which is at

least as good as d.

1.15 Consider a linear control system defined as

Xl+1 = Xl + ul + ξl, l = 0, 1, . . . .

The state space is the set of integers S := {. . . ,−1, 0, 1, . . .}, the control variable u

can take two values −2 and 2, the random noise ξ takes values from the integer set

{−4,−3,−2,−1, 0, 1, 2, 3, 4} with probabilities p(ξ = 0) = 0.2 and p(ξ = i) = 0.1 if i 6= 0.

Describe the system in the MDP formulation.

[Solution]

The state space of the system is S = {0, 1,−1, 2,−2, 3,−3, 4,−4, . . .}. The action

space is A = {−2, 2}. If the current state is 0, then the probability that the system
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transits to state 0 under the action a = −2 is P{ξ = 2} = 0.1. In the same way, we can

obtain the transition probability matrix as follows:

P (a = −2) =




0.1 0.1 0.1 0.1 0.2 0 0.1 0 0.1 0 0.1 0 0.1 · · ·

0.1 0.1 0.2 0.1 0.1 0.1 0.1 0 0.1 0 0.1 0 0 · · ·

0.1 0.1 0.1 0 0.1 0 0.2 0 0.1 0 0.1 0 0.1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .




P (a = 2) =




0.1 0.1 0.1 0.2 0.1 0.1 0 0.1 0 0.1 0 0.1 0 · · ·

0.1 0.1 0.1 0.1 0 0.2 0 0.1 0 0.1 0 0.1 0 · · ·

0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .




1.16 Consider an admission control problem of a communication system consisting of three

servers. The system is Jackson type and hence its state can be denoted as n = (n1, n2, n3)

with ni being the number of customers in server i, i = 1, 2, 3. Define an event a+4 as:

a customer arrives at the network and finds that there are 4 customers already in the

network. Clearly define this event by a set of state transitions. (Denote the transition

from state n to n
′ as 〈n,n′〉.)

[Solution]

Denote a+4,i as the event that a customer arrives at the network and finds that there

are 4 customers already in the network and this customer will be accepted to server i,

i = 1, 2, 3.

Denote a+4,0 as the event that a customer arrives at the network and finds that there

are 4 customers already in the network and this customer will be rejected.

We know that a+4 = ∪3
i=0a+4,i.

a+4,0

= {〈(0, 0, 4), (0, 0, 4)〉, 〈(0, 4, 0), (0, 4, 0)〉, 〈(4, 0, 0), (4, 0, 0)〉, 〈(1, 1, 2), (1, 1, 2)〉,

〈(1, 2, 1), (1, 2, 1)〉, 〈(2, 1, 1), (2, 1, 1)〉, , 〈(3, 1, 0), (3, 1, 0)〉, 〈(3, 0, 1), (3, 0, 1)〉,

〈(1, 0, 3), (1, 0, 3)〉, 〈(1, 3, 0), (1, 3, 0)〉, 〈(0, 1, 3), (0, 1, 3)〉, 〈(0, 3, 1), (0, 3, 1)〉,

〈(2, 2, 0), (2, 2, 0)〉, 〈(2, 0, 2), (2, 0, 2)〉, 〈(0, 2, 2), (0, 2, 2)〉}
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a+4,1

= {〈(0, 0, 4), (1, 0, 4)〉, 〈(0, 4, 0), (1, 4, 0)〉, 〈(4, 0, 0), (5, 0, 0)〉, 〈(1, 1, 2), (2, 1, 2)〉,

〈(1, 2, 1), (2, 2, 1)〉, 〈(2, 1, 1), (3, 1, 1)〉, , 〈(3, 1, 0), (4, 1, 0)〉, 〈(3, 0, 1), (4, 0, 1)〉,

〈(1, 0, 3), (2, 0, 3)〉, 〈(1, 3, 0), (2, 3, 0)〉, 〈(0, 1, 3), (1, 1, 3)〉, 〈(0, 3, 1), (1, 3, 1)〉,

〈(2, 2, 0), (3, 2, 0)〉, 〈(2, 0, 2), (3, 0, 2)〉, 〈(0, 2, 2), (1, 2, 2)〉}

a+4,2

= {〈(0, 0, 4), (0, 1, 4)〉, 〈(0, 4, 0), (0, 5, 0)〉, 〈(4, 0, 0), (4, 1, 0)〉, 〈(1, 1, 2), (1, 2, 2)〉,

〈(1, 2, 1), (1, 3, 1)〉, 〈(2, 1, 1), (2, 2, 1)〉, , 〈(3, 1, 0), (3, 2, 0)〉, 〈(3, 0, 1), (3, 1, 1)〉,

〈(1, 0, 3), (1, 1, 3)〉, 〈(1, 3, 0), (1, 4, 0)〉, 〈(0, 1, 3), (0, 2, 3)〉, 〈(0, 3, 1), (0, 4, 1)〉,

〈(2, 2, 0), (2, 3, 0)〉, 〈(2, 0, 2), (2, 1, 2)〉, 〈(0, 2, 2), (0, 3, 2)〉}

a+4,3

= {〈(0, 0, 4), (0, 0, 5)〉, 〈(0, 4, 0), (0, 4, 1)〉, 〈(4, 0, 0), (4, 0, 1)〉, 〈(1, 1, 2), (1, 1, 3)〉,

〈(1, 2, 1), (1, 2, 2)〉, 〈(2, 1, 1), (2, 1, 2)〉, , 〈(3, 1, 0), (3, 1, 1)〉, 〈(3, 0, 1), (3, 0, 2)〉,

〈(1, 0, 3), (1, 0, 4)〉, 〈(1, 3, 0), (1, 3, 1)〉, 〈(0, 1, 3), (0, 1, 4)〉, 〈(0, 3, 1), (0, 3, 2)〉,

〈(2, 2, 0), (2, 2, 1)〉, 〈(2, 0, 2), (2, 0, 3)〉, 〈(0, 2, 2), (0, 2, 3)〉}



2
Solutions to Chapter 2

2.1 In Figure 2.2 , the three points P0, P1, and P2 represent three policies. Every point P

in the triangle with the three points as vertices represents a randomized policy denoted

as P (δ1, δ1, δ2) = δ0P0 + δ1P1 + δ2P2, δ0 + δ1 + δ2 = 1, with P0 = P (1, 0, 0), P1 = P (0, 1, 0),

and P2 = P (0, 0, 1).

a. Determine the values of δ0, δ1, and δ2 by the lengths of the segments shown in the

figure.

b. Along the line from P0 to P1, we have randomized policies Pδ = (1− δ)P0 + δP1, 0 <

δ < 1, and we can obtain the directional derivative in this direction, denoted as

dηδ

dδ
|P0−P1. Similarly, we can obtain the directional derivative in the direction from

P0 to P2, denoted as dηδ

dδ
|P0−P2. What is the directional derivative from P0 to P ?

Express it in terms of dηδ

dδ
|P0−P1 and dηδ

dδ
|P0−P2. (Hint: Along this direction δ1/δ2 is

fixed.)

19
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Solution:

a. Firstly, since P ′ is a point in the line segment P1P2, we have

P ′ =
|P2P

′|

|P1P2|
P1 +

|P1P
′|

|P1P2|
P2, (2.1)

where | · | denotes the length of a line segment. Similarly, since P is in the line segment

P0P
′, we have

P =
|P ′P |

|P0P ′|
P0 +

|P0P |

|P0P ′|
P ′. (2.2)

Putting (2.1) into (2.2), we have

P =
|P ′P |

|P0P ′|
P0 +

|P0P |

|P0P ′|
(
|P2P

′|

|P1P2|
P1 +

|P1P
′|

|P1P2|
P2)

=
|P ′P |

|P0P ′|
P0 +

|P0P |

|P0P ′|

|P2P
′|

|P1P2|
P1 +

|P0P |

|P0P ′|

|P1P
′|

|P1P2|
P2.

Thus δ0 = |P ′P |
|P0P ′| , δ1 = |P0P |

|P0P ′|
|P2P ′|
|P1P2| and δ2 = |P0P |

|P0P ′|
|P1P ′|
|P1P2| .

b. Since

Pδ = P0 + δ(P − P0)

= P0 + δ(δ0P0 + δ1P1 + δ2P2 − (δ0 + δ1 + δ2)P0)

= P0 + δ(δ1(P1 − P0) + δ2(P2 − P0))

= P0 + δ∆P,

where ∆P = δ1(P1 − P0) + δ2(P2 − P0), the directional derivative from P0 to P is

dηδ

dδ

∣∣∣
P0−P

= π∆Pg

= π[δ1(P1 − P0) + δ2(P2 − P0)]g

= δ1
dηδ

dδ

∣∣∣
P0−P1

+ δ2
dηδ

dδ

∣∣∣
P0−P2

.

2.2 (Random walk) A random walker moves among five positions i = 1, 2, 3, 4, 5. At

position i = 2, 3, 4, s/he moves to positions i − 1 and i + 1 with an equal probability

p(i−1|i) = p(i+1|i) = 0.5; at the boundary positions i = 1 and i = 5, s/he bounces back

with probability one p(4|5) = p(2|1) = 1. We are given a sequence of 20 [0, 1)-uniformly

and independently distributed random variables as follows.
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0.740, 0.605, 0.234, 0.342, 0.629, 0.965, 0.364, 0.230, 0.599, 0.079,

0.782, 0.219, 0.475, 0.051, 0.596, 0.850, 0.865, 0.434, 0.617, 0.969.

a. With this sequence, construct a sample path X of the random walk from X0 to X20

according to (2.3). Set X0 = 3.

b. Suppose that the perturbed transition probabilities are p′(i−1|i) = 0.3, p′(i+1|i) =

0.7, i = 2, 3, 4, and p′(4|5) = p′(2|1) = 1. Set pδ(j|i) = p(j|i)+ δ[p′(j|i)−p(j|i)]. By

using the original sample path obtained in (a), construct a perturbed sample path

Xδ, δ = 1, following Figure 2.5. Use the following independently distributed [0, 1)

random variable when Xδ is different than X (use the lth number to determine the

lth transition of Xδ, if Xδ,l 6= Xl):

0.173, 0.086, 0.393, 0.804, 0.011, 0.233, 0.934, 0.230, 0.786, 0.410,

0.119, 0.634, 0.862, 0.418, 0.601, 0.118, 0.626, 0.835, 0.361, 0.336.

c. Repeat b) for δ = 0.7, 0.5, 0.3, 0.2, 0.1.

d. Observe the trend of the perturbed paths Xδ. In particular, when δ is small, most

likely the perturbed parts from the jumping point to the merging point are the same

as if they follow the original transition probabilities p(j|i), i, j = 1, 2, · · · ,S.

Solution:

a. We assume that the initial position isX0 = 3. According to (2.2), since
∑3

k=1 p(k|3) ≤

0.740 <
∑4

k=1 p(k|3), the next state is 4. Similarly, the other subsequent states can be

generated by using (2.2) and the sample path is

3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 4, 5.

The sample path is described in Figure 2.1.

b. We assume that the perturbed parts from the jumping point are generated by

using corresponding random number in the given sequence of 20 [0, 1)-uniformly and

independently distributed random variables. That is, if there is a jump at i-th time, then

next state of perturbed sample path is generated by using i-th [0, 1)-uniformly random
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number in the given sequence. According to (2.2), the perturbed sample path when δ = 1

is

3, 4, 5, 4, 5̄, 4, 5, 4, 3, 4, 3, 4, 3, 4̄, 5̄, 4̄, 3, 4, 5̄, 4, 5.

The sample path is described in Figure 2.1.

Figure 2.1: The original sample path and perturbed sample path with δ = 1

c. The perturbed sample path when δ = 0.7 is

3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 4̄, 5̄, 4̄, 3, 4, 5̄, 4, 5.

The sample path is described in Figure 2.3. The perturbed sample path when δ = 0.5 is

the same as the one when δ = 0.7. The perturbed sample path when δ = 0.3 is

3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 4̄, 3̄, 4̄, 3, 4, 3, 4, 5,

which is described in Figure 2.3. When δ = 0.2, the perturbed sample path is the same

as the one when δ = 0.3. The perturbed sample path when δ = 0.1 is the same as the

original one.

Figure 2.2: The original sample path and perturbed sample path with δ = 0.7 and δ = 0.5
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Figure 2.3: The original sample path and perturbed sample path with δ = 0.3

d. We may observe the trend of the perturbed paths Xδ. When δ is small, there are

fewer perturbations on the perturbed sample paths. Moreover, most likely the perturbed

parts from the jumping point to the merging point are the same as if they follow the

original transition probabilities p(j|i), i, j = 1, 2, · · · , S.

2.3 Let X and X̃ be two independent ergodic Markov chain with the same transition

probability matrix P on the same state space S. Define Y = (X, X̃).

a. Prove that Y is ergodic.

b. Express L∗
ij in Figure 2.6 in terms of the Markov chain Y.

Solution:

a. Proving that Y is ergodic means proving that Y is irreducible and aperiodic under

the condition that X and X̃ are ergodic. Firstly, we prove that Y is irreducible. Since X

and X̃ are ergodic, we know that for any states i, j ∈ S, there is a N > 0 such that when

n > N , pn(j|i) > 0, where pn(j|i) denotes the probability that Markov chain moves from

state i to j at n-th step. Thus, for any states (i, j) and (k, l) of Markov chain Y, if m > N ,

then pm((k, l)|(i, j)) = pm(k|i)pm(l|j) > 0, where we have used the independence of X

and X̃. That is, Y is irreducible. Moreover, since for any m > N , pm((i, j)|(i, j)) > 0,

the great common divisor of {k|pk((i, j)|(i, j)) > 0} is 1. Thus, Y is aperiodic. Irreducible

and aperiodic Markov chain Y is ergodic.
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b. Define M = {(i, i), i ∈ S}, then, L∗
ij = min {l > 0, Yl ∈M |Y0 = (i, j)}, which is the

first hitting time of Y to reach set M from state (i, j).

2.4 Consider a three-state Markov chain with

P =




0 0.5 0.5

0.1 0.6 0.3

0.7 0.1 0.2


 , f =




10

5

8


 .

a. Solve the Poisson equation (2.12) (I − P )g + ηe = f for g and η (by e.g. setting

g(0) = 0).

b. Solve π = πP and πe = 1 for π first, then solve (I − P + eπ)g = f for g.

c. Compare both methods in a) and b).

Solution:

a. Since the solution g to the Poisson equation is unique up to a constant, we can first

let g(0) equal to a constant and solve the Poisson equation to obtain a special solution.

The general solution g is equal to g + ce. For example, setting g(0) = 0, we have




1 −0.5 −0.5

−0.1 0.4 −0.3

−0.7 −0.1 0.8







0

g(1)

g(2)


+




η

η

η


 =




10

5

8


 .

Arranging the equation, we have




−0.5 −0.5 1

0.4 −0.3 1

−0.1 0.8 1







g(1)

g(2)

η


 =




10

5

8


 .

Solving this equation, we can obtain g(1) = −5.5963, g(2) = 0.1835, η = 7.2936. Thus,

the general solution is g(0) = c, g(1) = −5.5963 + c, g(2) = 0.1835 + c and η = 7.2936.

b. Solving the balance equation π = πP and πe = 1, we obtain π = [0.2661, 0.4128, 0.3211].

Putting π into (I−P +eπ)g = f and calculating the inverse of I−P +eπ, we may obtain

g = (I − P + eπ)−1f = [9.5451, 3.9487, 9.7286]T .
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c. In a), we do not need to compute the steady-state probability π. However, in b),

the steady-state probability should be computed firstly.

2.5 For an ergodic Markov chain X = {Xl, l = 0, 1, . . .}, derive the Poisson equation

using

g(i) = lim
L→∞

L−1∑

l=0

E {[f(Xl) − η] |X0 = i} .

Solution:

g(i) = lim
L→∞

L−1∑

l=0

E {[f(Xl) − η]|X0 = i}

= lim
L→∞

{
f(i) − η +

L−1∑

l=1

E{[f(Xl) − η]|X0 = i}

}

= f(i) − η + lim
L→∞

L−1∑

l=1

E[f(Xl) − η|X0 = i]

= f(i) − η +
∑

j∈S

p(j|i) lim
L→∞

L−1∑

l=1

E[f(Xl) − η|X1 = j]

= f(i) − η +
∑

j

p(j|i)g(j).

Rewriting it as a matrix form, we have

g = f − ηe+ Pg. =⇒ (I − P )g + ηe = f.

Then we have obtained the Poisson equation.

2.6 The Poisson equation for the perturbed Markov chain is

(I − Pδ)gδ + ηδe = fδ,

where Pδ = P +δ∆P and fδ = f+δ∆f . Derive the performance derivative formula (2.26)

from the above equation.

Solution: Taking derivative of both sides of the Poisson equation for the perturbed

Markov chain, we have

−∆Pgδ + (I − Pδ)
dgδ

dδ
+
dηδ

dδ
e = ∆f.
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Right multiplying this equation by πδ, we have

dηδ

dδ
= πδ(∆Pgδ + ∆f).

According to the continuity of πδ and gδ with respect to δ, the derivative at δ = 0 is

dηδ

dδ

∣∣∣
δ=0

= π(∆Pg + ∆f),

which is the performance derivative formula (2.26).

2.7 Prove the following results:

a. If f = ce with c being a constant, then g = ce is a constant vector.

b. If p(j|i) = pj for all i ∈ S; i.e., every row in the transition probability matrix is the

same, then g = f .

c. If p(j|i) = p(i|j), for all i, j ∈ S; i.e., the transition probability matrix P is sym-

metric, then
∑S

i=1 g(i) =
∑S

i=1 f(i).

Solution:

a). If f = ce, we have

η = πf = πce = c.

g can be written as

g(i) = lim
L→∞

E{
L−1∑

l=0

[f(Xl) − η]|X0 = i} = lim
L→∞

E{
L−1∑

l=0

[c− c]|X0 = i} = 0

Since potential g can be added by any constant vector, we have g = ce.

b). Because p(j|i) = pj, from π = πP we have

πj =
∑

i

πip(j|i) =
∑

i

πipj = pj.

Thus we have P = eπ. From Poisson equation

f = (I − P + eπ)g = (I − eπ + eπ)g = g,

then g = f is proved.
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c). Because PT = P , we have (Pe)T = eT =⇒ eTP = eT. And we have πP = π

and this equation has unique solution with πe = 1. Compare these two equations, we

have π = 1
S
eT. For a special potential g such that πg = πf , we have 1

S
eTg = 1

S
eTf , thus

∑S
i=1 g(i) =

∑S
i=1 f(i).

2.8 Prove edηδ

dδ
= limβ↑1

dηβ,δ

dδ
, in other words,

d

dδ
[lim
β↑1

ηβ,δ] = lim
β↑1

dηβ,δ

dδ
.

Solution: From equation (2.44)

dηβ,δ

dδ
= (1 − β)(I − βP )−1[β∆Pgβ + ∆f ],

and from (2.38) and (2.39), i.e.,

lim
β↑1

gβ = g,

lim
β↑1

(1 − β)(I − βP )−1 = eπ,

then, we have

lim
β↑1

dηβ,δ

dδ
= eπ[∆Pg + ∆f ] = e

dηδ

dδ
.

2.9 Assume that P changes to Pδ = P + δ(∆P ), ∆Pe = 0, and fδ ≡ f . Derive the

second-order derivative of the discounted performance ηβ,δ with respect to δ,
d2ηβ,δ

dδ2 .

Solution:

From equation (2.31),

(I − βPδ)ηβ,δ = (1 − β)f. (2.3)

Taking derivative of both sides of (2.3), we have

−β∆Pηβ,δ + (I − βPδ)
dηβ,δ

dδ
= 0. (2.4)

Thus, we have
dηβ,δ

dδ
= (I − βPδ)

−1β∆Pηβ,δ. By using (2.37) and (2.31), we have ηβ,δ =

(1 − β)gβ,δ + βeηδ. Thus,

dηβ,δ

dδ
= (1 − β)(I − βPδ)

−1β∆Pgβ,δ. (2.5)
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Taking derivative of both sides of (2.4), we have

−2β∆P
dηβ,δ

dδ
+ (I − βPδ)

d2ηβ,δ

dδ2
= 0. (2.6)

Thus, the second order derivative
d2ηβ,δ

dδ2 = 2(I − βPδ)
−1β∆P

dηβ,δ

dδ
. Putting (2.5) into it,

we have

d2ηβ,δ

dδ2
= 2(1 − β)[(I − βPδ)

−1β∆P ]2gβ,δ.

and the derivative at δ = 0 is

d2ηβ,δ

dδ2

∣∣∣
δ=0

= 2(1 − β)[(I − βP )−1β∆P ]2gβ.

2.10 In Example 2.2 , we have

G1 := ∆P (I − P + eπ)−1 =


 −3.2 3.2

3.2 −3.2


 .

a. Find the eigenvalues and eigenvectors of G1.

b. Verify that


 −3.2 3.2

3.2 −3.2


 =


 1 1

1 −1




 0 0

0 −6.4




 1 1

1 −1



−1

.

c. Prove

Gn
1 =


 1 1

1 −1




 0 0

0 (−6.4)n




 1 1

1 −1



−1

,

and

πδ = π

∞∑

n=0

Gn
δ = π

∞∑

n=0

(δG1)
n = π


 1 1

1 −1




 0 0

0
∑∞

n=0(−6.4δ)n




 1 1

1 −1



−1

.

d. Determine the convergence region of πδ. Extend the discussion to more general case.

Solution:

a. The eigenvalues of G are −6.4 and 0. The corresponding eigenvectors are [1,−1]T

and [1, 1]T .



29

b. The inverse of matrix


 1 1

1 −1


 is


 0.5 0.5

0.5 −0.5


. Then, computing the left side

by using matrix multiplication, it can be found that the both sides are equal.

c. According to b),

Gn
1 =


 1 1

1 −1




 0 0

0 −6.4




 1 1

1 −1




−1

· · ·


 1 1

1 −1




 0 0

0 −6.4




 1 1

1 −1



−1

=


 1 1

1 −1




 0 0

0 (−6.4)n




 1 1

1 −1




−1

.

By using (2.54) and the above result, we can obtain

πδ = π
∞∑

n=0

Gn
δ = π

∞∑

n=0

(δG1)
n = π


 1 1

1 −1




 0 0

0
∑∞

n=0(−6.4δ)n




 1 1

1 −1



−1

.

d. We can find if 0 ≤ δ < 1
6.4

, then 6.4δ < 1 , so the series
∑∞

n=0(−6.4δ)n converges.

For more general case, the convergence domain of πδ is 0 ≤ δ < r := 1
ρ[∆P (I−P+eπ)−1]

.

2.11 A group is a nonempty set G, together with a binary operation on G, denoted as

juxtaposition ab, a, b ∈ G, and ab ∈ G, with the following properties: (i) (Associativity)

(ab)c = a(bc), for all a, b, c ∈ G; (ii) (Identity) There exists an element e ∈ G for which

ea = ae = a for all a ∈ G; and (iii) (Inverse) For each a ∈ G, there is an element denoted

a−1, for which aa−1 = a−1a = e, [220].

a. Verify that the set of matrices defined in (2.50) with matrix multiplication satisfies

the above properties.

b. In Example 2.2, we have

B = P − I =


 −0.10 0.10

0.15 −0.15


 ,

what is its group inverse? Is the inverse an infinitesimal generator?

Solution:

a. For any B1, B2 ∈ B, we have πB1B2 = (πB1)B2 = 0 and B1B2e = B1(B2e) = 0,

so B1B2 ∈ B. Since the binary operation on B is matrix multiplication, the Associativity
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holds. We can easily verify that I−eπ ∈ B. For element I−eπ ∈ B, we have B(I−eπ) = B

by using Be = 0 and (I−eπ)B = B by using πB = 0, Thus, the Identity holds. By using

(2.49) and B#e = 0 and πB# = 0, we know the Inverse holds.

b. By using πe = 1 and πB = 0, we firstly obtain π = [0.6, 0.4]. Putting π into (2.48),

the group inverse of B is

B# =


 −1.6000 1.6000

2.4000 −2.4000


 .

B# is also an infinitesimal generator.

2.12 Assume that the Maclaurin series of Pδ exists in [0, δ]. Equation (2.57) can be

derived directly by the following procedure: Taking the derivatives of the both sides of

πδ[I −Pδ] = 0 n times, we can obtain dnπ
dδn at δ = 0. Then we can construct the Maclaurin

series of π. Work out the details of this approach and derive the Maclaurin series of ηδ at

δ = 0.

Solution: Taking derivative of both sides of πδ[I − Pδ] = 0, we have

dπδ

dδ
[I − Pδ] = πδ

dPδ

dδ
. (2.7)

Multiplying the both sides of the above equation on the right with −B#, which is the

group inverse of I − Pδ, and noting that (I − Pδ)(−B
#) = I − eπ and πe = 1, we get

dπδ

dδ
= πδ

dPδ

dδ
(−B#). (2.8)

Thus dηδ

dδ
|δ=0 = π dP

dδ
(−B#)f . Continuing taking derivative of both sides of (2.7), we

obtain,

d2πδ

dδ2
(I − Pδ) = 2

dπδ

dδ

dPδ

dδ
+ πδ

d2Pδ

dδ2
. (2.9)

Similarly, multiplying the both sides of the above equation on the right with −B# and

putting (2.8) into it, we get

d2πδ

dδ2
= 2πδ(

dPδ

dδ
(−B#))2 + πδ

d2Pδ

dδ2
(−B#).

Thus d2ηδ

dδ2 |δ=0 = 2π(dP
dδ

(−B#))2f + π d2P
dδ2 (−B#)f . We can continue the computation of

dnηδ

dδn , n ≥ 3. Putting these derivatives into the Maclaurin expansion of ηδ at δ = 0, we
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have

ηδ = η +
∞∑

n=1

1

n!

dnη

dδn
|δ=0δ

n

= πf + π
dP

dδ
(−B#)δf + π(

dP

dδ
(−B#))2δ2f +

1

2
π
d2P

dδ2
(−B#)δ2f + · · ·

= π
{
I +

dP

dδ
(−B#)δ +

[
(
dP

dδ
(−B#))2 +

1

2

d2P

dδ2
(−B#)

]
δ2 + · · ·

}
f.

2.13 Prove the continuous version of the PRF equation (2.62) from its discrete version

(2.7) by setting B = P − I, and vice versa.

Solution:

The continuous version of Lyapunov equation is BΓ+ΓBT = −F and discrete version

is Γ − PΓPT = F . Because B = P − I, we have Be = 0.

From discrete to continuous: Replacing P with B + I, we get

Γ − (B + I)Γ(B + I)T = F

Γ −BΓBT −BΓ − ΓBT − Γ = F

BΓ + ΓBT = −F −BΓBT

Since BΓBT = B(egT − geT)BT = BegTBT − Bg(Be)T = 0, we have

BΓ + ΓBT = −F,

which is the continuous version of the PRF equation (2.62).

From continuous to discrete: Replacing B with P − I, we get

(P − I)Γ + Γ(P − I)T = −F

(P − I)Γ + Γ(P − I)T = −F − (P − I)Γ(P − I)T

where we have used (P − I)Γ(P − I)T = 0. Then, arranging the above equation, we have

Γ − PΓPT = F , which is the discrete version of the PRF equation (2.7).

2.14 Consider a Markov chain X with transition probabilities p(j|i), i, j ∈ S and reward

function f . For any 0 < p < 1, we define an equivalent Markov chain X
′ with transition

probabilities p′(j|i) = (1−p)p(j|i), j 6= i, and p′(i|i) = p+(1−p)p(i|i), i ∈ S. Set f ′ = f .

Prove that η′ = η and g′ = g
1−p

.
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Solution: Let π and π′ be the steady-state probabilities of Markov chain X and X
′,

respectively. Define P = [p(j|i)] and P ′ = [p′(j|i)]. From the definition of Markov chain

X
′, we have P ′ = pI + (1 − p)P . Thus, we have

πP ′ = π(pI + (1 − p)P ) = π.

This means the steady-state probability of Markov chain X is equal to that of Markov

chain X
′, i.e. π′ = π. Since the average performance η′ = π′f , we have η′ = π′f = πf = η.

Considering the Poisson equation

(I − P ′)g′ + η′e = f. (2.10)

Since the solution to Poisson equation (2.10) is up to a constant, we can choose a solution

satisfying π′g′ = η
1−p

. In this case, putting P ′ = pI + (1 − p)P into (2.10), we can obtain

(1 − p)(I − P )g′ + (1 − p)eπ′g′ = f.

Thus, we have

g′ =
1

1 − p
(I − P + eπ′)−1f.

Since π′ = π and g = (I −P + eπ)−1f is the potential of Markov chain satisfying πg = η,

we have g′ = g
1−p

.

2.15 Consider a Markov process X with transition rates λ(i), and transition probabilities

p(j|i), i, j ∈ S, and reward function f . For any λ > λ(i), i ∈ S, we define an equivalent

Markov process X
′ with transition rates λ′(i) ≡ λ, and transition probabilities p′(j|i) =

λ(i)
λ
p(j|i), j 6= i, and p′(i|i) = (1 − λ(i)

λ
) + λ(i)

λ
p(i|i). Set f ′ = f .

a. Prove that η′ = η and g′ = g.

b. Let the discrete time Markov chain embedded at the transition epoches of X
′ as

X
†. Find the steady state probability π† and the potential g† of X

†.

c. Suppose that 1 = λ > λ(i), i ∈ S, prove that g† = g.

d. For any κ > 0, we define a Markov process X̃ with transition rates λ̃(i) = κλ(i),

i ∈ S, transition probabilities p̃(j|i) = p(j|i), i, j ∈ S, and reward function f̃ = f .

Prove that π̃ = π and g̃ = g
κ
.
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e. Given any Markov process X, can you find a Markov chain that has the same

steady-state probability π and potential g as X? (Hint: use the results in b) - d).)

Solution:

a. From the definition of Markov process X, we have the infinitesimal matrix of X

is A = Λ[P − I], where P = [p(j|i)], I is the unit matrix and Λ = diag{λ(1), · · · , λ(S)}.

Similarly, the infinitesimal matrix of X
′ is A′ = λ[P ′ − I], where P ′ = [p′(j|i)]. From the

definition of P ′, we have P ′ = I + Λ
λ
[P − I] = I + A

λ
. Thus, we have A′ = λ[P ′ − I] =

λ ∗ A
λ

= A. That is to say, Markov chains X and X
′ have the same infinitesimal matrix.

Thus, they have the same steady-state distribution, i.e., π′ = π. Then, by using η = πf

and Poisson equation (2.66), they have the same average performance and potentials, i.e.

η′ = η and g′ = g.

b. From the definition of X
′, we know the transition probability matrix of embedded

Markov chain X
† is P ′ = I+ A

λ
. We assume the steady-state probability of Markov process

X is π, that is, π satisfies πA = 0 and πe = 1. Then, we have πP ′ = π(I + A
λ
) = π.

Thus, π is also the steady-state probability of X
† , which means the embedded Markov

chain X
† has the same steady-state probability as Markov process X. For the potentials

of X
†, we have

g† = (I − P ′ + eπ)−1f

= [I − (I +
A

λ
) + eπ]−1f

= λ(−A+ λeπ)−1f.

We can test g := (−A+ λeπ)−1f is the potential of Markov process X satisfying πg = η
λ
.

Thus, we have the following relationship between the potentials of Markov chain X
† and

Markov process X

g† = λg.

c. From b), we have g† = g if λ = 1 > λ(i), i ∈ S.

d. From the definition of X̃, we can obtain the infinitesimal matrix of X̃,

Ã = diag{λ̃(1), · · · , λ̃(S)}[P − I] = κ diag{λ(1), · · · , λ(S)}[P − I] = κA.
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Thus, we have πÃ = κπA = 0. That is to say, π is the steady-state probability of X̃, i.e.

π̃ = π. For the potential, considering the Poisson equation

−Ãg̃ + η̃e = f,

Since Ã = κA and η̃ = π̃f = πf = η, we have

−κAg̃ + ηe = f. (2.11)

The solution to equation (2.11) is up to a constant, in particular, we can choose g̃ satisfying

πg̃ = η
κ
. In this case, the Poisson equation (2.11) becomes

κ(−A + eπ)g̃ = f.

Thus, we have

g̃ =
1

κ
(−A+ eπ)−1f.

We can verify g := (−A+ eπ)−1f is the potential of Markov process X satisfying πg = η.

Thus, we have g̃ = g
κ
.

e. From the the above discussions, for any Markov process X with infinitesimal

matrix A satisfying the transition rate λ(i) ≤ 1, i ∈ S, we can find the Markov chain

with transition probability matrix P = A + I, i.e. let λ = 1 as part c), has the same

steady-state probability and potential as Markov process X. If λ(i) > 1 for some i, it is

difficult to find a Markov chain that has the same steady-state probability π and potential

g as X.

2.16 For semi-Markov processes with the discounted performance defined in (2.93), set

ηβ := (ηβ(1), · · · , ηβ(S))T and gβ := (gβ(1), · · · , gβ(S))T . Prove that (cf.[57])

lim
β→0+

gβ = g,

lim
β→0+

ηβ = ηe,

and

ηβ = βgβ + ηe.
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Solution:

ηβ(i) = lim
T→∞

E
[ ∫ T

0

βe−βtf(Xt, Yt)dt|X0 = i
]

= E
[ ∫ T1

0

βe−βtf(i, Y0)dt|X0 = i
]

+ lim
N→∞

E
[ ∫ TN

T1

βe−βtf(Xt, Yt)dt|X0 = i
]

=
∑

j∈S

∫ ∞

0

∫ T1=τ

0

βe−βtf(i, j)dtdQ(i, j, dτ)

+ lim
N→∞

∑

j∈S

{∫ ∞

0

e−βτ

∫ TN

T1=τ

e−β(t−τ)f(Xt, Yt)dtdQ(i, j, dτ)
}

=
∑

j∈S

{
f(i, j)

∫ ∞

0

(1 − e−βτ )Q(i, j, dτ)
}

+
∑

j∈S

{∫ ∞

0

e−βτQ(i, j, dτ)ηβ(j)
}

= fβ(i)

∫ ∞

0

(1 − e−βτ )Q(i, dτ) +
∑

j∈S

{∫ ∞

0

e−βτQ(i, j, dτ)ηβ(j)
}
, (2.12)

where fβ(i) =
∑

j∈S{f(i,j)
∫∞
0 (1−e−βτ )Q(i,j,dτ)}∫∞

0 (1−e−βτ )Q(i,dτ)
. Dividing both sides of (2.12) by

∫∞
0

(1 −

e−βτ )Q(i, dτ), we have

ηβ(i) = fβ(i) −
1

β
λβ(i)ηβ(i) +

1

β

∑

j∈S
λβ(i)Qβ(i, j)ηβ(j). (2.13)

where λβ(i) =
β
∫∞
0 e−βτQ(i,dτ)∫∞

0 (1−e−βτ )Q(i,dτ)
and Qβ(i, j) =

∫∞
0 e−βτQ(i,j,dτ)∫∞
0 e−βτQ(i,dτ)

. Thus, (βI − Aβ)ηβ = fβ,

where

Aβ =





λβ(i)Qβ(i, j), if i 6= j

−λβ(i)[1 −Qβ(i, i)], if i = j.
(2.14)

So,

ηβ = β(βI −Aβ)−1fβ. (2.15)

We can easily prove that

lim
β→0

Qβ(i, j) = Q(i, j).

lim
β→0

λβ(i) = λ(i).

lim
β→0

fβ(i) = f(i).
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Thus, we have Aβ → A. Next, we prove that β(βI−Aβ)−1 → ep, where p satisfies pA = 0

and pe = 1. From (2.14), we can find Aβ is a infinitesimal matrix. Thus, the balance

equation pβAβ = 0 and pβe = 1 has a unique solution pβ. With the continuity of pβ , we

have pβ → p. Similarly to (2.43), we have the following continuous-version equation,

(βI −Aβ + epβ)−1 = (βI − Aβ)−1 −
epβ

β(1 + β)
. (2.16)

Multiplying the both sides of (2.16) with β and letting β → 0, we can easily prove

β(βI − Aβ) → ep. On the bases, using (2.15), we have limβ→0 ηβ = ηe. By using the

definition of gβ and ηβ, we can directly obtain ηβ = βgβ + ηe. Thus, putting (2.15) into

ηβ = βgβ + ηe, we have

(βI −Aβ)gβ = fβ − ηe. (2.17)

we know gβ is a unique solution up to a constant of (2.18). Let β → 0, we know g0 :=

limβ→0 gβ satisfies

−Ag0 = f + ηe. (2.18)

From the uniqueness, g = g0. Thus, we know that limβ→0 gβ = g.

Reference: Cao Xi-Ren, “Semi-Markov Decision Problems and Performance sensi-

tivity Analysis”, IEEE Transactions on Automatic Control, vol. 48, no. 5, 758-769, 2003.

2.17 Consider a two-server cyclic Jackson queueing network with service rates µ and λ

for servers 1 and 2, respectively. There are N customers in the network. The system’s

state n = n is the number of customers at server 1. The state process is Markov. Let

the performance be the average response time of the customers at server 1, denoted as τ̄ .

Calculate the performance potentials g(i), i = 1, 2, · · · , S, and the performance measure

τ̄ , and derive the derivative of τ̄ with respect to λ and µ.

Solution:

The average response time of a customer at server 1 is

τ̄ = lim
L→∞

1

L

∫ TL

0

n(t)dt.
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where n(t) denotes the number of customers at server 1 at time t and L denotes the

number of service completions at server 1 in [0, TL]. We have

τ̄ = lim
L→∞

TL

L

∫ TL

0
n(t)dt

TL
=
η

(f)
T

ηth
,

where ηth = limL→∞
L
TL

is the throughput of server 1 and η
(f)
T = limL→∞

∫ TL
0 n(t)dt

TL
= πf .

We have ηth =
∑N

n=1 π(n)µ = µ(1 − π(0)). We can find

τ̄ = lim
L→∞

∫ TL

0
n(t)
ηth
dt

TL

,

which is a time-average performance. Thus, this problem has become a sensitivity problem

of Markov process with performance function f̃(n(t)) = n(t)
ηth

and time-average performance

τ̄ . For this process, the infinitesimal matrix is

B =




−λ λ 0 · · · 0

µ −(λ+ µ) λ · · · 0
...

... · · · · · ·
...

0 · · · µ −(µ + λ) λ

0 0 · · · µ −µ




. (2.19)

We can compute π by πB = 0 and πe = 1. Then we can compute the potentials by using

gf̃ = (−B+ eπ)−1f̃ , which is the potential corresponding to performance function f̃ , and

compute the performance measure τ̄ by using τ̄ = πf̃ . The derivative of τ̄ with respect

to µ is

dτ̄

dµ
= π[

dB

dµ
gf̃ +

df̃

dµ
] = π[

dB

dµ
gf̃ −

fdηth

η2
th

]

= π
dB

dµ
gf̃ −

τ̄

ηth

dηth

dµ
= π

dB

dµ
gf̃ −

τ̄

ηth
π
dB

dµ
gµ, (2.20)

where we have used the derivative of throughput ηth with respect to µ and gµ is the

potentials corresponding to the performance function µ = [0, µ, µ, · · · , µ]T . By using this

derivative formula, we can compute the derivative.

If we consider the potential gf corresponding to the performance function f(n(t)) =

n(t), the potential gf can be also computed by gf = (−B+eπ)−1f and τ̄ can be computed

by τ̄ =
η
(f)
T

ηth
, and the derivative dτ̄

dµ
can be computed by taking derivative of quotient of
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η
(f)
T and ηth as follows:

dτ̄

dµ
=

ηth
dη

(f)
T

dµ
+ η

(f)
T

dηth

dµ

η2
th

=
ηthπ

dB
dµ
gf + η

(f)
T π dB

dµ
gµ

η2
th

=
π dB

dµ
gf + τ̄ π dB

dµ
gµ

ηth

=
1

ηth

π
dB

dµ
(gf + τ̄ gµ). (2.21)

In fact, derivative formula (2.20) is equal to (2.21) because gf̃ = gf

ηth
. Similarly, we can

also compute the derivative with respect to λ by using the following derivative formula,

dτ̄

dλ
=

1

ηth

π
dB

dλ
(gf + τ̄ gµ). (2.22)

2.18 The two-server N -customer cyclic Jackson queueing network studied in Problem

2.17 is equivalent to an M/M/1/N queue with arrival rate λ, service rate µ, and a finite

buffer size N . (When the number of customers in the queue n = N , an arriving customer

is simply lost.)

a. Suppose the arrival rate only changes when n = 0; i.e., when n = 0, λ changes to

λ+ ∆λ, and when n > 0, λ keeps unchanged. What is the derivative of the average

response time τ̄ with respect to this change?

b. Suppose the arrival rate only changes when n = n∗, with 0 < n∗ < N . What is the

derivative of τ̄ with respect to this change?

c. Suppose the arrival rate only changes when n = N . What is the derivative of τ̄

with respect to this change? (You may view the M/M/1/N queue as the two-server

cyclic queue again to verify your result.)

Solution:

a. Suppose the arrival rate only changes when n = 0, then the infinitesimal matrix B

in Problem 2.17 changes to

B =




−(λ + ∆λ) λ+ ∆λ 0 · · · 0

µ −(λ+ µ) λ · · · 0
...

... · · · · · ·
...

0 · · · µ −(µ + λ) λ

0 0 · · · µ −µ




(2.23)



39

Then, the derivative B with respect to this change is

dB

dλ
=




−1 1 0 · · · 0

0 0 0 · · · 0
...

... · · · · · ·
...

0 · · · 0 0 0

0 0 · · · 0 0




.

Substituting it into (2.22), we have the derivative of τ̄ with respect to this change:

dτ̄

dλ
=
π(0)

ηth

(
(gf(1) − gf(0)) + τ̄(gµ(1) − gµ(0))

)

b. Similarly, if the arrival rate only changes when n = n∗, the derivative of τ̄ with

respect to this change is

dτ̄

dλ
=
π(n∗)

ηth

[
(gf(n∗ + 1) − gf(n∗)) + τ̄(gµ(n∗ + 1) − gµ(n∗))

]
.

c. Suppose the arrival rate only changes when n = N , this change does not affect the

performance measure and the infinitesimal matrix is still the original one, so the derivative

with respect to this change is zero.

2.19 Consider a Markov chain with one closed recurrent state set S1 and one transient

state set S2 (a uni-chain). Let the transition probability matrix be

P =


 P1 0

P21 P22


 ,

with P1 corresponding to S1 and P21 6= 0, P22 to S2, and 0 being a matrix with all zero

components. Denote the potential vector as g = (gT
1 , g

T
2 )T with g1 = (g(1), · · · , g(S1))

T

and g2 = (g(S1 + 1), · · · , g(S))T , S1 = |S1|, S2 = |S2|, S1 + S2 = S.

Derive an equation for g1 and express g2 in terms of g1 and P21, P22.

Solution:

S2 is a transient state set, then the steady-state probability of this Markov chain is

π = (π1, 0)

where π1 is steady state probability of S1 recurrent states and 0 is an S2 dimensional row

vector whose components are all zeros. Thus from balance equation, we have π1P1 = π1.
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Let f = (fT
1 , f

T
2 )T. From Poisson equation,

(I − P + eπ)g = f,

we have



 I 0

0 I


−


 P1 0

P21 P22


+


 e1π1 0

e2π1 0






 g1

g2


 =


 f1

f2


 ,

where e1 and e2 are S1-dimension and S2-dimension column vector with all elements equal

1. That is,

 I − P1 + e1π1 0

−P21 + e2π1 I − P22




 g1

g2


 =


 f1

f2


 .

Therefore, we have

g1 = (I − P1 + e1π1)
−1f1,

(−P21 + e2π1)g1 + (I − P22)g2 = f2.

Therefore

g2 = (I − P22)
−1 [f2 + (P21 − e2π1)g1] .

2.20 Consider a Markov chain with transition probability matrix

P =


 B b

0 1


 ,

where B is an (S−1)× (S−1) irreducible matrix, b > 0 is an (S−1) dimensional column

vector, 0 represents an (S − 1) dimensional row vector whose components are all zero.

The last state S is an absorbing state. Clearly, the long-run average performance for this

Markov chain is η = f(S), independent of B, b, and the initial state. Thus, the long-run

average does not reflect the transient behavior. Now, we set f(S) = 0. Define

g(i) = E{
∞∑

l=0

f(Xl)|X0 = i}.

Let Li,S = min{l ≥ 0, Xl = S|X0 = i} be the first passage time from i to S. Then

g(i) = E{

Li,S−1∑

l=0

f(Xl)|X0 = i}.
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a. Derive an equation for g = (g(1), · · · , g(S))T .

b. Derive an equation for the average first passage times E[Li,S], i ∈ S.

Solution:

a). Let f = (fT
1 , 0)T be the performance function and g = (gT

1 , g(S))T be the per-

formance potential. Obviously, we have g(S) = 0 and π = (0, · · · , 0, 1). From Poisson

equation, we have



 I 0

0 1


−


 B b

0 1


 + eS(0, · · · , 0, 1)




 g1

0


 =


 f1

0




Then we get g1 = (I − B)−1f1.

b). Let f = (1, · · · , 1, 0)T, then f1 = eS−1, which is a (S − 1) dimensional column

vector whose components are all 1. g(i) = E{
∑Li,S−1

l=0 f(Xl)|X0 = i} = E{Li,S}. From

above results, we have

E{Li,S} = [(I − B)−1eS−1]i.

where [ · ]i denotes the i-th component of vector.

2.21∗ (This problem helps in understanding the difference between the discounted per-

formance criteria for both the discrete-time and continuous-time models.) Consider a

Markov chain X with transition probability matrix P = [p(j|i)]Si,j=1 and reward function

f(i), i = 1, 2, · · · , S. For simplicity, we assume that p(i|i) = 0 for all i = 1, 2, · · · , S. Let

X̃ be a Markov chain with reward function f̃(i) = f(i), i = 1, 2, · · · , S, and transition

probability matrix P̃ defined as p̃(i|i) = q, 0 < q < 1, and p̃(j|i) = (1 − q)p(j|i), j 6= i,

i, j = 1, 2, . . . , S.

a. Prove that X̃ is equivalent to X in the sense that they have the same steady-state

probabilities: π̃(i) = π(i) for all i = 1, 2, . . . , S.

b. The discounted reward of X is defined as (2.35):

ηβ(i) = (1 − β)E

{ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

}
,

where 0 < β < 1 is a discount factor. Similarly, the discounted reward of X̃ is

defined with a discount factor 0 < β̃ < 1 as

η̃β̃(i) = (1 − β̃)E

{ ∞∑

l=0

β̃lf(X̃l)
∣∣∣X̃0 = i

}
.
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Find a value for β̃ such that η̃β̃(i) = ηβ(i) for all i = 1, 2, · · · , S.

c. Let ∆ > 0 be a positive number. Consider a continuous-time (not Markov) process

X̂ := {X̂t, t ∈ [0,∞)}, where X̂t = Xl if l∆ ≤ t < (l + 1)∆, l = 0, 1, · · ·, with

X = {Xl, l = 0, 1, · · ·} being the Markov chain considered in a). The discounted

reward of X̂ is defined by an exponential weighting factor (cf. (2.93)):

ηα(i) = lim
T→∞

E

[∫ T

0

αe−αtf(X̂t)dt
∣∣∣X0 = i

]
, T0 = 0.

What is the equivalent β such that ηβ(i) = ηα(i) for all i = 1, 2, · · · , S?

d. Repeat c) for continuous-time process X̂ := {X̂t, t ∈ [0,∞)}, with X̂t = X̃l if

l∆ ≤ t < (l + 1)∆, l = 0, 1, · · ·.

e. How about in d) we let ∆ → 0 while keeping 1−q
∆

= λ? (where λ is a constant).

(Hint: If X = {X0 = i0, X1 = i1, · · · , }, then we have X̃ = {X̃0 = X̃1 = · · · = X̃n0−1 =

i0, X̃n0 = X̃n0+1 = · · · = X̃n0+n1−1 = i1, · · · , }, where nl is the numbers of consecutive

visits to state il, l = 0, 1, · · ·. Note that nl is geometrically distributed with parameter q.

Therefore,

η̃β̃(i) = (1 − β̃)E{(1 + β̃ + · · ·+ β̃n0−1)f(i0) + (β̃n0 + · · · + β̃n0+n1−1)f(i1) + · · ·}.

We conclude that η̃β̃(i) = ηβ(i) if β = (1−q)β̃

1−qβ̃
.)

Solution:

a. The steady state probability vector of Markov chain X̃ satisfies the following flow

balance equation:

π̃(P̃ − I) = 0, (2.24)

π̃e = 1. (2.25)

From (2.24), we have (1 − q)π̃(P − I) = 0, 0 < q < 1. So π̃(P − I) = 0. Combining with

(2.25), we know π̃ is also the steady state probability vector of Markov chain X. Thus,

π̃(i) = π(i), i ∈ S.

b. Firstly, we give an intuitive explanation. For Markov chain X̃ with discount

factor β̃, since the transition probability matrix is defined as p̃(i|i) = q, 0 < q < 1, and
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p̃(j|i) = (1 − q)p(j|i), j 6= i, i, j = 1, 2, · · · , S, thus, we know the dwell time in each state

follows a geometrical distribution with parameter q. Then, the probability that Markov

chain X̃ transits to one state n times consecutively is qn(1 − q). So, the total expected

discount factor is
∑∞

n=0(1−q)q
nβ̃n+1 = (1−q)β̃

1−qβ̃
. Therefore, if let β = (1−q)β̃

1−qβ̃
, i.e. β̃ = β

1−q+qβ
,

then η̃β̃(i) = ηβ(i).

Next, we give a rigorous proof. From (2.31),

ηβ̃ = (1 − β̃)(1 − β̃P̃ )−1f

= (1 − β̃)

∞∑

l=0

β̃lP̃ lf

= (1 − β̃)

∞∑

l=0

β̃l[qI + (1 − q)P ]lf

= (1 − β̃)

∞∑

l=0

β̃l

l∑

n=0

(
l

n

)
(1 − q)nql−nP nf

= (1 − β̃)

∞∑

n=0

∞∑

l=n

β̃l

(
l

n

)
(1 − q)nql−nP nf

= (1 − β̃)

∞∑

n=0

(1 − q)nβ̃n
∞∑

l=0

β̃l

(
l + n

n

)
qlP nf

= (1 − β̃)
∞∑

n=0

(1 − q)nβ̃n 1

(1 − qβ̃)n+1
P nf

= (1 −
(1 − q)β̃

1 − qβ̃
)

∞∑

n=0

((1 − q)β̃

1 − qβ̃

)n

P nf

(if β :=
(1 − q)β̃

1 − qβ̃
⇒) = (1 − β)

∞∑

n=0

βnP nf

= (1 − β)(I − βP )−1f = ηβ

where we have used the Binomial formula 1
(1−x)r =

∑∞
k=0

(
r+k−1

k

)
xk in the seventh equa-

tion.

c. Since

ηα(i) = lim
T→∞

E

[∫ T

0

αe−αtf(X̂t)dt|X0 = i

]

= E{

∫ ∆

0

αe−αtdtf(X0) +

∫ 2∆

∆

αe−αtdtf(X1) + · · ·}

= (1 − e−α∆)E{f(X0) + e−α∆f(X1) + e−2α∆f(X2) · · ·}

Thus, if β = e−α∆, ηβ(i) = ηα(i) for all i.
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d. Similarly to c), we have equivalent β̃ = e−α∆ such that ηβ̃(i) = ηα(i) for all i ∈ S.

Then by using b), if β = (1−q)e−α∆

1−qe−α∆ , we have ηβ(i) = ηα(i) for all i.

e. If let ∆ → 0 while keeping 1−q
∆

= λ, then q → 1. Since

β =
(1 − q)e−α∆

1 − qe−α∆
=

(1 − q)(1 − α∆ + o(∆2))

1 − q(1 − α∆ + o(∆2))

=
1−q
∆

− (1 − q)α + o(∆)
1−q
∆

+ qα + o(∆)

→
λ

λ+ α
.

2.22 Prove that the random variable s generated according to (2.96) is indeed exponen-

tially distributed.

Solution: We have x = −s̄ ln(1 − ξ), then the distribution function is

F (s) = P (x < s) = P (−s̄ ln(1 − ξ) < s) = P (ξ < 1 − e−
s
s̄ ),

for s > 0. It’s obviously that 1 − e−
s
s̄ < 1, and ξ is uniform distribution on [0, 1), so

F (s) = 1 − e−
s
s̄ , s > 0.

If s ≤ 0, since −s̄ ln(1 − ξ) > 0, we have F (s) = P (−s̄ ln(1 − ξ) < s) = 0. Then,

F (s) =





1 − e−
s
s̄ , s > 0,

0, s ≤ 0.

Thus, he random variable s generated according to (2.96) is indeed exponentially dis-

tributed.

2.23 Develop a PA algorithm to determine a perturbed path for an open Jackson network

consisting of M servers, with mean service time s̄i, i = 1, 2, · · · ,M . The customers arrive

in a Poisson process with mean inter-arrival time a = 1
λ
. Both a and s̄i, i = 1, 2, · · · ,M ,

may be perturbed.

Solution: Algorithm:

Given an original sample path for an open Jackson network.

i. Initialize: Set ∆i := 0, i = 0, 1, 2, . . . ,M .
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ii. Perturbation generation: At the k-th service completion time of server i, set ∆i :=

∆i + si,k, k=1,2,..., i=1,2,...,M. si,k is the service time of the customer. At the k-th

outside customer arrival, set ∆0 := ∆0 + ak, k=1,2,.... ak is the inter-arrival time of the

customer.

iii. Perturbation propagation: When a customer from server i terminates an idle

period of server j, set ∆j := ∆i. When an outside customer terminates an idle period of

server j, set ∆j := ∆0.

2.24 Suppose that at some time the perturbations of the servers in a closed network are

∆1,∆2, · · · ,∆M determined by Algorithm 2.1. What is the perturbation that has been

realized by the network at that time? As we know, if a perturbation is realized, then

the future perturbed sample path looks the same as the original one except shifted to

the right by the amount equal to the perturbation. Can we use this fact to simplify the

calculation in Algorithm 2.2?

Solution: The perturbation that has been realized by the network at that time is ∆ =

min(∆1,∆2, · · · ,∆M).

we can simplify the Algorithm 2.2 as follows: Since the perturbation ∆ has been

realized at some time m, then each of ∆1,∆2, · · · ,∆M contains this perturbation. That

is to say, the perturbed sample path is the same as the original one except that the entire

sample path is shifted to the right by the amount ∆. Then, at the transition times afterm,

the update of ∆F can be set as ∆F := ∆F + [f(n) − f(n′)]∆T ′
l , where ∆T ′

l = ∆Tl − ∆,

n = N(Tl−), and n′ = N(Tl). This is because ∆FL = ∆Fm−1 +
∑L

l=m[f(N(Tl−)) −

f((N(Tl))]∆Tl = ∆Fm−1+
∑L

l=m[f(N(Tl−))−f((N(Tl))]∆T
′
l +[f(N(Tm−))−f((N(TL))]∆.

Since performance derivative is s̄v

η(I)
∂η(f)

∂s̄v
≈ ∆FL

TL
, when TL is sufficiently large, we can omit

[f(N(Tm−))−f((N(TL))]∆. Thus, we can update ∆F as ∆F := ∆F +[f(n)−f(n′)]∆T ′
l .

2.25 Using the 0-1 vector array (2.105), discuss the situation of the propagation of

M perturbations with the same size, each at one server, along a sample path. Prove
∑M

i=1 c(n, i) = 1.

Solution: In the same way, we have M row vectors, each of which represents the prop-

agation of one perturbation. Then we have a M ×M unit matrix. From perturbation
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propagation rule, if a customer from server i terminates an idle period of server j, then all

perturbations of server i is propagated to server j. We just need to copy the ith column

of the matrix to the jth column. Obviously, no matter how the perturbations propagate,

each column of the matrix has one and only one 1, other components are all 0. That

means, each server will have one and only one realized perturbation. Eventually, the ma-

trix may reach a matrix in which one row is all 1. That is, only one of these perturbations

is realized and the others are lost. Then the probability that perturbations are realized

is 1. So the summation of realization probabilities is 1. That is
∑M

i=1 c(n, i) = 1.

2.26 We further study the propagations of two equal perturbations ∆1 = ∆ at server 1

and ∆2 = ∆ at server 2 simultaneously on the same sample path. Consider the array in

(2.105). Set w(t) = w1(t) + w2(t).

1. What is the meaning of w(t)?

2. What does it mean when w(t) = (1, 1, . . . , 1) or w(t) = (0, 0, . . . , 0)?

3. How does w(t) evolve?

Solution:

a. w(t) denotes which server has the perturbation ∆1 or ∆2 at time t.

b. w(t) = (1, 1, . . . , 1) denotes all severs have a perturbation ∆, which can be either

∆1 or ∆2. w(t) = (0, 0, . . . , 0) denotes the perturbations ∆1 and ∆2 have been lost.

c. When server i terminates an idle period of server j, the perturbation (either 0 or

∆) will be propagated to server j. This is equivalent to simply set wj = wi. The initial

value of w(t) is w(0) = (1, 1, 0, . . . , 0). Eventually, the array may reach (1, 1, . . . , 1) or

(0, 0, . . . , 0).

2.27 In addition to (2.94), we may define the system performance as the long-run time

average

η
(f)
T = lim

L→∞

1

TL

∫ TL

0

f(N(t))dt.

We have η
(f)
T = η(f)

η(I) .

a. Derive the derivative of η
(f)
T with respect to s̄i, i = 1, 2, · · · ,M .
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b. Define the reward function f corresponding to the steady-state probability π(n),

with n being any state, and derive dπ(n)
ds̄i

, i = 1, 2 · · · ,M .

Solution:

a. We have η
(f)
T = η(f)/η(I), thus

∂η
(f)
T

∂s̄i

=
1

η(I)

∂η(f)

∂s̄i

− η(f)(
1

η(I)
)2∂η

(I)

∂s̄i

=
1

s̄i

∑

all n

π(n)(c(f)(n, i) − c(n, i)
η(f)

η(I)
)

=
1

s̄i

∑

all n

π(n)(c(f)(n, i) − c(n, i)η
(f)
T )

b. For any state n, let f(n) = 1 and 0 otherwise. Since ηf
T =

∑
n∈S π(n)f(n), we

have η
(f)
T = π(n). We can apply the equation in a) to get ∂π(n)

∂s̄i
.

2.28 Prove that in a closed Jackson network the sample function TL(ξ, s̄v) (with ξ fixed)

is a piecewise linear function of s̄v, v = 1, 2, · · · ,M (see [46]).

Solution:

For a closed Jackson network, the service time of server v follows an exponential

distribution with mean s̄v, then the service time of the k-th customer at server v is

sv,k = −s̄v ln(1 − ξv,k), k = 1, 2, . . . .

If s̄v is changed to s̄v + ∆s̄v, the service time of the k-th customer at server v is

sv,k = −(s̄v + ∆s̄v) ln(1 − ξv,k), k = 1, 2, . . . .

Let ti,k be the time of service completion of k-th customer at server i, i = 1, 2, . . . ,M, k =

1, 2, . . .. Then, we have the following recursive formula for ti,k:

ti,k =





ti,k−1 + s′i,k if N(ti,k−1+) 6= 0

tj,h + s′i,k if N(ti,k−1+) = 0
,

where

s′i,k =





si,k if i 6= v,

−(s̄v + ∆s̄v) ln(1 − ξv,k) if i = v.
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and tj,h denotes the time of service completion of the h-th customer that has completed its

service at server j moves into server i. If the sample path for different s̄v is similar, that is,

the embedded Markov chain of closed Jackson network for these different s̄v is the same

(or the order of events in the nominal and perturbed paths remains the same), then it is

clear that ti,k, i = 1, 2, . . . ,M, are linear with respect to s̄v. To guarantee the similarity of

the sample path under different s̄v, we need that s̄v cannot be changed largely. That is,

if s̄v changes in a interval (s̄min
v , s̄max

v ), which depends on the sample path, the similarity

can be guaranteed. Thus ti,k, i = 1, 2, · · · ,M, are a linear function on this interval. For

any s̄v, there is a interval to make ti,k, i = 1, 2 · · · ,M, linear with respect to s̄v. Therefore,

ti,k, i = 1, 2 · · · ,M, are piecewise linear functions of s̄v. Since there always exists a w

and a k such that TL(ξ, s̄v) = tw,k, TL(ξ, s̄v) is piecewise linear with respect to these s̄v,

v = 1, 2, . . . ,M .

2.29 Consider a closed Jackson network in which µiqi,j = µjqj,i, i, j = 1, 2, · · · ,M . Prove

that

c(n, k) =
nk

N
, k = 1, 2, · · · ,M ;

and

s̄k

η

∂η

∂s̄k
= −

1

M
,

where k = 1, 2, · · · ,M , denote any server in the network.

Solution:

In order to prove c(n, k) = nk/N , we can substitute it into the equations which the

realization probabilities satisfy. If the equations still hold, then c(n, k) = nk/N holds

because the equations have a unique solution for irreducible closed Jackson networks.

1. If nk = 0, then c(n, k) = 0 = nk/N .

2.
∑M

k=1 c(n, k) =
∑M

k=1 nk/N = 1.

3. If nk > 0, then ǫ(nk) = 1. The first term on the right side is

M∑

i=1

M∑

j=1

ǫ(ni)µiqijc(nij , k)

=
∑

i6=k

∑

j 6=k

ǫ(ni)µiqij
nk

N
+
∑

i6=k

ǫ(ni)µiqik
(nk + 1)

N
+
∑

j 6=k

ǫ(nk)µkqkj
(nk − 1)

N
+ ǫ(nk)µkqkk

nk

N
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=
∑

i6=k

∑

j

ǫ(ni)µiqij
nk

N
+
∑

i6=k

ǫ(ni)µiqik
1

N
+
∑

j

ǫ(nk)µkqkj
(nk − 1)

N
+ ǫ(nk)µkqkk

1

N

=
∑

i6=k

ǫ(ni)µi
nk

N
+
∑

i6=k

ǫ(ni)µiqik
1

N
+ ǫ(nk)µk

(nk − 1)

N
+ ǫ(nk)µkqkk

1

N

=
∑

i

ǫ(ni)µi
nk

N
+
∑

i6=k

ǫ(ni)µiqik
1

N
− µk

1

N
+ µkqkk

1

N
(ǫ(nk) = 1)

The second term on the right side is

M∑

i=1

µkqki(1 − ǫ(ni))c(nki, i)

=
∑

i6=k

µkqki(1 − ǫ(ni))
ni + 1

N
+ µkqkk(1 − ǫ(nk))

nk

N

=
∑

i6=k

µkqki(1 − ǫ(ni))
ni + 1

N
(ǫ(nk) = 1)

=
∑

i6=k

µkqki(1 − ǫ(ni))
1

N
(ni(1 − ǫ(ni)) = 0)

Therefore,

right

=
∑

i6=k

µkqki(1 − ǫ(ni))
1

N
+
∑

i

ǫ(ni)µi
nk

N
+
∑

i6=k

ǫ(ni)µiqik
1

N
− µk

1

N
+ µkqkk

1

N

=
∑

i

ǫ(ni)µi
nk

N
+
∑

i6=k

µkqki
1

N
+ µkqkk

1

N
− µk

1

N
+
∑

i6=k

ǫ(ni)
1

N
(µiqik − µkqki)

=
∑

i

ǫ(ni)µi
nk

N
+
∑

i

µkqki
1

N
− µk

1

N
(µiqik = µkqki)

=
∑

i

ǫ(ni)µi
nk

N

=

M∑

i=1

ǫ(ni)µic(n, k)

= left

From 1,2 and 3, c(n, k) = nk/N is proved.

µi =
∑M

j=1 µiqij =
∑M

j=1 µjqji, so µi is one solution of equation (C.5). Let visit ratio

vi = µi, then xi = vi/µi = 1.

s̄k

η

∂η

∂s̄k
= −

∑

all n

p(n)c(n, i) = −
N∑

n=1

p(nk = n)
n

N
= −

n̄k

N
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n̄k is the mean queueing length of server k, and

n̄k =
N∑

n=1

xn
k

GM(N − n)

GM(N)
=

N∑

n=1

GM(N − n)

GM(N)

GM (N−n)
GM (N)

is the same for all server. Thus n̄k is the same for all server. And
∑M

k=1 n̄k =

N , so n̄k = N/M . Therefore s̄k

η
∂η
∂s̄k

= − n̄k

N
= − 1

M
.

2.30 (This problem requires a good knowledge of queueing theory) Consider an M/M/1

queue with arrival rate λ and service rate µ. The system state is simply the number of

customers in the queue; i.e., n = n. The performance measure is the average response

time τ̄ = limL→∞
1
L

∫ TL

0
n(t)dt. Thus f(n) = n. For the M/M/1 queue, there is a source

sending customers to the queue with rate λ. Denote the source as server 0, and the server

as server 1. Server 0 can be viewed as always having infinitely many customers.

a. Prove that the realization factors c(f)(n, 0) and c(f)(n, 1), n = 0, 1, · · ·, satisfy the

following equations:

c(f)(0, 0) = 0, c(f)(0, 1) = 0,

c(f)(n, 0) + c(f)(n, 1) = n, n ≥ 0,

(λ+ µ)c(f)(n, 0) = µc(f)(n− 1, 0) + λc(f)(n+ 1, 0) − λ, n > 0,

and

(λ+ µ)c(f)(n, 1) = λc(f)(n + 1, 1) + µc(f)(n− 1, 1) + µ, n > 0.

b. To solve for c(f)(n, i), for i = 0, 1, we need a boundary condition. Using the physical

meaning of perturbation realization, prove that c(f)(1, 1) equals the average number

of customers served in a busy period of the M/M/1 queue; i.e., (see, e.g., [169])

c(f)(1, 1) =
µ

µ− λ
=

1

1 − ρ
, ρ =

λ

µ
.

c. Prove

c(f)(n, 1) =
n

1 − ρ
,

and

c(f)(n, 0) = −
nρ

1 − ρ
.
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d. By the same argument as in the closed networks, explain and derive

µ

η(I)

dτ̄

dµ
= −

λµ

(µ− λ)2
= −

ρ

(1 − ρ)2
,

and
λ

η(I)

dτ̄

dλ
=

λ2

(µ− λ)2
=

ρ2

(1 − ρ)2
.

Solution:

a. When system state is n = 0, a perturbation on server 0(perturbation in the mean

arrival interval) will propagate thought the system, and the sample path is the same as

original one except that it is shift to the right by the amount ∆. So the performance

difference between the two sample pathes is ∆FL = f(0)∆ = 0. Then c(f)(0, 0) = 0.

When system state is n = 0, a perturbation on server 1 contribute nothing to perfor-

mance of system, thus c(f)(0, 1) = 0.

When system state is n, both server 0 and server 1 are perturbed by the amount

∆. Then the next arriving customer and the next leaving customer both delay for ∆.

Therefore, the perturbed sampled path is shift to the right by ∆. We have the performance

difference ∆FL = f(n)∆. Then the total perburbation realization factor is

c(f)(n, 0) + c(f)(n, 1) = ∆FL/∆ = f(n) = n

When system state is n and server 0 is perturbed, the system will transit to next state

n− 1 with probability µ/(µ+ λ). Then, the perturbation is wholly inherited by the new

state. The system will transit to the next state n+ 1 with probability λ/(µ+ λ). In this

situation, the system performance will have a decreased amount (f(n)−f(n+1))∆ = −∆,

besides influence on the new state. Thus the realization factor satisfies

c(f)(n, 0) = µ/(λ+ µ)c(f)(n− 1, 0) + λ/(λ+ µ)[c(f)(n+ 1, 0) − 1]

That is (λ+ µ)c(f)(n, 0) = µc(f)(n− 1, 0) + λc(f)(n+ 1, 0) − λ.

When system state is n and server 1 is perturbed, the system will transit to the next

state n−1 with probability µ/(µ+λ). In this situation, the system performance will have

increased amount (f(n)−f(n−1))∆ = ∆, besides influence on the new state. The system

will transit to the next state n + 1 with probability λ/(µ+ λ). Then the perturbation is
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wholly inherited by the new state. Thus the realization factor satisfies

c(f)(n, 1) = µ/(λ+ µ)[c(f)(n− 1, 1) + 1] + λ/(λ+ µ)c(f)(n+ 1, 1)

That is (λ+µ)c(f)(n, 1) = λc(f)(n+1, 1)+µc(f)(n−1, 0)+µ. The results in a. is proved.

b. When system state is n = 1 and server 1 has a perturbation ∆, we can know this

perturbation will only exist in the current busy period. Every customer’s departure in the

busy period is delayed by ∆. So we can know the total perturbation propagation number

equals to the number of served customers in the busy period. Denote the number of

customers served in the busy period as NB, then c(f)(1, 1) = E{NB∆/∆} = E{NB} = N̄B,

where N̄B is average number of served customers in a busy period. We use the sub-busy

period concept to compute N̄B. The period from the time that the system enters state

n, n > 0, to the first time that the system state is n− 1 behave statistically similar to a

busy period. Such a period is called a sub-busy period. Sub-busy period has the similar

statistic properties as busy period, e.g, average number of served customers in a sub-busy

period equals to that in a busy period. If n = 1, the sub-busy period is a busy period

because of memoryless of M/M/1 system. From the physical meaning of sub-busy period,

we can get following equation between busy period and sub-busy period:

N̄B =
µ

(λ+ µ)
× 1 +

λ

(λ+ µ)
[N̄B + N̄B]

When current state is n = 1, the next event is a customer departure with probability

µ/(λ + µ), so it means only one customer in the busy period. The next event is a

customer arrival with probability λ/(λ+ µ). Then the next system state is 2. From now

on, the busy period can be divided into two sub-busy periods: the first sub-busy period

is from state 2 to 1, the second is from state 1 to 0. The first sub-busy period serves N̄B

customers on average. The second sub-busy period also has average customer number

N̄B. From above equation, we can get the average served customer number in a busy

period is:

N̄B =
µ

µ− λ
=

1

1 − ρ

Therefore the perturbation realization factor is c(f)(1, 1) = N̄B = 1
1−ρ

. b) is proved.

c. When the system state is n, with the similar analysis we have c(f)(n, 1) equals the

average number of served customers which is counted from state n in a busy period. We
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denote it as N̄n
B, with N̄1

B = N̄B. From sub-busy period concept, we can also get the

following equation:

N̄n
B =

µ

λ+ µ
(1 + N̄n−1

B ) +
λ

λ+ µ
[N̄n

B + N̄1
B]

So we get: N̄n
B = N̄n−1

B + µ
µ−λ

. Therefore N̄n
B = nµ

µ−λ
= n

1−ρ
. The perturbation realization

factor is

c(f)(n, 1) = N̄n
B =

n

1 − ρ

From c(f)(n, 0) + c(f)(n, 1) = n, we can know

c(f)(n, 0) = n− c(f)(n, 1) = −
nρ

1 − ρ

d. The steady state probability p(n) = (1 − ρ)ρn. From the equation of performance

derivative, we have

µ

η(I)

dτ̄

dµ
= −

∞∑

n=0

p(n)c(f)(n, 1) = −
∞∑

n=0

(1 − ρ)ρn n

(1 − ρ)
= −

ρ

(1 − ρ)2

Similarly, we have

λ

η(I)

dτ̄

dλ
= −

∞∑

n=0

p(n)c(f)(n, 0) =
∞∑

n=0

(1 − ρ)ρn nρ

(1 − ρ)
=

ρ2

(1 − ρ)2

Reference:

L. Kleinrock, Queueing Systems, Volume I, John Wiley, New York,1975.

X. R. Cao, Realization Probabilities, The Dynamics of Queueing Systems, Springer-Verg,

1994.

2.31 The head-processing time of a packet in a communication system, or the machine

tool set-up time in manufacturing, is usually a fixed amount of time. Consider a two-server

cyclic queueing network in which the service times of the two servers are exponentially

distributed with mean s̄1 and s̄2, respectively. Suppose that every service time of server

1 increased by a fixed amount of time ∆. Derive the derivative of performance η(f) with

respect to ∆ using performance realization factors c(f)(n, 1).

Solution:

Let π(n) be the steady-state probability that there are n customers at server 1. From

the PSATA theorem, the probability that the departing customer leaves behind n cus-

tomers in the system is equal to π(n). Let L1 be the number of service completions at
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server 1. The number of the service completions when the state is in n+1 is L1π(n). The

total time perturbation generated from state n + 1 at server 1 is L1π(n)∆. Since each

perturbation on average has an effect of c(f)(n+ 1, 1) on FL. Thus the total effect on FL

of all the perturbations is

∆FL ≈
∑

n

L1π(n)∆c(f)(n+ 1, 1)

=
∑

n

L1π(n)∆c(f)(n+ 1, 1).

So, we have
L

L1

∆FL/L

∆
≈
∑

n

π(n)c(f)(n + 1, 1).

Letting L→ ∞ and ∆ → 0, we have

1

v1

∂ηf

∂∆
=
∑

n

π(n)c(f)(n+ 1, 1),

where v1 is the visit ratio of server 1. v1 can be easily obtained by (C.5) for cyclic network,

i.e. v1 = v2. Since v1 +v2 = 1, we have v1 = v2 = 1/2. Thus, we can obtain the derivative

with respect to fixed change ∆ as follows:

∂ηf

∂∆
=

1

2

∑

n

π(n)c(f)(n+ 1, 1).

2.32 Prove that Algorithm 2.2 yields a strongly consistent estimate for the sensitivity of

the mean response time in an M/G/1 queue; i.e., in (2.134) we have

µ

η(I)

∂τ̄

∂µ
= − lim

K→∞

1

TL

K∑

k=1

nk∑

i=1

i∑

l=1

sk,l a.s.

Solution: Firstly, we consider the problem for a general M/G/1 queueing system. Then

we consider the problem for the special M/G/1 queueing system with service time s = C
µ

in the above problem, where C denotes a fixed “length” of a customer, such as a packet

length in communication systems, and µ denotes the service rate.

The mean response time of a customer is given by Pollaczek-Khinchin, or P-K formula

in Kleinrock (1975),

τ̄ = E(s) +
λE(s2)

2(1 − λE(s))
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where s denotes the service time of a customer, which follows a general distribution

F (s, µ). The sensitivity of the average response time to µ is then obtained by straight-

forward differentiation to be

dτ̄

dµ
=
dE(s)

dµ
+

λ

2(1 − λE(s))

dE(s2)

dµ
+

λ2E(s2)

2(1 − λE(s))2

dE(s)

dµ
.

For the M/G/1 queue with determined service time, we have E(s) = C
µ

and E(s2) = C2

µ2 ,

so, the sensitivity of the average response time to µ is

dτ̄

dµ
= −

C

µ2
−

λ

1 − λE(s)

C2

µ3
−

λ2E(s2)

2(1 − λE(s))2

C

µ2

Let Ck,i denote the i-th customer in the k-th busy period and sk,i(ω, µ) denote the

service time of the i-th customer in the k-th busy period. For the generalM/G/1 queueing

system, we assume that the derivative dsi

dµ
of sample function sk,i(ω, µ) with respect to

µ depends only on the value of the service time sk,i, i.e.
dsk,i

dµ
= φ(sk,i). For the special

M/G/1 queue with service time sk,i = C
µ
, we have

dsk,i

dµ
= −

sk,i

µ
, which satisfies our

assumption.

Next, we prove the following results about a strongly consistent estimate of the above

sensitivity.

∂τ̄

∂µ
= lim

K→∞

1

L

K∑

k=1

nk∑

i=1

i∑

l=1

φ(sk,l) =:
dτ̄

dµ
|est a.s. (2.26)

where sk,l denotes the service time of the lth customer in the k-th busy period, L denotes

the number of customer completions in the period of [0, TL], and nk denotes the number

of customers served in the kth busy period. Let hk =
∑nk

i=1

∑i
l=1 φ(sk,l), then the right

hand side of (2.26) can be written as

dτ̄

dµ

∣∣∣
est

= lim
K→∞

1

L

K∑

k=1

nk∑

i=1

i∑

l=1

φ(sk,l) = lim
K→∞

1
K

∑K
k=1 hk

1
K

∑K
k=1 nk

,

From the strong law of large number, we have

dτ̄

dµ

∣∣∣
est

= lim
K→∞

1
K

∑K
k=1 hk

1
K

∑K
k=1 nk

=
E[h1]

E[n1]
, w.p.1. (2.27)

From Kleinrock (1975, page 217) (cf. Problem C. 2), we have

E[n1] =
1

1 − λE(s)
.
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Thus,

dτ̄

dµ
|est = [1 − λE(s)]E[h1]. (2.28)

Following the approach in Kleinrock (1975) for busy period analysis, we decompose the

busy period into sub-busy periods.

From (2.27), we only need to analyze the first busy period, therefore, we will omit

the subscript k about busy period. We assume m customers arrive during the service

time of C1. As explained in Kleinrock (1975), each of C2 through Cm+1 initiates a sub-

busy period statistically identical to the busy period initiated by C1. Furthermore, these

sub-busy periods are statistically identical. Let us define the quantity

g =
n1∑

l=1

φ(sl),

Now, we will number the sub-busy periods in the order that they occur, and we will

number the customers in the order that they are served using the LCFS discipline. Let mr

be the number of customers in the r-th sub-busy period and define m(r) = 1+m1+. . .+mr

with m(0) = 1. Then Cm(r−1)+1 through Cm(r) are the customers that belong to the r-th

sub-busy period. We consider the quantities

g(r) =

mr∑

i=1

φ(sm(r−1)+i) with g(0) = φ(s1),

h(r) =

mr∑

i=1

i∑

j=1

φ(sm(r−1)+j).

where si denote the ith customer in the first busy period. Then, we have

g =
n1∑

l=1

φ(sl) = φ(s1) +
m∑

r=1

mr∑

i=1

φ(sm(r−1) + i) =
m∑

r=0

g(r), (2.29)

h1 = φ(s1) +
m∑

r=1

[h(r) +mr

r−1∑

s=0

g(s)]. (2.30)

Next, we wish to derive the expected values of g and h1. Taking expected values on both

sides of (2.29), we have

E(g) = E(φ(sl)) + E(m)E(g).

Noting that E(m) equals λE(s) and solving for E(g) gives

E(g) =
E(φ(s1))

1 − λE(s)
. (2.31)
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Taking expected values in (2.30) conditioned on s1 and m, we have

E(h1|s1, m) = φ(s1) +
m∑

r=1

E[h(r)|s1, m] +
m∑

r=1

E[mr

r−1∑

s=0

g(s)|s1, m].

Taking into account the fact that quantities referring to different sub-busy periods are

independent from each other and from s1 and m and identically distributed to the parent

busy period and also that mr is independent of g(s) for s < r, we get

E(h1|s1, m) = φ(s1) +mE(h1) + kE(m1)φ(s1)

+
(
E[m2] + 2E[m3] + . . .+ (m− 1)E[mk]

)
E(g)

= φ(s1) +m[E(h) + E(m1)φ(x1)] + E(mr)E(g)(m2 −m)/2. (2.32)

Taking expectations with respect to m in the above equation conditioned on s1. Then

E(m|s1) is the average number of Poisson arrivals in an interval of length s1 and so it is

equal to λs1. Similarly, E(m2|s1) is equal to λs1+(λs1−1)2. Taking also into account that

mr is identically distributed to n1 (the number of customers in the parent busy period)

and thus E(mr) = E(n1) = 1/(1 − λE(s)), and using (2.31), we get

E(h1|s1) = φ(s1) + λs1[E(h1) + φ(s1)/(1 − λE(s))] + (λs1)
2E(φ(s1))/2(1 − λE(s))2.(2.33)

Taking expectation with respect to s1, we get

E(h1) = E(φ(s))/(1 − λE(s)) + λE(sφ(s))/(1 − λE(s))2 + λ2E(s2)E(φ(s))/2(1 − λE(s))3.(2.34)

Using the exchangeability of expectation and differentiation and (2.28), we get

dτ̄

dµ
|est =

dE(s)

dµ
+

λ

2(1 − λE(s))

dE(s2)

dµ
+

λ2E(s2)

2(1 − λE(s))2

dE(s)

dµ
, a.s.

Therefore, (2.26) has been proved.

For the special M/G/1 queueing system in problem 2.31, the proof is simple. Letting

dsi = −si/µ, the result in problem 2.31 can be obtained.

Reference:

1. L. Kleinrock, Queueing Systems, Volume I, John Wiley, New York,1975.

2. R. Suri and M. A. Zananis, Perturbation Analysis Gives Strongly Consistent Sensitivity

Estimates for the M/G/1 Queue, Management Science, Vol. 34, No. 1, 39-64, 1988.
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2.33 Consider a closed Jackson network withM servers andN customers. The throughput

of server i is ηi = η̆vi where η̆ is the “un-normalized system throughput”:

η̆ =
GM(N − 1)

GM(N)
,

where vi is server i’s visiting ratio: the solution to

vi =

M∑

j=1

qj,ivj , j = 1, 2, · · · ,M,

and (see (A.55) in the Appendix)

Gm(n) =
∑

n1+···+nM=n

m∏

i=1

xni

i ,

where xi = vis̄i, i = 1, 2 · · · ,M . We have

dxi = dvis̄i + vids̄i. (2.35)

Now we consider the derivative of η̆ with respect to the routing probability matrix

Q = [qi,j]
M
i,j=1. It is clear that η̆ depends on the routing probabilities only through xi,

i = 1, 2, · · · ,M . Suppose that vi changes to vi + dvi, i = 1, 2, · · · ,M . From (2.35), we

observe that in terms of the changes in xi, dxi, i = 1, 2, . . . ,M , this is equivalent to setting

dvi = 0 and ds̄i = s̄i
dvi

vi
for all i = 1, 2, · · · ,M .

a. Explain that for closed Jackson networks, the derivative of any steady-state perfor-

mance
∑

all n
π(n)f(n) with respect to the changes in routing probabilities can be

obtained through the derivatives of the performance with respect to mean service

times.

b. Derive the performance derivative formula dηi

dQ
, by using performance realization

factors c(n, i), i = 1, 2, · · ·.

Solution:

a. For the closed Jackson networks, from (A.44), the steady state probability π(n)

depends on the routing probabilities and s̄i only through xi = vis̄i, i = 1, 2, · · · ,M . The

changes of routing probability matrix Q will lead to the change of vi. From (2.35), suppose

that vi changes to vi + dvi, i = 1, 2, · · · ,M , and s̄i does not change, we know the change
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of xi is dxi = s̄idvi. The change can be equivalent to setting dvi = 0 and ds̄i = s̄i
dvi

vi
for

all i = 1, 2, · · · ,M . That is, the effect on xi of the change of vi is equivalent to that of the

change of the service rate si. In other words, the changes of routing probability can be

equivalent to the changes of mean service times. Therefore, the derivative of any steady-

state performance
∑

all n
π(n)f(n) with respect to the changes in routing probabilities

can be obtained through the derivatives of the performance with respect to mean service

times.

b. Suppose that Q changes to Qδ = Q+ δ∆Q, where ∆Q = Q′ −Q. From vδQδ = vδ,

we have vδ(I − Qδ) = 0, which is similar to πδPδ = πδ. Taking derivative of both sides

with respect to δ, we have

dvδ

dδ
[I −Qδ] = vδ∆Q.

Then,

dv

dδ
|δ=0 = v∆QQ#,

where Q# is the group inverse of I −Q. Then we can compute the value of dvi

dδ
.

Similarly to the discussion in Part a), since η̆ depends on the routing probabilities and

s̄i only through xi = vis̄i, i = 1, 2, · · · ,M , we know the changes of routing probabilities

are equivalent to the changes of service rates. Thus, we consider the changes of service

rates.

dη̆

dδ
=

M∑

i=1

dη̆

ds̄i

ds̄i

dδ
=

M∑

i=1

dη̆

ds̄i

s̄i

vi

dv̄i

dδ
,

where we have used ds̄i = s̄i
dvi

vi
. dη̆

ds̄i
is the derivative with respect to service rate, then we

can compute it by using perturbation analysis. Since the throughput ηi = viη̆, i = 1, 2, · · ·,

where ηi is the throughput of server i, we have η :=
∑M

i=1 ηi = η̆
∑M

i=1 vi, where η is the

throughput of the network. Then, dη̆
ds̄i

= 1∑M
i=1 vi

dη
ds̄i

= − 1∑M
i=1 vi

η
s̄i

∑
all n

π(n)c(n, i). Thus,

we have

dη̆

dδ
= −

1
∑M

i=1 vi

M∑

i=1

η

vi

dvi

dδ

∑

all n

π(n)c(n, i).

From ηi = viη̆, we have dηi

dQ
= dvi

dδ
η̆ + vi

dη̆
dδ

. Therefore, we have

dηi

dQ
=
dvi

dδ
η̆ −

η
∑M

i=1 vi

M∑

i=1

dvi

dδ

∑

all n

π(n)c(n, i).
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2.34 Consider the same two-server cyclic Jackson queueing network studied in Problem

2.17. Let η
(f)
T = limL→∞

∫ TL
0 f(n(t))dt

TL
denote the time-average performance, where n(t)

is the number of customers at time t at server 1, L denote the transition numbers and

performance function f(n) = n. Suppose the arrival rate λ and the service rate µ change

only when the state is n.

a. Derive
dη

(f)
T

dλ
and

dη
(f)
T

dµ
in terms of the realization factors c(f)(n, 1), c(f)(n, 2) and re-

alization probability c(n, 1), c(n, 2).

b. Express
dη

(f)
T

dλ
and

dη
(f)
T

dµ
in terms of the performance potentials g(n).

c. Compare both results in a) and b) and derive a relation between the realization

factors and the potentials. Give an intuitive explanation for this relation. (cf.

[260])

Solution:

a. Since

η
(f)
T = lim

L→∞

∫ TL

0
f(n(t))dt

TL

= lim
L→∞

L

TL

∫ TL

0
f(n(t))dt

L

= τ̄ /η(I),

where η(I) = limL→∞
TL

L
and τ̄ = limL→∞

∫ TL
0 n(t)dt

L
, which is the average response time of

each customer at server 1, we have

dη
(f)
T

dµ
=

dτ̄
dµ
η(I) − τ̄ dη(I)

dµ

(η(I))2

=
1

η(I)

[
dτ̄

dµ
−
dη(I)

dµ
η

(f)
T

]
. (2.36)

Next, we obtain the derivatives dτ̄
dµ

and dη(I)

dµ
in term of realization factors c(f)(n, 1) and

c(n, 1), respectively, by using the method in in Section 2.4.3. (These derivatives can be

directly from the results of Perturbation Analysis.)

Let π(n) be the steady-state probability of state n. Consider a time period [0, TL] with

L≫ 1. The length of the total time that the system is in state n in [0, TL] is TLπ(n). The
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total perturbation generated in this period at serve 1 due to the change of µ is TLπ(n)∆s1

s1
,

where s1 is the average service time of server 1, i.e., s1 = 1
µ
, and thus ∆s1 ≈ − 1

µ2 ∆µ.

Since such perturbation on average has an effect of c(f)(n, 1) on FL, the overall effect on

FL of the perturbation is −TLπ(n)∆µ
µ
c(f)(n, 1), thus we have

∆F ≈ −TLπ(n)
∆µ

µ
c(f)(n, 1).

From this, we have

∆FL/L

∆µ
=
TL

µL
π(n)c(f)(n, 1).

Letting L→ ∞ and ∆µ → 0, we obtain

dτ̄

dµ
= −

η(I)

µ
π(n)c(f)(n, 1). (2.37)

If performance function f ≡ 1, we have

dη(I)

dµ
= −

η(I)

µ
π(n)c(n, 1). (2.38)

Putting (2.38) and (2.37) into (2.36), we have

dη
(f)
T

dµ
= −

1

µ
π(n)

[
c(f)(n, 1) − c(n, 1)η

(f)
T

]
. (2.39)

Similarly, we can obtain

dη
(f)
T

dλ
= −

1

λ
π(n)

[
c(f)(n, 2) − c(n, 2)η

(f)
T

]
. (2.40)

b. From the potential theory, we have

dη
(f)
T

dµ
= π

dB

dµ
g,

where

B =




−λ λ 0 · · · 0

µ −(λ+ µ) λ · · · 0
...

... · · · · · ·
...

0 · · · µ −(µ + λ) λ

0 0 · · · µ −µ




.
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If µ changes only when the state is n, n = 1, 2 . . . , N , we have

dB

dµ
=




0 0 0 · · · 0

0 0 0 · · · 0
...

...
. . . · · ·

...

0 · · · 1 −1 0
...

... · · · · · ·
...

0 0 · · · 0 0




.

Thus, we have

dη
(f)
T

dµ
= π(n) [g(n− 1) − g(n)] , n = 1, 2, . . . , N. (2.41)

Similarly, we can obtain

dη
(f)
T

dλ
= π(n) [g(n+ 1) − g(n)] , n = 0, 1, . . . , N − 1. (2.42)

c. Comparing (2.39) and (2.41), we have

−
1

µ
π(n)

[
c(f)(n, 1) − c(n, 1)η

(f)
T

]
= π(n) [g(n− 1) − g(n)] .

That is,

c(f)(n, 1) − c(n, 1)η
(f)
T = µ [g(n) − g(n− 1)] , n = 1, 2, . . . , N.

Comparing (2.40) and (2.42), we have

−
1

λ
π(n)

[
c(f)(n, 2) − c(n, 2)η

(f)
T

]
= π(n) [g(n+ 1) − g(n)] .

That is

c(f)(n, 2) − c(n, 2)η
(f)
T = λ [g(n) − g(n+ 1)] , n = 0, 1, . . . , N − 1.

An intuitive explanation:

cf (n, 1) = lim
L→∞,∆→0

1

∆
E{

∫ T ′
L

0

f(n′(t))dt−

∫ TL

0

f(n(t))dt}

= lim
L→∞,∆→0

1

∆
E{

∫ TL

0

[f(n′(t)) − f(n(t))]dt}

+ lim
L→∞,∆→0

1

∆
E

∫ T ′
L

TL

f(n′(t))dt. (2.43)
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Firstly, we consider the first term.

lim
L→∞,∆→0

1

∆
E{

∫ TL

0

[f(n′(t)) − f(n(t))]dt}

= lim
L→∞,∆→0

1

∆
E{

∫ ∆

0

[f(n′(t)) − f(n(t))]dt

+ lim
L→∞,∆→0

1

∆
E{

∫ TL

∆

[f(n′(t)) − f(n(t))]dt. (2.44)

Since the n(t) is a Markov process with infinitesimal matrix A = [an,m], where

an,m =





ǫ(N − n)λ, m = n + 1,

ǫ(n)µ, m = n− 1,

−ǫ(N − n)λ− ǫ(n)µ, m = n,

0, others.

i, j = 1, 2.

From Kolmogorov theorem, we have P (t) = eAt. Thus, we can obtain the probability

that the original process moves from state n to state (n+ 1) at time ∆ is approximately

equal to ǫ(N−n)λ∆, the probability that the original process moves from state n to state

(n − 1) is approximately equal to ǫ(n)µ∆ and the probability that the original process

moves from state n to state n is approximately equal to 1− ǫ(N −n)λ∆− ǫ(n)µ∆, where

we have omitted the higher-order terms of ∆ . For the perturbed Markov process, since

the service time was delayed ∆, we know the probability that the perturbed Markov

process moves from state n to state n − 1 at time ∆ is zero, the probability that the

perturbed Markov process moves from state n to state n + 1 at time ∆ is ǫ(N − n)λ∆

and the probability that the perturbed Markov process moves from state n to state n at

time ∆ is 1 − ǫ(N − n)λ∆.

So, we know that the probability that the original process and the perturbed process

transit to different state at time ∆ is the same order infinitesimal of ∆. On this basis,

since |f(n′(t) − f(n(t))| is bounded, we have

lim
L→∞,∆→0

1

∆
E{

∫ ∆

0

[f(n′(t)) − f(n(t))]dt = 0. (2.45)

For the second term in (2.44), we consider
∫ TL

∆
[f(n′(t)) − f(n(t))]dt from the point view

of perturbation realization factor of Markov process.

∫ TL

∆

[f(n′(t)) − f(n(t))]dt
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≈ ǫ(N − n)λ∆d(n+ 1, n) + ǫ(n)µ∆d(n− 1, n) + ǫ(N − n)λ∆d(n, n+ 1)

= ǫ(n)µ∆(gf(n) − gf(n− 1)).

where we have used d(n+ 1, n) = −d(n, n+ 1). Thus, we have

lim
L→∞,∆→0

1

∆
E{

∫ TL

∆

[f(n′(t)) − f(n(t))]dt = ǫ(n)µ(gf(n) − gf(n− 1)). (2.46)

From (2.45) and (2.46), we know the first term in (2.43) is equal to ǫ(n)µ(gf(n)−gf (n−1)).

For the second term in (2.43), when L is large enough, we have E[f(n′(t))] = η
(f)
T , thus,

lim
L→∞,∆→0

1

∆
E

∫ T ′
L

TL

f(n′(t))dt = η lim
∆→0

T ′
L − TL

∆
= c(n, 1)η

(f)
T . (2.47)

Thus, we have cf(n, 1) = ǫ(n)µ(gf(n) − gf(n − 1)) + c(n, 1)η
(f)
T . Similarly, we can

intuitively obtain cf(n, 2) = ǫ(N − n)λ(gf(n) − gf(n+ 1)) + c(n, 2)η
(f)
T .

2.35 In weak derivative expression (2.125), we may choose P+ = P ′ and P− = P .

a. Derive (2.126) and express its meaning based on sample paths.

b. Derive (2.127).

Solution:

a. If we choose P+ = P ′ and P− = P , then c(i) = 1. (2.124) becomes

dηδ

dδ
= π(P ′ − P )

∞∑

l=0

P lf

=
∑

i∈S

π(i)
∞∑

l=0

(p′iP
lf − piP

lf).

Thus we have

dηδ

dδ
=

S∑

i=1

π(i)
∞∑

l=0

E[f(X ′
l) − f(Xl)|X

′
0 = i, X0 = i]

=
S∑

i=1

π(i)
L∗∑

l=0

E[f(X ′
l) − f(Xl)|X

′
0 = i, X0 = i].

The meaning based on the sample path: On the sample path, the state is state i, at

which the first jump from X ′
0 to X ′

1 follows transition probability vector p′i and the first
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jump from X0 to X1 follows transition probability pi. The rest transitions of X ′
l , l ≥ 1

and Xl, l ≥ 1 all follow transition probability matrix P . In fact, this is similar to the

perturbation at state i.

b. Since

L∗∑

l=0

E[f(X ′
l) − f(Xl)|X

′
0 = i, X0 = i]

= E{
L∗∑

l=1

E[f(X ′
l) − f(Xl)|X

′
1, X1, X

′
0 = i, X0 = i]|X ′

0 = i, X0 = i}

=
∑

j′∈S ,j∈S

p(X ′
1 = j′, X1 = j|X ′

0 = i, X0 = i)
L∗∑

l=1

E[f(X ′
l) − f(Xl)|X

′
1 = j′, X1 = j]

=
∑

j′∈S ,j∈S

p′(j′|i)p(j|i)γ(j, j′),

thus we have

dηδ

dδ
=

S∑

i=1

π(i)
∑

j′∈S ,j∈S

p′(j′|i)p(j|i)γ(j, j′).

2.36 Derive (2.23) from (2.127).

Solution: Since

p+(j|i) =





1
c(i)

max{∆p(j|i), 0} if c(i) > 0

0 if c(i) = 0.

p−(j|i) =





1
c(i)

max{−∆p(j|i), 0} if c(i) > 0

0 if c(i) = 0.

and
∑

j∈S ∆p(j|i) = 0, we have
∑

j∈S p
+(j|i) = 1 and

∑
j∈S p

−(j|i) = 1. From (2.127),

we have

dηδ

dδ
=

S∑

i=1

π(i)c(i)
S∑

j1,j2=1

γ(j1, j2)p
−(j1|i)p

+(j2|i)

=

S∑

i=1

π(i)c(i)

S∑

j1,j2=1

p−(j1|i)p
+(j2|i)[g(j2) − g(j1)]

=
S∑

i=1

π(i)c(i)
∑

j∈S

[p+(j|i) − p−(j|i)]g(j)
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=
S∑

i=1

π(i)
∑

j∈S

[p′(j|i) − p(j|i)]g(j)

= π∆Pg.

2.37 Consider a (continuous-time) Markov process with transition rates λ(i) and transi-

tion probabilities p(j|i), i, j = 1, 2, . . . , S. Suppose that the transition probability matrix

P := [p(j|i]i,j∈S changes to P + δ∆P and the transition rates λ(i), i = 1, 2, . . . , S remain

unchanged. Let η be the average reward with reward function f . Derive the performance

derivative formula for dηδ

dδ
using the construction approach illustrated in Section 2.1.3.

Solution: To derive the performance derivative formula dηδ

dδ
, we consider a sample path

X with infinitesimal generator B = [b(i, j)] consisting of L >> 1 transitions, where

b(i, j) =





−λ(i) if i = j

λ(i)p(j|i) if i 6= j

Among these transitions, on the average the time that the process stays at state i is

Tπ(k), where π = (π(1), · · · , π(S)) is the steady-state probability of continuous-time

Markov process. Since the average holding time at state is 1
λ(k)

, then there are Tπ(k)λ(k)

times from state k on the average. Each time when X visits state i after visiting state

k, because of the change from P to Pδ = p + δ∆P . the perturbed path Xδ may have a

jump, denoted as from state i to j. Denote the probability of a jump from i to j after

visiting state k as p(i, j|k). Then, we have

S∑

j=1

p(i, j|k) = p(i|k), (2.48)

S∑

i=1

p(i, j|k) = pδ(j|k). (2.49)

On the average, in the time interval [0, T ) there are Tπ(k)λ(k)p(i, j|k) jumps from i to j

on the sample path. Each such jump has on the average an effect of γ(i, j) on FL. Thus,

on the average the total effect on FL due to the change in P to Pδ is

E(Fδ,T − FT )

:= E{

∫ T

0

f(Xδ,t)dt−

∫ T

0

f(Xt)dt}
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≈
S∑

k=1

{
S∑

i,j=1

Tπ(k)λ(k)p(i, j|k)γ(i, j)}

=

S∑

k=1

{
S∑

i,j=1

Tπ(k)λ(k)p(i, j|k)[g(j) − g(i)]}.

From (2.48) and (2.49), we have

E(Fδ,T − FT )

≈ T

S∑

k=1

π(k)λ(k)

S∑

j=1

[pδ(j|k) − p(j|k)]g(j)

= TπΛ[Pδ − P ]g = TπΛ(∆P )δg,

where Λ = diag{λ(1), · · · , λ(S)}. Thus,

ηδ − η =
1

T
E(Fδ,T − FT ) ≈ πΛ(∆P )δg.

Finally, we obtain the performance derivative formula

dηδ

dδ
= πΛ(∆P )g.
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3
Solutions to Chapter 3

3.1 Study the potential with g(S) = 0:

a. Prove that the solution to (3.4) satisfies pS∗g = η − f(S).

b. Derive (3.4) from the Poisson equation (I − P )g + ηe = f with the normalization

condition pS∗g = η − f(S).

Solution:

a. Putting P− = P − epS∗ into (3.4), we have

g = Pg − epS∗g + f .

Multiplying the both sides of the above equation with π, we have

πg = πPg − πepS∗g + πf .

69
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Using πP = π and πe = e, we have

pS∗g = πf =
S∑

i=1

π(i)[f(i) − f(S)] = η − f(S).

b. Since pS∗g = η−f(S), we have epS∗g = ηe−f(S)e. That is, ηe−f(S)e−epS∗g = 0.

From the Poisson equation and the above equation, we have

g = Pg − ηe+ f = Pg − ηe+ f + ηe− f(S)e− epS∗g = P g + f ,

which is Equation (3.4).

3.2 Let P be an S × S ergodic stochastic transition matrix and ν be an S dimensional

(row) vector with νe = 1. Set P−ν = P − eν.

a. Suppose that there is a potential g such that νg = η, prove g = P−νg + f .

b. Prove that the eigenvalues of P − eν are 0 and λi, i = 1, 2, · · · , S−1, where λi, with

|λi| < 1, i = 1, 2, · · · , S − 1, are the eigenvalues of P .

c. Develop an iterative algorithm similar to (3.7).

d. For any vecotr ν with νe = 1, we can develop the algorithm in c) without presenting

νg = η. Prove that the potential obtained by the algorithm indeed satisfies νg = η.

e. Prove that the algorithm (3.4)-(3.7) is a special case of the above algorithm and

verify ps∗g = η.

Solution:

a. From Poisson equation and νg = η, we have

g − Pg + eνg = f.

That is, g = P−νg + f .

b. Since (P−eν)e = 0, we know 0 is an eigenvalue of P−eν. Let xi be the eigenvector

of P corresponding to eigenvalue λi 6= 0, 1, i.e., Pxi = λixi. Define x′i = xi −
1
λi
eνxi, since

the eigenvalue of ev is 1 and 0 and 0 is an eigenvalue of S−1 multiplicity, we have x′i 6= 0.

Moreover,

(P − eν)x′i = λi(xi −
1

λi
eνxi) = λix

′
i.
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Thus, the eigenvalues of P , λi 6= 0, 1, are the eigenvalues of P − eν. Since P is ergodic,

from Lemma B.1 in Appendix B, |λi| < 1. Suppose 0 is an m-multiplicity eigenvalue of

P and yj , j = 1, 2, · · · , m are the corresponding eigenvectors, we have Pyj = 0. Next we

prove yj are also the eigenvector of P − ev corresponding to eigenvalue 0.

(P − ev)yj = −evyj .

Since ev have a unique nonzero eigenvalue 1 and the corresponding eigenvector is e, we

know for any vector x 6= ce, where c is an arbitrary constant, evx = 0. From Pe = 1,

we have yj 6= ce, thus evyj = 0. Therefore, (P − ev)yj = 0. From the above discussion,

we know the eigenvalues of P − ev are 0 and λi, i = 1, 2, · · · , S − 1, where λi, with

|λi| < 1, i = 1, 2, · · · , S − 1 are the eigenvalues of P , in which λi may be zero. If λi = 0 is

the m-multiplicity eigenvalue of P , 0 is the (m+ 1)-multiplicity eigenvalue of P − ev.

c. Similarly to (3.7), we have the following iterative algorithm:

g0 = f, gk = P−νgk−1 + f, k ≥ 1.

d. From the algorithm in c), we know the algorithm converges to g =
∑∞

n=0(P−ν)
nf =

∑∞
n=0(P − eν)nf = f +

∑∞
n=1(P

n − evP n−1)f , where we have used νe = 1 and Pe = 1

but we have not preset νg = η. Then, we have

νg = lim
N→∞

ν[f +

N∑

n=1

(P n − eνP n−1)f ]

= lim
N→∞

{
νf +

N∑

n=1

(νP n − νP n−1)f
}

= lim
N→∞

νPNf

= νeπf

= η.

e. Firstly, we have pS∗e = e, so pS∗ is a special ν and P is equivalent to P−ν . From

the result in d), we have pS∗g = η. Next, we prove the equivalence between f and f .

From P e = 0, we know P f = P (f − f(S)e) = P f . Thus, the potential
∑∞

n=0(P )nf

obtained from (3.7) is equivalent to potential
∑∞

n=0(P )nf , which is the result of the above

algorithm. Therefore, the algorithm (3.4)-(3.7) is a special case of the above algorithm.

3.3 For any vector ν with νe = 1,
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a. Prove g = (I−P+eν)−1f is a potential vector with normalization condition νg = η.

b. Can you derive a sample path based algorithm similar to (2.16) based on a)?

Solution:

a. We only need to prove g = (I − P + eν)−1f with normalization condition νg = η

is a solution of Poisson equation. From Poisson equation and normalization condition

νg = η, we have

(I − P + eν)g = f.

Moreover, since the eigenvalues of P−eν are all less than 1, matrix I−P+eν is invertible.

Thus, g = (I − P + eν)−1f is a solution of Poisson equation.

b.

g = (I − P + eν)−1f

=

∞∑

n=0

(P − eν)nf

= f +
∞∑

n=1

(P n − eνP n−1)f.

Writing it in its components, similarly to (2.18), we have

g(i) = lim
L→∞

{
Ei[

L−1∑

l=0

f(Xl)] − Eν [
L−1∑

l=0

f(Xl)]
}

(3.1)

= lim
L→∞

{
Ei[

L−1∑

l=0

f(Xl) − η] −Eν [

L−1∑

l=0

f(Xl) − η]
}
, (3.2)

where Ei denotes the conditional expectation with respect to initial state X0 = i, Eν

denotes the conditional expectation with respect to initial distribution ν. Since a sample

path with initial distribution ν cannot be obtained, it is difficult to design an sample-

path-based algorithm to estimate limL→∞Eν [
∑L−1

l=0 f(Xl) − η]. Thus, we cannot design

an sample-path-based algorithm similar to (2.16) to estimate the potential g = (I − P +

eν)−1f .
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3.4 Consider

P =




0 0.5 0.5

0.7 0 0.3

0.4 0.6 0


 , f =




10

2

7


 .

a. Calculate the potential vector using algorithm (3.1).

b. Calculate the potential vector using algorithm (3.3).

c. Calculate the potential vector using algorithm (3.7).

d. Calculate the potential vector using algorithm proposed in Problem 3.2.

Observe the convergence speeds and compare them with that of of limk→∞ P k = eπ.

Solution:

a. Using algorithm (3.1), we obtain the potential vector g = [8.7600, 3.7380, 6.4252] if

the algorithm is stopped when the norm of gk and gk+1 is less than 0.001. The number of

iterations is 18.

b. Using algorithm (3.3), the potential vector obtained is same as that in a) and the

algorithm is stopped when the norm of gk and gk+1 is less than 0.001. The number of

iterations is 18.

c. Using algorithm (3.7), we obtain the potential vector g = [2.3348,−2.6872, 0] if the

algorithm is stopped when the norm of gk and gk+1 is less than 0.001. The number of

iterations is 18.

d. If we assume ν = [1, 0, 0], using the algorithm in problem 3.2, we obtain the

potential vector g = [6.312, 1.2996, 3.9868] if the algorithm is stopped when the norm of

gk and gk+1 is less than 0.001. The number of iterations is 18.

Computing P n, we find P n is approximately equal to eπ at n = 18. Thus, the

convergence speed is same as that of the above algorithms.

3.5 Suppose a Markov chain starts from state i and we use the consecutive visits to the

state i as the regenerative points (cf.(3.18)). That is, we set

i0 = 0, with X0 = i

ik = the epoch that Xl first visits state i after ik−1, k ≥ 1.
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Then we denote the first visit epoch to state j in the kth regenerative period as jk; i.e.,

jk = min{ik−1 < l ≤ ik : Xl = j}. We note that in some periods, such a point may not

exit. Can we use the average of the sum of
∑jk−1

l=ik−1
f(Xl) as the estimate of γ(j, i)? If

not, why?

Solution:

We cannot use the average of the sum of
∑jk−1

l=ik−1
f(Xl) as the estimate of γ(j, i). From

(2.17) in Chapter 2, we know γ(j, i) = E{
∑L(j|i)−1

0 [f(Xl)− η]|X0 = i}, thus, we may use

the average of
∑jk−1

l=ik−1
[f(Xl) − η] as the estimate of γ(j, i). If we directly omit η and

use
∑jk−1

l=ik−1
f(Xl) to estimate γ(j, i), then the estimate will generate an estimate bias

ηE(jk − ik−1) = ηE[L(j|i)], where L(j|i) denotes the time that the process moves to state

j firstly from state i.

3.6 Let p(1|1) = 0.5, p(2|1) = 0.2 and p(3|1) = 0.3; p(1|2) = 0.3 and p(2|2) = 0.5, and

p(3|2) = 0.2. Suppose X = 1 and X̃ = 2, and we use the same uniformly distributed

random variable ξ ∈ [0, 1) to determine the transition from both X = 1 and X̃ = 2,

according to (2.2). In this case, what are the conditional transition probabilities p̃1|1(∗|2),

p̃2|1(∗|2) and p̃3|1(∗|2)?

Solution: Firstly, we consider p̃1|1(∗|2). Given that the Markov chain X moves from

state 1 to state 1, we know ξ is in [0, 0.5). According to (2.2), we know the Markov chain

X̃ can only transit from state 2 to state 1 or state 2. If ξ is in [0, 0.3), X̃ transits from

state 2 to state 1. If ξ is in [0.3, 0.5), X̃ transits from state 2 to state 2. Thus, we have

p̃1|1(1|2) = 0.3
0.5

= 0.6, p̃1|1(2|2) = 0.5−0.3
0.5

= 0.4 and p̃1|1(3|2) = 0. Similarly, Given that the

Markov chain X transits from state 1 to state 2, we know ξ is in [0.5, 0.7). According

to (2.2), we know X̃ can only transit from state 2 to state 2. Thus, p̃2|1(1|2) = 0,

p̃2|1(2|2) = 1 and p̃2|1(3|2) = 0. Given that the Markov chain X transits from state 1 to

state 3, we know ξ is in [0.7, 1). If ξ is in [0.7, 0.8), X̃ will transit from state 2 to state

2. If ξ is in [0.8, 1), X̃ will transit from state 2 to state 3. Thus, we have p̃3|1(1|2) = 0,

p̃3|1(2|2) = 0.8−0.7
1−0.7

= 1/3 and p̃3|1(3|2) = 1−0.8
1−0.7

= 2/3.

3.7 Let X and Y be two random variables with probability distributions F (x) and G(y),

respectively. Their means are denoted as x̄ = E(X) and ȳ = E(Y ). We wish to estimate
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x̄ − ȳ = E(X − Y ) by simulation. We generate random variables X and Y using the

inverse transformation method. Thus, we have X = F−1(ξ1) and Y = G−1(ξ2), where ξ1

and ξ2 are two uniformly distributed random variables in [0, 1). Prove that if we choose

ξ1 = ξ2, then the variance of X − Y , V ar[X − Y ], is the smallest among all possible pairs

of ξ1 and ξ2.

Solution: This problem is same as Problem A.4.

3.8 In the coupling approach, Prove the following statement:

a. Let π̂ be the S2 dimensional steady-state probability (row) vector of P̂ , i.e., π̂P̂ = π̂,

and π be the steady-state probability vector of P , i.e., πP = π. Then, π̂(eS ⊗ I) =

π̂(I ⊗ eS) = π, and π̂ĝ = π̂f̂ = 0.

b. Equation (3.22) can take the form

(I − P̂ + eS2π̂)ĝ = f̂ ,

with π̂ĝ = 0. Therefore, we have

ĝ =
∞∑

l=0

P̂ lf̂ .

Solution:

b. Since π̂(I ⊗ eS) = π̂P̂ (I ⊗ eS) = π̂(P ⊗ eS) = π̂(I ⊗ eS)P and π̂(I ⊗ eS)eS =

π̂(eS ⊗ eS) = 1, we have π̂(I ⊗ eS) = π from the uniqueness of the solution of πP = π

and πe = 1. Similarly, since π̂(eS ⊗ I) = π̂P̂ (eS ⊗ I) = π̂(eS ⊗ P ) = π̂(eS ⊗ I)P and

π̂(eS ⊗ I)eS = π̂(eS ⊗ eS) = 1, we have π̂(eS ⊗ I) = π. From π̂(eS ⊗ I) = π̂(I ⊗ eS) = π,

f̂ = (eS ⊗ f − f ⊗ eS) = (eS ⊗ I − I ⊗ eS)f and ĝ = (eS ⊗ I − I ⊗ eS)g, we can easily

obtain π̂ĝ = 0 and π̂f̂ = 0.

c. From (3.22), η̂ = 0, and π̂ĝ = 0, we have

(I − P̂ + eS2 π̂)ĝ = f̂ .

That is, Equation (3.22) can take the form (I − P̂ + eS2 π̂)ĝ = f̂ . From the result of

Problem 2.3, we know P̂ is ergodic, then we know the fundamental matrix I− P̂ +eS2 π̂ is

invertible, and (I − P̂ + eS2 π̂)−1 =
∑∞

l=0(P̂ − eS2 π̂)l = I +
∑∞

l=1(P̂
l − eS2π̂). Thus, using

π̂f̂ = 0, we have γ̂ = f̂ +
∑∞

l=1(P̂
lf̂ − eS2 π̂f̂) =

∑∞
l=0 P̂

lf̂ .
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3.9 To illustrate the coupling approach used in simulation for speeding up the estimation

of γ(i, j), let us consider a simple Markov chain with transition probability matrix

P =




0.2 0.3 0.5

0.2 0.3 0.5

0.2 0.3 0.5


 .

a. Suppose that we generate two independent Markov chains with initial states X0 = 1

and X ′
0 = 2, respectively. What is the average length from l = 0 to L∗

12, E(L∗
12)?

b. If we use the same [0, 1) uniformly distributed random variable ξ to determine the

state transitions for both Markov chain, what is E(L∗
12)?

c. Answer the question in a) and b), if

P =




0.2 0.4 0.4

0.4 0.2 0.4

0.4 0.4 0.2


 .

Solution:

a. Define stochastic process X̃ = {(Xn, X
′
n), n ≥ 0}, where Xn and X ′

n are indepen-

dent Markov chain with same transition matrix P , We know L∗
12 = min{n ≥ 0, X̃n ∈

A|X̃0 = (1, 2)}, where A = {(1, 1), (2, 2), (3, 3)}. Therefore, this problem can be trans-

formed into a problem about computing the expectation value of first passage time of X̃

reaching the set A from initial state (1, 2). The transition matrix of X̃ is

P̃ = P ⊗ P =


0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500

0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500

0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500

0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500

0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500

0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500

0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500

0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500

0.0400 0.0600 0.1000 0.0600 0.0900 0.1500 0.1000 0.1500 0.2500




.
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since

E(L∗
1,2) =

∞∑

n=0

P(NA = n)n =
∞∑

n=1

n∑

l=1

P(NA = n)

=
∞∑

l=1

∞∑

n=l

P(NA = n) =
∞∑

l=1

P(NA ≥ l),

where NA denotes the step numbers that X̃ moves to set A firstly. Since P(NA ≥ l) =

P(the first l − 1 transitions stay at B = Ac), where B is the complement set of A, i.e.

B = Ac. Thus, in a vector way, the expectation of first passage time from any state

i ∈ B to set A is the corresponding component in (I−PB)−1e =
∑∞

n=0 P
n
Be, where PB is a

matrix that deletes the columns and rows corresponding to the states in set A in transition

matrix P . This result is a generalization of the result of b) in Problem 2.20. (I−PB)−1e =

(2.6316, 2.6316, 2.6316, 2.6316, 2.6316, 2.6316)T, so E(L∗
12) = [(I − PB)−1e]1 = 2.6316.

b. If we use the same [0, 1) uniformly distributed random variable ξ to determine the

state transitions for both Markov chains, since the transition probabilities from state 1

and state 2 to any state are the same, two Markov chain will reach the same state in one

step. Thus, E(L∗
12) = 1.

c. Similarly to a), we can obtain E(L∗
12) = [(I − PB)−1e]1 = 3.125. If we use the

same [0, 1) uniformly distributed random variable ξ to determine the state transitions

for both Markov chain, two Markov chain transit to the same states in one step when

ξ falls in [0, 0.2) or [0.4, 1). That is, two Markov chain transit to the same states in

one step with probability 0.8 and transit to different states with probability 0.2, thus

E(L∗
12) =

∑∞
n=1 0.8 ∗ (0.2)n−1n = 0.8

(1−0.2)2
= 1.25.

From this example, we can find the coupling approach can reduce the the time that

two Markov chains merge. Thus, this approach can estimate γ(i, j) with less variance.

3.10 The realization factor γ(i, j) can be obtained by simulating two sample path initi-

ating with i and j, respectively, up to its merging point Lij :

γ(i, j) = E{

Li,j−1∑

l=0

[f(X ′
l) − f(Xl)]|X0 = i, X ′

0 = j}.

If the two sample paths are independent, as shown in the text, we can obtain the per-

turbation realization factor equation. However, in simulation, we may use coupling to
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reduce the variance in estimating the difference of the mean values of two random vari-

ables (γ(i, j) = g(j) − g(i)). In our case, we wish to let the two sample paths, initiating

with i and j, merge as early as possible.

To this end, in simulation we can force the two sample paths to jump to the same

state, from i to j respectively, with a probability as large as possible. We may use the

same random variable to determine the state transitions in the two paths. For example,

if p(k|i) = 0.3 and p(k|j) = 0.2, instead of using two independent random numbers

in [0, 1) to determine the state transitions for X0 = i and X ′
0 = j, respectively, we

generate one uniformly distributed random number ξ ∈ [0, 1), if ξ ∈ [0, 0.2), we let both

X1 = X ′
1 = k. We use an example to show this coupling method: Let p(1|2) = 0.5,

p(2|2) = 0.3, p(3|2) = 0.2, and p(1|3) = 0.2, p(2|3) = 0.7, p(3|3) = 0.1. The largest

probabilities for the two paths starting from X0 = 2 and X ′
0 = 3 to merge at X1 = X ′

1 = 1

is min{p(1|2), p(1|3)} = 0.2, to merge at X1 = X ′
1 = 2 is min{p(2|2), p(2|3)} = 0.3, and to

merge at X1 = X ′
1 = 3 is min{p(3|2), p(3|3)} = 0.1. Thus, the largest probability that the

two sample paths merge at X1 = X ′
1 with the coupling technique is 0.2 + 0.3 + 0.1 = 0.6.

We simulate the two sample paths in two steps. In the first step, we generate a uniformly

distributed random variable ξ ∈ [0, 1). If ξ ∈ [0, 0.2), we set X1 = X ′
1 = 1; if ξ ∈ [0.2, 0.5),

we set X1 = X ′
1 = 2; if ξ ∈ [0.5, 0.6), we set X1 = X ′

1 = 3. If ξ ∈ [0.6, 1), we go to the

second step: using another two independent random numbers determine the transitions

for the two sample paths.

Continue the above reasoning and mathematically formulate it. Work on γ(i, S) for

all state i ∈ S and derive the following equation

g(i) − g(S) = f(i) − f(S) +

S∑

j=1

[p(j|i) − p(j|S)]g(j), i ∈ S.

Prove it is the same as (3.4).

Solution:

From the above reasoning, our objective is to maximize the probability that the two

sample paths starting from different states i and j merge. This problem can be trans-

formed into a linear programming problem:
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Linear Programming: For i 6= j,

max
∑

k∈S

p[(k, k)|(i, j)],

s.t.
∑

l∈S

p[(k, l)|(i, j)] = p(k|i),

∑

k∈S

p[(k, l)|(i, j)] = p(l|j),

p[(k, l)|(i, j)] ≥ 0, k, l ∈ S.

For i = j, we can choose the transition probabilities p[(k, l)|(i, i)], k, l ∈ S to satisfy

the following equations:

∑

l∈S

p[(k, l)|(i, i)] = p(k|i),

∑

k∈S

p[(k, l)|(i, i)] = p(l|i),

p[(k, l)|(i, i)] ≥ 0, k, l ∈ S.

Since

γ(i, S)

= g(S) − g(i)

= lim
L→∞

E

{
L−1∑

l=0

[f(Xl) − η]|X0 = S

}
− lim

L→∞
E

{
L−1∑

l=0

[f(Xl) − η]|X0 = i

}

= f(S) +
∑

j∈S

p(j|S) lim
L→∞

E

{
L−1∑

l=1

[f(Xl) − η]|X1 = j

}

−f(i) −
∑

j∈S

p(j|i) lim
L→∞

E

{
L−1∑

l=1

[f(Xl) − η]|X1 = j

}

= f(S) − f(i) +
∑

j∈S

(p(j|S) − p(j|i))g(j).

thus, we have g(i)−g(S) = f(i)−f(S)+
∑

j∈S(p(j|i)−p(j|S))g(j), i ∈ S. This equation

is the same as that obtained by subtracting the last row of the Poisson equation from all

the rows.

3.11 One of the restriction of the basic formula (3.32) is that it requires p(j|i) > 0 if

∆p(j|i) > 0 for all i, j ∈ S. This condition can be relaxed. For example, we may assume
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that if ∆p(j|i) > 0 then there exists a state, denoted as ki,j, such that p(ki,j|i)p(j|ki,j) > 0.

Under this assumption, we have

dηδ

dδ
=
∑

i∈S

∑

j∈S

{π(i)[p(kij|i)p(j|ki,j)
∆p(j|i)

p(ki,j|i)p(j|ki,j)
g(j)]}.

Furthermore, we have

dηδ

dδ
=
∑

i∈S

∑

j∈S

{π(i)[
∑

k∈S

p(k|i)p(j|k)
∆p(j|i)∑

k∈S p(k|i)p(j|k)
g(j)]}.

a. Continue the analysis and develop the direct learning algorithms for the performance

derivatives,

b. Compared with (3.32), what are the disadvantages of this “improved” approach, if

any?

c. Extend this analysis to the more general case of irreducible Markov chains.

Solution:

a. We consider the approximation by truncation similar to Algorithm 3.1. Since

dηδ

dδ
=

∑

i∈S

∑

j∈S

{
π(i)

[∑

k∈S
p(k|i)p(j|k)

∆p(j|i)∑
k∈S p(k|i)p(j|k)

g(j)
]}

= E
{ ∆p(Xl+2|Xl)∑

k∈S p(Xl+2|k)p(k|Xl)
g(Xl+2)

}

≈ lim
N→∞

1

N

N−1∑

n=0

∆p(Xn+2|Xn)∑
k∈S p(Xn+2|k)p(k|Xn)

n+L+1∑

l=n+2

f(Xl)

= lim
N→∞

1

N

N−1∑

n=0

{
f(Xn+L+1)

L−1∑

l=0

[ ∆P (Xn+l+2|Xn+l)∑
k∈S p(k|Xn+l)p(Xn+l+2|k)

]}
.

Similarly, we can obtain the approximation by discount factor.

dηδ

dδ
= lim

N→∞

1

N

N∑

n=1

{
f(Xn+1)

n−1∑

l=0

[βn−l−1 ∆p(Xl+2|Xl)∑
k∈S p(k|Xl)p(Xl+2|k)

]
}

b. In the “improved” method, the summation
∑

k∈S p(k|Xl)p(Xl+2|k) will lead to the

increment of computation.
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c. For general irreducible Markov chains, we know there is ki,j > 0 such that pki,j(j|i) >

0 for any two states i and j. Define K = maxi,j∈S{ki,j}, we have pK(j|i) > 0 for any

states i ∈ S and j ∈ S. Thus,

dηδ

dδ
=
∑

i∈S

∑

j∈S

{
π(i)pK(j|i)

[∆p(j|i)
pK(j|i)

g(j)
]}

.

Then, similarly to a), we can develop the direct learning algorithms.

3.12 In the gradient estimates (3.34), we have ignored the constant term η in the expres-

sion of g. A more accurate estimate should be

dηδ

dδ
≈ lim

N→∞

1

N

{N−1∑

n=0

{
∆p(Xn+1|Xn)

p(Xn+1|Xn)
}

L−1∑

l=0

[f(Xn+l+1) − η]
}
, w.p.1.

Prove

dηδ

dδ
≈ lim

N→∞

1

N

{N−1∑

n=0

{
∆p(Xn+1|Xn)

p(Xn+1|Xn)
}

L−1∑

l=0

f(Xn+l+1)
}
, w.p.1.

and discuss the estimation error caused by a finite Lη.

Solution: Since

lim
N→∞

1

N

N−1∑

n=0

{
∆p(Xn+1|Xn)

p(Xn+1|Xn)
}Lη

= LηE
[∆p(Xn+1|Xn)

p(Xn+1|Xn)

]

= Lη
∑

i∈S

π(i)
∑

j∈S

p(j|i)
∆p(j|i)

p(j|i)
= 0,

Thus, we have

dηδ

dδ
≈ lim

N→∞

1

N

{N−1∑

n=0

{
∆p(Xn+1|Xn)

p(Xn+1|Xn)
}

L−1∑

l=0

f(Xn+l+1)
}
, w.p.1.

Although the omittance of Lη does not result in the bias, it will result in a large

variance. This is because the omittance makes the sum
∑L−1

l=0 f(Xn+l+1) larger, which

results in a large fluctuation of the estimate.

3.13 Discuss the error in the gradient estimate (3.41) caused by ignoring the second term

of (3.40) for a finite N . You may set f ≡ 1.
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Solution: The error is

error =
1

N

N−1∑

n=0

{
∆p(Xn+1|Xn)

p(Xn+1|Xn)
}

∞∑

l=N−n

βlf(Xn+l+1).

If we set f ≡ 1 and
∥∥∥∆p(Xn+1|Xn)

p(Xn+1|Xn)

∥∥∥ ≤ B, we have

error ≤ B
1

N

N−1∑

n=0

∞∑

l=N−n

βl = B
1

N

N−1∑

n=0

βN−n

1 − β
=
Bβ(1 − βN)

N(1 − β)2
.

When N → ∞, the error tends to zero.

3.14 Let ηr be the average performance of a Markov chain with transition probability

matrix Pr defined as pr(i|i) = r for all i ∈ S and pr(j|i) = (1 − r)qij , j 6= i, i, j ∈ S, with
∑

j∈S qi,j = 1 for all i ∈ S. Please prove dηr

dr
= 0 for all 0 < r < 1 using performance

derivative formula (3.30).

Solution:

Let ∆Pr = Pr′ − Pr, then ∆pr(i|i) = r′ − r and ∆pr(j|i) = −(r′ − r)qij , i, j ∈ S,

thus,
∆pr(Xl+1|Xl)

pr(Xl+1|Xl)
is equal to r′−r

r
when Xl transits to the same state at time l + 1 and

is equal to −(r′−r)
1−r

when Xl transits to different state at time l + 1. No matter what is

Xl, Xl transits to the same state at time l+ 1 with probability r and transits to different

state at time l+ 1 with probability 1− r, thus,
∆pr(Xl+1|Xl)

pr(Xl+1|Xl)
= r′−r

r
with probability r and

∆pr(Xl+1|Xl)

pr(Xl+1|Xl)
= −(r′−r)

1−r
with probability 1− r. From performance derivative formula (3.30),

we know

dηr

dr
= E

{∆p(Xl+1|Xl)

p(Xl+1|Xl)
g(Xl+1)

}

= E

{
E
[∆p(Xl+1|Xl)

p(Xl+1|Xl)
g(Xl+1)

∣∣∣Xl+1

]}

= E

{
E
[∆p(Xl+1|Xl)

p(Xl+1|Xl)

∣∣∣Xl+1

]
g(Xl+1)

}

= E

{[
r ∗

r′ − r

r
+ (1 − r)

−(r′ − r)

1 − r

]
g(Xl+1)

}

= 0.

3.15 In Algorithm 3.1, prove that the following equation holds

lim
L→∞

{
L−1∑

l=0

P l(∆P )PL−l−1} = eπ(∆P )(I − P + eπ)−1.
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In addition, prove that at the steady state, we have

π(i)ρL(i) = E
{
Ii(XL)

L−1∑

l=0

∆p(Xl+1|Xl)

p(Xl+1|Xl)

}
= π

L−1∑

l=0

{P l(∆P )PL−l−1}e·i,

where e·i is the ith column vector of the identity matrix I. Equation (3.38) and the

convergence of (3.37) follow directly from these two equations.

Solution: For ergodic Markov chain, we have P l → eπ when l → ∞. Therefore, there

is a N , when l ≥ N , we have −ǫE ≤ P l − eπ ≤ ǫE, where E is a S × S matrix with all

components equal to 1. Moreover,

L−1∑

l=0

P l(∆P )PL−l−1

=

L−1∑

m=0

PL−m−1(∆P )Pm (Let m = L− l − 1)

=
L−N−1∑

m=0

PL−m−1(∆P )Pm +
L−1∑

m=L−N−1

PL−m−1(∆P )Pm. (3.3)

When L is large enough, for example L > 2N + 1, we have L − N − 1 > N . For the

second item in equation (3.3), we have

L−1∑

m=L−N−1

PL−m−1(∆P )(eπ − ǫE) ≤
L−1∑

m=L−N−1

PL−m−1(∆P )Pm

≤
L−1∑

m=L−N−1

PL−m−1(∆P )(eπ + ǫE).

From ∆Pe = 0, we know the second item
∑L−1

m=L−N−1 P
L−m−1(∆P )Pm = 0. For the first

item of (3.3), since L−m− 1 ≥ N for 0 ≤ m ≤ L−N − 1, we have

L−N−1∑

m=0

(eπ − ǫE)(∆P )Pm ≤
L−N−1∑

m=0

PL−m−1(∆P )Pm ≤
L−N−1∑

m=0

(eπ + ǫE)(∆P )Pm.

Let L→ ∞, we have

(eπ − ǫE)(∆P )

∞∑

m=0

Pm ≤ lim
L→∞

L−N−1∑

m=0

PL−m−1(∆P )Pm ≤ (eπ + ǫE)(∆P )

∞∑

m=0

Pm.

From the arbitrary property of ǫ, we have

lim
L→∞

{
L−1∑

l=0

P l(∆P )PL−l−1}
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= lim
L→∞

L−N−1∑

m=0

PL−m−1(∆P )Pm

= eπ(∆P )
∞∑

m=0

Pm.

Because (I − P + eπ)−1 =
∑∞

m=0 P
m − eπ and ∆Pe = 0, we have

lim
L→∞

{
L−1∑

l=0

P l(∆P )PL−l−1} = eπ(∆P )(I − P + eπ)−1.

Next, we prove π(i)ρL(i) = E
{
Ii(XL)

∑L−1
l=0

∆p(Xl+1|Xl)
p(Xl+1|Xl)

}
= π

∑L−1
l=0 {P

l(∆P )PL−l−1}e·i.

E
{
Ii(XL)

L−1∑

l=0

∆p(Xl+1|Xl)

p(Xl+1|Xl)

}

=

L−1∑

l=0

E
{
Ii(XL)

∆p(Xl+1|Xl)

p(Xl+1|Xl)

}

=
L−1∑

l=0

∑

i0

π(i0)
∑

i1

p(i1|i0)
∑

i2

p(i2|i1) . . .
∑

il+1

p(il+1|il)
∆p(il+1|il)

p(il+1|il)
∑

il+2

p(il+2|il+1) · · ·
∑

iL−1

p(il−1|iL−2)p(i|iL−1)

=

L−1∑

l=0

∑

i0

π(i0)
∑

i1

p(i1|i0)
∑

i2

p(i2|i1) . . .
∑

il+1

∆p(il+1|il)
∑

il+2

p(il+2|il+1) . . . p(i|iL−1)

= π{
L−1∑

l=0

P l(∆P )PL−l−1}e·i.

Moreover,

E
{
Ii(XL)

L−1∑

l=0

∆p(Xl+1|Xl)

p(Xl+1|Xl)

}

= E

{
E

[
Ii(XL)

L−1∑

l=0

∆p(Xl+1|Xl)

p(Xl+1|Xl)

∣∣∣XL

]}

= π(i)ρL(i).

Thus, we have

π(i)ρL(i) = E
{
Ii(XL)

L−1∑

l=0

∆p(Xl+1|Xl)

p(Xl+1|Xl)

}
= π

{
L−1∑

l=0

P l(∆P )PL−l−1

}
e·i.
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From the above equation, we know the limit of ρL(i) exists when L→ ∞ and

lim
L→∞

∑

i∈S

π(i)ρL(i)f(i) = lim
L→∞

π
L−1∑

l=0

P l(∆P )PL−l−1f

= πeπ(∆P )(I − P + eπ)−1f

=
dηδ

dδ
.

3.16 In Problem 3.15, we set GL =
∑L−1

l=0 P
l(∆P )PL−l−1. Prove

GL+1 = PGL +GLP − PGL−1P.

with G0 = 0, G1 = ∆P . Set G = limL→∞GL. Explain the meaning of G. Finally, letting

L → ∞ on both sides of the above equation, we obtain G = PG + GP − PGP . Is this

equation useful in any sense?

Solution: When L = 1, it is obvious that

G2 = P∆P + ∆PP = PG1 +G1P.

When L ≥ 2, we have

PGL +GLP − PGL−1P

=

L−1∑

l=0

P l+1(∆P )PL−l−1 +

L−1∑

l=0

P l(∆P )PL−l −
L−2∑

l=0

P l+1(∆P )PL−l−1

= PL∆P +

L−2∑

l=0

P l+1(∆P )PL−l−1 + PL−1∆PP +

L−2∑

l=0

P l(∆P )PL−l

−
L−2∑

l=0

P l+1(∆P )PL−l−1

= PL∆P + PL−1∆PP +

L−2∑

l=0

P l(P∆P + ∆PP − P∆P )PL−l−1

= PL∆P + PL−1∆PP +
L−2∑

l=0

P l∆PPL−l

=

L∑

l=0

P l∆PPL−l = GL+1.

G is the limit point of the iteration GL+1 = PGL +GLP −PGL−1P . We can see that

GL denotes the perturbation effect on L-step transition matrix PL due to the parameter
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change ∆P . So the physical meaning of G is the perturbation effect on steady state

P∞ = eπ due to the parameter change ∆P , i.e. G = edπ
dδ

.

The equation have infinite solution, for example, for any row vector v, ev is a solution of

this equation. Thus, from the equation, we cannot obtain the solution we need. However,

the iteration from this equation can be used to compute the performance derivative. By

using the iteration, we obtain G, then Gf = dη
dδ
e, which avoid the computation of the

inverse.

3.17 Write a computer simulation program

a. to estimate potentials by using (3.15) and (3.19)

b. to estimate the performance derivative by using (3.35), (3.41), and (3.43).

Solution:

a. The algorithm by using (3.15):

Given arrays: StateNum, StatePerf and Statequeue; (StateNum records the num-

ber of visiting state, which is 1 × S dimension; StatePerf records the total perfor-

mance,i.e. StatePerf(Xn) =
∑L−1

l=0 f(Xn+l) and Statequeue records L continuous

states, that is from Xn to Xn+L−1. We do 10000 transitions.

for k = 1 to 10000 do

if k <= L then

Statequeue(k)=Xk

else

StateNum(Statequeue(1))=StateNum(Statequeue(1))+1

for l = 1 to L do

StatePerf(Statequeue(1))=StatePerf(Statequeue(1))+f(Statequeue(l))

end for

for l = 1 to L− 1 do

Statequeue(l)= Statequeue(l + 1)

end for

end if

Statequeue(L)=Xk
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end for

for i = 1 to S do

Potential(i)=StatePerf(i)/StateNum(i)

end for

The algorithm by using (3.19):

Given arrays:

1. S×S matrix: StateTrNum, whose (m,n)th component denotes “the number from

state m to firstly visit state n”;

2. S ×S matrix: SumStateTrNum, whose (m,n)th component denotes “the sum of

the number from state m to firstly visit state n”, i.e.
∑

k Lk(n|m);

3. S × S matrix: StatePerf, whose (m,n)th component denotes “the sum of perfor-

mance from state m to state n,” i.e.
∑

k Rk(m,n);

4. S × S matrix: Flag, which is indicator matrix, and its initial value is zero matrix.

We do 10000 transitions.

for j = 1 to S do

Flag(X0, j)=1;

end for

for k = 0 to 9999 do

StateNum(Xk)=StateNum(Xk)+1;

for i = 1 to S do

for j = 1 to S do

StateTrTemp(i, j)=StateTrTemp(i, j)+Flag(i, j);

StatePerfTemp(i, j)=StatePerfTemp(i, j)+f(Xk)*Flag(i, j)

end for

end for

Generate the next state Xk+1

for i = 1 to S do

StateTrNum(i, Xk+1)=StateNum(i, Xk+1)+Flag(i, Xk+1);

SumStateTrNum(i, Xk+1)=SumStateTrNum(i, Xk+1)+StateTrTemp(i, Xk+1);
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StatePerf(i, Xk+1)=StatePerf(i, Xk+1)+StatePerfTemp(i, Xk+1);

StateTrTemp(i, Xk+1)=0; StatePerfTemp(i, Xk+1)=0;Flag(i, Xk+1)=0

end for

for j = 1 to S do

Flag(Xk+1, j)=1

end for

end for

AllNum=
∑

kStateNum(k);

for i = 1 to S do

π̂(i)= StateNum(i)/AlltNum;

end for

η̂ = π̂f ;

for i = 1 to S do

for j = 1 to S do

γ̂(i, j) = StatePerf(i,j)
StateTrNum(i,j)

− SumStateTrNum(i,j)

StateTrNum(i,j)
η̂

end for

end for

ĝ = Γ̂T π̂T .

b. Algorithm by using (3.35):

Set ImportSampQueue be a 1 × L-dimensional matrix, k = 0 and ∆0 = 0

for k = 1 to 10000 do

if k <= L then

ImportSampQueue(k) =
∆p(Xk|Xk−1)

p(Xk|Xk−1)

if k = L then

∆k−L+1 = ∆k−L + 1
k−L+1

[f(Xk)
∑

l ImportSampQueue(l) − ∆k−L]

end if

else

for l = 1 to L− 1 do

ImportSampQueue(l) = ImportSampQueue(l + 1);

end for
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ImportSampQueue(L) = ∆p(Xk+1|Xk)
p(Xk+1|Xk)

∆k−L+1 = ∆k−L + 1
k−L+1

[f(Xk)
∑

k ImportSampQueue(k) − ∆k−L];

end if

end for

∆k is the value of the derivative.

Algorithm by using (3.41):

Set Z0 = 0, k = 0 and ∆0 = 0

for each state Xk+1 visited do

Zk+1 = βZk + ∆p(Xk+1|Xk)

p(Xk+1|Xk)
;

∆k+1 = ∆k + 1
k+1

(f(Xk+1)Zk − ∆k);

end for

∆k is the value of the derivative.

Algorithm by using (3.43):

Set Z0 = 0, k = 0 and ∆0 = 0

for each state Xk+1 visited do

Zk+1 =





Zk +
∆p(Xk+1|Xk)

p(Xk+1|Xk)
, if Xk+1 6= i∗

0, if Xk+1 = i∗

∆k+1 = ∆k + 1
k+1

(f(Xk+1)Zk − ∆k);

end for

∆k is the value of the derivative.

3.18 The group inverse (2.48) B# = −[(I −P + eπ)−1 − eπ] (for ergodic chains) plays an

important role in performance sensitivity analysis. Let b#(i, j) be the (i, j)th component

of B#. Consider a Markov chain starting from state i ∈ S. Let N
(L)
ij be the expected

number of times that the Markov chain visits state j ∈ S in the first L stages. Prove

lim
L→∞

(N
(L)
ji −N

(L)
ki ) = b#(k, i) − b#(j, i).

Solution: Because N
(L)
ij =

∑L
n=0 p(Xn = j|X0 = i), we have N

(L)
ij = [

∑L
n=0 P

n]ij, where

[·]ij denotes the (i, j) component of matrix. Since B# = −[(I − P + eπ)−1 − eπ] =
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−
∑∞

n=0(P − eπ)n + eπ = −I −
∑∞

n=1(P
n + eπ) − eπ = limL→∞

∑L
n=0 −P

n + (L+ 1)eπ,

b#(k, i) − b#(j, i)

= lim
L→∞

{
[

L∑

n=0

−P n + (L+ 1)eπ]k,i − [
L∑

n=0

−P n + (L+ 1)eπ]j,i

}

= lim
L→∞

{
[

L∑

n=0

P n]j,i − [

L∑

n=0

P n]k,i

}

= lim
L→∞

(NL
j,i −NL

k,i).

3.19 Given a direction defined by ∆P , is it possible to estimate the second order derivative

d2ηδ

dδ2 using a sample path of the Markov chain with transition probability matrix P (cf.

Section 2.1.5)? How about the second order performance derivative of any given reward

function f(θ)?

Solution: From Section 2.1.5 in Chapter 2, we have

d2ηδ

dδ2
= 2π(∆P )(I − P + eπ)−1(∆P )(I − P + eπ)−1f.

From Problem 3.15, we know we can use

ω̂i :=

∑N−1
n=0 Ii(Xn+L)

∑L−1
l=0

∆p(Xn+l+1|Xn+l)

p(Xn+l+1|Xn+l)∑N−1
n=0 Ii(Xn+L)

as an estimate of π(∆P )(I −P + eπ)−1ei. Since (I −P + eπ)−1f is the potential, we can

estimate it by using a sample path of Markov chain. We use the methods in Section 3.1.2

to estimate the potential (I − P + eπ)−1f and get potential estimates ĝ, then compute

the value ∆P ĝ, whose ith component is νi. Finally we use 2
∑S

i=1 ω̂iνi to estimate the

second order derivative.

Moreover, we can also firstly use one part sample path of Markov chain to get the

potential estimate ĝ. Then making ∆P ĝ as the performance function, we utilize another

part sample path to estimate (I−P+eπ)−1∆P ĝ. Finally, we use 2π∆P (I−P+eπ)−1∆P ĝ

to estimate the second order derivative. In this method, we need to repeat using one

sample path or make two simulations.

When the reward function is related with parameters, we have η(θ) = π(θ)f(θ), thus,

the second order derivative of η(θ) is

d2η(θ)

dθ2
=
d2π(θ)

dθ2
f + 2

dπ(θ)

dθ

df(θ)

dθ
+ π(θ)

d2f(θ)

dθ2
. (3.4)
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For the first item in the (3.4), we can use the above estimate method of the second order

derivative to estimate it. For the second item, we make df(θ)
dθ

as a reward function, using

the estimate methods of the derivative in book, we can obtain its estimate. For the last

item, we view it as an average reward performance, where the performance function is

d2f(θ)
dθ2 , and can also obtain its estimation.

3.20 Consider a continuous-time Markov process with transition rates λ(i) and transition

probabilities p(j|i), i, j = 1, 2, 3, · · · , S. Suppose that the transition probability matrix

P := [p(j|i)]i∈S,j∈S changes to P + δ∆P , and the transition rates λ(i), i = 1, 2, . . . , S,

remain unchanged. Let η be the average reward with reward function f . Develop a direct

learning algorithm for dηδ

dδ
.

Solution: Suppose that the transition probability matrix P := [p(j|i)]i∈S,j∈S changes to

P + δ∆P , and the transition rate λ(i), i = 1, 2, . . . , S, remain unchanged, we can obtain

Bδ = Λ(P + δ∆P −I) = B+ δΛ∆P . From the derivative formula dηδ

dδ
= π(∆B)g, we have

dηδ

dδ
= πΛ∆Pg =

∑

i∈S

∑

j∈S
π(i)λ(i)∆p(j|i)g(j).

We consider the importance sampling technique.

dηδ

dδ
=

∑

i∈S

∑

j∈S
π(i)p(j|i)

λ(i)∆p(j|i)

p(j|i)
g(j)

≈ lim
N→∞

1

TN

N−1∑

n=0

λ(Xn)∆p(Xn+1|Xn)

p(Xn+1|Xn)
Sn

∫ Tn+T

Tn

f(Xt)dt, w.p.1,

where Sn is the sojourn time that the process stays at state Xn.

3.21 Consider a closed Jackson network consisting of M servers and N customers with

mean service times s̄i, i = 1, 2, . . . , S, and routing probabilities qi,j, i, j = 1, 2, . . . ,M . let

ηf
T = lim

L→∞

1

TL

∫ TL

0

f(N(t))dt

be the time-average performance. Suppose that the routing probabilities change to qi,j +

δ∆qi,j , i, j = 1, 2, . . . ,M . Develop a direct learning algorithm for the derivative of the

time-average reward using performance potentials. Use the intuition explained in Section

2.1.3 to develop the performance derivative formula.
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Solution: For the closed Jackson network, the state is the number of customers at each

server, which is denoted as n = (n1, . . . , nM). We assume qii = 0 and ∆qii = 0. Define

µi = 1
s̄i

and µ(n) =
∑M

i=1 ǫ(ni)µi. The infinitesimal matrix of the closed Jackson network

is

anm =





ǫ(ni)µiqij, m = ni,j, i 6= j;

−µ(n), m = n;

0, otherwise.

where ni,j = (n1, . . . , ni − 1, . . . , nj +1, . . . , nM). Thus, we can easily obtain the elements

of ∆B, ∆B(n,m), when the routing probabilities change to qi,j+δ∆qi,j, i, j = 1, 2, . . . ,M ,

∆B(n,m) =





ǫ(ni)µi∆qij , m = ni,j, i 6= j;

0, m = n;

0, otherwise.

and the transition probability of embedded Markov chain

p(m|n) =





ǫ(ni)µiqij

µ(n)
, m = ni,j, i 6= j;

0, otherwise.

We assume the station which has a service completion at the k-th transition is denoted

by ck and the station which has an arrival right after the k-th transition is denoted by

ak. Then according to the derivative formula and using importance sampling similarly to

(??), we have

dηδ

dδ
= π∆Bg

=
∑

n∈S

∑

m∈S
π(n)∆B(n,m)g(m)

=
∑

n∈S

∑

m∈S
π(n)p(m|n)

∆B(n,m)

p(m|n)
g(m)

≈ lim
K→∞

1

TK

K−1∑

k=0

µ(nk)∆q(ak|ck)

q(ak|ck)
Sk(nk)

∫ Tk+T

Tk

f(N(t))dt, w.p.1.

The intuitive explanation of the performance derivative formula is the same as the

solution of Problem 9.14.



4
Solutions to Chapter 4

4.1 Consider a discrete-time M/M/1 queue. The system state at time l ≥ 0 is denoted as

Xl = n, l = 0, 1, · · · , with n being the number of customers in the server. The arrival rate is

reflected by the transition probabilities p(Xl+1 = n+1|Xl = n) = r, 0 < r < 1, n = 0, 1, · · ·

and l = 0, 1, . . .. The service rate depends on the number of customers in the server and is

reflected by p(Xl+1 = n− 1|Xl = n) = µn, 0 < µn < 1 − r, n = 1, 2, . . .. When the system

is at state n and with service rate µn, the cost is αn+βµn, in which αn represents the cost

for waiting time, and βµn represents the cost for the service. We wish to minimize the

average cost by choosing the right service rates µn, n = 1, 2, . . ., among all the available

choices. Model this problem as a Markov decision process.

Solution:

Markov decision process contains five parts: the state space, the (available) action

space, the transition probability, the cost (reward, gain) and the criterion. For this

problem, the state of MDP is the number of customers n in the server, thus, the state

93
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space is S = {0, 1, 2, · · ·}. The available action space A(n) at state n is the real space ℜ.

An action µn can be taken from ℜ when the state is n, i.e. d(n) = µn. The transition

probability from state n to n + 1 under policy d is p(Xl+1 = n + 1|Xl = n) = r, which

is not related with action d(n). The transition probability from state n to n − 1 under

policy d is p(Xl+1 = n− 1|Xl = n, d(n)) = µn. Since µn < 1 − r, the system can transit

from state n to itself with probability 1 − r − µn. The other transition probabilities are

0. The reward is αn+βµn when the state is n. The optimization objective is the average

cost vector, whose ith component is defined as

η(i) = lim
L→∞

1

L

L−1∑

l=0

E {αXl + βd(Xl)|X0 = i} . (4.1)

4.2 A retailer orders N pieces of merchandize every evening based on the stock left on

that day. The every day’s demand on the merchandize can be described by an integer

random variable with distribution pn, n = 0, 1, . . .. The retailer earns c1 dollars for every

piece sold, and s/he suffers a penalty of c2 dollars for each piece left in every evening.

The retailer wishes to make the right order to maximize his/her earnings in a long term.

Model the problem as an MDP.

Solution:

The state of MDP is the number of merchandize on the stock left every day, then

the state space is S = {0, 1, 2, · · ·}. The action is how much merchandize the retailer

orders. So, the available action space at state n is A(n) = {0, 1, 2, · · ·}. The policy is that

the retailer order d(Xl) pieces of merchandize for tomorrow when there are Xl pieces of

merchandize on the stock left at time l. The transition probability under the policy is

p[Xl+1 = n|Xl = m, d(Xl)] = pm+d(m)−n. The reward is

f(Xl, Xl+1, d(Xl)) = c1[Xl + d(Xl) −Xl+1] − c2Xl+1. (4.2)

The optimization objective is his/her earning in a long term. We can use the discounted

reward to measure his/her earning in a long term. That is, the optimization objective is

the discounted reward vector, whose ith component is

ηα(i) = lim
L→∞

E{
L∑

l=0

αlf(Xl, Xl+1, d(Xl))|X0 = i}, 0 < α < 1. (4.3)
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Figure 4.1: A Wireless Communication System

4.3 A mobile phone user travels through different regions shown in Figure 4.9; each region

is characterized into one of the M classes according to the transmission condition in the

region. In a region with a “bad” condition, the transmission of the signals requires a high

power and the bit error rate is also high; therefore, the mobile phone user may prefer to

delay the transition, by transmitting fewer bits, until s/he reaches a better region. On

the other hand, the transmission can not be postponed for too long. In a class i region,

i = 1, 2, · · · ,M , if the mobile phone has n bits in its buffer, the user may choose different

level of powers, denoted as d(i, n), i = 1, 2, · · · ,M , and n = 0, 1, · · ·. Time is discrete and

is denoted as l = 1, 2, · · ·. When the mobile phone is in a class i region and there are n

bits in its buffer, if power d(i, n) is used, then the number of the correctly transmitted bit

in the time slot, k has a distribution q
d(i,n)
k , k = 0, 1, · · · , n,

∑n
k=0 q

d(i,n)
k = 1. When the

user is in class i region in one time slot, s/he will travel to class j region in the next time

slot with probability pij , i, j = 1, 2, · · · ,M . In each time slot, the user generates r bits

with probability of pr,
∑∞

r=0 pr = 1. The cost function is f(i, n) = αn + βid(i, n), where

βi is the cost per unit of power in a class i region and α represents a weighting factor

between the cost of power and the queue length. Model the problem as a discrete MDP.

Solution: The state of this problem is the region that the user stays and the number

of bits in the buffer. Thus the state space is S = {(i, n)|i = 1, 2, . . . ,M ;n = 0, 1, . . . , },

where i denotes the region and n denotes the number of bits in the buffer. The action is

using the different levels of powers. The user can choose different levels of powers d(i, n)

when the state is (i, n), which is the policy of MDP. The transition probability form state

(i, n) to state (j,m) is p[Xl+1 = (j,m)|Xl = (i, n), d(i, n)] = pij

∑
r,k:r−k=m−n prq

d(i,n)
k ,

k = 0, 1, 2, . . . , n, r = 0, 1, 2, . . .. The cost function is f [(i, n), d(i, n)] = αn + βid(i, n).

We can make the average cost performance as the optimization criterion, whose (i, n)-th
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component is

ηd(i, n) = lim
L→∞

1

L
E

{
L−1∑

l=0

f [Xl, d(Xl)]|X0 = (i, n)

}
. (4.4)

4.4 Consider a closed network consisting of M single-server stations and N customers. Let

ni be the number of customers in the server i, i = 1, 2, · · · ,M , and n := (n1, n2, · · · , nM).

The service rate of server i, i = 1, 2, · · · ,M , depends on the system “state” n and is

denoted as µi,n. That is, if at time t ∈ [0,∞) the system is state n. then server i

completes its service to its customer in [t, t+∆t) with probability µi,n∆t. After a customer

completes its service at server i, the customer will transit to server j with probability

qij , i, j = 1, 2, . . . ,M . We may control the service rates µi,n, i = 1, 2, · · · ,M , n ∈ S :=

{(n1, · · · , nM) :
∑M

k=1 nk = N}, to optimize a properly defined average reward η. We

assume that the reward function f is independent of µi,n.

a. Model the problem as a Markov decision process.

b. Suppose that the service rate of server i, i = 1, 2, . . . ,M , depends on the num-

ber of customers in server i, ni, and is denoted as µi,ni
, and we may control the

load-dependent service rates µi,ni
, ni = 1, 2, . . . , N, i = 1, 2, . . . ,M , to optimize an

average reward. Can we model this problem as a standard MDP? Why?

Solution:

a. For this problem, we need use continuous time Markov decision process to model

it. The state space is S = {n = (n1, n2, . . . , nM)|
∑M

k=1 nk = N}. The available action

space A(n) at state n is the real space RM . An action µi,n at server i can be taken from

R when the state is n, i.e. d(n) = (µ1,n, µ2,n, · · · , µM,n). The service rate at server i when

system stays at state n is µi,n and the routing probability is qij . From the results of closed

network, we can easily obtain the infinitesimal generator as follows:

b
nm

=





ǫ(ni)µi,nqij , m = ni,j , i 6= j;
∑M

i=1 ǫ(ni)µi,nqi,i, m = n;

0, otherwise.
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where nij = (n1, . . . , ni − 1, . . . , nj + 1, . . . , nM). The reward function is f(n). The

optimization criterion is the average reward defined as follows:

ηd(n0) = lim
T→∞

1

T
E

{∫ T

t=0

f(Xt)
∣∣∣X0 = n0

}
.

When the system is ergodic, η(n0) is independent of the initial state n0.

b. We cannot model this problem as a standard MDP. Since the service rate at server

i depends only on the number of customers in server i, the action choice at the different

states is not independent. For example, We consider the case of 3 servers and 4 customers.

The service rates µ1,n1 of server 1 at states (1, 2, 1) and (1, 1, 2) are the same. This point

is different from the standard Markov decision processes.

4.5 Derive the average-reward difference formula for continuous-time ergodic Markov

processes with a finite state space and a finite number of actions, and derive the policy

iteration algorithm from it.

Solution:

For the continuous time Markov chain, we have the Poisson equation as follows:

Bg = −f + ηe.

Left-multiplying on the both sides of Poisson equation by π′, using π′e = 1, we get

π′Bg = −π′f + π′eη = −π′f + η.

That is,

η = π′Bg + π′f.

By π′B′ = 0 and π′f ′ = η′, we have

η′ − η = π′(f ′ − Bg − f) = π′[(f ′ +B′g) − (f +Bg)].

From the aforementioned average performance difference formula, it is natural to pro-

pose the following Policy Iteration Algorithm.

1. Guess an initial policy d0, set k = 0.

2. (Policy evaluation) Obtain the potential gdk by solving the continuous time Poisson

equation Bdkgdk = −fdk + ηdke.
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3. (Policy improvement) Choose

dk+1 = arg{max
d∈E

[fd +Bdgdk ]}, (4.5)

component-wisely (i.e., to determine an action for each state). If at a state i, action

dk(i) attains the maximum, then set dk+1(i) = dk(i).

4. If dk+1 = dk, stop; otherwise set k := k + 1 and go to step 2.

4.6 Derive the bias-difference formula for continuous-time ergodic Markov processes with

a finite state space and a finite number of actions, and derive the policy iteration algorithm

from it.

Solution:

On the condition of η′ = η = η∗, by the average performance difference formula in

Problem 4.5 and π′ > 0, similarly to the proof of Lemma 4.1, we can obtain (in fact, (4.6)

is the sufficient and necessary condition such that η′ = η = η∗)

B′g + f ′ = Bg + f. (4.6)

By Poisson equation Bg = −f + ηe and B′g′ = −f ′ + ηe, we get

Bg + f = B′g′ + f ′. (4.7)

Combining (4.6) and (4.7), we get B′(g′ − g) = 0. Since the continuous-time Markov

process is ergodic, we obtain g′ − g = ce for any constant c.

Next we need to specify the constant c. Since g and g′ are the biases, we have π′g′ = 0.

By π′g′ = π′(g + ce) = 0, we get c = −π′g. By replacing f by the bias −g in the Poisson

equation, we have the Poisson equation for the 2nd bias

Bw = g.

By using π′B′ = 0 and the above Poisson equation, we have the following bias difference

formula:

g′ − g = ce = π′(B′ − B)we.

From the aforementioned bias difference formula, we can derive the policy iteration

algorithm for a bias-optimal policy:
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1. Starting with any gain-optimal policy d0, which may be obtained from the gain-

optimal policy iteration algorithm, set k = 0.

2. Determine D0 by

D0(i) =

{
a ∈ A(i) : f(i, a) +

S∑

j=1

Ba(j|i)gd0(j) = fd0(i) +

S∑

j=1

Bd0(j|i)gd0(j)

}
.

3. Obtain the bias gdk by solving Bdkgdk = −fdk + ηdke and πdkgdk = 0, and bias-

potential wdk by solving Bdkwdk = gdk .

4. Choose

dk+1 = arg{max
d∈E0

[Bdwdk ]},

component-wisely (i.e., to determine an action for each state). If at a state i, action

dk(i) attains the maximum, then set dk+1(i) = dk(i).

5. If dk+1 = dk, stop; otherwise set k := k + 1 and go to step 3.

4.7 Policy iteration requires the actions at different states should be chosen independently.

Consider the following optimization problem. The state space consists of 2S states de-

noted as (i, j), i = 1, 2, · · · , S, j = 1, 2. The same action has to be taken when the system

is at state (i, 1) or (i, 2) for the same i, i = 1, 2, · · ·. Thus, if action α is taken at both (i, 1)

and (i, 2), then the transition probabilities from both state (i, 1) and (i, 2), pα(·|(i, 1)) and

pα(·|(i, 2)) are determined simultaneously.

a. Explain why the standard policy iteration algorithm does not apply to this problem.

b. Let π(i) := π(i, 1) + π(i, 2) be the steady-state marginal distribution and π(j|i) =

π(i,j)
π(i)

be the steady-state conditional probabilities, i = 1, 2, · · · , S, j = 1, 2. In this

problem, a policy determines an action based on the first component of the state,

i. Consider any two policies h(i) and d(i). We assume that these conditional prob-

abilities are the same for all policies. Thus, πd(j|i) = πh(j|i) for all i = 1, 2, . . . , S

and j = 1, 2. Now we have the average performance difference formula

ηh − ηd =

S∑

i=1

πh(i)

{
2∑

j=1

πd(j|i)
{[
fh(i, j) +

S∑

i′=1

2∑

j′=1

ph[(i, j), (i′.j′)]gd(i′, j′)
]
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−
[
fd(i, j) +

S∑

i′=1

2∑

j′=1

pd[(i, j), (i′.j′)]gd(i′, j′)
]}
.

}

The πd(j|i) and gd(i, j) in the big bracket do not depend on P h. Derive a policy

iteration optimization algorithm for the “aggregated” state i.

c. Can you derive a sample path based optimization algorithm for the problem in b)?

solution:

a. From the process of the policy iteration, we can find that the action choices at different

states are requested to be independent, but in this problem, the action choices at different

states are not independent.

b. From the aforementioned average performance difference formula, it is natural to

propose the following Policy Iteration Algorithm.

1. Guess an initial policy d0, set k = 0.

2. (Policy evaluation) Obtain the potential gdk by solving the Poisson equation (I −

P dk)gdk +ηdke = fdk and compute the steady-state probability πdk by πdkP dk = πdk

and πdke = e, then obtain πdk(j|i) by πdk(j|i) = πdk (i,j)

πdk (i)
.

3. (Policy improvement) For i = 1, 2, · · · , S, choose

dk+1(i) = arg max
a∈A(i)

{
2∑

j=1

πdk(j|i)
[
fa(i, j) +

S∑

i′=1

2∑

j′=1

pa[(i, j), (i′.j′)]gdk(i′, j′)
]}

.(4.8)

If at a state i, action dk(i) attains the maximum, then set dk+1(i) = dk(i).

4. If dk+1 = dk, stop; otherwise set k := k + 1 and go to step 2.

c. We can derive a sample path based policy iteration algorithm. Based on a sample

path, we can estimate the potential by using the methods in Section 3.1.2 and obtain the

estimation of potential ĝ(i, j). The estimation π̂dk(i, j) of πdk(i, j) can be obtained by

limL→∞
∑L−1

l=0 I(i,j)(Xl)

L
, then π̂dk(j|i) = π̂dk (i,j)∑2

j=1 π̂dk (i,j)
. Putting the estimations ĝdk(i, j) and

π̂dk(j|i) into (4.8), we can complete the policy improvement by using these estimates.

This method does not need the second step in the above policy iteration.

4.8 Are the following statements true?
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a. When the average reward policy iteration algorithm stops at a policy d̂, the direc-

tional performance derivative from d̂ to any other policy in D is non-positive.

b. If d̂ is a gain optimal policy, then another policy d is gain optimal, if the directional

performance derivative from d̂ to d is zero.

c. If d̂ is a gain optimal policy, then the directional performance derivative from d̂ to

any other gain optimal policy d is zero.

d. The bias optimal policy has the largest bias in the policy space D.

e. The difference of the biases of any two policies is a constant vector (i.e. all its

components are equal).

Solution:

a. For ergodic Markov decision processes, this statement is true. The performance

derivative along the direction from dk to any policy d ∈ D is

dηδ

dδ
= πd̂[(fd + P dgd̂) − (f d̂ + P d̂gd̂)]. (4.9)

Since the policy iteration algorithm stops at the policy d̂, for any policy d, we have

fd + P dgd̂ ≤ f d̂ + P d̂gd̂. Otherwise, the algorithm cannot be stopped. Thus, from

πdk(i) > 0, ∀i ∈ S, the directional performance derivative from d̂ to any other policy

in D is non-positive. For the case of Multiple Markov chain, this statement is also

true. The performance derivative along the direction from policy d̂ to any policy

d ∈ D is

dηδ

dδ
= (P d̂)

∗
[(fd + P dgd̂) − (f d̂ + P d̂gd̂)] +

∞∑

l=0

P d̂
l
(P d − I)ηd̂. (4.10)

When the policy iteration stops at policy d̂, then fd(i) + P dgd̂(i) ≤ f d̂(i) + P d̂gd̂(i)

for all recurrent states i and P dηd̂ ≤ ηd̂. Thus, we have dηδ

dδ
≤ 0.

b. For ergodic Markov decision processes, this statement is not true. From (4.9),

although πd̂ > 0, but we can not guarantee

fd + P dgd̂ = f d̂ + P d̂gd̂, (4.11)



102 CHAPTER 4. SOLUTIONS TO CHAPTER 4

which is the sufficient and necessary condition that d is also the gain optimal policy.

Maybe policy d makes fd(i) + P dgd̂(i) < f d̂(i) + P d̂gd̂(i) for some i and fd(j) +

P dgd̂(j) > f d̂(j) + P d̂gd̂(j) for some j, but dηδ

dδ
= 0 still holds. Thus, this statement

is not true. For the multiple Markov chain, this statement is also not true.

c. This statement is true for ergodic Markov chain. From Lemma 4.1, we know if d

and d̂ are the gain optimal policies, then

fd + P dgd̂ = f d̂ + P d̂gd̂. (4.12)

So the directional performance derivative from d̂ to any other gain optimal policy

d is zero. Thus, this statement is true for ergodic Markov chain. For the case of

multiple Markov chain, this statement is not true. Since ηd̂ = ηd, then, P dηd̂ = ηd̂

and P d∗ηd̂ = ηd̂. From the average performance difference formula, we have

0 = ηd − ηd̂ =
(
P d
)∗

[(fd + P dgd̂) − (f d̂ + P d̂gd̂)]. (4.13)

For different polices d and d̂, the classes of recurrent states may be different. We

cannot draw a conclusion that (P d̂)
∗
[(fd+P dgd̂)−(f d̂+P d̂gd̂)] = 0 from

(
P d
)∗

[(fd+

P dgd̂) − (f d̂ + P d̂gd̂)] = 0. Thus, the directional performance derivative from d̂ to

any other gain optimal policy d may not be zero.

d. This statement is not true. The bias optimal policy has the largest bias only in the

set of gain-optimal policies D0.

e. This statement is not true. We know the difference of the biases of two policies in

the set of gain-optimal policies D0 is a constant. However, if one of two policies is

not the gain optimal policy, this conclusion cannot hold.

4.9 Let d̂ and d be two ergodic gain optimal policies in Lemma 1. We define a randomized

policy dδ by setting P dδ = P d + δ(P d̂ − P d), fdδ = fd + δ(f d̂ − fd).

a. Let ηdδ be the average reward of dδ, prove ηdδ
= η∗.

b. Derive a directional bias-derivative equation from d to d̂, denoted as dgδ

dδ
.
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c. When the bias policy iteration algorithm stops at a policy ĥ, what are the directional

derivatives from this policy to other policies in D0?

d. Calculate the bias derivative between various policies in Example 4.1.

Solution:

a. From the performance difference formula, we have

ηdδ − ηd = πdδ(fdδ + P dδgd − (fd + P dgd))

= πdδδ[(f d̂ − fd) + (P d̂ − P d)gd]. (4.14)

Since d̂ and d are two ergodic gain optimal policies, we have f d̂ +P d̂gd = fd +P dgd from

Lemma 1. Thus, we have ηdδ = ηd. That is, dδ is also a gain optimal policy.

b. Similarly to the method in Section 4.1.2, we can obtain the following difference

formula:

gdδ − gd = {πdδ(P dδ − P d)wd}e

= {πdδδ(P d̂ − P d)wd}e,

where πdδ is the steady-state distribution of P dδ . Dividing by δ on both sides and letting

δ → 0, we have

dgδ

dδ
= {πd(P̂ − P d)wd}e.

c. When the bias policy iteration algorithm stops at a policy ĥ, the directional deriva-

tives from ĥ to other policies in D0 is non-positive.

d. Using Poisson equation, we have wd1 = (−1, 1)T , wd2 = (−0.64, 0.96)T , wd3 =

(−0.8889, 1.7778)T and wd4 = (−0.5, 1.5)T . The bias derivative along the direction from

d1 to d2 is

(0.5, 0.5)
{

 0.5 0.5

0.75 0.25


−


 0.5 0.5

0.5 0.5



}

 −1

1


 e = −0.25e,

where e = (1, 1)T .

Similarly, we can obtain the bias derivative dgδ

dδ
|d1→d3 = −0.25e, dgδ

dδ
|d1→d4 = −0.5e,

dgδ

dδ
|d2→d1 = 0.16e, dgδ

dδ
|d2→d3 = −0.08e, dgδ

dδ
|d2→d4 = −0.24e, dgδ

dδ
|d3→d1 = 0.4445e, dgδ

dδ
|d3→d2 =

0.2222e, dgδ

dδ
|d3→d4 = −0.2222e, dgδ

dδ
|d4→d1 = 0.5e, dgδ

dδ
|d4→d2 = 0.375e, dgδ

dδ
|d4→d3 = 0.125e.
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4.10 In Section 4.1.1, we proved that at an optimal policy the performance derivatives

along the directions to all other policies are non-positive.

a. Suppose dηdδ

dδ
> 0 at policy d along a direction defined by dδ: P

dδ = P d + δ∆P ,

f δ = fd + δ∆f with ∆P = P h − P d, ∆f = fh − fd. Can we claim ηh > ηd? If not, give

a counter example. If yes, what does this imply in terms of policy iteration?

b. Prove that a policy d ∈ D is average-reward optimal if and only if at this policy

the performance derivative along the directions to all other policies are non-positive.

Solution:

a. If dηdδ

dδ
> 0 along the direction defined by dδ: P

dδ = P d + δ∆P , f δ = fd + δ∆f

with ∆P = P h − P d, ∆f = fh − fd, we cannot claim ηh > ηd. If there exist some state

i such that (∆Pgd + ∆f)(i) > 0 and some state j such that (∆Pgd + ∆f)(j) < 0, but

dηdδ

dδ
= πd(∆Pgd + ∆f) > 0. For this case, we cannot claim ηh > ηd. For example,

P d =




0.2 0.1 0.3 0.4

0.5 0.2 0.1 0.2

0.2 0.3 0.1 0.4

0.4 0.2 0.2 0.2



, fd =




1

2

3

4



, P h =




0.2 0.2 0.2 0.4

0.1 0.4 0.4 0.1

0.3 0.3 0.2 0.2

0.3 0.1 0.4 0.2



, fh =




1

2

2.9

4



.

We have

gd =




1.3957

1.6010

3.0966

3.7711



, (P h − P d)gd + (fh − fd) =




−0.1496

0.3138

−0.4050

0.3196



.

and dηdδ

dδ
= 0.0297 > 0, but we have ηh = 2.4789, ηd = 2.4809, and ηh − ηd = −0.002.

b. We firstly prove the necessary condition (“⇒”). We use the contradiction method.

If there exists a policy d̂ such that the directional derivative dηdδ

dδ
is positive. From πd > 0

and dηdδ

dδ

∣∣∣
d→d̂

= πd
[
P d̂gd + f d̂ − (P dgd + fd)

]
> 0, there must exist a state i such that

[P d̂gd + f d̂](i) > [P dgd + fd](i). Then, we create a policy d∗ by setting d∗(i) = d̂(i) and

d∗(j) = d(j) for all j 6= i. We have

P d∗gd + fd∗ � P dgd + fd.

By using the performance difference formula, we have ηd∗ > ηd. This contradicts the fact

that d is an optimal policy. Thus, the necessary condition is proved.
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Next, we prove the sufficient condition with the contradiction (“⇐”). If d is not the

average-reward optimal, then there exists an average-reward optimal policy d∗ such that

P d∗gd + fd∗ � P dgd + fd.

From πd > 0. Thus, the performance derivative from P to P ∗ is positive. This is a

contradiction. Therefore, d is average-reward optimal.

4.11 Suppose that d̂ is the gain-optimal policy with potential gd̂ in Lemma 4.1. Then for

any policy d ∈ D0, we have fd + P dgd̂ = f d̂ + P d̂gd̂. From this, prove that for any other

policy d′ ∈ D0, we have fd + P dgd′ = fd′ + P d′gd′, for all d ∈ D0.

Solution: Since fd + P dgd̂ = f d̂ + P d̂gd̂ holds for for any policy d ∈ D0, we have

fd + P dgd̂ = fd′ + P d′gd̂ = f d̂ + P d̂gd̂, (4.15)

for any policy d′ ∈ D0 . From (4.13), gd′ − gd̂ = ce. Putting gd̂ = gd′ − ce into (4.15), we

have fd + P dgd′ = fd′ + P d′gd′ .

4.12 Prove that the second policy iteration algorithm for bias optimality in Section 4.1.2

converges to a bias-optimal policy in a finite number of iterations.

Solution:

In the process of policy iteration, dk+1 ∈ D̃. By the gain-optimal policy iteration

algorithm, we know ηdk+1 > ηdk before dk becomes a gain-optimal policy. Since the

number of policies is finite, we know dk must be a gain-optimal policy in a finite number

of iterations. After that, D̃ is the set of gain-optimal policies D0. According to the bias

difference formula (4.15), we know the bias increases at each iteration before it stops

because of dk+1 ∈ arg
{

max
d∈D̃

P dwdk

}
. Since the number of gain optimal policies is

finite, the iteration procedure has to stop after a finite number of iterations. Suppose it

stops at a policy denoted as d̂. Then d̂ must satisfy the optimality conditions f d̂ +P d̂gd̂ =

fd + P dgd̂ and P d̂wd̂ ≥ P dwd̂, for all d ∈ D0, because otherwise for some i, we can find

the next improved policy in the policy iteration. Thus, by gain difference formula and

bias difference formula, we have gd̂ ≥ gd for any d ∈ D0, that is, policy d̂ is bias optimal.

4.13 Calculate the bias-potential w in Example 4.1 for policy d2 and then find the bias-
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optimal policy by policy iteration.

Solution: The bias-potential in Example 4.1 for policy d2 is wd2 = (−0.64, 0.96)T . Thus,

from [pα2(·|1) − pα1(·|1)]wd2 = −0.4 < 0 and [pβ2(·|2) − pβ1(·|2)]wd2 = −0.4 < 0, we

conclude that d1 = (α1, β1) is a bias-optimal policy.

4.14 Consider a two-state Markov chain. There are two actions at state 1, corresponding

to transition probabilities (0.5, 0.5), and (0.25, 0.75) and rewards 1 and 1.5, respectively;

and there are three actions at state 2, corresponding to transition probabilities (0.5, 0.5),

(0.25, 0.75), and (0.75, 0.25) and rewards −1,−0.5, and −1.5, respectively. Apply policy

iteration to obtain the set of gain-optimal policies and a bias-optimal policy.

Solution: From the problem, we know there are 6 policies in the policy space, which is

denoted as {d1, · · · , d6}.

1. Start the policy iteration from an initial policy

d1 |=



P1 =


 0.5 0.5

0.5 0.5


 , f1 =


 1

−1





 .

2. Obtain the potential g1 = (I − P1 + eπ1)
−1f1 = (1,−1)T .

3. Since [(0.5, 0.5) − (0.25, 0.75)] ∗ (1,−1)T + (1 − 1.5) = 0, [(0.5, 0.5) − (0.75, 0.25)] ∗

(1,−1)T + (−1 + 1.5) = 0, and [(0.5, 0.5)− (0.25, 0.75)] ∗ (1,−1)T + (−1 + 0.5) = 0,

we know d1 is a gain-optimal policy.

From the third step in the above policy iteration algorithm, we can find any policy

d in the policy space satisfy fd + P dgd1 = fd1 + P d1gd1. Thus, the set of optimal gain

policies is the whole policy space, in which there are 6 policies.

By using (4.14), we obtain the 2nd potential of policy d1, w
d1 = −(I−P1 +eπ1)

−1g1 =

(−1, 1)T . Since [(0.5, 0.5)−(0.25, 0.75)]∗(−1, 1)T = −0.5 < 0, and [(0.5, 0.5)−(0.75, 0.25)]∗

(−1, 1)T = 0.5 > 0, we know policy






 0.25 0.75

0.25 0.75


 ,


 1.5

−0.5





 has a better bias than

d1, whose 2nd bias is (−1.5, 0.5)T . Since [(0.5, 0.5)− (0.25, 0.75)] ∗ (−1.5, 0.5)T = −0.5 <

0, and [(0.75, 0.25) − (0.75, 0.25)] ∗ (−1.5, 0.5)T = −1 < 0, the bias-optimal policy is




 0.25 0.75

0.25 0.75


 ,


 1.5

−0.5





.
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4.15 For multi-chains, prove

a. There are more than one solution to (I − P )u = 0.

b. The Poisson equation (I − P )g + η = f and the normalization condition P ∗g = 0

uniquely determine the bias of the Markov chain.

Solution:

a. Suppose that P is in a canonical form. Then P can be writhen as

P =




P1 0 0 · · · · 0

0 P2 0 · · · · 0

· · · · · · · ·

0 0 0 · · · Pm 0

R1 R2 R3 · · · Rm Rm+1




.

For any constant group of c1, . . . , cm, then u = (c1e
T
1 , . . . , cme

T
m,−(

∑m
i=1 ci(I−Rm+1)

−1Riei)
T )T

is one of the solutions to (I − P )u = 0, where ei = (1, . . . , 1)T whose dimension is the

same as Pi, i = 1, . . . , m.

b. By P ∗g = 0 and the Poisson equation, we obtain (I − P + P ∗)g = f − η. Since

I − P + P ∗ is invertible (cf. (B.12) in Appendix B.3), then the bias of the Markov chain

is uniquely determined by g = (I − P + P ∗)−1(f − η).

4.16 Suppose d and h are the two policies satisfying conditions (a) and (b) in Comparison

Lemma (4.41). Prove

a. If in addition to (a) and (b), we have v(i) = [fh(i)+(P hgd)(i)]−[fd(i)+(P dgd)(i)] >

0 for some recurrent state i of P h, then ηh � ηd.

b. If in addition to (a) and (b) , we have P hηd 6= ηd, then ηh � ηd.

[solution]

a. From condition (a) in Lemma (4.41), we have u = P hηd−ηd ≥ 0. Because P h∗P h =

P h∗, we have P h∗u = 0. Thus, from Lemma (4.41), u(i) = 0 for all recurrent states i of

P h. Next, it follows from condition (b) that v(i) = [f ′(i)+(P ′g)(i)]− [f(i)+(Pg)(i)] ≥ 0

for all recurrent states of P h. If in addition to (a) and (b), we have v(i) = [fh(i) +
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(P hgd)(i)] − [fd(i) + (P dgd)(i)] > 0 for some recurrent state i of P h. From the canonical

form of P h∗, we have P h∗v � 0. On the other hand, since P hηd ≥ ηd, and so P hk
ηd ≥ ηd

for all k ≥ 1. Therefore, by (4.27) we get P h∗ηd ≥ ηd. Finally, by the average performance

difference formula, we have ηh − ηd = P h∗v + (P h∗ − I)ηd ≥ P h∗v � 0.

b. From Lemma (4.41), we know ηh ≥ ηd. Now we just prove that ηh 6= ηd. Suppose

ηh = ηd, then P hηd = P hηh = ηh = ηd, which conflicts with P hηd 6= ηd. Moreover, we can

also prove this problem as follows:

From (a), we know P hηd ≥ ηd. If P hηd 6= ηd, we know P hηd � ηd. Because (P h∗ −

I)ηd =
∑∞

l=0 P
hl

(P h − I)ηd, we have (P h∗ − I)ηd ≥ (P h − I)ηd � 0. From (b), we can

prove P h∗v ≥ 0. Thus, we have ηh � ηd from the average-reward difference formula

(4.36).

4.17 Find both the gain- and bias- optimal policies using policy iteration for the multi-

chain MDP in Example 4.6.

Solution:

Denote policy P α1 if we choose α1 at state 1, policy P α2 if we choose α2 at state 1.

Then we have

P α2 =


 0.1 0.9

0 1


 , fα2 =


 100

0


 , (P α2)∗ =


 0 1

0 1


 , ηα2 =


 0

0


 , gα2 =




1000
9

0


 .

P α1 =


 0.99 0.01

0 1


 , fα1 =


 100

0


 , (P α1)∗ =


 0 1

0 1


 , ηα1 =


 0

0


 , gα1 =


 10000

0


 .

1. Suppose we start from policy P α2 in the policy iteration.

2. solve Poisson equation, we get ηα2 = (P α2)∗fα2 = (0, 0)T and gα2 = (I − P α2 +

(P α2)∗)−1(fα2 − ηα2) = (1000
9
, 0)T .

3. Since fα1 +P α1gα2 � fα2 +P α2gα2 and there are only two policies, then we get the

gain-optimal policy P α1 , which is also the bias-optimal policy.
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4.18 Consider a Markov chain studied in Problem 2.20 with transition probability matrix

P =


 B b

0 1


 ,

where B is an (S−1)× (S−1) irreducible matrix, b > 0 is an (S−1) dimensional column

vector, 0 represents an (S − 1) dimensional row vector whose all components are zero.

The last state S is an absorbing state. Set f(S) = 0. Clearly, the long-run average reward

for this Markov chain is η = 0. The total reward obtained before reaching the absorbing

state, E {
∑∞

l=0 f(Xl)|X0 = i}, can be viewed as the bias for the problem:

g(i) = E

{ ∞∑

l=0

f(Xl)
∣∣∣X0 = i

}
.

The Poisson equation for g = (g(1), . . . , g(S))T has been derived in the problem 2.19.

a. Derive the bias-difference equation for any two policies h and d.

b. Derive a policy iteration algorithm for the bias-optimal policy.

This problem indicates that optimization of the total reward of Markov chains with ab-

sorbing states can be solved by the policy iteration for bias optimal policies.

Solution:

a. For the Markov chain with an absorbing state in the problem, the steady state

probability under any policy is π = (0, 0, . . . , 0, 1). Thus we have gd(S) = 0 for the bias

gd under any policy d from πdgd = 0. Denote gd = ((gd
1)

T , 0)T and f = ((fd
1 )T , 0)T . From

Problem 2.19, we have (I − Bd)gd
1 = fd

1 . Next, we derive the difference equation for

gh
1 − gd

1 .

gh
1 − gd

1 = (Bhgh
1 + fh) − (Bdgd

1 + fd)

= (Bhgd
1 + fh

1 ) − (Bdgd
1 + fd

1 ) +Bh(gh
1 − gd

1).

Thus, we have the following bias difference formula

gh
1 − gd

1 = (I − Bh)−1[(Bhgd
1 + fh

1 ) − (Bdgd
1 + fd

1 )]. (4.16)

b. Policy iteration algorithm:
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1. Guess an initial policy d0, set k = 0.

2. (Policy evaluation) Obtain the potential gdk

1 by solving (I − Bdk)gdk

1 = fdk

1 .

3. (Policy improvement) Choose

dk+1 ∈ arg{max
d∈D

[fd
1 +Bdgdk

1 ]},

component-wisely (i.e., to determine an action for each state). If at a state i, action

dk(i) attains the maximum, then set dk+1(i) = dk(i).

4. If dk+1 = dk, stop; otherwise, set k = k + 1 and go to step 2.

4.19 For the MDPs with discounted performance criterion,

a. Prove the performance difference formula (4.73) and (4.74),

b. Prove that in (4.77), if d′ 6= d, then ηd′

β � ηd
β .

c. Prove the convergence of the policy iteration algorithm.

Solution:

a. We have ηd
β = (1 − β)(I − βP d)−1fd. That is, ηd

β − βP dηd
β = (1 − β)fd. We obtain

ηh
β − ηd

β = (1 − β)fh + βP hηh
β − [(1 − β)fd + βP dηd

β]

= (1 − β)fh + βP hηd
β − [(1 − β)fd + βP dηd

β ] + βP h(ηh
β − ηd

β).

=⇒ (I − βP h)(ηh
β − ηd

β) = (1 − β)(fh − fd) + β(P h − P d)ηd
β .

Since I − βP h is invertible, we obtain

ηh
β − ηd

β = (I − βP h)−1[(1 − β)(fh − fd) + β(P h − P d)ηd
β ]. (4.17)

This is (4.73).

Since we also have ηd
β = (1 − β)gd

β + βηd (similar to (2.41)), then

(ηh
β − ηd

β)

= (I − βP h)−1{(1 − β)(fh − fd) + β(P h − P d)[(1 − β)gd
β + βηd]}

= (1 − β)(I − βP h)−1{(fh − fd) + β(P h − P d)gd
β} + β2(I − βP h)−1(P h − P d)ηd

= (1 − β)(I − βP h)−1[(fh + βP hgd
β) − (fd + βP dgd

β)] + β2(I − βP h)−1(P h − I)ηd.
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We have obtained (4.74).

b. Since d′ 6= d, from (4.77), we have Qd
β(i, d′(i)) ≥ Qd

β(i, d(i)), i ∈ S and for at

least one state i, Qd
β(i, d′(i)) > Qd

β(i, d(i)). In a vector form, we have Qd
β(d′) � Qd

β(d),

where Qd
β(d′) = (Qd

β(1, d′(1)), . . . , Qd
β(S, d′(S)))T . From the discounted reward difference

formula (4.73), we have

ηd′

β − ηd
β = (I − βP d′)−1(Qd

β(d′) −Qd
β(d)).

Since (I − βP d′)−1 = I +
∑∞

k=1 β
k(P d′)k ≥ I, we obtain ηd′

β � ηd
β.

c. From the result of Part b), we know η
dk+1

β � ηdk

β if dk+1 6= dk. That is, the discounted

reward strictly increase during the policy iteration procedure. Since the policy is finite,

we know the policy iteration algorithm must stop in a finite number of steps.

4.20 In (4.53), the bias potential w is defined as the potential of the bias g satisfying

P ∗g = 0. We can also define a potential of potential by using the potential g, which is

only up to an additive vector u satisfying (I − P )u = 0, as follows:

(I − P )w − P ∗g = −g.

a. Prove that the potential of potential defined in this way is the same as the bias

potential defined in (4.53).

b. Define the nth potential by using the (n− 1)th potential gn−1, and prove that this

definition is the same as (4.78).

Solution:

a. The potential is up to an additive vector u satisfying (I − P )u = 0. From u = Pu,

we have u = P ∗u. We assume g̃ is a bias. Then, any potential g = g̃ + u. If we define a

potential of potential by

(I − P )w − P ∗g = −g

which can also be rewritten as

(I − P )w − P ∗(g̃ + u) = −(g̃ + u).

From P ∗u = u and P ∗g̃ = 0 (from the definition of the bias), we have

(I − P )w = −g̃,
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which is the same as the definition in (4.53).

b. We can also define the nth potential by using the (n − 1)th potential gn−1, which

is only up to an additive vector u with (I − P )u = 0, as follows:

(I − P )gn − P ∗gn−1 = −gn−1.

The potential is up to an additive vector u satisfying (I − P )u = 0. From u = Pu, we

have u = P ∗u. We assume g̃n−1 is a bias. Then, any (n− 1)th potential gn−1 = g̃n−1 + u.

If we define a potential of potential by

(I − P )gn − P ∗gn−1 = −gn−1

which can also be rewritten as

(I − P )gn − P ∗(g̃n−1 + u) = −(g̃n−1 + u).

From P ∗u = u and P ∗g̃n−1 = 0 (from the definition of the bias), we have

(I − P )gn = −g̃n−1,

which is the same as the definition in (4.78).

4.21 Derive a general bias difference equation for gh − gd, when ηh 6= ηd, for ergodic

chains. Discuss whether we can use this equation to derive policy iteration algorithm.

Solution: From the Poisson equation (4.9), we have

gh − gd = (fh + P hgh − ηhe) − (fd + P dgd − ηde)

= (fh + P hgd) − (fd + P dgd) + P h(gh − gd) − (ηh − ηd)e.

Thus, we have

(I − P h)(gh − gd) = (fh + P hgd) − (fd + P dgd) − (ηh − ηd)e. (4.18)

From the definition of the bias, we know πh(gh − gd) = −πhgd = πh(P h − P d)wd. Com-

bining with (4.18), we have

(I − P h + eπh)(gh − gd)

= (fh + P hgd) − (fd + P dgd) − (ηh − ηd)e+ eπh(P h − P d)wd.
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From (I − P h + eπh)−1e = e, we have

gh − gd

= (I − P h + eπh)−1[(fh + P hgd) − (fd + P dgd)] + [πh(P h − P d)wd + ηh − ηd]e.(4.19)

We cannot use this equation to derive policy iteration algorithm. On one hand, we

cannot determine whether (I − P h + eπh)−1 is non-negative, so we cannot determine

whether the first item in this equation is larger than 0. On the other hand, we cannot

decouple the effect of two terms on the right hand side of (4.19).

4.22 This problem helps to understand the bias optimality. First, if d̂ and its gain and

potential (not necessary bias) ηd̂ and gd̂ satisfy (4.60) and (4.61), then ηd̂ = η∗ is the

optimal gain (and gd̂ may not be optimal), and

Â0(i) = A∗
0(i) :=

{
a ∈ A(i) :

∑

j∈S
pa(j|i)η∗(j) = η∗(i)

}
,

and

Â1(i) :=

{
a ∈ Â0(i) : η∗(i) + gd̂(i) = f(i, a) +

∑

j∈S
pa(j|i)gd̂(j)

}
.

Now let d ∈ "i∈SÂ1(i). Then by definition we have

P dη∗ = η∗,

fd + P dgd̂ = η∗ + gd̂.

a. Let gd be the potential of d. Prove ηd = η∗ and gd = gd̂ + u with (I − P d)u = 0.

b. Let gd and gd̂ be the biases of d and d̂, respectively. Prove gd − gd̂ = −(P d)
∗
gd̂.

c. From b), the bias can be improved by optimizing P d∗(−gd̂) (cf. (4.13) for the ergodic

case). Can we develop the policy iteration algorithm for bias optimality by using

this property? What, if any, are the problems with this approach?

Solution:

a. Pre-multiplying the both sides of fd + P dgd̂ = η∗ + gd̂ by (P d)∗, we have

(P d)∗fd + (P d)∗P dgd̂ = (P d)∗η∗ + (P d)∗gd̂.
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By (P d)∗P d = (P d)∗ and P dη∗ = η∗, we obtain ηd = (P d)∗fd = (P d)∗η∗ = η∗.

We prove gd = gd̂ +u with (I−P d)u = 0. From the Poisson equation and fd +P dgd̂ =

η∗ + gd̂, we have gd − gd̂ = fd + P dgd − η∗ − gd̂ = P d(gd − gd̂). Denote u = gd − gd̂, then

(I − P d)u = 0.

b. From part a), we have u = P du. Then, we get that u = (P d)∗u. That is,

gd − gd̂ = (P d)∗(gd − gd̂) = −(P d)∗gd̂ since (P d)∗gd = 0.

c. Let gd̂ also denote the bias of policy d̂ with (P d̂)∗gd̂ = 0. Pre-multiplying on the

both sides of (I−P d̂)wd̂ = −gd̂ (Poisson Equation) by (P d)∗, we get −(P d)∗gd̂ = (P d)∗(I−

P d̂)ŵ = (P d)∗(P d−P d̂)ŵ. Combining with b), we get gd−gd̂ = (P d)∗(P d−P d̂)ŵ. We can

develop the policy iteration algorithm for the bias optimality but this algorithm may not

converge to the bias-optimal policy. This is because in this algorithm d is chosen only from

Â1. That is, we only search the bias optimal policy in {d|η∗+gd̂ = fd +P dgd̂}, which will

lose the policy improvement by choosing action α satisfying f(i, α)+
∑

j∈S p
α(j|i)gd̂(j) >

η∗ + gd̂(j). That is, in (4.69) we only consider the policies satisfying
∑

j p
α(j|i)wd̂(j) >

∑
j p

d̂(j|i)wd̂(j) when Qd̂(i, α) = Qd̂(i, d̂(i)) but do not consider the policies satisfying

Qd̂(i, α) > Qd̂(i, d̂(i)). Under this iteration, the policy iteration may stop before it reaches

the bias-optimal policy.

4.23 Prove (I − P )(I − P + P ∗)−nη = 0, and therefore from (4.80) gn = (−1)−1(I − P +

P ∗)−1f is a solution to (4.78) with P ∗gn = (−1)n−1η.

Solution:

By η = P ∗f and (I − P + P ∗)−1P ∗ = P ∗, we get (I − P )(I − P + P ∗)−nη = (I −

P )(I−P +P ∗)−nP ∗f = (I−P )P ∗f = 0 noting PP ∗ = P ∗. Denote the nth bias gb
n. Then

gb
n = (−1)n−1(I−P+P ∗)−n(f−η) = (−1)n−1(I−P+P ∗)−nf−(−1)n−1(I−P+P ∗)−nη =

(−1)n−1(I − P + P ∗)−nf − (−1)n−1η = gn − (−1)n−1η. Since (I − P )(−1)n−1η = 0

and gb
n satisfies (4.78) with P ∗gb

n = 0, we know that gn is a solution to (4.78) with

P ∗gn = P ∗(−1)n−1η = (−1)n−1η.

4.24 Derive (4.81) recursively.

Solution:
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gn+1 = (−1)n(I − P + P ∗)−(n+1)(f − η)

= (−1)n[I +

∞∑

n=1

(P n − P ∗)]n+1(f − η)

= (−1)n

∞∑

k=0

Ck(P
k − P ∗)(f − η)

= (−1)n
∞∑

k=0

Ck(P
kf − η).

Where Ck is the coefficient of P k − P ∗ in the expansion of [I +
∑∞

n=1(P
n − P ∗)]n+1. The

computation of Ck is equivalent to the number of solutions of x1 + x2 + · · · + xn+1 =

k, xi = 0, 1, 2, · · · , i = 1, 2, . . . , n+1. Thus, from the results in combination mathematics,

we know Ck =


 (n+ 1) + k − 1

(n+ 1) − 1


 =


 n+ k

n


 .

Next, we prove it by induction.

For n = 0, we know that

g1 =
∞∑

k=0

(P kf − η) =
∞∑

k=0


 k

0


 (P kf − η).

For n = 1, we obtain

g2 = −
∞∑

l=0

P lg1 = −
∞∑

l=0

P l
∞∑

k=0

(P kf − η) = −
∞∑

l=0

∞∑

k=0

(P k+lf − η)

= −
∞∑

l=0

(l + 1)(P lf − η) = (−1)1
∞∑

k=0


 1 + k

1


 (P kf − η).

We can see that (4.87) holds for n = 0, 1. Now we assume that (4.87) holds for n = m,

that is

gm+1 = (−1)m
∞∑

k=0


 m+ k

m


 (P kf − η).

For n = m+ 1,

gm+2 = −
∞∑

l=0

P lgm+1



116 CHAPTER 4. SOLUTIONS TO CHAPTER 4

= −
∞∑

l=0

P l(−1)m

∞∑

k=0


 m+ k

m


 (P kf − η)

= (−1)m+1
∞∑

l=0

∞∑

k=0


 m+ k

m


 (P k+lf − η)

= (−1)m+1
∞∑

l=0


 m+ 1 + l

m+ 1


 (P lf − η).

4.25 Suppose that a sequence of vectors gd̂
0, g

d̂
1 , . . ., g

d̂
n, and gd̂

n+1 satisfies the optimality

equations (4.90)-(4.92). Find a policy that has gd̂
0 , g

d̂
1 , . . ., g

d̂
n, and gd̂

n+1 as its kth biases

k = 0, 1, · · · , n+1, respectively. Then by the sufficient optimality equations (4.90)-(4.92),

gd̂
k is the optimal kth biases, k = 0, 1, · · · , n, respectively. Therefore, in the sufficient

optimality condition (4.90)-(4.92), we may replace the sentence “A policy d̂ is nth optimal

if . . . ” by “ If a sequence of vectors gd̂
0 , g

d̂
1 , . . ., g

d̂
n, and gd̂

n+1 satisfies (4.90)-(4.92), then

gd̂
k are the optimal kth bias, k = 0, 1, . . . , n.”

Solution:

We prove that if policy d ∈ Dn+2(g
d̂
0 , g

d̂
1, . . . , g

d̂
n, g

d̂
n+2), then policy d has gd̂

k as its kth

biases, k = 0, 1, · · · , n+ 1, respectively.

Recall that

Dn+2(g
d̂
0, g

d̂
0 , · · · , g

d̂
n+2)

= {all d : P dgd̂
0 = gd̂

0 , f
d + P dgd̂

1 = gd̂
0 + gd̂

1, P
dgd̂

l+1 = gd̂
l + gd̂

l+1, l = 1, · · · , n+ 1}.

Pre-multiplying the both sides of fd + P dgd̂
1 = gd̂

0 + gd̂
1 by (P d)∗, we get gd

0 = (P d)∗fd =

(P d)∗gd̂
0 = gd̂

0 since (P d)∗P d = (P d)∗ and P dgd̂
0 = gd̂

0 .

In the similar way, pre-multiplying the both sides of P dgd̂
2 = gd̂

1 + gd̂
2 by (P d)∗, we get

(P d)∗gd̂
1 = 0 since (P d)∗P d = (P d)∗. Combining with fd + P dgd̂

1 = gd̂
0 + gd̂

1 , we obtain

gd
1 = [I − P d + (P d)∗]−1(fd − gd̂

0) = gd̂
1 .

Suppose gd
l = gd̂

l , 1 ≤ l ≤ n. Pre-multiplying the both sides of P dgd̂
n+2 = gd̂

n+1+g
d̂
n+2 by

(P d)∗, we get (P d)∗gd̂
n+1 = 0 since (P d)∗P d = (P d)∗. Combining with P dgd̂

n+1 = gd̂
n + gd̂

n+1,

we obtain gd
n+1 = −[I − P d + (P d)∗]−1gd̂

n = gd̂
n+1.

From the aforementioned, in the sufficient optimality condition (4.90)-(4.92), we may

replace the sentence “A policy d̂ is nth optimal if . . . ” by “ If a sequence of vectors gd̂
0 , g

d̂
1,
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. . ., gd̂
n, and gd̂

n+1 satisfies (4.90)-(4.92), then gd̂
k are the optimal kth bias, k = 0, 1, . . . , n.”

4.26 Develop a policy iteration algorithms that myopically maximizes the expected mth

potentials, m = 1, · · · , n, of the actions at each iteration, as illustrated on the right-hand

side of Figure 4.8. Prove its convergence.

Solution:

This is stated as the the second policy iteration algorithm for an nth bias optimal

policy:

1. Starting with any policy d0 ∈ D, and set k = 0.

2. Obtain the bias gdk

l , l = 0, 1, · · · , n and (n + 1)th potential gdk

n+1 by solving

P dkgdk

0 = gdk

0

(I − P dk)gdk

1 = fdk − gdk

0

(I − P dk)gdk

l = −gdk

l−1, l = 2, 3, · · · , n+ 1,

subject to (P dk)∗gdk
m = 0, m = 1, 2, . . . , n.

3. Set (component-wisely)

D̃0 :=

{
d = arg{max

d∈D
[P dgdk

0 ]}

}
,

D̃1 :=

{
d = arg{max

d∈D̃0

[fd + P dgdk

1 ]}

}
,

D̃l :=

{
d = arg{ max

d∈D̃l−1

[P dgdk

l ]}

}
, l = 2, 3, · · · , n,

and choose

dk+1 = arg{max
d∈D̃n

[P dgdk

n+1]},

If at a state i, action dk(i) attains the maximum, then set dk+1(i) = dk(i).

4. If dk+1 = dk, stop; otherwise set k := k + 1 and go to step 2.

Firstly, since dk+1 ∈ D̃0 and dk+1 ∈ D̃1, according to the policy iteration algorithm for

the gain-optimal policy, we know policy sequence {dk} must converge to a gain-optimal

policy in a finite number of iterations. After that, D̃0 is the set of the optimal polices
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D0. Since dk+1 ∈ D̃2 ⊆ D̃1 ⊆ D0, according to the policy iteration algorithm for the

bias-optimal policy, we know {dk} must converge to a bias-optimal policy. Similarly,

after that, D̃1 = D1. Going on this process, since dk+1 ∈ D̃n ⊆ Dn−1 and dk+1 =

arg{maxd∈D̃n
[P dgdk

n+1]}, we can find the second policy iteration algorithm can converge to

an nth-bias optimal policy.

4.27 A weak version of Lemma 4.7 can be easily established by the well-known Cayley-

Hamilton theorem [154]: For any n× n matrix A, define its characteristic polynomial as

r(s) = det(sI − A). We have r(A) = 0. Use the Cayley-Hamilton theorem to prove

that if policy (P d, fd) is an (S+1)th bias optimal policy, then it is also an n-bias optimal

policy for all n ≥ 0. (Hint: set A = (I −P d +(P d)
∗
)−1 in the Cayley-Hamilton theorem.)

[solution]

Denote A = (I − P d + (P d)
∗
)−1 and r(s) =

∑S
k=0 bks

k, bS = 1. We know that

r(A) =
∑S

k=0 bkA
k = 0, where A0 = I. That is, AS = −

∑S−1
k=0 bkA

k. Then

AS+2 = −
S−1∑

k=0

bkA
k+2 = −

S+1∑

k=2

bk−2A
k. (4.20)

Similar to (4.109), we have

(P h − P d)[I − P d + P d∗]−k(fd − g∗0) = 0, ∀ 1 < k ≤ S + 1. (4.21)

Combining with (4.20), we get

(P h − P d)[I − P d + P d∗]−(S+2)(fd − g∗0) = 0.

Further, we obtain

(P h − P d)[I − P d + P d∗]−k(fd − g∗0) = 0, ∀ k ≥ S + 2.

That is, (P h − P d)gd
n = 0 for all n ≥ S + 2.

Finally, from the nth-bias difference equation (4.90) and by induction on n, we can

prove

gh
n − gd

n = [I − P h + P h∗]−1(P h − P d)gd
n + P h∗(P h − P d)gd

n+1 = 0,

for all n ≥ S + 2. That is, the nth-biases of the policies in DS+1 are all the same for

all n ≥ S + 2. Since (S + 1)th bias-optimal policy must be nth bias optimal policy,
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0 ≤ n ≤ S + 1, then an (S + 1)th-bias optimal policy is also an n-bias optimal policy for

all n ≥ 0.

4.28 Let d, h ∈ D be two policies.

a. Prove that the following expansion holds for any N ≥ 1:

ηh − ηd = fh − fd +

N∑

k=1

(P h − I)k−1(P h − P d)gd
k + (P h − I)N(gh

N − gd
N).

b. Give the conditions under which (P h − I)N(gh
N − gd

N) converges to zero as N → ∞.

c. What do a) and b) indicate?

Solution:

a. For any policy d, we have the following Poisson equations.

gd
1 = fd − ηd + P dgd

1

gd
2 = −gd

1 + P dgd
2

gd
3 = −gd

2 + P dgd
3

gd
4 = −gd

3 + P dgd
4

...

gd
n = −gd

n−1 + P dgd
n

Then we can get

ηh − ηd

= fh + P hgh
1 − gh

1 − (fd + P dgd
1 − gd

1)

= fh + P hgd
1 − fd − P dgd

1 + P h(gh
1 − gd

1) − (gh
1 − gd

1)

= fh + P hgd
1 − fd − P dgd

1 + (P h − I)(gh
1 − gd

1)

= fh − fd + (P h − P d)gd
1 + (P h − I)(gh

1 − gd
1)

= fh − fd + (P h − P d)gd
1 + (P h − I)[P hgh

2 − gh
2 − (P dgd

2 − gd
2)]

= fh − fd + (P h − P d)gd
1 + (P h − I)[(P h − P d)gd

2 − (gh
2 − gd

2) + P h(gh
2 − gd

2)]

= fh − fd + (P h − P d)g1 + (P h − I)[(P h − P d)gd
2 + (P h − I)(gh

2 − gd
2)]

= fh − fd + (P h − P d)gd
1 + (P h − I)(P h − P d)gd

2 + (P h − I)2(gh
2 − gd

2)
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= fh − fd + (P h − P d)gd
1 + (P h − I)(P h − P d)gd

2

+(P h − I)2[P hgh
3 − gh

3 − (P dgd
3 − gd

3)]

= fh − fd + (P h − P d)gd
1 + (P h − I)(P h − P d)gd

2

+(P h − I)2[(P h − P d)gd
3 − (gh

3 − gd
3) + P h(gh

3 − gd
3)]

= fh − fd + (P h − P d)gh
1 + (P h − I)(P h − P d)gd

2

+(P h − I)2[(P h − P d)gd
3 + (P h − I)(gh

3 − gd
3)]

= fh − fd + (P h − P d)gd
1 + (P h − I)(P h − P d)gd

2

+(P h − I)2(P h − P d)gd
3 + (P h − I)3(gh

3 − gd
3)

= fh − fd + (P h − P d)gd
1 + (P h − I)(P h − P d)gd

2

+(P h − I)2(P h − P d)gd
3 + (P h − I)3[P hgh

4 − gh
4 − (P dgd

4 − gd
4)]

= fh − fd + (P h − P d)gd
1 + (P h − I)(P h − P d)gd

2

+(P h − I)2(P h − P d)gd
3 + (P h − I)3[(P h − P d)gd

4 − (gh
4 − gd

4) + P h(gh
4 − gd

4)]

= fh − fd + (P h − P d)gd
1 + (P h − I)(P h − P d)gd

2

+(P h − I)2(P h − P d)gd
3 + (P h − I)3[(P h − P d)gd

4 + (P h − I)(gh
4 − gd

4)]

= fh − fd + (P h − P d)gd
1 + (P h − I)(P h − P d)gd

2

+(P h − I)2(P h − P d)gd
3 + (P h − I)3(P h − P d)gd

4 + (P h − I)4(gh
4 − gd

4)

...

= fh − fd +
N∑

k=1

(P h − I)k−1(P h − P d)gd
k + (P h − I)N(gh

N − gd
N),

for any N ≥ 1.

b. If all the eigenvalues of P h − I are within the unit circle, then (P h − I)N will

converge to 0 matrix. Assume that the eigenvalues of P h are 1 and λ. Then eigenvalues

of P h − I are 0 and λ− 1. If we would like (P h − I)N converge, then we need |λ− 1| < 1.

c. By b), we see that the convergence of (P h − I)N(gh
N − gd

N) does not depend on P d.

Based on a) and b), we know the difference of the gains under two different policies can

be expressed by all nth biases under one policy, n = 1, 2, . . ..

4.29 The results presented in this chapter are strongly related to the sensitive discount

optimality (n-discount optimality and Blackwell optimality), see [194, 216, 248, 249].
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For any Markov chain with transition prbability matrix P and reward function f , the

discounted reward is defined as (cf. (4.72)):

υβ(i) := E

{ ∞∑

l=0

βlf(Xl)
∣∣∣X0 = i

}
, 0 < β < 1.

Denote υβ = (υβ(1), . . . , υβ(S))T . Set β = (1 + ρ)−1, or ρ = (1−β)/β. 0 < β < 1 implies

ρ > 0. Let ρ0 be the non-zero eigenvalue of I − P with the smallest absolute value. We

have the Laurent series expansion:

υβ = (1 + ρ)

∞∑

n=−1

ρnyn, 0 < ρ < ρ0,

where y−1 = P ∗f and yn = (−1)nHn+1
P f , n = 0, 1, . . . , HP = (I − P + P ∗)−1(I − P ∗).

a. Explain the meaning of ρ. (Hint: inflation rate)

b. Prove the Laurent series expansion (cf. Theorem 8.2.3 of [216]).

c. Prove yn = gn+1 be the (n+ 1)th bias of (P, f), n = −1, 0, 1, . . .. Thus, we have

υβ = (1 + ρ)
∞∑

n=0

ρn−1gn, 0 < ρ < ρ0.

Solution:

a. ρ can be viewed as the inflation rate (or the interest rate). One dollar today will

become 1+ρ dollar tomorrow. Contrarily, one dollar tomorrow is equal to (1+ρ)−1 dollar

today. If the rewards in the future are all converted into the current rewards, the reward

f(Xn) at time n is equal to (1 + ρ)−nf(Xn) at current time. Thus the total reward is

υβ(i) = E
{ ∞∑

l=0

βlf(Xl)|X0 = i
}
,

if the initial state is i, where β = (1 + ρ)−1.

b. From (2.31), we have

υβ = (I − βP )−1f.
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Putting β = (1 + ρ)−1 into the above equation, we have

υβ = (I − βP )−1f

= (I − βP )−1(f − η) + (I − βP )−1η

= (I − βP )−1(f − η) +
∞∑

n=0

βnP nη

= (I − βP )−1(I − P ∗)f + (1 + ρ)
η

ρ

= (I − βP + βP ∗)−1(I − P ∗)f + (1 + ρ)
η

ρ

= (1 + ρ)(ρI + I − P + P ∗)−1(I − P ∗)f + (1 + ρ)
η

ρ
.

Define HP (ρ) = (ρI+I−P +P ∗)−1(I−P ∗), then, HP = HP (0) = (I−P +P ∗)−1(I−P ∗)

and

υβ = (1 + ρ)

[
HP (ρ)f +

η

ρ

]
.

Since

(ρI + I − P + P ∗)HP = ρHP + (I − P )HP = ρ(I − P ∗)HP + (I − P ∗) = (I − P ∗)(I + ρHP ),

where we have used P ∗HP = 0 and (I − P )HP = I − P ∗. Left-multiplying (ρI + I − P +

P ∗)−1 and right-multiplying (I + ρHP )−1 on both sides of the above equation, we have

HP (ρ) = HP (I + ρHP )−1.

Thus,

υβ = (1 + ρ)

[
HP (I + ρHP )−1f +

η

ρ

]
.

If the spectral radius of ρHP , i.e., σ(ρHP ) < 1, we have

υβ = (1 + ρ)

[
η

ρ
+HP (I + ρHP )−1f

]

= (1 + ρ)

[
η

ρ
+

∞∑

n=0

(−ρ)nHn+1
P f

]
.

The Laurent series is obtained. Next, we need to consider the eigenvalues of HP to find

the condition such that σ(ρHP ) < 1. We can prove that if the eigenvalues of P are
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{1, 1, . . . , 1, λm+1, . . . , λS}, then the eigenvalues of HP is {0, 0, . . . , 0, 1
1−λm+1

, . . . , 1
1−λS

}.

Thus, to guarantee σ(ρHP ) < 1, we need 0 ≤ ρ < min{|1 − λi|, i = m+ 1, . . . , S}.

Moreover, we can obtain Laurent series as follows:

From Theorem A.5 in [216], for any transition probability matrix P with m recurrent

classes, there exists a nonsingular matrix W for which

P = W−1


 Q 0

0 I


W,

where I is an m×m identity matrix and Q is an (|S| −m) × (|S| −m) matrix with the

following properties:

1. 1 is not an eigenvalue of Q.

2. The spectral radius of Q, σ(Q) is smaller than or equal to 1 and if all recurrent

sub-chains of P are aperiodic, σ(Q) < 1.

3. (I −Q)−1 exists.

and W satisfies

W−1


 0 0

0 I


W = P ∗, W−1


 (I −Q)−1 0

0 0


W = HP . (4.22)

Next, define the resolvent of P − I by

Rρ = (ρI + [I − P ])−1.

From (2.31), we have

υβ = (1 + ρ)Rρf. (4.23)

Let B = I −Q. Then

ρI + I − P = W−1


 ρI +B 0

0 ρI


W,

so that

Rρ = W−1


 (ρI +B)−1 0

0 ρ−1I


W

= ρ−1W−1


 0 0

0 I


W +W−1


 (ρI +B)−1 0

0 0


W. (4.24)
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Since

(ρI +B)−1 = (I + ρB−1)−1B−1,

and whenever σ(ρB−1) < 1 or ρ is smaller than the non-zero eigenvalue of I −Q or I−P

with the smallest absolute value,

(ρI +B)−1 =
∞∑

n=0

(−ρ)n(B−1)n+1, (4.25)

Putting (4.22) and (4.25) into (4.24), we have

Rρ = ρ−1P ∗ +
∞∑

n=0

(−ρ)nHn+1
P . (4.26)

Putting (4.26) into (4.23), we can obtain the Laurent series expansion.

Reference:

1. B. L. Miller and A. F. Veinott, Discrete Dynamic Programming with a Small Interest

Rate, The Annals of Mathematical Statistics, vol. 40, no. 2, 366-370, 1969.

2. M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming, John Wiley & Sons, New York, 1994.

c.

yn = (−1)nHn+1
P f = (−1)n(I − P + P ∗)−(n+1)(I − P ∗)(n+1)f

= (−1)n(I − P + P ∗)−(n+1)(I − P ∗)f

= (−1)n(I − P + P ∗)−(n+1)(f − η)

= gn+1.

Thus, we have

υβ = (1 + ρ)

∞∑

n=0

ρn−1gn, 0 < ρ < ρ0.

4.30 A policy db ∈ D is called a (stationary and deterministic) Blackwell policy if there

exists a β∗, 0 ≤ β∗ < 1, such that

υdb

β ≥ υd
β, for all d ∈ D and all β ∈ [β∗, 1).
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a. Prove that if d ∈ DS, then d is a Blackwell optimal policy.

b. Prove db ∈ Dn for all n ≥ 0.

Solution:

a. Since ρ → 0 when β → 1, the definition of Blackwell optimality is equivalent to

the following: A policy db ∈ D is a Blackwell optimal policy if there exists a ρ∗ for which

υdb

β ≥ υd
β for 0 < ρ ≤ ρ∗ and any policy d.

From Lemma 4.7, if d∗ ∈ DS, we know d∗ is an nth bias for all n ≥ 0. This is, d∗

maximizes all gn, n ≥ 0. Let d ∈ D and suppose that for some n = −1, 0, 1, . . ., d∈̄Dn.

Let n′ be the minimal n for which this holds. n = −1 means d ∈ D.

(1 + ρ)−1ρ−(n′−1)[υd∗

β − υd
β] = gd∗

n′ − gd
n +

∞∑

k=n′+1

ρk−n′

[gd∗

k − gd
k], (4.27)

Since d is not the n′th bias optimal, for some state i, x = gd∗

n′ (i)−gd
n′(i) > 0. From (4.27),

it follows that

(1 + ρ)−1(υd∗

β (i) − υd
β(i)) = ρn′−1x+

∞∑

k=n′+1

ρk−1[gd∗

k (i) − gd
k(i)].

We can find a ρd for which the above expression is positive for 0 < ρ < ρd.

Repeating the above argument, we obtain a ρd for each d ∈ D. Set ρ∗ = min
d∈D ρd.

Since D is finite, ρ∗ > 0. Therefore,

υd∗

β ≥ υd
β

for all d ∈ D and 0 ≤ ρ < ρ∗. Thus, d∗ is a Blackwell optimal policy

b. If db is a Blackwell optimal, we have

(1 + ρ)−1ρ−(n−1)[υdb

β − υd
β] ≥ 0,

for all 0 ≤ ρ < ρ∗, and all d ∈ D for n = 0, 1 . . ., From (4.27) and let ρ → 0, we have

gdb
n ≥ gd

n for all n = 0, 1 . . .. That is, db ∈ Dn, for all n ≥ 0.
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5
Solutions to Chapter 5

5.1 Repeat Example 5.1 by using the continuous-time Markov model.

Solution: We consider the infinitesimal generator of continuous time Markov model. The

infinitesimal generator can be expressed by the transition probability matrix as follows:

A = Λ(P − I),

where Λ is a diagonal matrix, whose (i, i)th component is the equivalent service rate at

state i. From the transition probability of embedded Markov chain given in the textbook,

we can obtain

a[(n, 1), (n+ 1, 1)] = (λ1 + λ4) ∗
λ4

λ1 + λ4
= λ4,

a[(n, 1), (n, 2)] = (λ1 + λ4) ∗
λ1

λ1 + λ4
= λ1,

a[(n, 1), (n, 1)] = −(λ1 + λ4),

a[(n, 2), (n+ 1, 2)] = (λ2 + λ4) ∗
λ4

λ2 + λ4
= λ4,

127



128 CHAPTER 5. SOLUTIONS TO CHAPTER 5

a[(n, 2), (n, 3)] = (λ2 + λ4) ∗
λ2

λ2 + λ4
= λ2,

a[(n, 2), (n, 2)] = −(λ2 + λ4),

a[(n, 3), (n+ 1, 3)] = (λ3 + λ4) ∗
λ4

λ3 + λ4
= λ4,

a[(n, 3), (n− 1, 1)] = (λ3 + λ4) ∗
λ3

λ3 + λ4
ba(n) = λ3b

a(n),

a[(n, 3), (n, 1)] = (λ3 + λ4) ∗
λ3

λ3 + λ4
[1 − ba(n)] = λ3[1 − ba(n)],

a[(n, 3), (n, 3)] = −(λ3 + λ4),

for 0 < n < N ; and

a[0, (1, 1)] = λ4, a[0, 0] = −λ4,

a[(N, 1), (N, 2)] = λ1, a[(N, 1), (N, 1)] = −λ1,

a[(N, 2), (N, 3)] = λ2, a[(N, 2), (N, 2)] = −λ2,

a[(N, 3), (N, 1)] = λ3[1 − ba(N)], a[(N, 3), (N − 1, 1)] = λ3b
a(N), a[(N, 3), (N, 3)] = −λ3.

The transitions from states (n, 1) and (n, 2) also do not depend on the actions. The

comparison of actions in the policy improvement step for state (n, 3), 0 < n < N is the

same as (5.1).

5.2 A machine produces M different products, denoted as 1, 2, · · · ,M . To process product

i, the machine has to take Ni different operations, denoted as (i, 1), (i, 2), · · · , (i, Ni). We

use discrete time model. At each time l, l = 0, 1, · · ·, the machine can only process

one product and undertake one operation. If at time instant l the machine is producing

product i and is at operation (i, j), j 6= Ni, then at time instant l + 1 the machine will

take operation (i, j′) with probability pi(j
′|j), i = 1, 2, · · · ,M , j = 1, · · · , Ni − 1, and

j′ = 1, · · · , Ni. If the machine is at operation (i, Ni), then it will pick up a new product i′

and start to process it at operation (i′, 1) at the next time instant with probability pa(i′|i),

i, i′ = 1, 2, · · · ,M , where a ∈ A(i) represents an action. The operation (i, 1) is called an

entrance operation and (i, Ni) is called an exit operation. The system can be modelled as

a Markov chain with state space S := {(i, j), i = 1, 2, · · · ,M ; j = 1, · · · , Ni}. Let f be

the properly defined performance function. Derive the policy iteration condition (similar

to (5.1)in Example 5.1 ) for this problem and show that with the sample-path-based



129

approach we do not need to estimate the potentials for all the states.

Solution: The transition probabilities are

p[(i, j′)|(i, j)] = pi(j
′|j),

when i = 1, 2, · · · ,M , j = 1, · · · , Ni − 1, j′ = 1, 2, · · · , Ni, and

p[(i′, 1)|(i, Ni)] = pa(i′|i), i, i′ = 1, 2, · · · ,M.

The other transition probabilities are zeros. For simplicity, we assume the performance

function f depends only on the states and does not depend on the actions. From the above

transitions probabilities, we can find the transition from states (i, j), i = 1, 2, · · · ,M, j =

1, 2, · · · , Ni − 1 do not depend on the actions. The comparison of actions in the policy

improvement step for state (i, Ni), i = 1, · · · ,M , is

pa′

(1|i)g(1, 1) + pa′

(2|i)g(2, 1) + · · · + pa′

(M |i)g(M, 1)

≥ pa(1|i)g(1, 1) + pa(2|i)g(2, 1) + · · · + pa(M |i)g(M, 1). (5.1)

From (5.1), with the sample-path-based approach, we do not need to estimate the poten-

tials for all the states and only need to estimate the potentials of g(i, 1), i = 1, 2, · · · ,M .

5.3 In Problem 4.1, prove that if we use the sample path based approach then we do not

need to know the value of r.

Solution: The comparison of actions in the policy improvement step for state n is

cn+ βµ′
n + rg(n+ 1) + (1 − µ′

n − r)g(n) + µ′
ng(n− 1)

≥ cn+ βµ′
n + rg(n+ 1) + (1 − µ′

n − r)g(n) + µng(n− 1).

This is equivalent to

βµ′
n + µ′

n[g(n− 1) − g(n)] ≥ βµ′
n + µn[g(n− 1) − g(n)].

Thus, we do not need to know the value of r.

5.4 As discussed in Section 5.1 , to save memory and computation at each iteration, we

may partition the state space S = {1, 2, · · · , S} into N subsets and at each iteration we
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may only update the actions for the states in one of the subsets. In the extreme case, at

each iteration we may update the action for only one state. That is, at the first iteration,

we update d(1); at the second iteration, we update d(2), ... , and at the Sth iteration,

we update d(S). Then at the (S + 1)th iteration, we update d(1) again, and so on in a

round robin manner. In such an iteration procedure we cannot stop if at some iteration

there is no improvement in performance. We let the iteration algorithm stop after the

performance does not improve in S consecutive iterations.

a. Formally state this policy iteration algorithm,

b. Prove that the algorithm stops after a finite number of iterations,

c. Prove that the algorithm stops at a gain-optimal policy, and

d. Extend this algorithm to the general case where S is partitioned into N subsets.

Solution:

a. Policy Iteration Algorithm:

1. Select an initial policy d0 and set i = 1, c = 0, and k = 0.

2. (Policy evaluation) Obtain the potential gdk by solving the Poisson equation (I −

P dk)gdk + ηdke = fdk .

3. (Policy improvement) If i ≡ S + 1, then set i = 1; otherwise, choose

dk+1(i) = arg{ max
d(i)∈A(i)

[f(i, d(i)) + pd(i)(i, j)gdk(j)]}.

If action dk(i) attains the maximum, then set dk+1(i) = dk(i). Set i = i+ 1.

4. If dk+1 = dk, set c = c+ 1; otherwise, c = 0. If c = S, stop; otherwise, set k = k+ 1

and go to step 2.

b. The convergence of the above policy iteration algorithm: In S consecutive steps, if

there is at least one step such that the policy is different, then we have f
dk+S

k+S +P dk+Sgdk �

fdk

k + P dkgdk . Thus, we have ηdk+S > ηdk . This is to say, the policy can be improved if
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the algorithm does not stop. Since the policies are finite, thus the algorithm must stop

after a finite number of iterations.

c. When the algorithm stops at step k, we set d̂ := dk+1 = dk = · · · = dk−S+2. From

the above algorithm, we have

d̂ ∈ arg{max
d

[fd + P dgd̂]}.

or

f d̂ + P d̂gd̂ ≥ fd + P dgd̂, for all d ∈ D.

By the optimality condition (4.5), d̂ is the optimal policy.

d. If the state space S is partitioned intoN subsets, we may only update the actions for

the states in one of the subsets. For example, we assume the state space S is partitioned

into N subsets defined as S1 = {1, · · · , n1},S2 = {n1 + 1, · · · , n2}, · · · ,Sm = {nm−1 +

1, · · · , nm}, · · · ,SN = {nN−1 +1, · · · , S}. At the first iteration, we update d(1), · · · , d(n1);

at the second iteration, we update d(n1 + 1), · · · , d(n2), and at the Nth iteration, we

update d(nN−1 + 1), · · · , d(S). Then, at the N + 1th iteration, we update d(1), · · · , d(n1)

again, and so on in a round robin manner. We let the iteration algorithm stop after the

performance does not improve in N consecutive iterations.

5.5 To illustrate the idea behind Lemma 5.2 , we consider the following simple problem.

There are N different balls with identical appearance but different weights, denoted as

m1, m2, · · · , mN , respectively, mi 6= mj , i 6= j. These weights are known to us. You have

a scale at your hand which is in-accurate with a maximal absolute error r > 0. Under

what condition you may accurately identify these balls using this scale?

Solution: Let m = min{|mi−mj | : i 6= j, i, j = 1, 2, · · · , N}. If r < m, we can accurately

identify these balls by using this scale.

5.6 Suppose that when the sample-path-based policy iteration algorithm 5.2 stops the

estimation error of the potentials satisfies |r| = |ḡ− g| < δ/2, where δ > 0 is any positive

number. Let η̄ be the optimal average reward thus obtained. Prove

|η̄ − η∗| < δ,
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where η∗ is the true optimal average reward.

Solution: We assume that policy d∗ is the optimal policy, then ηd∗ = η∗; and d is the

policy obtained by the sample-path-based algorithm. From the definition of φ(g), we have

fd + P dḡ ≥ fd∗ + P d∗ ḡ. From this equation, we have

fd + P dg + (P d − P d∗)(ḡ − g) ≥ fd∗ + P d∗g.

Therefore,

(fd∗ + P d∗g) − (fd + P dg) ≤ (P d − P d∗)(ḡ − g).

According to the difference formula, we have

η∗ − η̄ = π∗[(fd∗ + P d∗g) − (fd + P dg)] ≤ π∗(P d − P d∗)(ḡ − g) ≤
δ

2
+
δ

2
= δ.

Since η∗ ≥ η̄, we have |η̄ − η∗| ≤ δ.

5.7 If we use

gL,N(i) =

∑N−L+1
n=0 {Ii(Xn)[

∑L−1
l=0 f(Xn+l) − η]}

∑N−L+1
n=0 Ii(Xn)

.

to estimate the potentials,

a. Convince yourself that the results in Section 5.2.2 still hold, and

b. Revise the proofs in Section 5.2.2 for the sample-path-based policy iteration with

the above potential estimates

Solution:

a. We consider the biased estimate

gL,N(i) =

∑N−L+1
n=0 {Ii(Xn)[

∑L−1
l=0 f(Xn+l) − η]}

∑N−L+1
n=0 Ii(Xn)

.

From the proofs of the results in Section 5.2, these proofs do not need to know the

estimate methods of the potentials. We only assume the estimate error should satisfy

some conditions with probability 1. Using the fundamental ergodicity theorem in Chapter

3, we have

lim
N→∞,L→∞

gL,N(i) = g(i) = E{
∞∑

l=0

[f(Xn+l) − η]|X0 = i}, a.s.
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Thus, as long as N and L are large enough, the estimation error can satisfy the conditions

in Section 5.2.2. Thus, the results in Section 5.2.2 still hold.

b. In the proof of the sample-path-based policy iteration in Section 5.2.2, we also only

require that the estimate error should satisfy some conditions with probability 1. Thus,

the proof under the new potential estimate is the same as the original proof.

5.8 With the sample-path-based policy iteration algorithm 5.1. Suppose that the Markov

chain is ergodic with a finite state space under all policies, and the number of policies is

finite. If |r| = |ḡd − gd| < (κ/2)e, where gd and ḡd are the potential of policy d and its

estimate. Following the same argument as that in Lemma 5.3 , prove

φ(ḡd) ⊆ φ(gd).

Solution: Let h ∈ φ(gd) and h′ ∈ φ(ḡd). By the definition of φ(g) in (5.11), we have

fh +P hgd ≥ fh′

+P h′

gd and fh′

+P h′

ḡd ≥ fh +P hḡd. From the latter equation, we have

fh′

+ P h′

gd + (P h′

− P h)(ḡd − gd) ≥ fh + P hgd.

Therefore,

(fh + P hgd) − (fh′

+ P h′

gd) ≤ (P h′

− P h)(ḡd − gd).

This, together with fh + P hgd ≥ fh′

+ P h′

gd, leads to

|(fh + P hgd) − (fh′

+ P h′

gd)| ≤ |(P h′

− P h)(ḡd − gd)|. (5.2)

From (5.2), if |r| = |ḡd − gd| < (κ/2)e, then |(fh + P hgd) − (fh′

+ P h′

gd)| < κe. By the

definition of κ, we must have fh +P hgd = fh′

+ P h′

gd. In other words, h′ ∈ φ(gd). Thus,

φ(ḡd) ⊆ φ(gd).

5.9 In Problem 5.8, we proved that φ(ḡd) ⊆ φ(gd).

a. On the surface, it looks like that the same method as that in Lemma 5.3 can be

used to prove φ(gd) ⊆ φ(ḡd). Give a try.

b. If you cannot prove the result in a), explain why; if you feel that you did prove it,

find out what’s wrong in your proof.
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c. Suppose that h, h′ ∈ φ(gd), and thus fh + P hgd = fh′

+ P h′

gd. Because of the error

in ḡd, we may have fh + P hḡd 6= fh′

+ P h′

ḡd. Therefore, one of them cannot be in

φ(ḡd). Give an example to show that no matter how small the error r = gd − ḡd is,

this fact is true.

Solution:

a) and b) On the surface, similarly to the method in Lemma 3, we can also obtain

|(fh + P hḡd) − (fh′

+ P h′

ḡd)| ≤ |(P h′

− P h)(gd − ḡd)| + νe.

In the textbook, κ can be defined because gd is determined. However, since ḡd is a random

variable, we cannot define a constant similar to κ. Thus, we cannot prove φ(gd) ⊆ φ(ḡd).

c. We consider Example 4.1 in Chapter 4. Under policy d1, the potential g1 =


 1

−1


.

We can easily verify that f2 + P2g1 = f1 + P1g1 = maxd{fd + Pdg1}, that is, d1 and d2

are all in φ(g1). However, when we consider the estimate ḡ1, Because of the error in

ḡ1, we may have f2 + P2ḡ1 6= f1 + P1ḡ1. For example, for any δ > 0, if the estimate

ḡ1 =


 1 + δ

−1 + δ/2


, we have |r| = |g1 − ḡ1| < δ, but we can easily obtain

f2 + P2ḡ1 =


 1 + 3δ/4

−1 + 7δ/8


 6= f1 + P1ḡ1 =


 1 + 3δ/4

−1 + 3δ/4


 .

Since δ is arbitrary, no matter how small the error r = |g1 − ḡ1| is, we have f2 + P2ḡ1 6=

f1 + P1ḡ1. Therefore, one of them cannot be in φ(ḡd)

5.10 Are the following statements true? If so, please explain the reasons:

a. Suppose we use dk+1 ∈ φ(ḡdk) to replace (5.14) in step 3 of Algorithm 5.1 (i.e., set

ν = 0 in (5.12) . Then the algorithm may not stop even if φ(ḡdk) ⊆ φ(gdk) for

K ′ > K consecutive iterations k = n, n+ 1, · · · , n+K − 1, where K is the number

of policies in D.

b. Algorithm 5.2 may not stay in D0 even after φ(ḡdk

Nk
) = φ(gdk) for K consecutive

iterations, where K is any large integer.
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c. The above statement b) is true even if we add the following sentence to step 3

of Algorithm 5.2 : “If at a state i, action dk(i) attains the maximum, then set

dk+1(i) = dk(i).”

Solution:

a. The performance increases every iteration and the policy iteration must reach the

optimal policies if φ(ḡdk) ⊆ φ(gdk) for K ′ > K consecutive iterations. but after it reaches

the optimal policy set, it may happen that dk 6∈ φ(ḡdk). In this case, the policy may

oscillates and never stops.

b. Although the performance increases every iteration and the policy iteration must

reach the optimal policies when φ(ḡdk

Nk
) = φ(gdk) in K consecutive iterations, after that it

may happen that φ(ḡdk

Nk
) 6= φ(gdk). At this case, the policy may go out of D0.

c. Even if we add the following sentence to step 3 of Algorithm 2 : “If at a state i,

action dk(i) attains the maximum, then set dk+1(i) = dk(i)”, we cannot guarantee that

φ(ḡdk

Nk
) 6= φ(gdk) does not happen after φ(ḡdk

Nk
) = φ(gdk) for K consecutive iterations.

Thus, the policy can still go out of D0.

5.11 Can you propose any stopping criteria for the sample-path-based algorithms to stop

at an optimal policy in a finite number of iterations with probability 1?

Solution: The answer is depressed. Because we can only guarantee the algorithms stop

in a finite number of iterations with a certain probability p0 defined in (5.18), but not

with probability 1.

5.12 In Lemma 5.4,
∑∞

k=0(1 − yk) < ∞ implies limk→∞ yk = 1, which, however, is not

enough for limn→∞
∏

k≥n yk = 1. For the latter to hold, yk has to approach 1 fast enough.

a. For yk = 1 − 1
k
, k = 1, 2, · · ·, we have limk→∞ yk = 1. What is limn→∞

∏
k≥n yk?

b. Verify the lemma for yk = 1 − 1
k2 , k = 1, 2, · · ·. What is limn→∞

∏
k≥n yk?

c. For a sequence yk, 0 ≤ yk ≤ 1, k = 1, 2, · · ·, if
∑∞

k=0(1 − yk) < ∞ then we have
∑∞

k=0(1 − yc
k) <∞ for any c < 1 and we can apply this lemma. How about c > 1?

Solution:



136 CHAPTER 5. SOLUTIONS TO CHAPTER 5

a.

∏

k≥n

yk =
∏

k≥n

(1 −
1

k
) =

n− 1

n

n

n+ 1

n + 1

n + 2
· · · = 0.

Thus, limn→∞
∏

k≥n yk = 0.

b.

∏

k≥n

yk =
∏

k≥n

(1 −
1

k2
)

=
∏

k≥n

(1 −
1

k
)(1 +

1

k
)

=
n− 1

n

n+ 1

n

n

n+ 1

n+ 2

n+ 1

n + 1

n + 2

n + 3

n + 2
· · · =

n− 1

n
.

Thus, limn→∞
∏

k≥n yk = 1.

c. Since 0 ≤ yk ≤ 1, then yc
k is a decreasing function with respect to c. Thus, if

c < 1, we have yc
k > yk and 1 − yc

k < 1 − yk. On this basis, if
∑∞

k=0(1 − yk) < ∞,
∑∞

k=0(1 − yc
k) ≤

∑∞
k=0(1 − yk) <∞ holds. When c > 1, since 1 − yc

k > 1 − yk, we cannot

determine the convergence of
∑∞

k=0(1 − yc
k).

5.13 Write a simulation program for the “fast” Algorithm 5.3. Run it for a simple

example with, say, S = 3, and each A(i), i ∈ S, containing three to five actions. Record

the sequence of dk, k = 0, 1, 2, · · ·, and observe its behavior, e.g.; how it changes from one

policy to another one. Run it for a few times with different N ’s.

Solution: We consider a simple example: There are 3 states in S and 4 actions in each

A(i), i ∈ S. The transition probability matrix under action i is Pi defined as:

P1 =




0.3 0.3 0.4

0.2 0.5 0.3

0.5 0.1 0.4


 , P2 =




0.2 0.5 0.3

0.5 0.2 0.3

0.5 0.2 0.3


 ,

P3 =




0.6 0.2 0.2

0.5 0.2 0.3

0.3 0.4 0.3


 , P4 =




0.3 0.4 0.3

0.3 0.2 0.5

0.5 0.3 0.2


 .

The reward function is f(i) = i, i = 1, 2, 3 ∈ S. For this example, the optimal policy is

d(1) = 2, d(2) = 4, d(3) = 3. We simulate this example and have the simulation results as

follows:
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a. When N = 10, the policy sequence is d0 = (1, 1, 1), d1 = (1, 4, 3), d2 = (1, 4, 1), d3 =

(1, 4, 3), d4 = (1, 4, 3), d5 = (1, 4, 3), d6 = (1, 4, 3), d7 = (2, 4, 3), d8 = (2, 1, 3), d9 =

(2, 4, 3), d10 = (2, 1, 3), d11 = (2, 1, 3), d12 = (2, 1, 3), d13 = (2, 1, 3), d14 = (2, 1, 3), d15 =

(2, 1, 3), d16 = (2, 4, 3), d17 = (2, 1, 3), d18 = (2, 4, 3), d19 = (2, 4, 3), d20 = (2, 4, 3), d21 =

(2, 4, 3), d22 = (2, 4, 3), d23 = (2, 4, 3), d24 = (2, 4, 3), d25 = (2, 4, 3), d26 = (2, 4, 3), d27 =

(2, 4, 3), d28 = (2, 4, 3), · · ·.

b. When N = 100, the policy sequence is d0 = (1, 1, 1), d1 = (1, 4, 3), d2 = · · · = d38 =

(1, 4, 3), d39 = d40 = · · · = d138 = (2, 4, 3).

From the above simulation results, we can find that the policy always keeps invariable

for several iterations, which can collect more information under this policy. Moreover,

when N is small, there are more oscillations, this is because the estimates of potentials

are not very accurate. A large N will give us more accurate potential estimate but bring

more computation simultaneously.

5.14 This problem is designed to help to understand the remark on the proofs in Section

5.3.1. Consider an ergodic Markov chain X = {X0, X1, · · · , Xl, · · ·} with state space S

and reward function f(i), i ∈ S. Let i∗ ∈ S be a special state. Suppose that we let the

Markov chain stop when Xl = Xl+2 = i∗, and when it stops, the total reward is f(Xl+1).

Prove

a. The expected total reward is r̄ =
∑

k∈S p(k|i
∗)f(k).

b. We may prove that the Markov chain stops w.p.1 under the special condition

p(i∗|i∗) 6= 0.

Obviously, p(i∗|i∗) 6= 0 is not a necessary condition, and this special condition does not

change the expected total reward r̄ in part a.

Solution:

a. When the Markov chain stops, we have a total reward f(Xl+1), where Xl+1 = k

with a probability p(k|i∗). Thus, the expected total reward is
∑

k∈S p(k|i
∗)f(k).

b. Since the Markov chain is ergodic, if the Markov chain does not stop, when l is large

enough, there is a constant p > 0 such that the probability that Xl = Xl+1 = Xl+2 = i∗
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is πl(i
∗)p(i∗|i∗)p(i∗|i∗) ≥ p > 0, where πl(i

∗) is the probability that the state stays at i∗

at time l. Now, we divide the sample path into many intervals. Each consists of three

consecutive states. Therefore, the probability that in the first k intervals there is no such

interval that three consecutive states are all i∗ is less than (1 − p)k. As k → ∞, this

probability goes to zero. That is, the case that 3 consecutive states are all i∗ can occur

with probability 1. Thus, the Markov chain stops with probability 1.

Obviously, the condition that three consecutive states are all i∗ is not a necessary

condition because if there exists a state j such that p(j|i∗) > 0 and p(i∗|j) > 0, the

Markov chain can also stop with probability 1.

5.15 If we implement Algorithm 5.3 for a few reference states i∗ in parallel, then we can

update the policy whenever the system reaches one of these states. In the extreme case,

if we implement the algorithm for every state, we may update the policy at every state

transition.

We need to study the convergence of such algorithms. Consider, for example, the case

where we have two reference states i∗ and j∗. Whenever we meet states i∗ or j∗, we will

update the policy. Therefore, if in a period starting from one i∗ to the next i∗, the sample

path visits state j∗, then the policy used in this period before visiting j∗ is different from

that used after the visit. Does this cause a major problem in the convergence of the

algorithm? How about the algorithm in which we use all states as reference states?

Solution: For simplicity, we consider two reference states i∗ and j∗. Firstly, We can-

not simultaneously use i∗ and j∗ as reference states to estimate the potential. Different

reference states may lead to different potentials. If we use i∗ as reference state, then we

can obtain the estimation of potential g such that g(i∗) = 0. However, if we use j∗ as

the reference state, we obtain the estimation of potential g such that g(j∗) = 0. Two

potentials are up to a constant. we cannot mix these two different potentials to carry

out the policy improvement. Of course, we may only choose i∗ (or j∗) as reference state.

When j∗ is met, the estimation of potential is not updated.

Secondly, when the policy used in a period before visiting j∗ is different from that used

after the visit, the new policy generated after the visit generally would not make a big

impact on the estimations of potentials, thus, the subsequent policies are most likely same
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as the new policy until the potential estimates under the new policy are more accurate.

The policy gets update once enough data under this policy is collected. The case that all

states as reference states is the same as the above case.
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6
Solutions to Chapter 6

6.1 Let us revisit the stochastic approximation algorithm (6.1) when the function f(x)

is known. In the proof of convergence, we have assumed that the function is convex and

df(x)
dx

> 0. Consider the convex function f(x) = x2 with a zero at x = 0 at which dx2

dx
= 0.

Modify the proof in the text to fit this case.

Solution: Suppose x0 > 0, we have f(x0) > 0. Since (df(x)
dx

)x=x0 = 2x0 > 0, we have

x0 > x1. By the same argument, we have xk > xk+1. Because the function is convex,

the curve of f(x) always lies on the same side of the tangent lines. Therefore, we have

xk > 0 for all k = 0, 1, 2, · · ·. Since f(x) is increasing when x > 0, we also have f(xk) >

f(xk+1), k = 0, 1, 2, . . .. Thus, we have two decreasing sequences

x0 > x1 > · · · > xk > xk+1 > · · · > 0

f(x0) > f(x1) > · · · > f(xk) > f(xk+1) > · · · > f(0) = 0.

Suppose x0 < 0, we have f(x0) > 0. Since (df(x)
dx

)x=x0 = 2x0 < 0, we have x0 < x1. By

141
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the same argument, we have two sequences

x0 < x1 < · · · < xk < xk+1 < · · · < 0

f(x0) > f(x1) > · · · > f(xk) > f(xk+1) > · · · > f(0) = 0.

Next, we continue the argument of the case that x0 > 0. The same argument can

be carried out for the case that x0 < 0. The decreasing sequence x0, x1, · · · , xk · · ·

monotonously converges to a point denoted as x̂. Then, x̂ ≥ 0. Next, we prove x̂ = 0.

Otherwise, x̂ > 0, thus we have f(x̂) > 0 and (df(x)
dx

)x=x̂ = 2x̂ > 0. Similarly to the

argument in the text, we can define ǫ = 1

(
df(x)

dx
)x=x̂

f(x̂) > 0. Since limk→∞ xk = x̂ and

lim
k→∞

1

(df(x)
dx

)x=xk

f(xk) =
1

(df(x)
dx

)x=x̂

f(x̂) = ǫ > 0,

There must be a point denoted as xk̃ such that xk̃ − x̂ < ǫ/2 and 1

(
df(x)

dx
)x=x

k̃

f(xk̃) > ǫ/2.

Thus, we have

xk̃+1 = xk̃ −
1

(df(x)
dx

)x=x
k̃

f(xk̃) < xk̃ − ǫ/2 < x̂.

This is impossible. Thus we have x̂ = 0.

6.2 Study the convergence property of the sequence xk, k = 0, 1, . . . , in Example 6.1, for

the following cases 1 > κ > 0, 2 > κ > 1, κ = 2, and κ > 2, respectively, by using the

figure illustrated in Figure 6.1.

Solution: Firstly, we consider the case that 1 > κ > 0. Since κ is equivalent to 1
df(x)

dx
|x=xk

,

from 1 > κ > 0, we have df(x)
dx

|x=xk
> 1. We can approximately draw Figure 6.1 similarly

to Figure 6.1. Thus, we can find the sequence xk, k = 0, 1, 2, · · · converges.

We can use contract mapping theorem to strictly prove the convergence of sequence

xk. Defining a mapping g(x) = x− κ(x− b) = (1− κ)x+ κb, we can find |g(x)− g(y)| ≤

(1 − κ)|x − y|. Thus, g(x) is a contract mapping when 0 < κ < 1. From the contract

mapping theorem, we can prove the convergence of sequence xk, k = 0, 1, · · ·.

Next, we consider the case that 1 < κ < 2. From 1 < κ < 2, we have 1
2
< df(x)

dx
|x=xk

<

1. We can approximately draw Figure 6.2. Thus, the sequence also converges when

1 < κ < 2. Similarly, we can draw Figure 6.3 and Figure 6.4 when κ = 2 and κ > 2,

respectively. We can find the sequence circles when κ = 2 and diverges when κ > 2.
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Figure 6.1: When 1 > κ > 0 Figure 6.2: When 1 < κ < 2

Figure 6.3: When κ = 2 Figure 6.4: When 1 < κ < 2

6.3 The algorithm in (6.12) can be used to estimate the mean of a random variable ω.

This has been verified for step sizes κk = 1
k+1

, k = 0, 1, · · · , in Section 6.1.2.

a. Study the case for step sizes κk = 1
2(k+1)

, k = 0, 1, · · ·.

b. Choose a few sequence of κk, k = 0, 1, · · · , that satisfy conditions (6.11) or (6.10)

and run simulation to see whether the sequences of xk, k = 0, 1, · · · , converge and

compare their convergence speeds, if possible.

Solution:

a. If we take κk = 1
2(k+1)

, k = 0, 1, · · ·, then we have

xk+1

= (1 −
1

2(k + 1)
)xk +

1

2(k + 1)
wk
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=
2k + 1

2(k + 1)
xk +

1

2(k + 1)
wk

=
2k + 1

2(k + 1)

2k − 1

2k

2k − 3

2(k − 1)
· · ·

1

2
x0 + {

1

2(k + 1)
wk +

2k + 1

2(k + 1)

1

2k
wk−1 + · · ·+

2k + 1

2(k + 1)

2k − 1

2k

2k − 3

2(k − 1)
· · ·

1

2
w0}. (6.1)

Firstly, we prove 2k+1
2(k+1)

2k−1
2k

2k−3
2(k−1)

· · · 1
2

=
∏k

n=0
2n+1

2(n+1)
→ 0 when k → ∞. Since

ln
k∏

n=0

2n+ 1

2(n+ 1)
= ln

k∏

n=0

(1 −
1

2(n+ 1)
) =

k∑

n=0

ln(1 −
1

2(n+ 1)
).

and ln(1 − 1
2(n+1)

) < − 1
2(n+1)

, we have ln
∏k

n=0
2n+1

2(n+1)
< −

∑k
n=0

1
2(n+1)

→ −∞, Thus, we

have ln
∏k

n=0
2n+1

2(n+1)
→ −∞ and

∏k
n=0

2n+1
2(n+1)

→ 0.

Next, if we assume w with a finite mean E(w) < c and a finite variance E[w−E(w)]2 =

σ2, we prove the convergence of xn, n = 0, 1, · · · , under the more general condition (6.10).

Here, we need a lemma from Loeve [1]:

Lemma 1 Let {vn} be a sequence of random variables such that
∑∞

n=1Ev
2
n < ∞. Then

∑n
j=1[vj −E(vj |v1, · · · , vj−1)] converges to a random variable with probability one.

Firstly, we can prove the sequence {xn+1+
∑n

k=1 κk[xk−E(w)]} converges to a random

variable with probability one.

Let vk = κk[wk − E(w)], then E{v2
k} = κ2

kE{[wk − E(w)]2} = κ2
kσ

2. Then, we have
∑∞

k=1E{v
2
k} = σ2

∑∞
k=1 κ

2
k < ∞. Moreover, since wk, k = 1, 2, · · · are i.i.d, we have

E[wk −E(w)|w1 −E(w), · · · , wk−1 −E(w)] = 0. Thus, from the above lemma, we obtain

that
∑∞

k=1 κk[wk−E(w)] converges with probability one. Since xn+1 = x1−
∑n

k=1 κk(xk−

wk), then we obtain xn+1 +
∑n

k=1 κk[xk − E(w)] = x1 +
∑n

k=1 κk[wk − E(w)] converges

with probability one.

Next, we prove the convergence of xn. Firstly, we prove P{limn→∞ xn = +∞} +

P{limn→∞ xn = −∞} = 0. Suppose {xn} is a sequence with limn→∞ xn = ∞. Then for n

sufficiently large we have xn−E(w) > 0, Then limn→∞{xn+1+
∑n

k=1 κk[xk−E(w)]} = +∞,

but this can only happen with probability zero from the above argument. Thus, we have

proved P{limn→∞ xn = +∞} + P{limn→∞ xn = −∞} = 0. Now, we suppose that xn

does not converge. Then, there exists a set of sequences of positive probability with the
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following properties:




(a) xn+1 +
∑n

k=1 κ[xk −E(w)] converges to a finite number

(b) lim infn→∞ xn < lim supn→∞ xn.

for every sequence in the set. Let {xn} be such a sequence and assume lim supn→∞ xn >

E(w). (A similar argument handles the situation lim supn→∞ xn ≤ E(w).) Then we can

choose numbers a and b satisfying

a > E(w), lim inf xn < a < b < lim sup xn.

Since limn→∞ κn = 0, we may choose N so large that N ≤ n < m implies





(a) κn ≤ min
{

1
3
, b−a

3[c+|E(w)|]

}

(b) |xm − xn +
∑m−1

k=n κk(xk −E(w))| ≤ b−a
3
.

(6.2)

Now choose m and n such that




(a) N ≤ n < m

(b) xn < a, xm > b

(c) n < j < m implies a ≤ xj ≤ b.

(6.3)

Then, we obtain

xm − xn ≤
(b− a)

3
+

m−1∑

k=n

κl(E(w) − xk) ≤
(b− a)

3
+ κn(E(w) − xn). (6.4)

If E(w) < xn, we obtain

xm − xn ≤ (b− a)/3

which is a contradiction to (b) in (6.3). Suppose then E(w) ≥ xn, we have

|xn − E(w)| ≤ c+ |xn| ≤ c+ |E(w)| + |E(w) − xn| ≤ c+ |E(w)| + (xm − xn).

Hence, by applying (6.4), we have

xm − xn ≤ (b− a)/3 + κn[c+ |E(w)|] + κn(xm − xn).

Thus, xm − xn ≤ 2(b − a)/3(1 − κn) ≤ b − a by (6.2). But this is again a contradiction

to (6.3), we prove the convergence of xk. Combined with the convergence of {xn+1 +
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∑n
k=1 κk[xk −E(w)]}, we know

∑n
k=1 κk[xk −E(w)] converges with probability one. Then

by using
∑∞

k=1 κk = ∞, we have xk → E(w) with probability one.
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pp. 279-303.

[2] J. R. Blum, “Approximation Methods which Converge with Probability one”, The
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b. Considering a [0, 1]-uniformly distributed random variable ω and letting κk =

1
k+1

, 1
2(k+1)

, 1√
k+1

, respectively, we simulate them respectively and get the simulation results

as Figure 6.5 and Figure 6.6.

0 1000 2000 3000 4000 5000 6000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

The number of iterations

V
al

ue
 o

f x
k

 

 
κ

k
=1/(k+1)

κ
k
=1/2(k+1)

Figure 6.5: The comparison of xk when κ = 1
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and κ = 1
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6.4 Let us revisit Section 6.1.2 “Estimate Mean Values”. Assume that the step sizes

satisfy
∑∞

k=0 κk = ∞ and
∑∞

k=0 κ
2
k <∞. Working on (6.12) recursively, we may obtain

xk+1 = akx0 + ξk,

a. Derive an expression of ak and ξk in term of κ0, · · · , κk and ω0, · · · , ωk.

b. Prove limk→∞ ak = 0, limk→∞E(ξk) = E(ω), and limk→∞ var(ξk) = 0.

Solution:
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a. Going on the iteration (6.12), we have

xk+1

= xk − κk(xk − ωk)

= (1 − κk)xk + κkωk

= (1 − κk)[(1 − κk−1)xk−1 + κk−1ωk−1] + κkωk

= (1 − κk)(1 − κk−1)xk−1 + (1 − κk)κk−1ωk−1 + κkωk

= (1 − κk)(1 − κk−1)[(1 − κk−2)xk−2 + κk−2ωk−2] + (1 − κk)κk−1ωk−1 + κkωk

= (1 − κk)(1 − κk−1)(1 − κk−2)xk−2 + (1 − κk)(1 − κk−1)κk−2ωk−2

+(1 − κk)κk−1ωk−1 + κkωk

...

= (1 − κk)(1 − κk−1) · · · (1 − κ0)x0 + (1 − κk) · · · (1 − κ1)κ0ω0 + (1 − κk) · · · (1 − κl+1)κlωl

+ · · ·+ κkωk

Thus, we have

ak = (1 − κk)(1 − κk−1) · · · (1 − κ0)

ξk = (1 − κk) · · · (1 − κ1)κ0ω0 + (1 − κk) · · · (1 − κl+1)κlωl + · · · + κkωk

b. Set f(x) = e−x − 1 + x, we have f ′(x) = 1 − e−x ≥ 0 when x ≥ 0. Thus, f(x) is

increasing and we have f(x) ≥ f(0) = 0 when x ≥ 0. Therefore, 1 − x ≤ e−x for x ≥ 0.
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Taking the logarithm on both sides, we have ln(1 − x) ≤ −x. Since

ln ak =

k∑

l=0

ln(1 − κl) ≤ −
k∑

l=0

κl,

we have

0 ≤ ak ≤ e−
∑k

l=0 κl.

From
∑∞

k=0 κk = ∞, we have ak → 0.

Next, if we assume w with a finite mean E(w) and a finite variance E[w−E(w)]2, we

prove limk→∞ var(ξk) = 0. Firstly, we consider E[xk+1 − E(ω)]2.

bk+1 := E[xk+1 − E(ω)]2 (6.5)

= E{E[(xk+1 −E(ω))2|xk]}

= E
{
E
[(
xk + κk(xk − ωk) −E(ω)

)2

|xk

]}

= E(xk −E(ω))2 + κ2
kE{E[(xk − ωk)

2|xk]} − 2κkE{E[(xk −E(ω))(xk − ωk)|xk]}

= bk + κ2
kE{E[(xk − ωk)

2|xk]} − 2κkbk. (6.6)

By using the result in the proof of Problem 6.3, we know xk converges with probability

one. Thus, we can prove E{E[(xk−ωk)
2|xk] is bounded for any xk. We assume E{E[(xk−

ωk)
2|xk] ≤ C. Summing (6.6), we obtain

bn+1 = b1 + C

n∑

k=1

κ2
k − 2

n∑

k=1

κkbk.

Since bn+1 ≥ 0, it follows that

n∑

k=1

κkbk ≤
1

2
b1 + C

∞∑

k=1

κ2
k <∞.

Hence the series
∑∞

k=1 κkbk converges. Thus, we have bk → 0; otherwise, this is a contra-

diction with
∑∞

k=1 κk = ∞. This means xk converges to E(w) in the mean square sense.

From xk+1 = akx0 + ξk, we have

E[akx0 + ξk −E(w)]2 = a2
kx

2
0 + 2akx0E[ξk − E(w)] + E[ξk − E(w)]2 → 0. (6.7)

Since xk converges to a random variable with probability one, then E[ξk − E(w)] is

bounded. From (6.7), we have E[ξk − E(w)]2 → 0, which means limk→∞ var(ξk) = 0.
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From Cauchy’s inequality, we have E[ξk −E(w)] ≤ {E[ξk −E(w)]2}1/2 → 0, which means

limk→∞E(ξk) = E(w).

6.5 Consider the estimation of a continuous time average reward. Let {T0, T1, · · · , Tl, · · ·}

be the sequence of transition times of a continuous Markov process with T0 = 0. The

state in the time period [Tl, Tl+1) is Xl, l = 0, 1, · · ·, and set τl = Tl+1 − Tl, l = 0, 1, · · ·.

The reward rate function is f(Xl) and the average reward is defined as

η = lim
l→∞

ηl, w.p.1, ηl =
1

Tl

∫ Tl

0

f [X(t)]dt.

We wish to develop a recursive formula for ηl as follows:

ηl+1 = ηl + κl[f(Xl) − ηl], l = 0, 1, · · · ,with η0 = 0.

Please find the value of κl, l = 0, 1, · · ·, in term of Tl, etc.

Solution:

ηl+1 =
1

Tl+1

∫ Tl+1

0

f [X(t)]dt

=
1

Tl+1

{∫ Tl

0

f [X(t)]dt+ f(Xl)(Tl+1 − Tl)
}

=
Tl

Tl+1

ηl +
Tl+1 − Tl

Tl+1

f(Xl)

= ηl +
Tl+1 − Tl

Tl+1

[f(Xl) − ηl].

Thus we get κl =
Tl+1−Tl

Tl+1
.

6.6 Derive the TD(0) algorithm for the discounted performance criterion:

ηβ(i) = E{
∞∑

l=0

βlf(Xl)|X0 = i}, 1 > β > 0.

Solution: Denote Xl = i, we have

ηβ(i) = E{
∞∑

k=0

βkf(Xl+k)|Xl = i}

= f(i) + E
{
E{

∞∑

k=1

βkf(Xl+k)|Xl+1}|Xl = i
}

= f(i) + βE[ηβ(Xl+1)|Xl = i].
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From this, we have

ηβ(Xl) = E{f(Xl) + βηβ(Xl+1)|Xl}.

Therefore, we can use f(Xl)+βηβ(Xl+1) as an estimate of ηβ(Xl). Thus, by the stochastic

approximation algorithm (6.12), we can obtain the TD(0) algorithm for the discounted

performance criterion:

ηβ(Xl) := ηβ(Xl) − κl{ηβ(Xl) − [f(Xl) + βηβ(Xl+1)]}

= ηβ(Xl) + κl[f(Xl) + βηβ(Xl+1) − ηβ(Xl)].

6.7 TD(0) with random steps: For any two states i, j ∈ S, set S0 = {i, j}. Consider a

sample path of a Markov chain {X0, · · · , Xl, · · ·}. Denote the time sequence at which the

Markov chain is in S0 as l0, l1, · · · , lk, · · ·. We may set g(i) = 0.

a. Develop a TD(0) algorithm for estimating g(j), by using the temporal difference

obtained in the periods from lk + 1 to lk+1, k = 0, 1, · · ·.

b. Explain that the algorithm converges to the right value, compare it with the real-

ization factor γ(i, j) = g(j) − g(i).

Solution:

a. For any Xlk = j ∈ S0, k = 0, 1, · · ·, we have

g(Xlk) = E{
∞∑

n=0

[f(Xlk+n) − η]|Xlk}.

Therefore,

g(Xlk) = E{

lk+1−1∑

k=lk

[f(Xk) − η] + g(Xlk+1
)|Xlk}.

Then, the TD(0) algorithm is

g(Xlk) := g(Xlk) + κk{

lk+1−1∑

l=lk

[f(Xl) − η] + g(Xlk+1
) − g(Xlk)}. (6.8)
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b. From (6.8), we have

g(Xlk) − g(Xlk+1
)

:= g(Xlk) − g(Xlk+1
) + κk{

lk+1−1∑

l=lk

[f(Xl) − η] − [g(Xlk) − g(Xlk+1
)]}

= g(Xlk) − g(Xlk+1
) − κk{[g(Xlk) − g(Xlk+1

)] −

lk+1−1∑

l=lk

[f(Xl) − η]}.

Thus, according to realization factor γ(Xlk+1
, Xlk) = E{

∑lk+1−1
l=lk

[f(Xl) − η]}, the above

TD(0) algorithm in fact estimates the realization factor γ(Xlk+1
, Xlk) = g(Xlk)−g(Xlk+1

)

by using the Robbins-Monro algorithm (6.6). Thus, the algorithm converges under some

conditions that Robbins-Monro algorithm requires.

6.8 Consider a two-state Markov chain with transition probability matrix

P =


 0.5 0.5

0.5 0.5




and reward function f(1) = 1 and f(0) = 0. We have η = 1
2
.

a. What are the potentials for the two states?

b. Write a computer program applying algorithm(6.15), (6.22) and (6.24), and observe

the trends of the convergence of the sequences generated by these algorithms. (For

Algorithm (6.22), observe the trend of convergence of g(1) − g(0).)

Solution:

a. From the balance equations, we can obtain π = (0.5, 0.5). From (2.13), the poten-

tials defined as (6.13) is g = (I − P + eπ)−1f − η =


 0.5

−0.5


.

b. We apply algorithm (6.15), (6.22) and (6.24) to this problem with initial value

g(0) = g(1) = 0, respectively. In applying algorithm (6.22), we set G = 0.5 and i∗ = 1. In

applying algorithm (6.25), we set i∗ = 1. The simulation results are Figure 6.7, 6.8 and

6.9, respectively.

6.9 The TD(0) algorithm (6.15) and (6.16) can only determine the potentials up to an

additive constant. That is, starting from different initial values, the algorithm converges to
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Figure 6.7: Algorithm (6.15)
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Figure 6.8: Algorithm (6.22)
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Figure 6.9: Algorithm (6.24)

different sets of potentials that have the same perturbation realization factor γ(i, j), i, j ∈

S.

a. Can we fix a reference state i∗ and set g(i∗) = 0 in the TD(0) algorithm (6.15) and

(6.16)?

b. If so, modify the algorithm.

c. Explain your algorithm using g(i) = γ(i∗, i) = E
{∑L(i∗|i)−1

l=0 [f(Xl) − η]
∣∣∣X0 = i

}
.

d. Apply this algorithm to the Markov chain in Example 6.5.

Solution:

a. Yes, we can fix a reference state and set g(i∗) = 0 in algorithm (6.15) and (6.16).
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b. We can directly set g(Xl) = 0 when Xl = i∗. The updates at other states are still

similar to that in algorithm (6.15).

c. Denote Xl = i, we have g(i) = γ(i∗, i) = E{
∑L(i∗|i)−1

k=0 [f(Xl+k) − η]|Xl = i} =

E{[f(Xl) − η + g(Xl+1)]|Xl = i}, From this, we have

g(Xl) = E{[f(Xl) − η] + g(Xl+1)|Xl}.

Thus, we can use [f(Xl) − η] + g(Xl+1) as an estimate of g(Xl). This results in the

algorithm (6.15). The algorithm (6.15) can converges to different potentials if we use

different initial values. We directly set g(i∗) = 0 when Xl = i∗, which limits the algorithm

to keep g(i∗) = 0, thus, this algorithm converges to a special potential with g(i∗) = 0.

d. We apply the algorithm to Example 6.5. The simulation result is as Figure 6.10,

where i∗ = 0 and the initial potential is (1, 1)T .
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Figure 6.10: The simulation result in

Problem 6.9 d)

6.10 Consider the modified algorithm (6.22).

a. Can we fix a reference state i∗ and set g(i∗) = 0 in (6.22), as we considered in

Problem 6.9? (to find the answer, apply it to the Markov chain in Example 6.5.)

b. If not, why?

Solution:
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a. We cannot fix a reference state. Let’s apply the modified algorithm to Example

6.5. Consider an approximate sample path 1, 0, 1, 0, 1, 0, · · ·. We assume that state 0 is

the reference state and initial values g(1) = g(0) = 0. We obtain

at l = 0 : g(1) = (1 − 1)g(1) + [f(1) + g(0)] = 1,

at l = 1 : g(0) = 0,

at l = 2 : g(1) = (1 −
1

3
)g(1) +

1

3
[f(1) + g(0)] = 1

at l = 3 : g(0) = 0;

at l = 4 : g(1) = (1 −
1

5
)g(1) +

1

5
[f(1) + g(0)] = 1

...

Thus, we have g(1) − g(0) = 1, which does not converge to the true potential difference.

b. Since in algorithm (6.22), each update will result in a different potential, that is,

the potentials at different times are up to a constant. If we fix a reference state, the

potential at this state remains unchangeable, but the potentials at other states may be

changed. Thus, the modified algorithm cannot converge to the true potential difference.

6.11 Derive an iterative numerical algorithm similar to the algorithm in (6.20) for poten-

tials by using Equation (3.4).

Solution: From (3.4), we have

g = P−g + f−.

We can apply the stochastic approximation algorithm (6.6) to obtain an iterative numer-

ical algorithm for the potential by using Equation (3.4):

gk+1(i) := gk(i) − κk



gk(i) −

[
f(i) − f(S) +

∑

j∈S

[p(j|i) − p(j|S)]gk(j)
]


 .

6.12 Consider a finite state discrete-time birth-death process {Xl, l = 0, 1, · · ·}: The state

space is S = {0, 1, 2, · · · , S}. The state is the population n ∈ S. The transition probability

from state n to n + 1 (the birth rate) is p(n + 1|n) = a, n = 1, · · · , S − 1, and the death

rate is p(n − 1|n) = b, n = 1, 2, · · · , S − 1, a + b = 1; and p(1|0) = p(S − 1|S) = 1. Let

the reward function be f(n) = n, the performance is defined as the average population

η = Eπ[f(Xl)] =
∑S

n=0 π(n)f(n).
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a. Derive a formula expressing the performance η as a function of the birth rate a.

b. Set a = 1
2
. Using the derivative formula (6.43) to derive the performance derivative

dη
da

∣∣∣
a= 1

2

.

c. Develop a TD(0) algorithm for estimating dη
da

∣∣∣
a= 1

2

Solution:

a. When a = 1, the process will eventually cycle between S − 1 and S. Thus, the

average population is 2S−1
2

. When a = 0, the process will cycle between 0 and 1, thus

the average population is 1/2. Next, we assume a 6= 1, 0. By using the balance equation,

we can obtain π(1) = 1
1−a

π(0), π(2) = a
(1−a)2

π(0), π(3) = a2

(1−a)3
π(0), · · · , π(S − 1) =

aS−2

(1−a)S−1π(0), π(S) = aS−1

(1−a)S−1π(0). From, πe = 1, we have [1 + 1
1−a

+ a
(1−a)2

+ a2

(1−a)3
+

· · ·+ aS−2

(1−a)S−1 + aS−1

(1−a)S−1 ]π(0) = 1. Thus, if a 6= 1
2
, then π(0) = (1−2a)(1−a)S−1

2[(1−a)S−aS ]
. The average

population η =
∑S

n=0 π(n)n = (1−2a)(1−a)S−1

2[(1−a)S−aS ]
[ 1
1−a

+ 2a
(1−a)2

+ 3a2

(1−a)3
+ · · · + (S−1)aS−2

(1−a)S−1 +

SaS−1

(1−a)S−1 ] = (1−a)S+1+aS(1−a)(4aS−2S−1)
2[(1−a)S−aS ](1−2a)(1−a)

. If a = 1
2
, then π(0) = 1

2S
, the average population

η = S
2
.

b. From the derivative formula (6.43), we have

dη

da
= E

{
[f(Xk) − η]

k∑

l=um(k)

dp(Xl|Xl−1)/da

p(Xl|Xl−1)

}
,

where um, m = 0, 1, · · ·, are a sequence of regenerative points withX0 = 0 ∈ S, u0 = 0, and

um+1 = min{n : n > um, Xn = 0}, and for any integer k ≥ 0 we have um(k) ≤ k < um(k)+1.

Thus, we have

==================================

dη

da
=

∑

i∈S

π(i)[f(i) − η]E





k∑

l=um(k)

dp(Xl|Xl−1)/da

p(Xl|Xl−1)

∣∣∣∣Xk = i





=
∑

i∈S

π(i)[f(i) − η]

E

{
dp(Xum(k)

|Xum(k)−1)/da

p(Xum(k)
|Xum(k)−1)

+
dp(Xum(k)+1

|Xum(k)
)/da

p(Xum(k)+1
|Xum(k)

)
+ . . .

+
dp(Xk|Xk−1)/da

p(Xk|Xk−1)

∣∣∣∣Xk = i

}
.

===================================
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c. The TD(0) algorithm:

1. Set r̂−1 = 0 and ∆0 = 0 and k = 0

2. For each state Xk visited, do

r̂k =





r̂k−1 +
dp(Xk|Xk−1)/da

p(Xk|Xk−1)
if Xk 6= i∗;

0 if Xk = i∗

where we assume dp(X0|X−1)/da
p(X0|X−1)

= 0.

∆k+1 = ∆k + κk{[f(Xk) − η]r̂k − ∆k}.

6.13 Consider a randomized policy dr. Denote A(i) := {αi,1, · · · , αi,|A(i)|}, where |A(i)|

is the number of actions in A(i), i ∈ S. At state i the system takes action αi,k ∈ A(i)

with probability pi,k, k = 1, 2, · · · , |A(i)|, and
∑|A(i)|

k=1 pi,k = 1, i ∈ S. If action α ∈ A(i) is

taken at state i, then the transition probabilities are pα(j|i), j ∈ S, and the performance

function is f(i, α), i ∈ S. The Q-function are defined in (6.28) as follows

Qdr(i, α) = {
S∑

j=1

pα(j|i)gdr(j)} + f(i, α) − ηdr , α ∈ A(i), i ∈ S,

where gdr(i), i ∈ S, are the performance potential of the system under this randomized

policy dr.

a. Determine the performance function and transition probabilities for the system un-

der this randomized policy; Derive the Poisson equation for it.

b. Prove gdr(i) =
∑|A(i)|

k=1 pi,kQ
dr(i, αi,k).

c. Given a deterministic policy d(i) = α∗
i ∈ A(i), i ∈ S, we define an ǫ-randomized

policy: with probability 1 − ǫ the system takes action α∗
i and with probability

ǫ

(|A(i)|−1)
it takes any other actions in A(i), i ∈ S. Let g(i) be the potentials of the

deterministic policy d, and gǫ(i), and Qǫ(i, α), α ∈ A(i), i ∈ S, be the potentials and

Q-function of the ǫ-randomized policy. Prove

lim
ǫ→0

gǫ(i) = g(i), i ∈ S

lim
ǫ→0

Qǫ(i, α
∗
i ) = g(i), i ∈ S,
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and

lim
ǫ→0

Qǫ(i, α) = {
S∑

j=1

pα(j|i)g(j)} + f(i, α) − η, α 6= α∗
i , i ∈ S.

Solution:

a. The performance function under the randomized policy is fdr(i) :=
∑|A(i)|

k=1 pi,kf(i, αi,k)

and the transition probability from state i to state j is pdr(j|i) =
∑|A(i)|

k=1 pi,kp
αi,k(j|i).

Then, we have the following Poisson equation

gdr(i) −
∑

j∈S

pdr(j|i)gdr(j) + ηdr = fdr(i). i ∈ S (6.9)

b. From the definition of performance potential, we have gdr(i) = Edr{
∑∞

l=0[f(Xl, Al)−

η]|X0 = i}, where Edr denotes the expectation under the randomized policy dr. We have

Edr{
∞∑

l=0

[f(Xl, Al) − η]|X0 = i}

= Edr

{
Edr{

∞∑

l=0

[f(Xl, Al) − η]|X0 = i, A0}|X0 = i
}

=

|A(i)|∑

k=1

pi,kE
dr{

∞∑

l=0

[f(Xl, Al) − η]|X0 = i, A0 = αi,k}

=

|A(i)|∑

k=1

pi,kQ
dr(i, αi,k).

c. We firstly prove gǫ(i), i ∈ S are continuous with respect to ǫ. We assume Pǫ is

the transition probability matrix under the ǫ-randomized policy, whose (i, j) component

is pǫ(j|i) = (1 − ǫ)pα∗
i (j|i) + ǫ

|A(i)|−1

∑
a∈A(i)−{α∗

i }
pα(j|i). From the balance equation

πǫPǫ = πǫ and πǫe = 1, where πǫ is the steady-state probability under the ǫ-randomized

policy, we can prove πǫ is continuous with respect to ǫ since each component of Pǫ is

continuous with respect to ǫ. We consider a specified potential satisfying πǫgǫ = ηǫ, where

ηǫ is the average performance. From Poisson equation (6.9), we have

gǫ = (I − Pǫ + eπǫ)
−1fǫ.

From the continuity of inversion of matrix with respect to ε, we can easily prove gǫ(i), i ∈ S

are continuous with respect to ǫ. Thus, we have limǫ→0 gǫ(i) = g(i), i ∈ S.
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Since Qǫ(i, α
∗
i ) =

∑S
j=1 p

α∗
i (j|i)gǫ(i) + f(i, α∗

i )− ηǫ, ,from the continuity of gǫ(i), i ∈ S

and ηǫ with respect to ǫ, we have limǫ→0Qǫ(i, α
∗
i ) =

∑S
j=1 p

α∗
i (j|i)g(i) + f(i, α∗

i )− η, i ∈

S. Then, from the Poisson equation g(i) =
∑S

j=1 p
α∗

i (j|i)g(i) + f(i, α∗
i ) − η, we have

limǫ→0Qǫ(i, α
∗
i ) = g(i), i ∈ S. Similarly, we have limǫ→0Qǫ(i, α) = {

∑S
j=1 p

α(j|i)g(j)} +

f(i, α) − η, α 6= α∗
i , i ∈ S.

6.14 Suppose that we can only control the actions in the states in a subset of the state

space S0 ⊂ S of a Markov chain, which is under a randomized policy that visits all the

state-action pairs when the state is in S0. Denote the time sequence at which the Markov

chain is in S0 as l0, l1, · · · , lk, · · ·; i.e. Xlk ∈ S0, k = 0, 1, · · ·. Develop a TD(0) algorithm

for Q-factors Q(i, α), i ∈ S0, with random steps K.

Solution: Denote Xlk = i ∈ S0. From (6.33), we have

Q(i, α) = E{
∞∑

l=lk

[f(Xl, Al) − η]|Xlk = i, Alk = α}

= E{

lk+1−1∑

l=lk

[f(Xl, Al) − η] +Q(Xlk+1
, Alk+1

)|Xlk = i, Akk
= α}.

We can use
∑lk+1−1

l=lk
[f(Xl, Al) − η] + Q(Xlk+1

, Alk+1
) as an estimate of Q(Xl, Al). Thus,

from (6.12), we can obtain the following TD(0) algorithm:

Q(Xlk , Alk) := Q(Xlk , Alk) + κkδlk ,

δlk =

lk+1−1∑

l=lk

[f(Xl, Al) − η] +Q(Xlk+1
, Alk+1

) −Q(Xlk , Alk), k = 0, 1, · · · .

6.15 Develop a K-step algorithms for estimating the Q-factors (c.f. (6.33) and (6.34)).

Solution:

Q(Xl, Al) = E{
l+K−1∑

k=l

[f(Xk, Ak) − η] +Q(Xl+K , Al+K)|Xl, Al)}.

Thus, we can use
∑l+K−1

k=l [f(Xk, Ak) − η] + Q(Xl+K , Al+K) as an estimate of Q(Xl, Al).

From (6.12), we obtain the following K-step TD(0) algorithm:

Q(Xl, Al) := Q(Xl, Al) + κl

{K−1∑

k=0

[f(Xl+k, Al+k) − η] +Q(Xl+K , Al+K) −Q(Xl, Al)
}
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6.16 In (6.33) and (6.34), we may set the Q-factor of a pair of reference state-action to

be zero; i.e. Q(i∗, α∗) = 0. Develop a TD(0)-learning algorithm.

Solution: The TD(0) algorithm with Q(i∗, α∗) = 0:

Q(Xl, Al) := Q(Xl, Al)+κl

{
[f(Xl, Al) − η] +Q(Xl+1, Al+1) −Q(Xl, Al

}
,

if Xl 6= i∗ and Al 6= α∗, l = 1, 2, · · ·

Q(i∗, a∗) = 0, if Xl = i∗ and Al = α∗

6.17 We partition the the state space S into S0 subsets: S = ∪S0
k=1Sk,Sk∩Sk′ = ∅, k, k′ =

1, 2, · · · , S0. Let π(i), i ∈ S, be the steady-state probability, and let π(i|Sk) = π(i)∑
j∈Sk

π(j)

be the conditional steady-state probability of i given that i ∈ Sk. The potential associated

with the aggregation Sk is defined as (6.39):

g(Sk) =
∑

i∈Sk

π(i|Sk)g(i).

We wish to establish a Poisson equation for the aggregations:

g(Sk) =

S0∑

k′=1

p(Sk′|Sk)g(Sk′) + f(Sk) − η, k = 1, 2, · · · , S0. (6.10)

a. According to their physical meanings, determine the transition probabilities p(Sk′|Sk)

and the performance function f(Sk), k, k
′ = 1, 2, · · · , S0.

b. Prove that the Poisson equation (6.10) holds for the aggregations if and only if for

any Sk′, k′ = 1, · · · ,S0, and any j ∈ Sk′, we have

π(j)∑
j′∈Sk′

π(j′)
=

∑
i∈Sk

π(i)p(j|i)
∑

j′∈Sk′

∑
i∈Sk

π(i)p(j′|i)
, k = 1, · · · , S0. (6.11)

c. Set

π(j|Sk′,Sk) =

∑
i∈Sk

π(i)p(j|i)
∑

j′∈Sk′

∑
i∈Sk

π(i)p(j′|i)
.

Then (6.11) becomes π(j|Sk′,Sk) = π(j|Sk′). Prove that (6.11) is equivalent to the

following condition:

π(j|Sk′,Sk) is independent of k. (6.12)
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d. Explain the meaning of π(j|Sk′,Sk) and condition (6.12).

e. Derive a TD(0) algorithm for g(Sk), k = 1, · · · ,S0.

f. Explain that the algorithm developed in e. may not work if the condition (6.12)

does not hold.

Solution:

a.

p(Sk′|Sk) =
p(i ∈ Sk, j ∈ Sk′)

p(i ∈ Sk)
=

∑
i∈Sk

π(i)
∑

j∈Sk′
p(j|i)

∑
i∈Sk

π(i)
.

f(Sk) =
∑

i∈Sk

π(i|Sk)f(i).

b. For the original Markov chain, we have Poisson equation:

g(i) =
∑

j∈S

p(j|i)g(j) + f(i) − η.

Pre-multiplying π(i|Sk) and summing them over Sk, we have

∑

i∈Sk

π(i|Sk)g(i)

=
∑

i∈Sk

π(i|Sk)
∑

j∈S

p(j|i)g(j) +
∑

i∈Sk

π(i|Sk)f(i) − η

=
∑

j∈S

∑
i∈Sk

π(i)p(j|i)
∑

i∈Sk
π(i)

g(j) + f(Sk) − η

=

S0∑

k′=1

∑

j∈Sk′

∑
i∈Sk

π(i)p(j|i)
∑

i∈Sk
π(i)

g(j) + f(Sk) − η

=

S0∑

k′=1

∑
j′∈Sk′

∑
i∈Sk

π(i)p(j′|i)
∑

i∈Sk
π(i)

∑

j∈Sk′

∑
i∈Sk

π(i)p(j|i)
∑

j′∈Sk′

∑
i∈Sk

π(i)p(j′|i)
g(j)

+f(Sk) − η

=

S0∑

k′=1

p(Sk′|Sk)
∑

j∈Sk′

∑
i∈Sk

π(i)p(j|i)
∑

j′∈Sk′

∑
i∈Sk

π(i)p(j′|i)
g(j) + f(Sk) − η.

If

π(j)∑
j′∈Sk′

π(j′)
=

∑
i∈Sk

π(i)p(j|i)
∑

j′∈Sk′

∑
i∈Sk

π(i)p(j′|i)
,
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we have the Poisson equation (6.10).

c. From (6.11), it is obvious that π(j|Sk′,Sk) is independent of Sk. That is, we have

(6.12) from (6.11). If π(j|Sk′,Sk) is independent of Sk, for any Sk, we have

π(j|Sk′,Sk)

=

∑
i∈Sk

π(i)p(j|i)
∑

j′∈Sk′

∑
i∈Sk

π(i)p(j′|i)

=

∑S0

k=1

∑
i∈Sk

π(i)p(j|i)
∑S0

k=1

∑
j′∈Sk′

∑
i∈Sk

π(i)p(j′|i)

=

∑
i∈S π(i)p(j|i)∑

j′∈Sk′

∑
i∈S π(i)p(j′|i)

=
π(j)∑

j′∈Sk′
π(j′)

= π(j|Sk′).

Thus, (6.11) is equivalent to “π(j|Sk′,Sk) is independent of Sk”.

d. π(j|Sk′,Sk) denotes the conditional steady-state probability that the system is

in state j given that the system is in subset Sk in the previous time and in subset S ′
k

in the current time. Condition (6.12) indicates the conditional steady-state probability

π(j|Sk′,Sk) does not depend on the subset that the previous state belongs to. This means

this conditional steady-state probability has a memoryless property.

e. Since

g(Sk) = E{f(Xl) − η + g(S l+1)|Xl ∈ Sk},

we can use f(Xl) − η + g(S l+1) as an estimation of g(Sk). The TD(0) algorithm can be

developed as follows:

g(S l) := g(S l) + κl[f(Xl) − η + g(S l+1) − g(S l)], if Xl ∈ S l.

f. If the condition (6.12) does not hold, the Poisson equation will not hold. Thus, we

cannot use f(Xl) − η + g(S l+1) as an estimation of g(Sk). The algorithm in e. cannot

work.

6.18 In perturbation analysis of Markov chains, we have two Markov chains with transi-

tion probability matrices P and P ′, respectively. Let ∆P = P ′ − P and Pδ = P + δ∆P .
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Let ηδ be the long-run average reward of the Markov chain with transition probability

matrix Pδ. Assume that the reward function fδ are the same as f for all 0 ≤ δ ≤ 1. Let

π and g be the steady-state probability and performance potential of the Markov chain

with transition probability P . Then the directional derivative of ηδ is (2.23):

dηδ

dδ
= π(∆P )g.

a. Write the performance derivative in the form of Q-factors.

b. Suppose that we do not know the values of P and P ′ and only know the correspond-

ing actions. Develop a TD(0) algorithm for the performance derivative.

Solution:

a. We can view P and P ′ as two transition probability matrix under two different

policies v and v′, respectively.

dηδ

dδ
= π[Qv′ −Qv] =

∑

i∈S

π(i)[Q(i, v′(i)) −Q(i, v(i))]. (6.13)

where Qv′ = P ′g + f and Qv = Pg + f .

b. We consider the Markov chain with transition probability matrix Pδ. The policy

corresponding to Pδ chooses action v(i) with probability δ and chooses action v′(i) with

probability 1 − δ when the state is i. From (6.13), we have dηδ

dδ
= Eπ[Q(Xl, v

′(Xl)) −

Q(Xl, v(Xl))]. Thus, we can firstly estimate Q-factor by using TD(0) algorithm, then use

the TD(0) algorithm to estimate the expectation. We can develop the following algorithm:

Q(Xl, Al) := Q(Xl, Al) − κl

{
[f(Xl, Al) − η] +Q(Xl+1, Al+1) −Q(Xl, Al)

}
,

dηδ

dδ
|l+1 =

dηδ

dδ
|l + κl

{
Q(Xl, v

′(Xl)) −Q(Xl, v(Xl)) −
dηδ

dδ
|l
}
.

6.19 Develop two TD(0) algorithms, similar to (6.44) and (6.45), based on the perfor-

mance derivative formula (3.44).

Solution: Since

dηδ

dδ
=

E{
∑um+1−1

k=um

(
∆p(Xk+1|Xk)

p(Xk+1|Xk)
ŵk+1

)
}

E[um+1 − um]
(6.14)

= E
(∆p(Xk+1|Xk)

p(Xk+1|Xk)
ŵk+1

)
, (6.15)
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where

ŵk+1 =

um(k+1)+1−1∑

l=k+1

[f(Xl) − η].

Based on (6.14), we can develop an algorithm to estimate the numerator of (6.14) similarly

to (6.44),

νδ,l+1 := νδ,l + κlδl, l = 0, 1, · · · ,

δl =

ul+1−1∑

k=ul

∆p(Xk+1|Xk)

p(Xk+1|Xk)
ŵk+1 − νδ,l.

Similarly to (6.45), we can develop an algorithm based on (6.15):

dηδ

dδ
|l+1 :=

dηδ

dδ
|l + κlδl, l = 0, 1, · · · ,

δl =
∆p(Xl+1|Xl)

p(Xl+1|Xl)
ŵl+1 −

dηδ

dδ
|l.

6.20 Suppose that algorithm (6.62) and (6.63) converge to optimal Q-factors. Are the

following statements true? If so, please explain

a. With (6.62), when the algorithm converges we have Q(i∗, α∗) = η∗, the optimal

performance.

b. With (6.63), when algorithm converges we have maxα∈A(i∗)Q(i∗, α) = η∗.

Solution:

a. Under some standard stochastic approximation conditions, the algorithm (6.62)

converges to the solution of the following equation:

Qd̂(i, α) = {
S∑

j=1

pα(j|i)[maxβ∈A(j)Q
d̂(j, β)]} −Q(i∗, α∗) + f(i, α), α ∈ A(i), i ∈ S.(6.16)

where d̂ is the optimal policy. We have d̂(i) = argmax
α∈A(i)

Qd̂(i, α). Taking the maxi-

mum among the actions in A(i) on both sides of (6.16), we have

max
α∈A(i)

Qd̂(i, α) = Qd̂(i, d̂(i)) = {
S∑

j=1

pd̂(i)(j|i)[max
β∈A(j)

Qd̂(j, β)]} −Q(i∗, α∗) + f(i, d̂(i)),
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for all i ∈ S. Pre-multiplying πd̂(i) on both sides of the above equation and summing

them over all i ∈ S, we have Q(i∗, α∗) =
∑

i∈S π
d̂(i)f(i, d̂(i)) = η∗.

b. Under some standard stochastic approximation conditions, the algorithm (6.63)

converges to the solution of the following equation:

Qd̂(i, α) = {
S∑

j=1

pα(j|i)[max
β∈A(j)

Qd̂(j, β)]} − max
α∈A(i∗)

Q(i∗, α) + f(i, α), α ∈ A(i), i ∈ S.

Similarly to the discussion in part a), we have maxα∈A(i∗)Q
(i∗, α) =

∑
i∈S π

d̂(i)f(i, d̂(i)) =

η∗

6.21 In this problem, we derive a performance derivative formula for closed Jackson

networks in the form of sample path expectation. Consider a closed Jackson network

consisting of M servers and N customers. The service times of server i are exponen-

tially distributed with mean s̄i = 1/µi, i = 1, 2, · · · ,M . The state of the system is

n = (n1, · · · , nM), ni is the number of customers in server i,
∑M

i=1 ni = N . Suppose that

the system is in the steady state, and let π(n) be the steady-state probability of state

n. Denote µ(n) =
∑M

i=1 ǫ(ni)µi, with ǫ(n) = 1 if n > 0 and 0 if n = 0. The system

throughput is η =
∑

all n π(n)µ(n), its derivative with respect to s̄v, v = 1, 2, . . . , N , is

(2.109):

s̄v

η

∂η

∂s̄v

= −
∑

all n

π(n)c(n, v),

where c(n, v) is the realization probability of a perturbation of server v when the system

is in state n, and “Eπ” represents the steady-state mean.

a. Consider a sample path of the system. Denote the sequence of transition times as

T0, T1, · · · , Tl, · · ·. Suppose that the system is in state n in [Tl, Tl+1); i.e., Xl = n.

Assume that in this period server v obtain a (infinitesimal) perturbation. We define

a perturbation realization index for this perturbation as follows:

RI(l, Xl, v) =





1 if the perturbation is realized on the sample path,

0 otherwise;

and set ς(t) = RI(l, Xl, v) for t ∈ [Tl, Tl+1). Then by definition, we have

E[RI(l, Xl, v)|Xl = n] = c(n, v),
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where “E” denotes the expectation with respect to the probability space generated

by all the sample paths. Explain the following equation:

s̄v

η

∂η

∂s̄v
= −E[RI(l, Xl, v)] = −E[ς(t)] := − lim

L→∞

1

TL

∫ TL

0

ς(t)dt, a.s. (6.17)

b. Can you determine the function ς(t) based on the sample path in Figure 2.18 of

Chapter 2 (Note: ς(t) depends not only on the current state n, but also on the

future behavior of the system.)

c. Derive a sample-path based estimate of the performance derivative by using the

above result.

d. Apply this equation (6.17) to a two-server closed Jackson network and verify the

results. Can this be extended to networks with non-exponentially distributed service

times?

e. Derive a recursive algorithm (c.f. Problem 6.5).

f. Discuss and compare your results with other algorithms.

Solution:

a.

E[RI(l, Xl, v)] = E{E[RI(l, Xl, v)|Xl]}

=
∑

all n

π(n)E[RI(l, Xl, v)|Xl = n]

=
∑

all n

π(n)c(n, v).

Thus, we have

s̄v

η

∂η

∂s̄v

= −E[RI(l, Xl, v)].

Next, we prove that

lim
L→∞

1

TL

∫ TL

0

ς(t)dt =
∑

all n

π(n)c(n, v), a.s.
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Since limL→∞
1

TL

∫ TL

0
ς(t)dt = limL→∞

1
TL

∑L−1
l=0 SlRI(l, Xl, v), where Sl, l = 0, 1, · · · , de-

note the durations the system stays state Xl, thus we only need to prove

lim
L→∞

1

TL

L−1∑

l=0

SlRI(l, Xl, v) =
∑

all n

π(n)c(n, v). (6.18)

We can find whether a perturbation is realized or lost depends on the initial state Xl

and the customer transitions afterwards. It does not depend on the durations the system

stays in all the states Sl, Sl+1, · · ·. Therefore, RI(l, Xl, v) is function of Xl, Xl+1, · · ·.

Let χn(Xl) = 1 if Xl = n; χn(Xl) = 0, otherwise. For all l with χn(Xl) = 1, Sl are

independent and identically distributed. By the law of large number, we have

lim
l→∞

∑L−1
l=0 SlRI(l, Xl, v)χn(Xl)∑L−1
l=0 RI(l, Xl, v)χn(Xl)

= E{Sl|Xl = n, R(l, Xl, v) = 1}.

From this, we have

lim
L→∞

1

L

L−1∑

l=0

SlRI(l, Xl, v)χn(Xl)

= E{Sl|Xl = n, RI(l, Xl, v) = 1} × lim
L→∞

1

L

L−1∑

l=0

RI(l, Xl, v)χn(Xl)

= E{Sl|Xl = n, RI(l, Xl, v) = 1} × lim
L→∞

1

L

L−1∑

l=0

Yl,

where

Yl = RI(l, Xl, v)χn(Xl) = φ(Xl, Xl+1, · · ·)χn(Xl) := ψ(Xl, Xl+1, · · ·).

From the fundamental ergodicity theorem in Chapter 3, we have

lim
L→∞

1

L

L−1∑

l=0

Yl = E(Yl) = E[RI(l, Xl, v)χn(Xl)] = π(RI(l, Xl, v)χn(Xl) = 1).

where π(RI(l, Xl, v)χn(Xl) = 1) is the steady-state probability that RI(l, Xl, v)χn(Xl) =

1 for Markov chain Y = {Y0, Y1, · · ·}. Therefore,

lim
L→∞

1

L

L−1∑

l=0

SlRI(l, Xl, v)χn(Xl)

= E{Sl|Xl = n, RI(l, Xl, v) = 1} × π(RI(l, Xl, v)χn(Xl) = 1)

= E{Slχn(Xl)RI(l, Xl, v)}

= E{SlRI(l, Xl, v)|Xl = n} × π̂(n),
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where π̂(n) is the stationary probability of state n of the embedded chainX = {X0, X1, · · ·.

By using the Markov property, given Xl = n, the two random variables Sl and RI(l, Xl, v)

are independent. Thus, we have

E{SlRI(l, Xl, v)|Xl = n}

= E(Sl|Xl = n) × E{RI(l, Xl, v)|Xl = n}

=
c(n, v)

µ(n)
.

Finally, we have

lim
L→∞

1

L

L−1∑

l=0

SlRI(l, Xl, v)χn(Xl) = c(n, v)
π̂(n)

µ(n)
, w.p.1.

According the relationship between the steady-state probabilities, π̂ and π, of embedded

chain and continuous time process, i.e.

π(n) = η
π̂(n)

µ(n)
,

we obtain

lim
L→∞

1

L

L−1∑

l=0

SlRI(l, Xl, v)χn(Xl) =
1

η
π(n)c(n, v), w.p.1.

Summing up both sides of the above equation over all n and noting that
∑

all n χn(Xl) =

1, we get

lim
L→∞

1

L

L−1∑

l=0

SlRI(l, Xl, v) =
1

η

∑

all n

π(n)c(n, v), w.p.1.

On the other hand, we can similarly prove

lim
L→∞

TL

L
= lim

L→∞

L−1∑

l=0

Sl

= lim
L→∞

1

L

∑

all n

L−1∑

l=0

Slχn(Xl)

=
∑

all n

{ lim
L→∞

1

L

L−1∑

l=0

Slχn(Xl)

=
∑

all n

E[χn(Xl)] ×E(Sl|Xl = n) w.p.1

=
∑

all n

π(n)

µ(n)
=

1

η
w.p.1.
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Noting that

lim
L→∞

1

TL

L−1∑

l=0

SlRI(l, Xl, v) = lim
L→∞

L

TL

× lim
L→∞

1

L

L−1∑

l=0

SlRI(l, Xl, v) =
∑

all n

π(n)c(n, v).

Thus, we have proved (6.18).

Reference:

Xi-Ren Cao, Realization Probability: The Dynamics of Queueing systems, Springer-

Verlag, London, 1994.

b.

ς(t) =





0, T0 ≤ t < T1

0 T1 ≤ t < T2

0 T2 ≤ t < T3

1 T3 ≤ t < T4

? T4 ≤ t < T5,

· · ·

c. and e. Denote

s̄v

η

∂η

∂s̄v

|L+1 = −
1

TL+1

∫ TL+1

0

ς(t)dt,

Then, we have limL→∞
s̄v

η
∂η
∂s̄v

|L+1 = s̄v

η
∂η
∂s̄v
, w.p.1. For s̄v

η
∂η
∂s̄v

|L+1, we have the following

recursive algorithm.

s̄v

η

∂η

∂s̄v

|L+1 = −
1

TL+1

{

∫ TL

0

ς(t)dt+ (TL+1 − TL)R(L,XL, v)}

= −
s̄v

η

∂η

∂s̄v

|L −
TL+1 − TL

TL+1

[
R(L,XL, v) −

s̄v

η

∂η

∂s̄v

|L
]

f. Since this algorithm uses the function ς(t), which depends on the future information

on the sample path, it is difficult to use this algorithm in an on-line way.
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Solutions to Chapter 7

7.1 Repeat Example 7.1 with the data listed in Table 7.3.

state Transition prob. pα(j|i)

i action j = 1 2 3 Perf. func.

α1,1 0.3 0.6 0.1

1 α1,2 0.4 0.2 0.4 10

α1,3 0.2 0.3 0.5

α2,1 0.6 0 0.4

2 α2,2 0.4 0.3 0.3 0

α3,1 0.4 0.2 0.4

3 α3,2 0.3 0.5 0.2 -5

α3,3 0.2 0.1 0.7

Table 7.1: The Actions and Performance Function in Problem 7.1

169
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Solution: We first solve the finite-step optimization problem by using (7.12). The values

of η∗ℓ=L(i), d̂ℓ=L(i), and g∗ℓ=L(i) in (7.11), (7.12), and (7.15) for L = 1, 2, 3, 4, are listed in

Table 7.2. As shown in the table, the optimal decision-rule sequence dℓ=L converges to

d̂ = {d̂(1) = α1,1, d̂(2) = α2,1, d̂(3) = α3,2}.

L 1 2

state i η∗ℓ=1(i) g∗ℓ=1(i) d̂ℓ=1(i) η∗ℓ=2(i) g∗ℓ=2(i) d̂ℓ=2(i)

1 10 15 α1,1, α1,2, α1,3 12.5 15.5 α1,1

2 0 5 α2,1, α2,2 4 7 α2,1

3 -5 0 α3,1, α3,2, α3,3 -3 0 α3,1, α3,2

L 3 4

state i η∗ℓ=3(i) g∗ℓ=3(i) d̂ℓ=3(i) η∗ℓ=4(i) g∗ℓ=4(i) d̂ℓ=4(i)

1 15.85 15.7 α1,1 18.55 15.615 α1,1

2 6.3 6.15 α2,1 9.57 6.635 α2,1

3 0.15 0 α3,2 2.935 0 α3,2

Table 7.2: The Results for the L-step Optimization Problems

Now, let us solve the problem by policy iteration. Firstly, we choose an initial station-

ary policy d0 and then determine the potentials under this policy. Suppose that we pick

up d0 = {α1,1, α2,1, α3,1}. The transition probability matrix is

P d0 =




0.3 0.6 0.1

0.6 0 0.4

0.4 0.2 0.4


 .

We use the approximation

ḡn =
n∑

k=0

P k
−f−,

where P− = P − epS∗, pS∗ is the Sth row of P , and f−(i) = f(i) − f(S), i = 1, 2, · · · , S,

to approximate the potentials. From P d0 , we have

P d0
− =




−0.1 0.4 −0.3

0.2 −0.2 0

0 0 0


 .
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The values for ḡ0 to ḡ5 are:

i ḡ0(i) ḡ1(i) ḡ2(i) ḡ3(i) ḡ4(i) ḡ5(i)

1 15 15.5 16.25 16.055 16.1585 16.1157

2 5 7 6.7 6.91 6.829 6.8659

3 0 0 0 0 0 0

By using the policy improvement

d1(i) ∈ arg max
α

{f(i, α) + pα(j|i)ḡ5(j)}, i ∈ S,

we can obtain d1 = {α1,1, α2,1, α3,2}. We have

P d1 =




0.3 0.6 0.1

0.6 0 0.4

0.3 0.5 0.2


 ,

and therefore

P d1
− =




0 0.1 −0.1

0.3 −0.5 0.2

0 0 0


 .

The values for ḡ0 to ḡ5 are:

i ḡ0(i) ḡ1(i) ḡ2(i) ḡ3(i) ḡ4(i) ḡ5(i)

1 15 15.5 15.7 15.615 15.6635 15.6367

2 5 7 6.15 6.635 6.367 6.5155

3 0 0 0 0 0 0

Applying the policy improvement, we obtain the same policy d2 = d1 = {α1,1, α2,1, α3,2}.

Thus, this policy is optimal.

7.2 For any three operators P1, P2, and P3, prove

a. For any function h(x) on ℜn, we have (P1P2)h(x) = P1[P2h(x)](assuming the inte-

grations exist); and

b. (P1P2)P3 = P1(P2P3); and
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c. P k = PP k−1 = P k−1P .

Solution:

a. For any x ∈ ℜn, we have

(P1P2)h(x) =

∫

ℜn

h(z)P1P2(dz|x) =

∫

ℜn

∫

ℜn

h(z)P2(dz|y)P1(dy|x),

P1[P2h(x)] =

∫

ℜn

P2h(y)P1(dy|x) =

∫

ℜn

∫

ℜn

h(z)P2(dz|y)P1(dy|x).

Thus, we have (P1P2)h(x) = P1[P2h(x)] for any function h(x) on ℜn.

b. For any x ∈ ℜn and R ⊂ B, we have

(P1P2)P3(R|x) =

∫

ℜn

P3(R|y)(P1P2)(dy|x)

=

∫

ℜn

∫

ℜn

P3(R|y)P2(dy|z)P1(dz|x),

and

P1(P2P3)(R|x) =

∫

ℜn

(P2P3)(R|z)P1(dz|x)

=

∫

ℜn

∫

ℜn

P3(R|y)P2(dy|z)P1(dz|x).

Thus, (P1P2)P3 = P1(P2P3).

c. From the definition of kth power of P , we have P k = PP k−1. Thus

P k−1P = PP k−2P = · · · = PP · · ·P︸ ︷︷ ︸
k

and

P k = PP k−1 = PPP k−2 = · · · = PP · · ·P︸ ︷︷ ︸
k

So we have P k = P k−1P .

7.3 For any probability distribution ν, transition function P , and any function h, prove

ν(Ph) = (νP )h. Explain the meaning of both sides.

Solution:

ν(Ph) =

∫

Rn

{∫

Rn

h(y)P (dy|x)

}
ν(dx)



173

and

(νP )h =

∫

Rn

h(y)(νP )(dy) =

∫

Rn

h(y)

∫

Rn

P (dy|x)ν(dx).

So we have ν(Ph) = (νP )h.

Ph(x) is the expected performance at the next time epoch when current state is x,

which can be written as E{h(x1)|x0 = x}. For any probability measure ν,

ν(Ph) =

∫

Rn

ν(dx)E{h(x1)|x0 = x} =: E{h(x1)|ν}.

It is the expected performance at the next time epoch when current state distribution is

ν. It is the physical meaning of left side.

νP is state distribution at the next time epoch when current state distribution is ν.

Let ν1 = νP . Therefore ν1h =
∫
Rn h(x)ν1(dx) represent the expected performance at the

next time epoch when current state distribution is ν. This is the physical meaning of

right side. From their physical meaning, we can also obtain they are equal.

7.4 With the forward-time index used in (7.9), from (7.14) and (7.15), we can define the

finite-step perturbation realization factor for any policy d = {d0, d1, · · · , dL−1} as follows:

gdℓ=L(i) =
L−1∑

l=0

E
{

[f(Xl, dl(Xl)) − f(X ′
l , dl(X

′
l))]|X0 = i, X ′

0 = i∗
}
,

where X = {X0, X1, · · ·} and X
′ = {X ′

0, X
′
1, · · ·} are two independent sample paths with

initial state X0 = i and X ′
0 = i∗, respectively. Note that the decision rules dl may be

different for different l = 0, 1, · · ·. Let Lii∗ be the time at which the two sample paths

merge together, i.e. XLii∗
= X ′

Lii∗
.

a. Prove that if E(Lii∗) <∞, then limL→∞ gdℓ=L(i) exists.

b. Find a condition under which E(Lii∗) <∞.

Solution:

a.

gdℓ=L(i) = E
{ L−1∑

l=0

[f(Xl, dl(Xl)) − f(X ′
l , dl(X

′
l))]|X0 = i, X ′

0 = i∗
}

= E
{ Lii∗−1∑

l=0

[f(Xl, dl(Xl)) − f(X ′
l , dl(X

′
l))]
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+
L−1∑

l=Lii∗

[f(Xl, dl(Xl)) − f(X ′
l , dl(X

′
l))]|X0 = i, X ′

0 = i∗
}
.

By the strong Markov property, two Markov chains X and X
′ behave similarly statis-

tically after Lii∗ . Thus, limL→∞E
{∑L−1

l=Lii∗
[f(Xl, dl(Xl)) − f(X ′

l , dl(X
′
l))]|X0 = i, X ′

0 =

i∗
}

= 0. Therefore,

lim
L→∞

gdℓ=L(i) = E
{ Lii∗−1∑

l=0

[f(Xl, dl(Xl)) − f(X ′
l , dl(X

′
l))]|X0 = i, X ′

0 = i∗
}
.

Since performance function f is bounded and E(Lii∗) < ∞, E
{∑Lii∗−1

l=0 [f(Xl, dl(Xl)) −

f(X ′
l , dl(X

′
l))]|X0 = i, X ′

0 = i∗
}

is finite and limL→∞ gdℓ=L(i) exists.

b. If the Markov chain under policy d has a absorbing state, then E(Lii∗) <∞.

7.5 Prove Lemma 7.1.

Solution:

Putting (7.32) into the left side of (7.29), we have

{I +
∞∑

k=1

(P k − eπ)}f(x) − P{I +
∞∑

k=1

(P k − eπ)}f(x) + η(x)

= f(x) + (Pf)(x) − [(eπ)f ](x) + {
∞∑

k=2

(P k − eπ)}f(x) − (Pf)(x)

−P{
∞∑

k=1

(P k − eπ)}f(x) + η(x)

= f(x) − (πf)e(x) + η(x)

= f(x).

7.6 For any bounded function f(x), x ∈ ℜ, we define the e-norm ‖f(x)‖ = supx |f(x)|.

The e-norm of a linear operation P (R|x) is defined as ‖P‖ := sup{‖Pu‖ : ‖u‖ ≤ 1}. A

transition probability matrix P is called e-ergodic, if

lim
k→∞

‖(P k − eπ)‖ = 0.

Prove if P is e-ergodic, then

lim
k→∞

gk = g, and lim
k→∞

Pgk = Pg,
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where gk := {I +
∑k

l=1(P
l − eπ)}f , for any bounded function f .

Solution:

From the assumption that limk→∞ ‖(P k − eπ)‖ = 0, there is an integer K > 0 and an

ǫ, 0 < ǫ < 1 such that ‖(PK − eπ)f‖ < ǫ‖f‖. Then ‖(P 2K − eπ)f‖ = ‖(PK − eπ)[(PK −

eπ)f ]‖ < ǫ‖(PK−eπ)f‖ < ǫ2‖f‖, · · · and ‖P nK−eπ‖ < ǫn‖f‖. Since P k−eπ = (P−eπ)k,

we have

‖

(n+1)K−1∑

l=nK

(P l − eπ)f‖ = ‖{
K−1∑

l=0

(P − eπ)l}(P − eπ)nKf‖

≤
K−1∑

l=0

‖(P − eπ)l(P − eπ)nKf‖ ≤
K−1∑

l=0

‖(P − eπ)l‖‖(P − eπ)nKf‖

< ǫn
K−1∑

l=0

‖(P − eπ)l‖‖f‖ = ǫnG,

where G =
∑K−1

l=0 ‖(P − eπ)l‖‖f‖, which is bounded because f is bounded, and

‖
∞∑

n=0

(n+1)K−1∑

l=nK

(P − eπ)lf‖ ≤
∞∑

n=0

‖

(n+1)K−1∑

l=nK

(P − eπ)lf‖ <
∞∑

n=0

ǫnG =
G

1 − ǫ
.

Therefore,

lim
k→∞

gk = I +
∞∑

l=1

(P l − eπ)f

=

∞∑

n=0

(n+1)K−1∑

l=nK

(P − eπ)lf =: g,

exists. Since ‖P (gk−g)‖ ≤ ‖P‖‖gk−g‖ and ‖P‖ is bounded, we have limk→∞ Pgk = Pg.

7.7 Consider the two steady-state probability distributions π and π′ defined as shown in

Figure 7.7. The two distributions have discrete masses as follows: π(−0.2) = π(−0.4) =

π(−0.6) = π(−0.8) = π(−1) = 0.1, and π′(0.2) = π′(0.4) = π′(0.6) = π′(0.8) = π′(1) =

0.1. The total probabilities on these discrete points are 1
2

for both distributions. The

other 1/2 is evenly distributed on the interval [−1, 1]. Explain that these two distribution

functions have the same state space, but they do not have the same support.

Solution: It is clear that these two distribution functions have the same state space.

Since π(−0.2) > 0, π(−0.4) > 0, π(−0.6) > 0, π(−0.8) > 0, π(−1) > 0 and π(R) > 0 for



176 CHAPTER 7. SOLUTIONS TO CHAPTER 7

any R ⊆ [0, 1] with a positive volume and π′(0.2) > 0, π′(0.4) > 0, π′(0.6) > 0, π′(0.8) >

0, π′(1) > 0 and π′(R′) > 0 for any R′ ⊆ [−1, 0] with a positive volume, the supports of π

and π′ are different.

7.8 Consider a non-linear control system

Xl+1 = uXl + ξl, l = 0, 1, · · · ,

where u is a control variable. Let pξ(. . .) be the distribution density function of the

independent and identically distributed random noises ξl, l = 0, 1, . . ..

a. Derive the transition probability function P u(dy|x).

b. How do we estimate the discrete approximation p(j|i), i, j = 1, 2, · · · , S? Can we

reduce the number of the transition probabilities to be estimated?

Solution: a. P u(dy|x) = pξ(y − ux)dy.

b. p(j|i) can be estimated with equation (7.69). Indeed, we needn’t estimate S × S

transition probabilities. Assuming that ∆xi = ∆, for any i, is very small, we have

p(j|i) ≈ pξ[y − ux]∆, y ∈ ∆j, x ∈ ∆i. (7.1)

For simplicity, we consider a one-dimensional system. We divide ℜ with the points k∆,

k = −(S − 1), · · · ,−1, 0, 1, · · · , S − 1. There are 2S states corresponding to intervals

∆1 = (−∞,−(S−1)∆], ∆2 = (−(S−1)∆,−(S−2)∆],· · ·, ∆2S−1 = ((S−2)∆, (S−1)∆]

and ∆2S = ((S − 1)∆,∞). We assume that the probability that the random noise ξ in

∆1 and ∆2S is very small. From (7.1), if we know pξ(y), we can calculate the transition

probability matrix p(j|i). This means we can convert a problem of estimating a two-

dimensional matrix P to a problem of estimating a one-dimensional vector pξ(y), y ∈ S.

As an example, if we take action u = 0, P (j|i) ≈ pξ(y)∆, y ∈ ∆j , x ∈ ∆i. Thus, P 0(1|i) =

pξ[−(S−1)∆]∆, P 0(2|i) = pξ[−(S−2)∆]∆, · · · , P 0(2S−1|i) = pξ[(S−2)∆]∆, P 0(2S|i) =

pξ[(S − 1)∆]∆, i ∈ S. Therefore, for any i = 2, 3, · · · , 2S − 1, pu(j|i), which can be

estimated by using (7.69), correspond to the probabilities of the random noise ξ in the

intervals (−(S − 1)∆,−(S − 2)∆], · · · , ((S − 2)∆, (S − 1)∆]. That is, we need only to
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estimate 2(S − 1), rather than 2(S − 1) × 2(S − 1), values. Thus, we can reduce the

number of the transition probabilities to be estimated. For other control laws, we can use

the similar method to reduce the number of the transition probabilities to be estimated.

7.9 Consider a JLQ problem.

a. Suppose that the modes changes slowly. That is, p(i|i) ≈ 1 and p(i|i) ≈ 0 for

j 6= i. Show that the coupled Riccati equation is decoupled into M Riccati equations

corresponding to M LQ problems.

b. We consider another extreme case: the mode changes rapidly. As an example, we

consider a 2-mode system (M = 2). Suppose p(2|1) = p(1|2) ≈ 1 and p(1|1) =

p(2|2) ≈ 0. What are the coupled Riccati equation in this case? Explain your

results.

Solution:

a. If p(i|i) ≈ 1 and p(j|i) ≈ 0 for j 6= i, then Ĥi =
∑

j∈M p(j|i)Ŝj ≈ Ŝi. Coupled

Riccati equation becomes

Ŝi = AT
i ŜiAi + AT

i ŜiBi(Vi +BT
i ŜiBi)

−1BT
i ŜiAi +Qi i = 1, 2, · · · ,M

These are M Riccati equations.

b. Suppose p(2|1) = p(1|2) ≈ 1 and p(1|1) = p(2|2) ≈ 0, the Coupled Riccati equations

are

Ŝ1 = AT
1 Ŝ2A1 − AT

1 Ŝ2B1(V1 +BT
1 Ŝ2B1)

−1BT
1 Ŝ2A1 +Q1, (7.2)

Ŝ2 = AT
2 Ŝ1A2 − AT

1 Ŝ1B2(V2 +BT
2 Ŝ1B2)

−1BT
2 Ŝ1A2 +Q2. (7.3)

Substituting (7.2) into (7.3), we can obtain the Riccati equation of the combined system

Xk+1 = A2A1Xk + A2B1u1 +B2u2 + εk,

where εk = A2ξk + ζk, ξk and ζk are i.i.d.

7.10 Prove that in (7.48),

∞∑

k=1

(ck − η) = −

∫

ℜn

[zTUz]pξ(z)dz,
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with U =
∑∞

k=1 kWk. Prove

U − CTUC = CTSC.

Solution:

ck =

∫

Rn

zT

k−1∑

n=0

Wnzpξ(z)dz

and

η = lim
k→∞

ck =

∫

Rn

zT

∞∑

n=0

Wnzpξ(z)dz

Therefore

ck − η = −

∫

Rn

zT

∞∑

n=k

Wnzpξ(z)dz

∞∑

k=1

(ck − η) = −
∞∑

k=1

∫

Rn

zT

∞∑

n=k

Wnzpξ(z)dz

= −

∫

Rn

zT
∞∑

k=1

kWkzpξ(z)dz

= −

∫

Rn

zTUzpξ(z)dz

The first equation is proved.

U − CTUC =
∞∑

k=1

kWk − CT
∞∑

k=1

kWkC

=
∞∑

k=1

kCTWk−1C −
∞∑

k=1

CTkWkC

=
∞∑

k=1

(k − 1)CTWk−1C +
∞∑

k=1

CTWk−1C −
∞∑

k=1

CTkWkC

=

∞∑

k=0

CTkWkC −
∞∑

k=1

CTkWkC +

∞∑

k=0

CTWkC

=

∞∑

k=0

CTWkC

= CTSC

So we have U − CTUC = CTSC. The second equation is proved.
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7.11 Consider a linear system

Xl+1 = CXl + ξl, l = 0, 1, · · · ,

with a discounted quadratic performance criterion

η(x) = lim
L→∞

E{
L∑

l=0

βl(XT
l WXl)|X0 = x}, 0 < β < 1,

with W being a positive semi-definite matrix. Determine the performance potential of

this LDQ (Linear-discounted-quadratic) problem.

Solution: Let performance potential gβ = {I +
∑∞

k=1 β
k(P k − eπ)}f . Then we have

discounted Poisson equation:

(I − βP + βeπ)gβ = f.

gβ(x) = f +

∞∑

k=1

βk(cke(x) + xTWkx− πfe(x))

=

∞∑

k=1

βk(ck − πf)e(x) +

∞∑

k=0

xTβkWkx

where W0 = W . Let Sβ =
∑∞

k=0 β
kWk, then

gβ(x) =
∞∑

k=1

βk(ck − πf)e(x) + xTSβx.

7.12 Consider a linear control problem

Xl+1 = AXl +Bu(Xl) + ξl, l = 0, 1, · · · ,

with a discounted quadratic performance criterion

η(x) = lim
L→∞

E{
L∑

l=0

βl[XT
l QXl + uT

l V ul|X0 = x}, l = 0, 1, · · · ,

Applying policy iteration to this LDQ control problem to derive the (discounted) Riccati

equation for the optimal policy.
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Solution: Let h(x) = gβ(x) = xTSβx in (7.43). From policy iteration approach for

discounted MDP, we have

u′ = arg min
u

{βP ugβ(x) + fu(x)}

= arg min
u

{(Ax+Bu)TβSβ(Ax+Bu) + uTV u}

= −Dx

where D = (BTβSβB + V )−1BTβSβA. From the definition of Sβ, we have

CTβSβC =
∞∑

k=0

βk+1CTWkC =
∞∑

k=0

βk+1Wk+1 = Sβ −W

Substituting C = A − BD, W = Q + DTV D, and D = (BTβSβB + V )−1BTβSβA into

the above equation, we obtain the discounted Riccati equation

Sβ = ATβSβA + ATβSβB(V + BTβSβB)−1BTβSβA+Q

7.13 Consider the JLQ problem

Xl+1 = AMl
Xl +BMl

ul + ξMl,l, (7.4)

in which the noises ξMl,l,Ml = 1, 2, . . . ,M , have different probability distribution Pξi
(y), y ∈

ℜn. Derive the solution to this problem.

Solution:We assume Pξi
(y), y ∈ ℜn has probability density pξi

(y), i.e. Pξi
(dy) = pξi

(y)dy.

For any quadratic function h(i, x) = xTWix, where Wi, i = 1, 2, · · · ,M are positive semi-

definite matrices, and a control law u(i, x), we have

(P uh)(i, x) =
∑

j∈M
{p(j|i)h(j, y)P u

i (dy|x)}

=
∑

j∈M

{
p(j|i)

∫

ℜn

yTWjypξi
{y − [Aix+Biu(i, x)]}dy

}

=
∑

j∈M

{
p(j|i)

∫

ℜn

{z + [Aix+Biu(i, x)]}
TWj{z + [Aix+Biu(i, x)]}pξi

(z)dz
}
.

From
∫
ℜn pξi

(z)dz = 1 and
∫
ℜn zpξ(z)dz = 0, we have

(P uh)(i, x) = c1(i)e(x) +
∑

j∈M
p(j|i)[Aix+Biu(i, x)]

TWj [Aix+Biu(i, x)],
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where c1(i) :=
∑

j∈M c0(i, j)p(j|i) with

c0(i, j) :=

∫

ℜn

[zTWjz]pξi
(z)dz.

For a linear control ul = −DMl
Xl, the system (7.4) becomes

Xl+1 = CMl
Xl + ξMl,l,

where Ci = Ai − BiDi, i = 1, 2, · · · ,M . The performance function f(i, x) = xTWix with

Wi = Qi + DT
i ViDi. Following the method in Section 7.3.2, we can obtain the similar

results expect that pξ(z) is replaced with pξi
(z).
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8
Solutions to Chapter 8

8.1 In a discrete-time birth-death process, the system transits from state n to n+ 1 with

a birth probability pn, 0 < pn < 1, n = 0, 1, · · ·,and from state n to n − 1 with a death

probability qn, 0 < qn < 1 and pn + qn ≤ 1, or stays in the same state n with probability

1− pn − qn. When n = 0, the death probability is q0 = 0. Define the events representing:

a birth (denoted as event b), a death (denoted as event a), and no population change

(denoted as event c), respectively.

Solution: A birth event b can be defined as

b = {< n, n+ 1 >: n = 0, 1, 2, · · ·}.

A death event a can be defined as

a = {< n, n− 1 >: n = 1, 2, · · ·}.

183
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No population change can be defined as

c = {< n, n >: n = 0, 1, 2, · · ·}.

8.2 In the discrete-time birth-death process considered in Problem 8.1, we set pn = p for

all n ≥ 0 and qn = q for all n > 0.

a. Find the steady-state probability π(n), n = 0, 1, · · ·.

b. Suppose that we know a prior that at time l the system is at steady state, and

we observed a birth event b at time l − 1, what is the conditional distribution

P (Xl|el−1 = b)?

c. What is the conditional probability of Xl if we have observed two consecutive birth

events?

d. What if we observed a death event at steady state; i.e., what is P (Xl|el−1 = a)?

Solution:

a. From the balance equation, we have

π(1) =
p

q
π(0), π(2) =

p2

q2
π(0), π(3) =

p3

q3
π(0), · · · , π(n) =

pn

qn
π(0), · · · .

Since
∑∞

i=0 π(i) = 1, we have

(1 +
p

q
+
p2

q2
+ · · ·)π(0) = 1

and

π(0) = 1 −
p

q
.

Thus, π(n) = (1 − p
q
)pn

qn , n = 0, 1, 2, · · ·.

b.

P (Xl = n|el−1 = b) =
π(n− 1)p(n|n− 1)∑∞

n=1 π(n− 1)p(n|n− 1)

=
(1 − p

q
)pn−1

qn−1p
∑∞

n=1(1 − p
q
)pn−1

qn−1p

= (1 −
p

q
)
pn−1

qn−1
.
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c. The conditional probability of Xl if we have observed two consecutive birth events

is

P (Xl = n|el−2 = b, el−1 = b) =
π(n− 2)p(n− 1|n− 2)p(n|n− 1)∑∞

n=2 π(n− 2)p(n− 1|n− 2)p(n|n− 1)

= (1 −
p

q
)
pn−2

qn−2
.

d.

P (Xl = n|el−1 = a) =
π(n+ 1)p(n|n+ 1)∑∞

n=0 π(n + 1)p(n|n+ 1)

= (1 −
p

q
)
pn

qn
.

8.3 Please define the following events in Problem 4.2 (the state of the system is the stock

in every evening before the order):

a. the retailer ordered more than the next day’s demand,

b. the retailer ordered less than or equal to the next day’s demand, and

c. the retailer does not or may not have enough merchandise to sell.

Solution:

a. The event that the retailer ordered more than the next day’s demand can be denoted

as {< n,m >: n = 0, 1, · · · , m = n + 1, n+ 2, · · ·}.

b. The event that the retailer ordered less than or equal to the next day’s demand

can be denoted as {< n,m >: n = 0, 1, 2 · · · , m = 0, 1, · · · , n}.

c. The event that the retailer does not or may not have enough merchandise to sell

can be denoted as {< n,−1 >: n = 0, 1, 2, · · ·}, where −1 is a logical state to denote that

the retailer does not or may not have enough merchandise to sell.

8.4 We modify and restate the retailer’s problem (Problem 4.2 and Problem 8.2) as

follows: The system state x is the stock left every evening. We only consider threshold

types of policies. That is, the state space {0, 1, · · ·} is divided into N intervals I1 := [0, n1],

I2 := [n1 + 1, n2], · · · , IN−1 := [nN−2, nN−1], IN := [nN−1,∞). The retailer is allowed

to order M pieces of merchandise, or 2M pieces of merchandise, or not to order at all.
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Assume that we can only observe that the state is in a particular interval and cannot

observe the state itself. Based on the observation x ∈ Ii, i = 1, 2, · · · , N , the retailer may

choose different probabilities of ordering 0, M , or 2M pieces of merchandise. Every day’s

demand on merchandise can be described by an integer random variable with distribution

pn, n = 0, 1, · · ·. Describe the three types of events: the observable, the controllable, and

the natural transition events.

Solution: The observable events include

{< x, y >: x ∈ Ii, y ∈ S}, i = 1, 2, · · · , N.

The controllable events include

{< x, x− n >: x ∈ Ii, n = 0, 1, 2, · · ·}, {< x, x+M − n >: x ∈ Ii, n = 0, 1, · · ·},

{< x, x+ 2M − n >: x ∈ Ii, n = 0, 1, 2, · · ·}.

The natural transition events include

{< x, x− n >}, {< x, x+M − n >}, {< x, x+ 2M − n >}, x ∈ S, n = 0, 1, 2, · · · .

8.5 Suppose that the derivative dfθ(i)
dθ

|θ=0 is known. Derive a sample-path-based formula

for the event-based average

dfθ(k1)

dθ

∣∣∣
θ=0

=

S∑

i=1

{
π(i|e(k1))

dfθ(i)

dθ

∣∣∣
θ=0

}
.

Solution:

dfθ(k1)

dθ

∣∣∣
θ=0

= lim
L→∞

∑L−1
l=0 Ie(k1)(el)

dfθ(Xl)
dθ

∣∣∣
θ=0∑L−1

l=0 Ie(k1)(el)
, w.p.1,

where Ie(k1)(el) = 1 if el = e(k1), otherwise Ie(k1)(el) = 0.

8.6∗ Derive equation (8.31), by using the arrival theorem and the steady state probabilities

of the open Jackson networks.

Solution: From the arrival theorem, the conditional probability π(n|n) at the arriving

times is equal to the time-average conditional probability. That is to say, π(n|n) is equal
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to the steady-state conditional probability that the system stays at state n when the

total number of customers in the system is n. Thus, we can use the results about the

product-form solution in Section A.3.2 to conditional probability π(n|n) in (8.31).

Let λi be the overall arrival rate (including both external and internal arrivals) of the

customers to server i. Then,

λi = λ0,i +

M∑

j=1

λjqj,i, i = 1, 2, · · · ,M. (8.1)

where λ0,i is the external arrival rate to server i. Generally,

λ0,i = λq0,i, (8.2)

where λ is the total external arrival rate and q0,i is the probability that the external

customer joins server i. The admission control policy can only affect the total external

arrival rate λ. The total arrival rates λh and λd under different policies h and d have the

following ratio relationship.

λh = kh,dλd. (8.3)

Putting (8.3) and (8.2) into (8.1), we can obtain λh
i = kh,dλd

i , i = 1, 2, · · · ,M . Define

vi = λi

µi
. From the product-form solution of queueing networks (C.11), we have

π(n|n) =
1

GΓ(n)

∏

i∈Γ

vni

i

Ai(ni)

where GΓ(n) =
∑
∑

i∈Γ ni=n

∏
i∈Γ

v
ni
i

Ai(ni)
. Since vh

i = kh,dvd
i and Ai(ni) does not change

under different policies h and d, the ratio 1
GΓ(n)

∏
i∈Γ

v
ni
i

Ai(ni)
remains the same under different

policies. Therefore, (8.31) holds.

8.7 In Chapter 3, we derived a few sample-path-based direct-learning algorithms for

the performance derivatives dηδ

dδ
, e.g., (3.30), (3.33), and (3.35). Derive similar direct-

learning algorithms for the aggregated potentials (8.26) and the event-based performance

derivatives by using formula (8.25).

Solution: Since

gθ1(eo = eo(k1), ec = ec(k2)) = Eθ1

{ ∞∑

l=0

fθ1(Xl)|e
0
o = eo(k1), e

0
c = ec(k2)

}
,



188 CHAPTER 8. SOLUTIONS TO CHAPTER 8

we can view
∑L−1

l=0 fθ1(Xl) as an estimation of potential gθ1(k1, k2) when events eo(k1) and

ec(k2) occur, where L is a truncation parameter. From (8.25), we have

dη(θ)

dθ

∣∣∣
θ=θ1

= Eθ1{
dfθ(Xl)

dθ

∣∣∣
θ=θ1

+
d
dθ
pθ[e

l
c|e

l
o]

pθ[el
c|e

l
o]

∣∣∣
θ=θ1

gθ1(e
l
o, e

l
c)}.

where el
o and el

c denote the observable event and the controllable event at time l, respec-

tively. If the system is ergodic, we have

dη(θ)

dθ

∣∣∣
θ=θ1

= lim
N→∞

1

N

N−1∑

n=0

{
dfθ(Xn)

dθ

∣∣∣
θ=θ1

+
d
dθ
pθ[e

n
c |e

n
o ]

pθ[en
c |e

n
o ]

∣∣∣
θ=θ1

gθ(e
n
o , e

n
c )

}

= lim
N→∞

1

N

N−1∑

n=0

{
dfθ(Xn)

dθ

∣∣∣
θ=θ1

+
d
dθ
pθ[e

n
c |e

n
o ]

pθ[en
c |e

n
o ]

∣∣∣
θ=θ1

n+L−1∑

l=n

fθ1(Xl)

}

= lim
N→∞

1

N

N−1∑

n=0

{
dfθ(Xn)

dθ

∣∣∣
θ=θ1

+ fθ1(Xn+L)

L−1∑

l=0

d
dθ
pθ[e

n+l
c |en+l

o ]

pθ[en+l
c |en+l

o ]

∣∣∣
θ=θ1

}
.

8.8 Suppose that in an MDP problem, we can only apply control actions when the system

is in a subset of state space, denoted as I ⊂ S. The observable events can be defined as

when the system leaves any state i ∈ I or leaves the non-controllable set S − I.

a. Precisely define the observable events.

b. What are the controllable events?

c. Apply the event-based approach to this problem to derive the performance difference

and derivative formulas for any two policies.

Solution:

a. The observable events can be defined as eo(i) := {< i, j >: j 6= i ∈ S}, i ∈ I,

eo(Ī) := {< i, j >: i ∈ S − I, j ∈ I} and ∪i∈Ieo(i) ∪ eo(Ī).

b. The controllable events are {< i, j >}, i ∈ I, j 6= i ∈ S.

c. Since the states in set S − I cannot be controlled, the transition probability from

observable event eo(Ī) to any controllable event are 0. Then, according to the difference

formula (8.19), we have

ηh − ηd

=
∑

i∈I
πh(i)

∑

j 6=i∈S
{ph(i)[j|i] − pd(i)[j|i]}gd(j).
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Defining pδ(j|i) = pd(i)(j|i) + δ(ph(i)(j|i) − pd(i)(j|i)), i ∈ I, we have

ηδ − ηd =
∑

i∈I
πδ(i)

∑

j 6=i∈S
{pδ[j|i] − pd(i)[j|i]}gd(j).

Let δ → 0, we have the following performance derivative

dηδ

dδ

∣∣∣
δ=0

=
∑

i∈I
πd(i)

∑

j∈S
{ph(i)[j|i] − pd(i)[j|i]}gd(j).

8.9 This problem is designed to further illustrate the ideas of natural transition events

and potential aggregation. Compared with Example 8.1, there are two additional rooms

7 and 8, as shown in Figure 8.1. As in Example 8.1, after passing the green light on the

right, the robot moves to the top; however, it will enter room 3 with probability u1 and

enter room 7 with probability u2. Likewise, after passing the red light on the right, the

robot will enter room 4 with probability v1 and will enter room 8 with probability v2.

a. Formulate this problem with the event-based approach, and define the observable,

controllable, and natural transition events.

b. Derive the performance difference and derivative formulas.

�

�

qcp- -
-

��3
QQs ��*

HHj
?

6

-�

-�

6
?

1

2

3

4

7

8

1 − σ

σpb
pa

qb
qa

r1

r2

u1

v1

u2

v2

6
?

-

-

qc p��
�

QQk
��+

5

6

1 − σ

σ

Figure 8.1: Extended Moving Robot Problem

Solution:

a. Similarly to formulation in Example 8.3, the process of the robot passing through

a passage consists of three phases: First, the robot moves to the front of a light, either

on the left or the right. (The robot moving to the front of the left light is called event

a, and the robot moving to the front of the right light is called event b.) Second, an

action is taken (turning on the red or the green light). We can control the probabilities of
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the actions (red or green), by using the information obtained in the first phase (i.e., the

robot moves to the front of the left, or the right, light). Third, the robot moves on to its

destination following the instruction of the light, where the robot chooses the destination

room with a natural probability distribution. These three phases can be modelled as three

types of events: the observable events, the controllable events and the natural transition

events. The observable events are:

the event that the robot moves to the front of the right light:

a = {< 1, 3 >,< 1, 4 >,< 2, 3 >,< 2, 4 >,< 1, 7 >,< 1, 8 >,< 2, 7 >,< 2, 8 >},

the event that the robot moves to the front of the left light:

b = {< 1, 5 >,< 1, 6 >,< 2, 5 >,< 2, 6 >},

and the event of “not an arrival”:

a ∪ b.

The controllable events are:

the event that the robot moves to room 5:

c1 = {< 1, 5 >,< 2, 5 >},

the event that the robot moves to room 6:

c2 = {< 1, 6 >,< 2, 6 >},

the event that the robot moves to room 3 or room 7:

c3 = {< 1, 3 >,< 2, 3 >,< 1, 7 >,< 2, 7 >},

the event that the robot moves to room 4 or room 8:

c4 = {< 1, 4 >,< 2, 4 >,< 1, 8 >,< 2, 8 >}.

We can choose different σ to control the transition probabilities when an observable event

occurs. The transition probabilities are:

p(c1|b) = σ, p(c2|b) = 1 − σ, p(c3|a) = σ, P (c4|a) = 1 − σ.
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The natural transition events are:

n1 = {< 1, 3 >,< 2, 3 >}, n2 = {< 1, 7 >,< 2, 7 >}, n3 = {< 1, 4 >,< 2, 4 >},

n4 = {1, 8 >,< 2, 8 >}, n5 = {< 1, 5 >,< 2, 5 >}, n6 = {< 1, 6 >,< 2, 6 >},

n7 = {< 5, 1 >,< 6, 2 >,< 3, 1 >,< 4, 2 >,< 7, 3 >,< 8, 4 >,< 7, 8 >,< 8, 7 >}.

b. Using the performance difference formula (8.19), we have

η′ − η =
∑

eo

π′(eo)
∑

ec

[p′(ec|eo) − p(ec|eo)]g(eo, ec)

= π′(a)(σ′ − σ)[g(a, c3) − g(a, c4)] + π′(b)(σ′ − σ)[g(b, c1) − g(b, c2)], (8.4)

where

g(eo, ec) =
∑

i∈I[eo]

∑

et

π′(i|eo)p(et|eo, ec)g(j), (8.5)

with j = Oi[eo ∩ ec ∩ et]. From (8.5), we have

g(b, c1) =
∑

i∈S
π′(i|b)g(5) = g(5), g(b, c2) =

∑

i∈S
π′(i|b)g(6) = g(6),

g(a, c3) =
∑

i∈S
π′(i|a)[u1g(3) + u2g(7)] = u1g(3) + u2g(7),

g(a, c4) =
∑

i∈S
π′(i|a)[v1g(4) + v2g(8)] = v1g(4) + v2g(8).

Thus, the performance difference formula is

η′ − η = π′(a)(σ′ − σ){u1g(3) + u2g(7) − [v1g(4) + v2g(8)]} + π′(b)(σ′ − σ)[g(5) − g(6)].

From (8.4), we can obtain the following performance derivative formula:

dη

dσ
= π(a){u1g(3) + u2g(7) − [v1g(4) + v2g(8)]} + π(b)[g(5) − g(6)].

8.10∗ A robot takes a random walk among four rooms, denoted as 1, 2, 3, and 4, as shown

in Figure 8.2. When the robot is in room 3, in the next step, it moves to room 1. When

it is in room 4, in the next step, it moves to rooms 2. There is a special passage that

connects the four rooms as shown in the middle of Figure 8.2. When the robot is in room
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Figure 8.2: The Moving Robot System in Problem 8.10

1, in the next step, it moves to room 2 with probability 1 − p1, or it tries to go through

the passage with probability p1. There is a traffic light, denoted as ⊙ in the figure, in the

passage. If it is red, the try fails and the robot moves back to room 1 in the next step; if

the light is green, the robot passes the light and moves to room 3. The robot behaves in

a similar way when it is in room 2: In the next step, it moves to room 1 with probability

1−p2, or it tries to go through the passage with probability p2; and the robot moves back

to room 2 in the next step if the light is red, and it passes the light and moves to room 4

in the next step, if the light is green. Denote the reward function as f .

Denote the probabilities of the light being green and red as σ and 1− σ, respectively.

We may control σ when we observe that the robot is in front of the light; we, however, do

not know which room does the robot come from. Our goal is to determine the probability

σ so that the long-run average reward is the maximum.

a. Formulate this problem with the event-based approach.

b. Derive the performance difference and derivative formulas.

c. Derive a policy iteration algorithm.

d. Show that one of the boundary points, σmax or σmin, must be an optimal policy.

Solution:

a. The process of the robot passing through a passage also consists of three phases.

These three phases correspond to three types of events. The observable events are

a = {< 1, 1 >,< 1, 3 >,< 2, 2 >,< 2, 4 >}, and a.
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The controllable events are

c1 = {< 1, 3 >,< 2, 4 >}, c2 = {< 1, 1 >,< 2, 2 >}.

The natural transition events are

n1 = {< 1, 3 >}, n2 = {< 1, 1 >}, n3 = {< 2, 4 >}, n4 = {< 2, 2 >},

n5 = {< 3, 1 >}, n6 = {< 4, 2 >}, n7 = {< 1, 2 >,< 2, 1 >}.

b. Using the performance difference formula (8.19), we have

η′ − η =
∑

eo

π′(eo)
∑

ec

[p′(ec|eo) − p(ec|eo)]g(eo, ec)

= π′(a)(σ′ − σ)[g(a, c1) − g(a, c2)],

where

g(eo, ec) =
∑

i∈I[eo]

π′(i|eo)
∑

et

p(et|eo, ec)g(j), (8.6)

with j = Oi(eo ∩ ec ∩ et). From (8.6),

g(a, c1) = π′(1|a)g(3) + π′(2|a)g(4), g(a, c2) = π′(1|a)g(1) + π′(2|a)g(2).

Thus, the performance difference formula is

η′ − η = π′(a)(σ′ − σ){[π′(1|a)g(3) + π′(2|a)g(4)]− [π′(1|a)g(1) + π′(2|a)g(2)]}. (8.7)

For this problem, the transition probability matrix is

P (σ) =




p1(1 − σ) 1 − p1 p1σ 0

1 − p2 p2(1 − σ) 0 p2σ

1 0 0 0

0 1 0 0



.

From the balance equation πP (σ) = π, we have

π(1)(1 − p1) = π(2)(1 − p2),

for any σ. Thus, the conditional steady-state probability

π′(1|a) =
π′(1)p(a|1)

π′(1)p(a|1) + π′(2)p(a|2)
=

π′(1)

π′(1) + π′(2)
=

π′(1)

π′(1) + π′(1)1−p1

1−p2

=
1 − p2

2 − p1 − p2

,(8.8)
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and

π′(2|a) =
π′(2)p(a|2)

π′(1)p(a|1) + π′(2)p(a|2)
=

π′(1)

π′(1) + π′(2)
=

π′(1)1−p1

1−p2

π′(1) + π′(1)1−p1

1−p2

=
1 − p1

2 − p1 − p2

.(8.9)

The conditional steady-state probability π′(1|a) and π′(2|a) do not depend on σ′. We can

design the policy iteration algorithm for this problem. The difference formula (8.7) can

be written as

η′ − η = π′(a)(σ′ − σ){[π(1|a)g(3) + π(2|a)g(4)]− [π(1|a)g(1) + π(2|a)g(2)]}.

c. Policy Iteration Algorithm:

1. Select an initial policy d0 = σ(0) and set k = 0;

2. Compute the potentials gdk(1), gdk(2), gdk(3) and gdk(4) by using the Poisson equa-

tion (I − P dk)gdk + ηdke = fdk and compute π(1|a) and π(2|a) by (8.8) and (8.9).

3. If π(1|a)gdk(3) + π(2|a)gdk(4) > π(1|a)gdk(1) + π(2|a)gdk(2), set σ(k+1) = σmax,

otherwise, set σ(k+1) = σmin.

4. If dk+1 = dk, stops; otherwise go to step 2.

d. From the process of the above policy iteration algorithm, the improved policy must

be one of the boundary points, σmax or σmin. Since the number of such policies is finite,

thus the policy iteration must stop at such a policy. If we assume the algorithm stops at

policy d∗, for any policy d = σ,

(σd − σd∗){[π(1|a)gd∗(3) + π(2|a)gd∗(4)] − [π(1|a)gd∗(1) + π(2|a)gd∗(2)]} ≤ 0

Thus, from the difference formula, we have ηd ≤ ηd∗ . d∗ is the optimal policy.

8.11∗ Derive equation (8.59), by using the arrival theorem and the product-form solution

to the steady state probabilities of the closed Jackson networks.

Solution: For a closed network, equation (C.5) holds, that is

vi =
M∑

j=1

q̃j,ivj, i = 1, 2, · · · ,M. (8.10)

where q̃j,i = pj,nj
qi,j , if j 6= i, and q̃j,j = 1−pj,nj

. Writing the above equations in a matrix

form, we have

v = vQ,
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where v = (v1, v2, . . . , vM) and Q = [q̃j,i]. If we only change the server rates of server k to

ph
k,nk

6= pd
k,nk

and set ph
i,ni

= pd
i,ni

for all ni and i 6= k, then only the kth row inQ will change.

That is, q̃d
k,i = pd

k,nk
qk,i, k 6= i and q̃d

k,i = 1 − pd
k,nk

are changed to q̃h
k,i = ph

k,nk
qk,i, k 6= i and

q̃h
k,i = 1 − ph

k,nk
. Let ch,d =

pd
k,nk

ph
k,nk

. We can prove if (vd
1 , v

d
2 , · · · , v

d
k, · · · , v

d
S) is a solution of

(8.10) under policy d, then (vd
1 , v

d
2 , · · · , c

h,dvd
k, · · · , v

d
S) is a solution of (8.10) under policy h.

For the closed network, the conditional probability π(n|a−k(nk)) at the departure times

is equal to the time-average conditional probability, that is,

π(n|a−k(nk)) = π(nk|N − nk).

where nk denotes the state of other M − 1 servers except server k and π(nk|N − nk)

denotes the conditional steady-state probability that the state of other M − 1 servers

except server k is nk when the total number of customers at these servers is N−nk. From

the product-form solution (C.11) and the fact that the solution of (8.10) under policy h

is (vd
1 , v

d
2 , · · · , c

h,dvd
k, · · · , v

d
S), we have

πh(nk|N − nk) = πd(nk|N − nk).

Therefore, (8.69) holds.

8.12 Develop a sample-path-based estimation algorithm for g[a−k(nk), fb] in (8.61) and

g[a−k(nk), dp] in (8.62).

Solution: Consider a sample path of the closed Jackson network with L transitions under

policy d. Denote the sequence of the time instants at which events a−k(nk) and fb happen

(A customer at server k moves back to server k after the completion of its service) on the

sample path as Ta−k(nk) := {l1, l2, · · · , lL−nk
}. Choose a large N and set

g̃ln =
N−1∑

l=0

f(Xln+l).

Next, we group the set Ta−k(nk) into sub-groups Ta−k(nk) = ∪n∈S with nk
Ta−k(n), where

Ta−k(n) denotes the time instants at which events a−k(nk) and fb happen and the state

is n and the subscript “n ∈ S with nk” denotes all the states n with the number of

customers at server k equal nk. Let L−n be the number of instants in Ta−k(n). We have

L−nk
=
∑

n∈S with nk
L−n.
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Then

1

L−nk

L−nk∑

n=1

g̃ln =
1

L−nk

∑

ln∈Ta−k(nk)

g̃ln

=
1

L−ni

∑

n∈S with nk

∑

ln∈Ta−k(n)

g̃ln

=
∑

n∈S with nk

L−n

L−nk

1

L−n

∑

ln∈Ta−k(n)

g̃ln.

Similarly to the argument in Section 8.4.2, when L is large enough, we have

1

L−nk

L−nk∑

n=1

g̃ln ≈
∑

all n with nk

πd[n|a−k(nk)]g
d(n) = gd[a−k(nk), fb].

Thus, we can estimate the potential gd[a−k(nk), fb] by using 1
L−ni

∑L−ni

k=1 g̃lk .

Similarly, denote the sequence of the time instants at which events a−k(nk) and dp

happen (A customer at server k leaves the server after the completion of its service) on

the sample path as {l1, l2, · · · , lL−nk
}, we have

1

L−nk

L−nk∑

n=1

ḡln ≈
∑

all n with nk

πd[n|a−k(nk)]qk,jg
d(n−k,+j) = g[a−k(nk), dp],

where ḡlk =
∑N

l=1 f(Xlk+l). Thus, we can use 1
L−ni

∑L−nk

n=1 ḡln to estimate the potential

g[a−k(nk), dp].

8.13 Consider the policy iteration Algorithm 8.1 in the service rate control problem in

Section 8.5.2.

a. Prove that the algorithm reaches a local optimal policy in a finite number of itera-

tions. Why is this policy not a “global” optimal policy?

b. If we change the policy improvement step to

3. (Policy improvement) For i = 1, · · · ,M , do for ni = 1, · · · , N , do

i. if gdk [a−i(ni), fb] ≥ gdk [a−i(ni), dp] then set p
dk+1

i,ni
= max1≤l≤Ki,ni

pi,ni
(l);

ii. if gdk [a−i(ni), fb] < gdk [a−i(ni), dp] then set p
dk+1

i,ni
= min1≤l≤Ki,ni

pi,ni
(l);

If p
dk+1

i,ni
6= pdk

i,ni
for any i and ni, then set k := k + 1 and go to step 2; If

p
dk+1

i,ni
= pdk

i,ni
for all i = 1, . . . ,M , and ni = 1, . . . , N , stop.
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What is the difference that such a change makes to the algorithm? Will this algorithm

stop? Will it reach a local optimal policy?

Solution:

a. From the algorithm, we know if i 6= M , we have ηdk+1 > ηdk . Thus, the average

reward increases at each iteration before it stops. Because the number of policies is finite,

the iteration procedure has to stop after a finite number of iterations. When the algorithm

stops at a policy d̂, since for any policy h,

[ph
k,nk

− pd̂
k,nk

]{gd̂[a−k(nk), fb] − gd̂[a−k(nk), dp]} ≤ 0, k = 1, 2, · · · ,M, nk = 1, 2, · · · , N.

Thus, for any policy h, the directional derivative

dη

dδ
=

M∑

i=1

N∑

ni=1

{
πd̂[a−i(ni)](p

h
i,ni

− pd̂
i,ni

){gd̂[a−i(ni), fb] − gd̂[a−i(ni), dp]}
}
≤ 0.

But we cannot determine ηh −ηd̂ ≤ 0 because condition (8.69) may not hold under policy

h and d̂. Therefore, d̂ is only a local optimal policy.

b. The algorithm does not only change the service rate of one server at each iteration,

but change the service rates of all the servers. Under this change, condition (8.69) cannot

hold. Thus, this algorithm can not increase the average reward at each iteration and

cannot stop. It will also not reach a local optimal policy.

8.14 In the policy iteration algorithm in the service rate control problem in Section 8.5.2,

at every iteration we always start from server 1, in the order of server 1, server 2, and

so on, to update the service rates of the servers. We may try to update the service rates

of the servers in a round-robin way: e.g., if server 1’s service rates are updated at an

iteration, then in the next iteration, we start from server 2 to update the service rates,

etc. Develop such an algorithm and discuss its advantages, if any.

Solution:

1. Guess an initial policy d0, set k := 0, i := 1 and c := 0.

2. (Policy evaluation) Estimate the aggregated potentials gdk [a−j(nj), fb] and gdk [a−j(nj), dp]

for j = 1, · · · , N defined in (8.61) and (8.62) on a sample path of the system under

policy dk.
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3. (Policy improvement) for ni = 1, 2, · · · , N , do

(a) if gdk [a−i(ni), fb] ≥ gdk [a−i(ni), dp] then set p
dk+1

i,ni
= max1≤l≤Ki,ni

pi,ni
(l);

(b) if gdk [a−i(ni), fb] < gdk[a−i(ni), dp] then set p
dk+1

i,ni
= min1≤l≤Ki,ni

pi,ni
(l).

4. If p
dk+1

i,ni
= pdk

i,ni
for all ni = 1, 2, · · · , N , set c := c+ 1, otherwise, set c := 0.

If c = M , stop;

otherwise, set k := k + 1 and i := i+ 1, if i > M , set i := 1, go to step 2.

The advantage: This algorithm does not need to start from server 1 at every itera-

tion. It can update the service rates of the servers in a round-robin way.

8.15∗ (Options [15]) This problem is closely related to the time aggregation formulation.

Consider a Markov process X with state space S, and let I ⊂ S be a subset of S. As

in Problem 8.8, we may define an observable event as when the system leaves a state in

I. Let us call the period between two consecutive events (i.e., two consecutive visits to

I) as an option period. The control problem is described as follows. There is a space,

denoted as Π, of a finite number of options. An option corresponds to a state transition

probability matrix in S (i.e., equivalent to a policy); however, it is only applied to an

option period. After the system visits a state i ∈ I, the system may evolve with any

option in the available option set Πi ⊆ Π until it reaches the next state j ∈ I. We assume

that under any option in Π, the set I is reachable.

We consider randomized policies. Thus, in this problem for any given i ∈ I a policy

specifies a probability distribution on Πi. Precisely, let oi,1, oi,2, · · · , oi,ni
be the options in

Πi. A policy d specifies a probability distribution d(i) := (pi,1, . . . , pi,ni
). With policy d,

the system operates under option oi,k with probability pi,k,
∑ni

k=1 pi,k = 1. Our goal is to

determine the policy that achieves the maximum long-run average reward. For simplicity,

we assume that the reward function f is the same for all policies.

The standard event-based optimization approach discussed in this chapter does not

directly apply to this problem. However, the basic principles and concepts can be easily

modified and extended to this problem. In the standard formulation, a control action

taken at a time instant only affects the transition to the next state and therefore the
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controllable event can be defined. In the option problem, however, a control action affects

the transitions in the entire option period.

Please formulate this problem in the framework of event-based optimization.

a. What are the observable events?

b. What are the aggregated potentials? (Hint: it can be denoted as g(i, oi).)

c. Derive the performance difference and derivative formulas for the two policies in the

problem.

d. Comment on this event-option based optimization approach.

Solution:

a. The observable events are eo(i) := {< i, j >: j 6= i ∈ S}, i ∈ I and ∪i∈Ieo(i).

b. From (8.37), the aggregated potential is g(i, oi,l) =
∑

j∈I p[j|i, oi,l]g(j), i ∈ I, l =

1, 2, · · · , ni, where p[j|i, oi,l] denotes the probability that the process X transits from state

i to state j in an option period.

c.

ηh − ηd =
∑

i∈I
πh(i)

ni∑

l=1

[ph
i,l − pd

i,l]g
d(i, oi,l).

If we assume the policy depends on a parameter θ, then the performance derivative is

dη(θ)

dθ
=
∑

i∈I
πh(i)

ni∑

l=1

dpi,l(θ)

dθ
gd(i, oi,l).

d. For this problem, we can find that condition (8.36) holds naturally. This is because

for any observable event eo := {< i, j >: j 6= i ∈ S}, the conditional steady-state

probability πh(i|eo) ≡ 1 for any policy h. However, for the option problem, it is difficult to

define the controller events and natural transition events by using state transitions. This

is because there exists many state transitions in an option period. If we only consider

the time instants that the observable event occurs, the process is still Markovian and the

event-based method can be directly utilized. This idea is the same as the time aggregation

formulation.

8.16∗ Consider a partially observable Markov chain with the structure shown in Figure

8.3. The 15 states are grouped into three functionally similar groups. Group 1 consists
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of 5 states denoted as 1, 111, 112, 121, and 122; Group 2 consists of 5 states denoted as

2, 211, 212, 221, and 222; and Group 3 consists of 5 states denoted as 3, 311, 312, 321,

and 322. States 1, 2, and 3 are completely observable. The other 12 states are grouped

in to 6 super-states, denoted as 11, 12, 21, 22, 31, and 32; each consisting of two states

as shown in the figure; e.g, the super-state 11 consists of two states 111 and 112. Only

the super-states are observable; for example, after the system transits out from state 1,

we only know that the system is in super-state 11 or 12 and cannot know which exact

state the system is in. The state transition probabilities are indicated in the figure. The

transition probabilities from the observable states 1, 2, and 3, e.g., p1,11, p1,12, p1,21, and

p1,22, are fixed and known. The transition probabilities from the non-observable states

are controllable by actions and are denoted as pα
111;2, p

α
111;3, p

α
121;2, and pα

121;3, etc. The

superscript α denotes any feasible action for the corresponding state. Because we cannot

determine the exact state in a super-state, we need to assume that the sets of the feasible

actions for the two states in a super-state are the same. For example, if we know that the

system is in super-state 12 and decides to take action α, then this action must be feasible

to both 121 and 122.

A sample path of the Markov chain may look like: X = {2, 221, 1, 112, 2, 211, 3, 322, 1,

111, · · ·}, with an observable state followed by a non-observable state and followed by

another observable state, etc. The corresponding observed random sequence is Y =

{2, 22, 1, 11, 2, 21, 3, 32, 1, 11, · · ·}.

Suppose that when the system is at state x, a random reward is received with f(x)

being its average. In addition, we assume that the function f is unknown but the reward

at any time instant is observable. We consider the optimization of the long-run average

reward. Please formulate this problem in the event-based formulation.

a. Explain that in this POMDP problem, a memoryless policy is a mapping from the

space {11, 12, 21, 22, 31, 32} to the action space.

b. What are the observable events?

c. What are the aggregated potentials?

d. Derive the performance difference and derivative formulas for the two policies in the
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Figure 8.3: The POMDP in Problem 8.16

problem.

e. Can we develop a policy iteration algorithm for the performance optimization of

this problem? If so, please describe the algorithm in detail.

Solution:

a. In POMDP, a memoryless policy is to choose action according to the current

observation. Thus, this policy is a mapping from the space {11, 12, 21, 22, 31, 32} to the

action space. For example, when the system is in supper state 12, we choose an action from

the action space according to the current supper state 12. A memoryless policy may also

be a stochastic policy. For example, when the system is in supper state 12, we can choose

an action from the action space with a probability distribution determined by super state

12. At that time, the memoryless policy is a mapping from the space {11, 12, 21, 22, 31, 32}

to the probability distribution set on the action space. The stochastic memoryless policy

may be better than the deterministic memoryless policy. We consider the stochastic

memoryless policy in this problem.

b. The observable events are e11 = {< i, j >: i ∈ {111, 112}, j ∈ {2, 3}}, e12 = {<

i, j >: i ∈ {121, 122}, j ∈ {2, 3}}, e21 = {< i, j >: i ∈ {211, 212}, j ∈ {1, 3}},e22 = {<

i, j >: i ∈ {221, 222}, j ∈ {1, 3}}, e31 = {< i, j >: i ∈ {311, 312}, j ∈ {1, 2}},e32 = {<
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i, j >: i ∈ {321, 322}, j ∈ {1, 2}} and e11 ∪ e12 · · · e32.

c. For this problem, we have π(ijk|ei,j) = π(i)p(ijk|i)p(ij|ijk)
π(i)

∑
j=1,2 p(ijk|i)p(ij|ijk)

=
pi,jk∑

k=1,2 pi,jk
, i =

1, 2, 3, j, k = 1, 2, which do not depend on the policy. Therefore, the aggregated potentials

are gd(ei,j , α) =
∑

k π(ijk|ei,j)
∑

m6=i,m=1,2,3 p
α
ijk,mg

d(m), i = 1, 2, 3, j = 1, 2.

d. The performance difference formula is

ηh − ηd =
∑

i=1,2,3,j=1,2

πh(ei,j)
∑

α∈A(ei,j)

[ph(α|ei,j) − pd(α|ei,j)]g
d(ei,j , α),

where ph(α|ei,j) and pd(α|ei,j) denotes the probabilities that the stochastic memoryless

policies h and d choose action α when the observable event ei,j occurs and A(ei,j) denotes

the available action space when event ei,j occurs. The performance derivative is

dη(θ)

dθ
=

∑

i=1,2,3,j=1,2

πd(ei,j)
∑

α∈A(ei,j)

dpθ(α|ei,j)

dθ
gd(ei,j , α),

when the probability p(α|ei,j) depends on parameter θ.

e. Since π(ijk|ei,j) does not depend on the policy, we can develop the policy iteration

algorithm for the performance optimization of this problem.

Algorithm:

1. Select an initial policy d0, and set k = 0

2. Estimate the potential gdk(ei,j , α) based on a sample path under policy dk (The

estimation is similar to Problem 8.12).

3. Choose a policy dk+1 such that

dk+1 ∈ argmax
d∈D

∑

α∈A(ei,j)

[pd(α|ei,j) − pdk(α|ei,j)]g
dk(ei,j, α),

for all ei,j .

4. If dk+1 = dk, stop; otherwise, set k := k + 1 and go to step 2.

8.17∗ We consider a POMDP problem with the structure shown in Figure 8.4. The

4 states 1, 2, 3, and 4 are grouped into 2 super-states a and b, with a = {1, 2} and

b = {3, 4}. The super-states are observable, but the states are not. A sample path
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may look like X = {1, 2, 4, 2, 3, 4, 1, 2, 4, 1, 4, 1, 2, 3, 2, 3, 4, 1, · · ·}, and the corresponding

observed random sequence is

Y = {a, a, b, a, b, b, a, a, b, a, b, a, a, b, a, b, b, a, · · ·}. (8.11)

Unlike in Problem 8.16 where a super-state completely determines the probability distri-

bution of the system state, here the state distribution may depend on the history of the

observed super-states. For example, if we observe two a’s in a row, from Figure 8.4 we

know that the system must be in state 2. Similarly, two consecutive observations of “b”

lead to a state 4. Therefore, after two consecutive a’s or b’s, denoted as (a, a) or (b, b),

the system “regenerates” from state 2 or 4.

The regenerative property simplifies the analysis as well as the notation. Let x, or

x′, denote any sequence of super-states. Then an observation history (x′, a, a, x) can be

denoted as (a, a, x), and (x′, b, b, x) can be denoted as (b, b, x), because the past history

x′ does not contain any extra information. Furthermore, if x is non-null, we may further

omit the prefix (a, a) or (b, b) and simply denote them as x (if x starts with a, the prefix

cannot be (a, a), and vise versa). Therefore, the observation histories correspond to the

following cases: (a, a), (b, b), (a), (b), (a, b), (b, a), (a, b, a), (b, a, b), and (a, b, a, b), and so

on. In general, the sequence alternates between a and b.

If at a time instant the observation history is Y = {x′, a, a, x} or Y = {x′, b, b, x}, then

x (or (a, a) and (b, b) if x is null) completely determines the probability distribution of

the states at that time instant. For example, x = (a) implies that the system just transits

from state 4 to state 1 or 2. Thus, the state probability distribution is p(3) = p(4) = 0

and p(1) =
pα
4,1

pα
4,1+pα

4,2
and p(2) =

pα
4,2

pα
4,1+pα

4,2
.

Therefore, in terms of the state probability distribution, the history Y in (8.11) is

equivalent to

{•, 2, (b), (b, a), (b, a, b), 4, (a), 2, (b), (b, a), (b, a, b), (b, a, b, a), 2, (b), (b, a), (b, a, b), 4, (a), · · · , }

where “•” represents the initial probability.

Suppose that when the system is at state i, a random reward is received with f(i)

being its average. In addition, we assume that the function f is unknown but the reward

at any time instant is observable. We consider the long-run average reward, its existence

is guaranteed by the regenerative property.
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Figure 8.4: The POMDP in Problem ??

a. Derive the state probability distributions corresponding to (b), (b, a) (a, b) and so

on.

b. What are the observable events?

c. What are the aggregated potentials?

d. Derive the performance difference and derivative formulas for the two policies in the

problem.

e. Can we develop a policy iteration algorithm for the performance optimization of

this problem? If so, please describe the algorithm in details.

Solution:

a.

π(i|b) =
π(i)p(b|i)∑
i∈S π(i)p(b|i)

.

Since p(b|i) = 0 when i = 1, 2 and p(b|i) = 1 when i = 3, 4, then π(1|b) = π(2|b) = 0 and

P (3|b) = π(3)
π(3)+π(4)

, P (4|b) = π(4)
π(3)+π(4)

. For the observation history (b, a), we have

π(j|(b, a)) =

∑
i∈S π(i)p(b|i)p(j|i)p(a|j)∑

i∈S π(i)p(b|i)
∑

j∈S p(j|i)p(a|j)
.

Then, p(1|(b, a)) = π(4)pα(1|4)
π(3)pα(2|3)+π(4)

, p(2|(b, a)) = π(4)pα(2|4)+π(3)pα(2|3)
π(4)+π(3)p(2|3) and p(3|(b, a)) =

p(4|(b, a)) = 0. For the observation history (a, b), we have

π(j|(a, b)) =

∑
i∈S π(i)p(a|i)p(j|i)p(b|j)∑

i∈S π(i)p(a|i)
∑

j∈S p(j|i)p(b|j)
.

Then, π(3|(a, b)) = π(2)pα(3|2)
π(1)pα(4|1)+π(2)

, π(4|(a, b)) = π(2)pα(4|2)+π(1)pα(4|1)
π(1)pα(4|1)+π(2)

. and π(1|(a, b)) =

π(2|(a, b)) = 0.
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b. The observable events are a = {< i, j >: i ∈ {1, 2}, j ∈ S},b = {< i, j >: i ∈

{3, 4}, j ∈ S}.

c. Let e denote a sequence of observable event, then, from the regenerative property,

e ∈ {(a, a), (b, b), (a), (b), (a, b), (b, a), (a, b, a), (b, a, b), (a, b, a, b)}. we have the following

aggregated potential

gh,d(e, α) =
∑

i∈S
πh(i|e)pα(j|i)gd(j)

d. The performance difference formula is

ηh − ηd =
∑

e

πh(e)
∑

α

[ph(α|e) − pd(α|e)]
∑

i∈S
πh(i|e)pα(j|i)gd(j),

where ph(α|e) and pd(α|e) denote the probabilities that the policies h and d choose action

α when the observable event sequence e occurs. The performance derivative formula is

dη

dθ
=
∑

e

πd(e)
∑

α

dpd
θ(α|e)

dθ

∑

i∈S
πd(i|e)pα(j|i)gd(j).

e. Since πh(i|e) 6= πd(i|e) when h 6= d in general, we cannot design the policy iteration

algorithm for the performance optimization of this problem.

8.18∗ Suppose that in Problem 8.17, for simplicity we only take (a, a), (b, b), (a), (b),

(a, b), and (b, a) as the possible events; i.e., we aggregate the histories according to the

latest two super-states. For example, history (a, b, a, b, a) is aggregated into (b, a) and so

on. In this formulation, the action taken at a time instant depends only on the last two

super-states in the observation history.

a. Derive the performance difference formula.

b. Explain that in general, policy iteration cannot be developed from such a perfor-

mance difference formula.

c. Do this problem and Problem 8.15 help you understand the POMDP problems?

Solution:

a. Define E = {(a, a), (b, b), (a), (b), (a, b), (b, a)}. The performance difference formula

is

ηh − ηd =
∑

e∈E
πh(e)

∑

α

[ph(α|e) − pd(α|e)]
∑

i∈S

πh(i|e)pα(j|i)gd(j).
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b. In general, the conditional steady-state probability πh(i|e) cannot be equal to

πd(i|e). For example, from part a) in Problem 8.17, we can find π(3|(a, b)) depends on

π(3) and π(2), which are different under different policies in general. Thus, policy iteration

cannot be developed from such a performance difference formula.

c. From this problem, we can find the policy of POMDP generally depends on the

history. To obtain the optimal policy, e may depend on the whole history. If we only

want to obtain a suboptimal policy, we can consider the finite history. For example, in

this problem, histories (a, b, b, a) and (b, a, b, a) can be truncated into history (b, a).

8.19∗ In Problem 8.17, if we can trace back from the observation history, we can estimate

the earlier system state better. For example, as shown in (8.11), the observations from

l = 0 to l = 5 are {a, a, b, a, b, b}. We know that at l = 1, the system is at X1 = 2, and

the state probability distributions at times l = 3, l = 4, and l = 5 can be calculated, see

Problem 8.17. However, at l = 5 we have observed (b, b) and therefore we know that the

system state is X5 = 4. Knowing so, from the structure shown in Figure 8.4, we may

trace back to l = 4 and assert that X4 = 3. Similarly, we can know for sure that X3 = 2.

a. Update the state probability distribution at l = 2 after observing {a, a, b, a, b, b} at

l = 5.

b. Does this posterior information help in determining the optimal policy?

Solution:

a. From observed histories (a, a) and (b, b), we can completely determine X1 = 2 and

X5 = 4. From the structure shown in Figure 8.4 or Figure 8.17 in the textbook, we can

trace back to l = 4 and assert X4 = 3. Similarly, we can know for sure that X3 = 2. Since

the observation is b at l = 2, we can assert Xl = 3 or Xl = 4. From X1 = 2 and X3 = 2,

the state probability distribution at l = 2 is p(3|(a, a, b, a, b, b)) = pα(3|2)pα(2|3)
pα(3|2)p(2|3)+pα(4|2)pα(2|4)

and pα(4|(a, a, b, a, b, b)) = pα(4|2)p(2|4)
pα(3|2)pα(2|3)+pα(4|2)pα(2|4) .

b.This posterior information does not help in determining the optimal policy because

the policy depends only on the history and cannot depend on the future information.

8.20∗ In the analytical approach for MDPs, the reward function f(i) is assumed to be

known; and in the reinforcement learning approach, the reward at every time instant is
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assumed to be observable. In MDPs, the state i is assumed to be completely observable,

therefore, both assumptions are equivalent. In POMDPs, however, the state is not ob-

servable; therefore, knowing the form of the function f(i) does not allow us to know the

actual reward at every instant. As such, we may have four different situations regarding

the rewards:

i. The function f is known, and the reward at every instant is observable;

ii. The function f is known, but the reward at every instant is not observable;

iii. The function f is not known, but the reward at every instant is observable; and

vi. The function f is not known, and the reward at every instant is also not observable,

but the final reward at the completion of each sample path is known.

In Problems 8.16 and 8.17, we take the learning approach and therefore we were

dealing with the third situation. In addition, we assumed that the reward is random with

a unknown mean f(i).

Now, let us further assume that the reward at any state i is a fixed deterministic

number f(i), which is an unknown function but the reward received at every time instant

is observable. In this case, we may determine the state i by the reward received. For

instance, in Problem 8.16, when super-state 11 is observed, the system may be in either

state 111 or 112 with probabilities σ111 :=
p1,11

p1,11+p1,12
or σ112 :=

p1,12

p1,11+p1,12
, respectively.

Thus, the reward received is either f(111) or f(112) with probabilities σ111 or σ112, re-

spectively. To be more precise, suppose σ111 = 0.4 and σ112 = 0.6. Let us observe the

sample path for a while. We may find that when 11 is observed, we have 0.4 chance of

obtaining a reward of 0 and 0.6 chance of obtaining a reward of 1. Then we can easily

know that f(111) = 0 and f(112) = 1, and later on when 11 is observed, if we receive 0

we know that the state is 111 and if we receive 1, we know it is in 112. The following

questions are for your further investigation:

a. Can we develop an algorithm from this reasoning?

b. Can we apply the same reasoning to Problem 8.17?

c. Can we apply the same reasoning to the general POMDPs?
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Solution:

a. If have known that f(111) = 0 and f(112) = 1, then we have p(f = 0|111) = 1,

which denotes we can obtain the reward 0 with probability 1 when the state is 111.

Similarly, we have p(f = 0|112) = 0 and p(f = 1)|111) = 0, p(f = 1|112) = 1.

After that, we can use the reward information to estimate the state information. In

problem 8.16, when super-state 11 is observed, we only use the observation informa-

tion from the super-state to estimate the state and obtain the system may be in either

state 111 or 112 with probabilities σ111 :=
p1,11

p1,11+p1,12
or σ112 :=

p1,12

p1,11+p1,12
, respectively.

If the reward information is added, there are two types of observations: super-states

and rewards. Thus, if we receive a reward f = 0, the system may be in state 111

with probability
p1,11p(f=0|111)

p1,11p(f=0|111)+p1,12p(f=0|112) =
p1,11

p1,11
= 1 or in state 112 with probability

p1,12p(f=0|112)
p1,11p(f=0|111)+p1,12p(f=0|112) = 0

p1,11
= 0. Similarly, if we receive a reward f = 1, then the

system is in state 111 with probability
p1,11p(f=1|111)

p1,11p(f=1|111)+p1,12p(f=1|112) = 0 or in state 112 with

probability p1,12p(f=1|112)
p1,11p(f=1|111)+p1,12p(f=1|112) = 1. The general algorithm will be given for the

POMDP problem in part c).

b. We consider a simple case in Problem 8.17 . If at a time the observation history is

Y = {x′, b, b, x}, x = (a) implies that the system just transits from state 4 to state 1 or

2. Thus, the system may be in either state 1 or 2 with probabilities p(1) =
pα
4,1

pα
4,1+pα

4,2
and

p(2) =
pα
4,2

pα
4,1+pα

4,2
, respectively. We may find that when (b, b, a) is observed, we have p(1)

chance of obtaining a reward of f(1) and p(2) chance of obtaining a reward of f(2), then

we can easily know that f(1) and f(2), and later on when (b, b, a) and f(1) is observed,

we know the state is 1 and if f(2) is observed we know that the state is 2.

c. We can apply the same reasoning to the general POMDPs. For the general

POMDPs, we can firstly compute the steady-state probability π(i), then we have π(i)

chance of obtaining a reward f(i), i ∈ S. Then, if the rewards are different for differ-

ent states, we can know p(f = f(i)|i) = 1. Then, we can update the state probability

distribution that the system is in state i ∈ S as follows:

b0(i) =
π0(i)p(o0|i)p(f0|i)∑

i∈S π0(i)p(o0|i)p(f0|i)
,

bl(i) =
bl−1(i)p(ol|i)p(fl|i)∑

i∈S bl−1(i)p(ol|i)p(fl|i)
, l = 1, 2, · · · ,

where ol and fl denote the observation and the reward at time l, respectively.
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Solutions to Chapter 9

9.1 As explained in Section 9.2, in the performance difference construction approach

shown in Figure 9.1, the construction is done in the following way:

i. On the perturbed sample path A − B − E − D, we use the same random variable

ξl to determine whether or not there is a jump at each transition l; and

ii. when a jump is identified, we use another independent sequence of random variables

to generate an auxiliary path, e.g., W − C.

While the above construction is convenient, it is not necessary. Convince yourself that

we can derive the same results as those in Section 9.2 if we construct the sample paths in

the following way:

i. On the perturbed sample path A − B − E − D, we use two independent random

variable ξl and ξ′l to determine whether or not there is a jump at each transition l;

209
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i.e., a jump from j to j′ occurs if after visiting state i, the system moves to state j

according to ξl and P , but it moves to state j′ according to ξ′l and P ′; and

ii. we generate the auxiliary paths by using the same sequence of random variables as

the perturbed path, e.g., we generate W − C by using the same sequence as that

used for generating the perturbed path G−D.

Solution: On the sample path A − B − E − D, we may use two independent random

variables ξl and ξ′l to determine whether or not there is a jump at each transition. If after

visiting state i, the system moves to state j according to ξl and P , but it moves to state

j′ according to ξ′l and P ′, a jump from j to j′ occurs.

When we use the same random variable ξl to determine a jump, the probability of a

jump from u to v after visiting i is p(u, v|i), with
∑

u,v∈S p(u, v|i) = 1. When we use

two independent random variables ξl and ξ′l, the probability of a jump from u to v after

visiting i is p(u|i)p(v|i), with
∑

u,v∈S p(u|i)p(v|i) = 1. In fact, in the latter case, we have

p(u, v|i) = p(u|i)p(v|i). On this basis, even if we use two independent random variables

ξl and ξ′l to determine the jump, this does not affect the results in Section 9.2.

For the generation of the auxiliary paths, we use the same sequence of random variables

as the perturbed path. In fact, this is a coupling in realization factors, which can reduce

the variance of the estimation of realization factors and does not affect the value of

realization factors. We can refer to Section 3.1.3.

9.2 For two ergodic transition probability matrices P and P ′, set P (δ) := P + δ(P ′ −P ).

Assume that δ is very small. Apply the construction approach described in Section 9.2

by following a sample path of the Markov chains with P (δ). Show that this is equivalent

to the performance derivative construction described in Section 2.1.3 . (In Section 9.2,

we follow the perturbed sample path, while in Section 2.1.3 , we follow the original path.)

Solution: When δ is very small, the transition probability matrices P and P (δ) are very

close. Thus, the transition according to P (δ) is the same as the transition according to

P in most cases. Following the construction described in Section 9.2 , we start from a

sample path, Xδ, of the Markov chains with P (δ). When the transitions according to

P (δ) and P are different, a jump is generated, for example, states u1 and v1 at time 4
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in Figure 9.1 . After the jump, two sample path are generated according to Pδ and P ,

respectively. Since Pδ and P are very close, the two sample path will generally merge

before a new jump is generated. For example, in Figure 9.1, Xδ and X merge at time

7. Then at time 9, a new jump is generated. We can also follow the sample path X and

generate similar perturbations in Figure 9.1 by using the construction method in section

2.1.3. Therefore, the two methods are equivalent.
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Figure 9.1: The Effect of Two Perturbations

9.3 Suppose that the transition probability matrices of all the policies in an MDP problem

are uni-chains on the same finite state space S. (A uni-chain is a special case of a multi-

chain defined in (B.1) with m = 1.)

a. Apply the construction approach shown in Section 9.2 to any two uni-chain policies

and derive the performance difference formula. Show that it is a special case of the

performance difference formula (4.36) in Chapter 4 for the multi-chain case.

b. Derive the Poisson equation for a uni-chain policy, prove that its solution exists,

and express the potentials of the transient states in terms of those of the recurrent

states.

c. Develop the policy iteration algorithm for uni-chain MDPs, and show that it is the

same as that for ergodic chains.

d. Explain point (c) using the policy iteration algorithm for the general case of multi-

chain MDPs.



212 CHAPTER 9. SOLUTIONS TO CHAPTER 9

Solution:

a. We consider two uni-chains with transition probability matrices P h and P d and

the same state space S = {1, 2, · · · , S ′}. We assume {1, 2, · · · , S} are the recurrent states

under policy h. For a uni-chain, we know the long run average performance ηh(i) is

independent of the initial state, i.e. ηh(i) = ηh. Applying the construction approach

shown in Section 9.2, we can obtain the performance difference formula similarly to (9.3)-

(9.5).

ηh − ηd =

S∑

i=1

πh(i)
{ S′∑

j=1

[ph(j|i) − pd(j|i)]gd(j) + fh(i) − fd(i)
}
. (9.1)

For a uni-chain,

(P h)∗ =


 eSπ

h 0

eS′−Sπ
h 0


 ,

where eS denotes a S-dimensional row vector in which all components are 1, πh =

(πh(1), · · · , πh(S)) and πh(i) is the steady-state probability of state i under policy h.

Putting (P h)∗ and ηd = ηde into (4.36), we have

ηh − ηd =

S∑

i=1

πh(i)
{ S′∑

j=1

[ph(j|i) − pd(j|i)]gd(j) + fh(i) − fd(i)
}
.

Thus, (9.1) is a special case of (4.36) in Chapter 4 for the multi-chain case.

b. For a uni-chain, we assume {1, 2, · · · , S} are the recurrent states. We have the

Poisson equation

(
IS′ −


 P 0

R1 R2


+


 eSπ 0

eS′−Sπ 0



)

 g1

g2


 =


 f1

f2


 ,

where I ′S is a S ′-dimensional unit matrix and π = (π(1), · · · , π(S)). Thus, we have

(IS + P + eSπ)g1 = f1

(eS′−Sπ − R1)g1 + (IS′−S − R2)g2 = f2.

Since IS + P + eSπ and IS′−S − R2 are invertible, we have

g1 = (IS + P + eSπ)−1f1, (9.2)

g2 = (IS′−S − R2)
−1[f2 − (eS′−Sπ − R1)g1]. (9.3)
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c. Policy Iteration Algorithm:

1. Guess an initial policy d0, set k = 0.

2. Obtain the potential gdk by using (9.2) and (9.3).

3. Choose

dk+1 ∈ argmax
d∈D

{fd + P dgdk}.

component-wisely (i.e., to determine an action for each state). If at a state i, action

dk(i) attains the maximum, then set dk+1(i) = dk(i).

4. If dk+1 = dk, stop; otherwise set k := k + 1 and go to step 2.

This algorithm is the same as that for ergodic chains.

d. From the point view of policy iteration for the general multi-chain MDPs, since

ηd = ηe is independent of the initial state, then we have P hηd = ηd. Therefore, from

comparison lemma (4.41), we should choose actions for all state as that in the step 3.

9.4 Prove that the policy iteration algorithm developed in Example 9.2 converges to an

optimal policy.

Solution: From the step 3 of the algorithm, if (αik+1
, βik+1

) 6= (αik , βik), then

p0

αik+1
− αik

1 − αik+1

[g(0) − g(1)] + pN

βik+1
− βik

1 − βik+1

[g(N) − g(N − 1)]

> p0
αik − αik

1 − αik

[g(0) − g(1)] + pN
βik − βik

1 − βik

[g(N) − g(N − 1)] = 0.

Using (9.7), we have ηk+1 > ηk, where ηk+1 and ηk are the performances under control

pairs (αik+1
, βik+1

) and (αik , βik), respectively. That is, the average reward increases at

each iteration before it stops. Because the number of policies is finite, the iteration

procedure has to stop after a finite number of iterations. When it stops at step k, we set

(α̂, β̂) := (αik+1
, βik+1

) = (αik , βik). From the step 3 of the algorithm, we have

(α̂, β̂) = arg max
(α,β)∈{(αi,βi),i=1,2,···,M}

{
p0
α− α̂

1 − α
[g(0) − g(1)] + pN

β − β̂

1 − β
[g(N) − g(N − 1)]

}
.

Thus, for any control pairs (α, β), from (9.7), we have η − η̂ ≤ 0, where η and η̂ are the

performances under control pairs (α, β) and (α̂, β̂), respectively. That is to say, for any
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policy (α, β), it performance η is less than η̂. Therefore, the policy (α̂, β̂) is the optimal

policy.

9.5 In this exercise, we modify the random walk problem studied in Examples 9.1 and

9.2 as follows. First we simplify the problem by assuming that the random walker can

take only N + 1 = 5 positions denoted as 0, 1, 2, 3, and 4. When the walker hits the wall

0 or 4, s/he stays there with probability α0, or α4, respectively, and jumps to position

1, or 3, with probability 1 − α0, or 1 − α4, respectively. Second, we assume that when

the walker is at position 1, 2, or 3, s/he will also stays there with probability α1, α2,

and α3, respectively, and leaves the position with probability 1 − α1, 1 − α2, and 1 − α3,

respectively. If s/he leaves position i, i = 1, 2, 3, s/he will have an equal probability of

0.5 to jump to one of its neighboring position i− 1 or i+ 1, i = 1, 2, 3.

Now suppose that at each position i we may choose αi from a finite set denoted as

αi,1, αi,2, · · · , αi,M , i = 0, 1, · · · , 4.

a. Derive the performance difference formula (similar to (9.6)) and the policy iteration

algorithm for this problem.

b. Furthermore, we assume that α0,i and α4,i (with the same i), i = 1, 2, · · · ,M , have

to be chosen together, and α1,i, α2,i, and α3,i (with the same i), i = 1, 2, · · · ,M , have

to be chosen together. Derive a performance difference formula (similar to (9.7))

for this problem.

c. Based on the performance difference formula derived in (b), develop a policy iter-

ation algorithm for the optimization problem in which actions at different states

cannot be chosen independently.

Solution:

a. We consider the Markov chain X ′ under policy (α′
0, α

′
1, α

′
2, α

′
3, α

′
4) (without loss of

generality, we assume α′
i > αi, i = 0, 1, 2, 3, 4). At state 0, X ′ may jump from state 1 to 0

with probability α′
0 − α0, and at state 4, it may jump from state 3 to 4 with probability

α′
4 − α4. Moreover, at state i, i = 1, 2, 3, it may jump from state ∆i to i with probability

α′
i − αi, ∆i is a stochastic state, which is i − 1 with probability 1/2 and i + 1 with
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probability 1/2. Thus, the potential g(∆i) = 1
2
[g(i−1)+g(i+1)]. Then, by construction,

we have

η′ − η = π′(0)
{

[α′
0 − α0][g(0) − g(1)]

}
+ π′(4)

{
[α′

4 − α4][g(4) − g(3)]
}

+
∑

i=1,2,3

π′(i)
{

[α′
i − αi][g(i) − g(∆i)]

}
.

Based on the above difference formula, similar to the method in Chapter 4, we obtain

the following policy iteration algorithm.

1. Guess an initial policy d0 = (α0
0, α

0
1, α

0
2, α

0
3, α

0
4), set k = 0;

2. Obtain the potential gdk by solving the Poisson equation (I −P dk)gdk + ηdke = fdk ,

or by estimation on a sample path of the system under policy dk.

3. Choose dk+1 such that

αk+1
0 ∈ arg max

α0∈{α0j ,j=1,2,···,M}
[α0 − αk

0][g
dk(0) − gdk(1)],

αk+1
4 ∈ arg max

α4∈{α4j ,j=1,2,···,M}
[α4 − αk

4][g
dk(4) − gdk(3)],

αk+1
i ∈ arg max

αi∈{αij ,j=1,2,···,M}
[αi − αk

i ][g
dk(i) − gdk(∆i)], i = 1, 2, 3,

4. If dk+1 = dk, stop; otherwise set k := k + 1 and go to step 2.

b. Similar to Example 9.2, we have

η′ − η = π′(0, 4)κ1

{
p0
α′

0 − α0

1 − α′
0

[g(0) − g(1)] + p4
α′

4 − α4

1 − α′
4

[g(4) − g(3)]

}
+

+π′(1, 2, 3)κ2

{
p1
α′

1 − α1

1 − α′
1

[g(1) − g(∆1)] + p2
α′

2 − α2

1 − α′
2

[g(2) − g(∆2)]+

p3
α′

3 − α3

1 − α′
3

[g(1) − g(∆3)]

}
,

where π′(0, 4) = π′(0) + π′(4), π′(1, 2, 3) = π′(1) + π′(2) + π′(3), κ1 > 0, κ2 > 0 and

p0, p1, p2, p3, p4 is similar to p0, pN in Example 9.2.

c. The policy iteration can be designed similarly to Example 9.2.

9.6 Study the random walk problem in Example 9.3 by using the system with N + 2

positions as the original system and the system with N + 1 positions as the perturbed

one. Derive the performance difference formula similar to (9.32).
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Solution: Suppose that in Example 9.3 the number of positions of the random walker

decreases from N + 2 to N + 1. According to (9.32), we need to determine (∆P )′−.

Comparing P and P ′, we can find that [P, 0] and [P ′
1, P

′
1,2] differ only on the last rows.

Thus, (∆P )′− is zero everywhere expect its last row is

(0, · · · , 0, 1 − β − σN , β, σN − 1).

From the difference formula (9.32), we have the following difference formula:

η − η′

= π(N)[(1 − β − σN )g′(N − 1) + βg′(N) − (1 − σN)g′(N + 1)].

9.7 Extend the performance derivative formulas (9.29) and (9.33) to the case with f(i) 6=

f ′(i), i = 1, · · · , S.

Solution: From the difference formula (9.28), the performance difference formula with

f(i) 6= f ′(i), i = 1, · · · , S is

η′ − η = π′
−{(P

′
− − [P, 0])g̃ + (f ′

− − f)}. (9.4)

where P ′
− = [P ′

1, P
′
12] and f ′

− = (f ′(1), · · · , f ′(S))T . For performance derivatives, we define

Pδ = P̃ + δ[P ′ − P̃ ], fδ = f̃ + δ[f ′ − f̃ ]

where P̃ was defined as (9.14) and f̃ = (f(1), · · · , f(S), f ′(S + 1), · · · , f ′(S ′))T . Applying

(9.4) to Pδ and P , we obtain ηδ−η = πδ−δ[∆P−g̃+h−], where πδ− = (πδ(1), · · · , πδ(S)),∆P− =

[P ′
1, P

′
12] − [P, 0] and h− = f ′

− − f . Letting δ → 0, we get

dηδ

dδ
= π[∆P−g̃ + h−].

Similarly, we can obtain the performance derivative formulas with f(i) 6= f ′(i), i =

1, · · · , S for (9.33),

dηδ

dδ
= π′

−[(∆P )′−g
′ + h′−],

where (∆P )′− = −∆P− and h′− = −h−.

9.8 In Section 9.4.2, suppose f ′(i) 6= f(i), for i = 1, · · · ,M . Modify the performance

difference formula (9.37) (i.e., derive the formula similar to (9.5) and (9.28).
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Figure 9.2: The jumps of the parameterized system in Section 9.3.2

Solution: If f ′(i) 6= f(i), for i = 1, · · · ,M , we should consider the effect of one-step per-

formance for the performance difference η′−η. Similar to (9.37), we follow the sample path

X ′ with L,L >> 1 transitions, which has transition probability matrix P ′. Considering

the effect of one-step performance, we have

E(F ′
L − FL) ≈

∑

i∈S0

{
∑

u∈S

∑

v∈S ′

Lπ′(i)[p(u, v|i)γ̃(u, v) + f ′(i) − f(i)]

}
,

where ˜γ(u, v) = g̃(v) − g̃(u). Following the same argument as (9.37), we can obtain the

following difference formula:

η′ − η = π′
−[∆P−g̃ + (f ′

− − f−)],

where ∆P− = [0, P ′
0, P

′
0−1]− [P01, P0, 0], f ′

− = (f ′(S0), · · · , f(1))T , f− = (f(S0), · · · , f(1))T .

9.9 Draw a sample-path diagram to illustrate the effect of one jump in the example of

the parameterized system in Section 9.3.2.

Solution:

A sample path of the parameterized system in Section 9.3.2 is as Figure 9.2. At state

(n, i), the customer will prepare to leave M1 with probability pi, i = 1, 2, 3 with p3 = 1.

After that, it will move back to M1 with probability 1− θ, which means the state transits

to (n, 1), and go toM2 with probability θ, which means the state transits to state (n−1, 1).

If θ(n) change to θ(n)+ δn, then this change in the system parameter may cause “jumps”

of the system state on the sample path from (n, 1) to (n− 1, 1) (the original sample path

transits to state (n, 1) but the perturbed path transits to state (n − 1, 1)), for example,
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1a 1c

1b1

2b 2a

2c2

3c 3b

3a 3

p(1|1)

p(2|3)

p(3|3)p(2|2)

p(1|2) p(3|1)
p(3|2)

p(1|3)p(2|1)

Figure 9.3: The Transition Probabilities in Problem ??

at time 4 and time 9, the jumps occur.

9.10 Consider a discrete-time Markov chain consisting of three super states denoted as

1, 2, and 3, respectively; each of them is further composed of three phases a, b, and c, as

shown in Figure 9.3. Each phase represents a state of the Markov chain and thus it has

altogether 9 states denoted as 1a, 1b, 1c; 2a, 2b, 2c; and 3a, 3b, and 3c. The transition

probabilities between any two phases in the same super state are denoted by p(1b|1a),

p(3a|3c) etc. When the system leaves a phase, it does not feed back immediately, i.e.,

p(1a|1a) = 0, etc. At each super state, phase a is an input phase, i.e., the system enters

phase a to start its journey in the corresponding super state. Phase c is an exit phase,

i.e, the system leaves a super state from phase c. At super state 1, for example, we have

p(1b|1a) + p(1c|1a) = 1 and p(1a|1b) + p(1c|1b) = 1. At phase 1c, there is a positive

probability p(0|1c) to leave the super state 1. Thus, p(1a|1c) + p(1b|1c) + p(0|1c) = 1.

When a system leaves a super state i, i = 1, 2, 3, it transits to super state j, or enters

phase ja, j = 1, 2, 3, with probability p(j|i),
∑3

j=1 p(j|i) = 1. The reward function is

denoted as f(1a), f(1b), etc.

Suppose that the transition probabilities p(j|i) depend on a parameter θ and are

denoted as pθ(j|i), i, j = 1, 2, 3. Construct the performance derivative and difference

formulas for this system, similar to (9.12) and (9.13).
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Solution: Following the same procedure as in Section 9.2, we consider a perturbed

sample path X
′ with super-state transition probabilities pθ′(j|i) for L >> 1 transitions.

Let π′(ic), i = 1, 2, 3 be the steady-state probability that state is in state ic under super-

state transition probabilities pθ′(j|i). A jump can occur only when the system stays at

states ic, i = 1, 2, 3. Suppose that after visiting state ic, X
′ has a jump from ua to

va, u, v = 1, 2, 3. Denote the probability of a jump from ua to va after visiting ic as

p(u, v|i). Then,
∑3

u=1 p(u, v|i) = p(0|ic)pθ′(v|i) and
∑3

v=1 p(u, v|i) = p(0|ic)pθ(u|i) . On

the average, on the sample path there are Lπ′(ic)p(u, v|i) jumps from ua to va that happen

after visiting ic. Since each jump has on the average an effect of γ(ua, va) on FL, on the

average the total effect on FL due to the change from pθ(j|i) to pθ′(j|i) is

E(F ′
L − FL) ≈

M∑

i=1

{
M∑

u,v=1

Lπ′(ic)p(u, v|i)γ(ua, va)}

=

M∑

i=1

{
M∑

u,v=1

Lπ′(ic)p(u, v|i)[g(va)− g(ua)]}

=

3∑

i=1

{
Lπ′(ic)p(0|ic){

3∑

j=1

[pθ′(j|i) − pθ(j|i)]g(ja)}
}
.

Finally, we have

η′ − η = lim
L→∞

1

L
E(F ′

L − FL) =

3∑

i=1

{
π′(ic)p(0|ic){

3∑

j=1

[pθ′(j|i) − pθ(j|i)]g(ja)}
}

Letting θ′ → θ, we have the performance derivative

dη

dθ
=

3∑

i=1

π′(ic)p(0|ic){
3∑

j=1

dpθ(j|i)

dθ
g(ja)}.

9.11 Consider a discrete-time M/M/1/N queue with capacity N . The system state is the

number of customers in the system (in the queue plus in the server), denoted as n. The

transition probabilities are p(1|0) = p, p(0|0) = q, p(N − 1|N) = q, p(N |N) = p, and

p(n+ 1|n) = p, p(n− 1|n) = q, p > 0, q > 0, p+ q = 1. Suppose that

a. the capacity changes to N − 1, or

b. the capacity changes to N + 1.
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Construct the difference formula for the mean response time.

Solution: For the discrete-time M/M/1/N system, the mean response time is

η̃ = lim
L→∞

∑L−1
l=0 nl

K
,

where nl denotes the number of customers in the system and K denotes the number of

customers that have been served until time L. It is a customer-average performance. From

the long-run point of view, we have K = L(1−π(0))q = L
(
1 −

1− p
q

1−(p
q
)N+1

)
q =

p
(
1−( p

q )
N
)

1−( p
q )

N+1 L.

Therefore,

η̃ = lim
L→∞

L

K

∑L−1
l=0 nl

L
=

1 −
(

p
q

)N+1

p

(
1 −

(
p
q

)N
)η = h(N)η.

where h(N) =
1−( p

q )
N+1

p
(
1−( p

q )
N
) and η = limL→∞

∑L−1
l=0 nl

L
is a time-average performance. For

time-average performance η, we can apply the construction approach in Section 9.4 to

obtain the difference formula.

a. We consider the case that the capacity changes to N −1. We assume the potentials

of M/M/1/N system with capacity N are g(i), i = 0, 1, . . . , N . Moreover, the transition

probability matrix of discrete-time M/M/1/N system with capacity N − 1 is

P ′ =




q p 0 0 · · · 0 0 0

q 0 p 0 · · · 0 0 0

0 q 0 p · · · 0 0 0
...

... · · ·
... · · ·

... · · ·
...

0 0 0 0 · · · q 0 p

0 0 0 0 · · · 0 q p




(9.5)

and its steady-state probability and time-average performance are π′ = (π′(0), · · · , π′(N−

1)) and η′, respectively. The transition probability matrix P for the M/M/1/N queue

has the same form as (9.5) except that its size is larger by one. Let η′ be the average

performance of P ′. From the performance difference formula (9.32), we have

η′ − η = π′(N − 1)[pg(N − 1) − pg(N)].
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Thus, the performance difference formula of the mean response time is

η̃′ − η̃ = h(N − 1)η′ − h(N)η

= h(N − 1)η′ − h(N − 1)η + h(N − 1)η − h(N)η

= h(N − 1)(η′ − η) + (h(N − 1) − h(N))η

= h(N − 1)π′(N − 1)[pg(N − 1) − pg(N)] + (h(N − 1) − h(N))η.

b. We consider the case that the capacity changes to N + 1. We assume its time-

average performance and steady-state probability are η′ and π′, respectively. Comparing

P and P ′, we can construct P̃ in (9.14). Indeed, we have

P ′
21 = [0, 0, · · · , q]

and P ′
22 = p. Therefore, from (9.25), we have

g̃(N + 1) =
1

1 − p
[N + 1 − η + qg(N)].

From the performance difference formula (9.27), we have

η′ − η = π′(N)[−pg(N) + pg̃(N + 1)].

Thus, the performance difference formula of the mean response time is

η̃′ − η̃ = h(N + 1)η′ − h(N)η

= h(N + 1)η′ − h(N + 1)η + h(N + 1)η − h(N)η

= h(N + 1)π′(N)[−pg(N) + pg̃(N + 1)] + [h(N + 1) − h(N)]η.

9.12 Suppose that we have two independent M/M/1/N queues with parameters p1, q1, N1

and p2, q2, and N2 respectively, as explained in Problem 9.11. If we have one more buffer

space, to which queue should we allocate this extra buffer space to maximally reduce the

customers’ mean response time? Please develop an on-line approach.

Remark: Because the mean response time is

τ̃ =
n̄

p(1 − π(N))
,

where n̄ denotes the average queue length and π(N) denotes the steady-state

probability that the system in state N , it will increase if the buffer space
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becomes larger. Thus, for this problem, we should consider the increment of

the mean response time. Here, we only describe the idea to solve this problem.

Solution: If we have another buffer space N3, we can allocate this extra buffer space

to every queue and obtain two independent M/M/1/N queues with parameters p1, q1,

N1 +N3 and p2, q2, and N2 +N3. We assume the mean response times of the M/M/1/N

queues with parameters p1, q1, N1 and p1, q1, N1 + N3 are η̃′1 and η̃1, respectively, and

the mean response times of the M/M/1/N queues with parameters p2, q2, N2 and p2,

q2, N2 + N3 are η̃′2 and η̃2, respectively. Then, we need to compare η̃′1 − η̃1 and η̃′2 − η̃2

to determine which queue we allocate this extra buffer space to. Similarly to part b) in

Problem 9.11, we have the difference formulas:

η̃′1 − η̃1 = h(N1 +N3)π
′(N1)[−p1g(N1) + p1g̃(N1 + 1)] + [h(N1 +N3) − h(N1)]η1,

η̃′2 − η̃2 = h(N2 +N3)π
′(N2)[−p2g(N2) + p2g̃(N2 + 1)] + [h(N2 +N3) − h(N2)]η2,

where g̃(N1 + 1) = 1
1−p1

[N1 + 1 − η1 + q1g(N1)] and g̃(N2 + 1) = 1
1−p2

[N2 + 1 − η2 +

q2g(N2)]. We can estimate η1, g(N1) and η2, g(N2) based on the sample paths of the

queues with parameters p1, q1 and N1 and p2, q2 and N2, respectively. Computing h(N1 +

N3), h(N1), π
′(N1), g̃(N1 + 1) and h(N2 + N3), h(N2), π

′(N2), g̃(N2 + 1) , where π′(N1) =
(1−p1/q1)

(
p1
q1

)N1

1−
(

p1
q1

)N1+N3
and π′(N2) =

(1−p2/q2)
(

p2
q2

)N2

1−
(

p2
q2

)N2+N3
, we can obtain the values of η̃′1− η̃1 and η̃′2− η̃2

and compare them.

9.13∗ Extend the construction approach in Section 9.2 to (continuous-time) Markov pro-

cesses. (Hint: This extension is not as straightforward as what it may appear. To develop

a construction approach to the changes in transition probabilities of the embedded Markov

chains p(j|i) in (A.12) may be easy; the extension to the changes in transition rate λ(i)

may be more involved.)

Solution: Consider an ergodic Markov process X = {Xt, t ≥ 0} with a finite state space

S = {1, 2, · · · , S} and an infinitesimal generator B = [b(i, j)], where

b(i, j) =





−λ(i) if i = j

λ(i)p(j|i) if i 6= j

for all i, j ∈ S. As we know, Markov process X stays at state i for an exponentially

distributed period with distribution F (t) = 1 − exp(−λ(i)t) and then transits to state j
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with probability p(j|i). Let Xl, l = 0, 1, · · · , be the embedded Markov chain and Tl(i) be

the holding time at state Xl = i. The holding time Tl(i) can be simulated by using the

inverse transform method. That is,

Tl(i) = −
1

λ(i)
ln(1 − ξl), i ∈ S, l = 0, 1, 2, · · · , (9.6)

where ξl is a uniformly distributed random variable on [0, 1). The transitions of states

can be simulated as (2.3).

We consider another perturbed Markov chain X
′ with transition rate λ′(i) and tran-

sition probability p′(j|i). Thus, its infinitesimal generator is B′ = [b′(i, j)], where

b′(i, j) =





−λ′(i) if i = j

λ′(i)p′(j|i) if i 6= j

We firstly consider the effect of a perturbation of transition rate from λ(i) to λ′(i) at one

stage. We follow the perturbed sample path of Markov process X
′. At state X0 = i,

by using the transition rate λ′(i) and λ(i), respectively, and the same ξ0 in (9.6), we

have different holding time T ′
0 and T0. We assume λ′(i) > λ(i), then T ′

0(i) < T0(i).

The perturbation from λ(i) to λ′(i) results in the change of holding time at state i,

∆T0(i) := T0(i) − T ′
0(i). From (9.6), we have

∆T0(i) =
λ′(i) − λ(i)

λ′(i)
T0(i). (9.7)

The effect on FT = E{
∫ T

t0
f(Xt)dt} due to this perturbation in the holding time is

∆i := E
{∫ T ′

0(i)

t0

f(X ′
t)dt+

∫ T−∆T0(i)

T ′
0(i)

f(X ′
t)dt+

∫ T

T−∆T0(i)

f(X ′
t)dt
}

−E
{∫ T ′

0(i)

t0

f(Xt)dt+

∫ T0(i)

T ′
0(i)

f(Xt)dt+

∫ T

T0(i)

f(Xt)dt
}
.

In the right side of the above equation, the first and second items in the first bracket are

equal to the first and third items in the second bracket, respectively, thus,

∆i = E{

∫ T

T−∆T0(i)

f(X ′
t)dt−

∫ T0(i)

T ′
0(i)

f(Xt)dt.

When T is large enough, for t ∈ [T − ∆T0(i), T ], we have E[f(X ′
t)] ≈ πf = η, thus,

∆i ≈ E[∆T0(i)](η − f(i)).
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From (9.7), we have

∆i ≈
λ

′

(i) − λ(i)

λ′(i)
E(T0(i))(η − f(i)).

From Poisson equation Bg = −f + ηe, we have η − f(i) = λ(i)[
∑

j∈S p(j|i)g(j) − g(i)].

Since E[T0(i)] = 1
λ(i)

, we have

∆i ≈
λ′(i) − λ(i)

λ′(i)

∑

j∈S

p(j|i)g(j) − g(i)

=
λ′(i) − λ(i)

λ′(i)

∑

j∈S

p(j|i)γ(i, j). (9.8)

Now, we consider the effect of all these perturbations at different states and all stages.

Let π′(i) denote the steady-state probability that X
′ is at state i ∈ S. During the time

interval [0, T ], the time that the perturbed process X
′ stays at state i is Tπ′(i) on the

average. Since the mean holding time is 1
λ′(i)

, then, there are on the average Tπ′(i)λ′(i)

transitions from state i. Each of them has an effect as (9.8) on FT on the average. Then

the total effect on FT due to all the perturbations in the holding times is

E[F ′
T − FT ]

=

S∑

i=1

Tπ′(i)λ′(i)
λ′(i) − λ(i)

λ′(i)

∑

j∈S

p(j|i)γ(i, j)

= Tπ′(Λ′ − Λ)[P − I]g,

where Λ′ = diag{λ′(1), · · · , λ′(S)} and Λ = diag{λ(1), · · · , λ(S)}. Dividing by T on

both sides of the above equation and letting T → ∞, we have the following performance

difference formula

η′ − η = π′(Λ′ − Λ)[P − I]g. (9.9)

From (9.9), let λ′(i) → λ(i) and λ′(j) = λ(j), j 6= i, we can obtain performance derivative

formula

dη

dλ(i)
= π(i){

∑

j∈S

p(j|i)g(j) − g(i)}.

Next, we consider the effect of perturbation in the transition probabilities. After

visiting state i, X transits to state u based on the transition probabilities p(j|i), i, j ∈ S,
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while X
′ transits to v according to p′(j|i), i, j ∈ S. Define the probability that following

visiting state i such jumps happen from state u to state v as p(u, v|i), i, u, v ∈ S. Since

there are on the average Tπ′(i)λ′(i) transitions from state i, then on the average, on the

sample path there are Tπ′(i)λ′(i)p(u, v|i) jumps from u to v that happen after visiting i.

Since each jump has on the average an effect of γ(i, j) on FL, on the average the total

effect on FL due to the change from p(j|i) to p′(j|i), i, j ∈ S is

E(F ′
T − FT )

≈ T
S∑

i=1

π′(i)λ′(i)
∑

u,v∈S

p(u, v|i)γ(u, v)

= T

S∑

i=1

π′(i)λ′(i)

S∑

j=1

[p′(j|i) − p(j|i)]g(j).

Dividing by T on both sides of the above equation and letting T → ∞, we have the

performance difference formula under two different transition probabilities,

η′ − η = π′Λ′(P ′ − P )g.

If we consider the perturbations of transition rates and transition probabilities simul-

taneously, we can decompose these perturbations into perturbations of transition rates

and perturbations of transition probabilities, then we have

η′ − η = π′(Λ′ − Λ)[P − I]g + π′Λ′(P ′ − P )g

= π′[Λ′(P ′ − I) − Λ(P − I)]g

= π′[B′ − B]g.

9.14∗ Propose a construction approach for the performance differences and derivatives for

a (continuous-time) closed Jackson (Gordon-Newell) network (Section C.2) with respect

to the changes in routing probabilities. (Hint: Use the results in Problem 9.13 for the

transition probability matrix of the embedded chain.)

Solution: We consider a closed Jackson (or Gordon-Newell) network. There are N cus-

tomers circulating amongM servers according to routing probabilities qi,j, with
∑M

j=1 qi,j =

1, i = 1, 2, · · · ,M . Let nk denote the number of customers at server k, k = 1, 2, · · · ,M .

The state of the network can be denoted by n = (n1, n2, · · · , nM). Viewing the network



226 CHAPTER 9. SOLUTIONS TO CHAPTER 9

as a continuous time Markov process, the effective service rate is µ(n) =
∑M

i=1 ǫ(ni)µi,ni
,

where ǫ(ni) = 1, if ni > 0, otherwise ǫ(ni) = 0. The probability that a customer com-

pleting the service at server i transits to server j 6= i with probability
ǫ(ni)µi,ni

qij∑M
i=1 ǫ(ni)µi,ni

and

transits to itself with probability qii.

We consider a sample path of Jackson network with perturbed routing probabilities

q′i,j on time interval [0, T ]. On the sample path, the time that the system stays at state n

is Tπ′(n) on the average. Since the average time that the system stays at state n is 1
µ(n)

,

there are Tπ′(n)µ(n) times that the system transits from state n. After visiting state

n, the system transits to state u based on the original routing probabilities qi,j, while it

transits to state v based on the routing probabilities q′i,j. Let b(n,u, v) be the probability

that such jump will happen from u to state v at state n. Similarly to the argument in

Problem 9.14, we have

E{F ′
T − FT} =

∑

n

Tπ′(n)µ(n)
∑

u,v

b(n,u, v)γ(u, v)

=
∑

n

Tπ′(n)µ(n)
∑

u

[p′(u|n) − p(u|n)]g(u)

=
∑

n

Tπ′(n)
{ M∑

i=1

M∑

j=1,j 6=i

ǫ(ni)µi,ni
[q′i,j − qi,j]g(ni,j) +

M∑

i=1

ǫ(ni)µi,ni
[q′i,i − qi,i]g(n)

}
.

Dividing by T on both sides of the above equation and letting T → ∞, we have

η′ − η =
∑

n

π′(n)
{ M∑

i=1

M∑

j=1,j 6=i

ǫ(ni)µi,ni
[q′i,j − qi,j ]g(ni,j) +

M∑

i=1

ǫ(ni)µi,ni
[q′i,i − qi,i]g(n)

}
.

If let Qδ = Q+ δ(Q′ −Q), we have

ηδ − η = δ
∑

n

πδ(n)
{ M∑

i=1

M∑

j=1,j 6=i

ǫ(ni)µi,ni
[q′i,j − qi,j]g(ni,j) +

M∑

i=1

ǫ(ni)µi,ni
[q′i,i − qi,i]g(n)

}
.

Thus, dividing by δ on both sides and letting δ → 0, we have the performance derivative

formula:

dηδ

dδ
=
∑

n

π(n)
{ M∑

i=1

M∑

j=1,j 6=i

ǫ(ni)µi,ni
[q′i,j − qi,j]g(ni,j) +

M∑

i=1

ǫ(ni)µi,ni
[q′i,i − qi,i]g(n)

}
.



Solutions to the Appendix

Appendix A

A.1 Consider the Coxian distribution shown in Figure A.1.

a. Derive the probability distribution density function for the Coxian distribution.

b. Derive the Laplace transform of the density function.

c. Construct a Coxian distribution such that the Laplace transform of its density

function is the rational function given below:

F (s) =
2 + 1.08s+ 0.2s2

2 + 5s+ 4s2 + s3
. (9.10)

[Solution] a. Suppose that the Coxian distribution has k stages. See Figure A.1. And the

service rate in stage i is λi = 1
s̄i

. Denote the probability distribution density function for

the Coxian distribution as g(x) and denote the probability distribution density function

for the exponential distribution with parameter λi as fi(x) = λie
−λix. Then,

g(x) = q1f1(x) + p1q2f1(x) ∗ f2(x) + p1p2q3f1(x) ∗ f2(x) ∗ f3(x)

+ · · ·+ p1p2 · · · pk−2qk−1f1(x) ∗ f2(x) ∗ · · · ∗ fk−1(x)

+p1p2 · · · pk−1f1(x) ∗ f2(x) ∗ · · · ∗ fk(x)

=

k∑

j=1

j−1∏

l=1

plqjf1(x) ∗ f2(x) ∗ · · · ∗ fj(x),

where “∗” denotes the convolution.

227
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b. First, we consider the Laplace transform of fi(x). Denote Fi(s) the Laplace trans-

form of fi(x).

Fi(s) =

∫ ∞

0

fi(x)e
−sxdx =

∫ ∞

0

λie
−λixe−sxdx

=

∫ ∞

0

λie
−(λi+s)xdx =

λi

λi + s

Denote G(s) the Laplace transform of g(x).

G(s) = q1F1(s) + p1q2F1(s)F2(s) + p1p2q3F1(s)F2(s)F3(s)

+ · · ·+ p1p2 · · · pk−2qk−1F1(s)F2(s) · · ·Fk−1(s)

+p1p2 · · · pk−1F1(s)F2(s) · · ·Fk(s)

= q1
λ1

λ1 + s
+ p1q2

λ1λ2

(λ1 + s)(λ2 + s)
+ p1p2q3

λ1λ2λ3

(λ1 + s)(λ2 + s)(λ3 + s)

+ · · ·+ p1p2 · · · pk−2qk−1

∏k−1
i=1 λi∏k−1

i=1 (λi + s)

+p1p2 · · · pk−1

∏k
i=1 λi∏k

i=1(λi + s)

=

k∑

j=1

j−1∏

l=1

plqj

∏j
i=1 λi∏j

i=1(λi + s)

=

∑k
j=1

∏j−1
l=1 plqj

∏j
i=1 λi

∏k
m=j+1(λm + s)

∏k
i=1(λi + s)

=

∑k
j=1

∏j−1
l=1 pl(1 − pj)

∏j
i=1 λi

∏k
m=j+1(λm + s)

∏k
i=1(λi + s)

(9.11)

c. From part b), we may firstly find λi, i = 1, 2, 3 such that
∏3

i=1(λi+s) = 2+5s+4s2+

s3 =: f(s). It is easy to find f(−1) = 0. So, we know that s+1 is a factor of f(s). By using

the division with residue, we have f(s) = (s+1)(s2 +3s+2) = (s+1)(s+1)(s+2). Here,

we can make different choices about the values of λi, i = 1, 2, 3 and different choices may

correspond to different Coxian distributions. For example, we may choose λ1 = 1, λ2 = 2

and λ3 = 1. Putting them into the numerator in (9.11) and letting the numerator be

equal to 2 + 1.08s + 0.2s2, p1 = 0.8, p2 = 0.7 can be obtained and p3 = 1 is obvious.

It is noted that the Coxian distribution corresponding to (9.10) is not unique since the
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different choices of λi, i = 1, 2, 3.

A.2 Consider an independent random sequence Xn with P(Xn = 1) = 1
n

and P(Xn =

0) = 1− 1
n
. Does the sequence converge in probability, w.p.1, in mean, or in mean square?

[Solution]

The random sequence {Xn} converges in probability to a random variable X, if for

any ǫ > 0,

lim
n→∞

P[|Xn −X| ≥ ǫ] = 0.

Obviously, we can see that X = 0.

lim
n→∞

P [|Xn| ≥ ǫ] = lim
n→∞

P(Xn = 1) = lim
n→∞

1

n
= 0.

Therefore, the sequence converges in probability.

Next, we show that this sequence does not converges to zero with probability 1. To

establish that fact, we assume that the convergence with probability 1 holds true and

then obtain the contradiction. If the convergence with probability 1 holds true, then

lim
n→∞

P(sup
k≥n

Xk = 1) = 0.

Notice that {supk≥nXk = 1} =
⋃

k≥n{Xk = 1}. Hence, taking into consideration the fact

that {Xn} is the sequence of independent random variables and

lim
n→∞

P(
⋃

k≥n

{Xk = 1}) = lim
n→∞

{
1 −P(

⋂

k≥n

{Xk = 0})

}

= 1 − lim
n→∞

∏

k≥n

P(Xk = 0) = 1 − lim
n→∞

∏

k≥n

(1 −
1

k
) ≡ 1,

we arrive at announced contradiction. Therefore, the sequence {Xn} may not converge

with probability one.

lim
n→∞

E[|Xn −X|] = lim
n→∞

E[Xn] = lim
n→∞

1 × P(Xn = 1) = lim
n→∞

1

n
= 0

and

lim
n→∞

E[|Xn −X|2] = lim
n→∞

E[|Xn|
2] = lim

n→∞
12 × P(Xn = 1) = lim

n→∞

1

n
= 0,
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so, the sequence converges in mean and in mean square.

A.3 Consider a random sequence Xn with P(Xn = 1) = 1
n2 and P(Xn = 0) = 1 − 1

n2 .

Does the sequence converge in probability, w.p.1, in mean, or in mean square?

[Solution]

It is obvious that for every ǫ > 0,

lim
n→∞

P[|Xn| ≥ ǫ] = lim
n→∞

P(Xn = 1) = lim
n→∞

1

n2
= 0.

Therefore, the sequence converges in probability to zero.

{Xn} converges with probability 1 to a random variable X, if

P(ω : lim
n→∞

Xn = X) = 1,

or equivalently, for every ǫ > 0,

lim
n→∞

P(sup
k≥n

|Xk −X| ≥ ǫ) = 0,

where {supk≥n |Xk−X| ≥ ǫ} = {
⋃

k≥n |Xk−X| ≥ ǫ} = {|Xk−X| ≥ ǫ for some k ≥ n}.

For every ǫ > 0, we have

lim
n→∞

P(sup
k≥n

|Xk| ≥ ǫ)

≤ lim
n→∞

[ ∞∑

k=n

P(|Xk| ≥ ǫ)

]

= lim
n→∞

[ ∞∑

k=n

P(Xk = 1)

]

= lim
n→∞

[ ∞∑

k=n

1

k2

]
= 0.

Therefore, the sequence {Xn} converges with probability 1 to zero, of course converge in

probability.

lim
n→∞

E[|Xn −X|] = lim
n→∞

E[Xn] = lim
n→∞

1 × P(Xn = 1) = lim
n→∞

1

n2
= 0

and

lim
n→∞

E[|Xn −X|2] = lim
n→∞

E[|Xn|
2] = lim

n→∞
12 ×P(Xn = 1) = lim

n→∞

1

n2
= 0,
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so, the sequence converges in mean and in mean square to zero.

A.4 Let X and Y be two random variables with probability distributions Φ(x) and Ψ(y),

respectively. Their means are denoted as x̄ = E(X) and ȳ = E(Y ). We wish to estimate

x̄ − ȳ = E(X − Y ) by simulation. We generate random variables X and Y using the

inverse transformation method. Thus, we have X = Φ−1(ξ1) and Y = Ψ−1(ξ2), where ξ1

and ξ2 are two uniformly distributed random variables in [0, 1). Prove that if we choose

ξ1 = ξ2, then the variance of X − Y , V ar[X − Y ], is the smallest among all possible pairs

of ξ1 and ξ2.

[Solution]

V ar[X − Y ] = E[((X − Y ) − E(X − Y ))2] = E[(X − Y )2] − (E[X − Y ])2

= E[X2] + E[Y 2] − 2E[XY ] − (E[X − Y ])2

For given distribution Φ(x) and Ψ(y), E[X2], E[Y 2] and E[X−Y ] are determined. Thus,

to minimize V ar[X − Y ] is equivalent to maximize E[XY ].

Denote H(x, y) = P (X ≤ x, Y ≤ y). We have

H(x, y) = P (X ≤ x, Y ≤ y) ≤ P (X ≤ x) = Φ(x)

and similarly, H(x, y) ≤ Ψ(y). Therefore, H(x, y) ≤ Φ(x)∧Ψ(y). We know X = Φ−1(ξ1)

and Y = Ψ−1(ξ2), and Φ,Ψ both are non-decreasing functions. We have

H(x, y) = P (Φ−1(ξ1) ≤ x,Ψ−1(ξ2) ≤ y) = P (ξ1 ≤ Φ(x), ξ2 ≤ Ψ(y))

If ξ1 = ξ2, we have H(x, y) = P (ξ1 ≤ Φ(x) ∧ Ψ(y)). Because ξ1 is uniformly distributed

on [0, 1), then H(x, y) = Φ(x) ∧ Ψ(y). That means, if ξ1 = ξ2, then H(x, y) reaches its

maximum. From Hoeffding’s Lemma in the reference,

E(XY ) −E(X)E(Y ) =

∫ +∞

−∞

∫ +∞

−∞
[H(x, y) − Φ(x)Ψ(y)]dxdy

E(X), E(Y ),Φ(x),Ψ(y) are all determined. Thus if H(x, y) reaches its maximum, then

E(XY ) reaches its maximum. Therefore, if we choose ξ1 = ξ2, the variance V ar[X − Y ]

is the smallest among all possible pairs of ξ2 and ξ1.

Proof of Hoeffding’s Lemma:
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Let (X1, Y1), (X2, Y2) be independent, each distributed according to H(x, y). Then

2[E(X1Y1) − E(X1)E(Y1)] = E[(X1 −X2)(Y1 − Y2)]

= E

∫ +∞

−∞

∫ +∞

−∞
[I(u,X1) − I(u,X2)][I(v, Y1) − I(v, Y2)]dudv

where I(u, x) = 1 if u ≤ x and = 0 otherwise. Since E(XY ), E(X) and E(Y ) are finite,

we can take expectation under the integral sign, then above equation becomes

E

∫ +∞

−∞

∫ +∞

−∞
[I(u,X1)−I(u,X2)][I(v, Y1)−I(v, Y2)]dudv = 2

∫ +∞

−∞

∫ +∞

−∞
[H(x, y)−Φ(x)Ψ(y)]dxdy

This completes the proof.

Reference: Lehmann E.L., “Some concepts of dependence,” Ann. Math. Statist.,

vol. 37, pp. 1137–1153, 1966.

A.5 Consider a sequence of independent and identically distributed random variables

{Xn, n = 1, 2, · · ·} with mean E(Xn) = E(X). Define another sequence of 0 − 1 valued

independent and identically distributed random variables {χn, n = 1, 2, · · ·} where χn = 1

with probability 1 > p > 0 and χn = 0 with probability 1 − p. Let

Nn =

n∑

k=1

χk

be the number of 1’s in the first n samples. Define

Mn :=
1

Nn

n∑

k=1

(χkXk).

Prove Mn converges to E(X) with probability 1 as n→ ∞, i.e.,

lim
n→∞

Mn = E(X), w.p.1,

and Mn converges to E(X) in probability as n→ ∞, i.e., for any ǫ > 0,

lim
n→∞

P[|Mn −E(X)| ≥ ǫ] = 0.

[Solution]

Mn =
1

Nn

n∑

k=1

(χkXk) =
n∑n

k=1 χk
∗

1

n

n∑

k=1

(χkXk).
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According to the strong law of large numbers,
∑n

k=1 χk

n
converges to p with probability 1

and 1
n

∑n
k=1(χkXk) converges to E[χkXk] = pE(X) with probability 1. So, Mn converges

to E(X) with probability 1.

From the property of convergence with probability 1, the convergence in probability

can be easily obtained.

A.6 Consider a sequence of independent random variables {Xn, n = 1, 2, · · ·}. The mean

value of Xn, E(Xn), converges to a constant X̄, limn→∞E(Xn) = X̄, and V ar(Xn) <∞.

Prove that the mean sample Mn = 1
n

∑n
k=1Xk converges to X̄ both with probability 1

and in probability .

[Solution]

Denote an = E(Xn). We have limn→∞ an = limn→∞E(Xn) = X̄. Let Yn = Xn − an.

Since an, X̄ are constant and {Xn, n = 1, 2, · · ·} are independent random variables, we

know that {Yn, n = 1, 2, · · ·} are also independent random variables and E(Yn) = 0. From

the strong law of large numbers, we know that
∑n

k=1 Yk

n
−→ 0 with probability 1 and in

probability. Since
∑n

k=1 Yk

n
=

∑n
k=1 Xk

n
−

∑n
k=1 ak

n
, limn→∞ an = X̄ and limn→∞

∑n
k=1 ak

n
= X̄,

Mn = 1
n

∑n
k=1Xk converges both with probability 1 and in probability to X̄.

A.7 Let X be an irreducible but periodic Markov chain with transition probability matrix

P . The asymptotic stationarity (A.8) does not hold. However, we may define π(i) as the

time average

π(i) = lim
L→∞

1

L
E{

L−1∑

l=0

χi(Xl)|X0 = j}, i, j ∈ S, (A.17)

with χi(x) = 1, if x = i, and χ(i) = 0, otherwise. Prove

a. Prove that the π(i) in (A.17) indeed does not depend on j.

b. Let π = (π(1), · · · , π(S)), then

P ∗ := lim
L→∞

1

L

L−1∑

l=0

P l = eπ.
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c. πP = π, and πe = 1 . That is, the time average π plays the same role as the

steady-state probability.

d. Prove limL→∞
1
L
{
∑L−1

l=0 χi(Xl)}, i ∈ S, converges with probability 1 to π(i). There-

fore, π(i) can also be defined as the limit of the sample-path average of χi(Xl),

l = 0, 1, · · ·.

[Solution] a. Let fk(j|i) be the probability that the Markov chain transits firstly to state

j from initial state i at time k. Since the Markov chain is irreducible and periodic, we

have

∞∑

k=0

fk(j|i) = P (Markov chain transits to state j early or late from initial state i) = 1.

Moreover,

pl(j|i) =
l∑

k=0

fk(j|i)pl−k(j|j).

Then,

1

L

L−1∑

l=0

pl(j|i) =
1

L

L−1∑

l=0

l∑

k=0

fk(j|i)pl−k(j|j)

=

L−1∑

k=0

fk(j|i)
1

L

L−1∑

l=k

pl−k(j|j).

Let L→ ∞, we have

lim
L→∞

1

L

L−1∑

l=0

pl(j|i) =

∞∑

k=0

fk(j|i) lim
L→∞

1

L

L−1∑

l=0

pl(j|j) = lim
L→∞

1

L

L−1∑

l=0

pl(j|j).

Thus,

π(i) := lim
L→∞

1

L
E{

L−1∑

l=0

χi(Xl)|X0 = j} = lim
L→∞

1

L

L−1∑

l=0

pl(i|j) (9.12)

is independent of the initial state j.

b. From (9.12), we naturally have the following matrix form

P ∗ := lim
L→∞

1

L

L−1∑

l=0

P l = eπ.
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c.

S∑

i=1

π(i)P (k|i) =

S∑

i=1

lim
L→∞

1

L
E{

L−1∑

l=0

χi(Xl)}P (k|i)

= lim
L→∞

1

L

S∑

i=1

E{
L−1∑

l=0

χi(Xl)}P (k|i)

= lim
L→∞

1

L

S∑

i=1

E{
L−1∑

l=0

χi(Xl)P (k|i)}

= lim
L→∞

1

L

L−1∑

l=0

E{
S∑

i=1

χi(Xl)P (k|i)}

= lim
L→∞

1

L

L−1∑

l=0

E{χk(Xl+1)} = π(k).

πe =
S∑

i=1

π(i)

=

S∑

i=1

lim
L→∞

1

L
E{

L−1∑

l=0

χi(Xl)}

= lim
L→∞

1

L
E{

L−1∑

l=0

S∑

i=1

χi(Xl)} = lim
L→∞

1

L
E{

L−1∑

l=0

1} = 1.

d. Proof: Set

Ni(L) =

L−1∑

l=0

χi(Xl).

Let us fix a reference state i and define the r-th passage time to state i as

Ti(r) = inf{l ≥ Ti(r − 1) + 1 : Xl = i},

where Ti(0) = 0. Suppose the period is d for P , then,

Yi(r) := Ti(r) − Ti(r − 1) = nd <∞,

and Yi(2), Yi(3), · · · are independently and identically distributed with mean µi. Now note

that

Yi(1) + Yi(2) + · · ·+ Yi(Ni(L) − 1) ≤ L− 1,
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the left side being the time of last visit to i before time n. Also,

Yi(1) + Yi(2) + · · · + Yi(Ni(L)) ≥ L.

Then we have ∑Ni(L)−1
r=1 Yi(r)

Ni(L)
<

L

Ni(L)
≤

∑Ni(L)
r=1 Yi(r)

Ni(L)
. (9.13)

By using the strong law of large number, we have

1

L

L∑

r=1

Yi(r) → µi, w.p.1.

and also, since P is recurrent, we have

Ni(L) → ∞, as L→ ∞ with probability 1.

So, letting L→ ∞ in (9.13), we can prove Ni(L)
L

converges to 1
µi

= π(i) with probability 1.

Therefore, π(i) can be also defined as the limit of the sample-path average of χi(Xl), l =

0, 1, · · ·.

A.8 (Uniformization) Consider a Markov process X with transition rates λ(i), i ∈ S =

{1, 2, · · · , S}. Let P = [p(j|i)] be the transition probability matrix of the embedded

Markov chain, with p(i|i) = 0. Define another Markov process X
′ as follows: the transi-

tion rate at state i changes to λ′(i) = λ(i)
1−ci

, where ci ∈ (0, 1) is a fixed number, i ∈ S; the

transition probabilities change to p′(i|i) = ci and p′(j|i) = p(j|i)[1 − ci], i 6= j.

1. Prove the steady-state probabilities of the both processes are equal; i.e., π′(i) = π(i),

i ∈ S.

2. Explain the relation between the sample paths of both processes.

3. Find the values for ci, i ∈ S, such that the embedded Markov chain of X
′, X

′†, has

the same steady-state probabilities as those of X
′ and X; i.e., π′†(i) = π′(i) = π(i),

i ∈ S.

[Solution]
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1. Denote B as the infinitesimal generator of the Markov process X. We have B =

diag(λ(1), . . . , λ(S))(P − I).

From p′(i|i) = ci, p
′(j|i) = (1 − ci)p(j|i) for all j ∈ S − {i} and λ′(i) = λ(i)

1−ci
, we have

B′ = diag(λ′(1), . . . , λ′(S))(P ′ − I)

= diag(λ(1), . . . , λ(S))diag(
1

1 − c1
, . . . ,

1

1 − cS
)diag(1 − c1, . . . , 1 − cS)(P − I) = B.

Since the Markov process X has the same infinitesimal generator with the Markov process

X
′, they must have the same steady-state probabilities, i.e., π′(i) = π(i), i ∈ S.

2. Since the Markov process X has the same infinitesimal generator with the Markov

process X
′, they must have the same statistical behaviors. Compared with X, since

the transition probability is p′(i|i) = ci, Markov process X
′ can transit back to state

i ∈ S with probability ci after it stays at state i for a time with exponential distribution.

Thus, the times that the process stays at state i follows a geometric distribution with ci.

Moreover, the sojourn time at state i is exponential distribution with rate λ(i)
1−ci

. From

the sample path, we cannot observe the state transits to itself, thus, the total sojourn

time at state i follows the exponential distribution with mean 1
1−ci

1
λ(i)
1−ci

= 1
λ(i)

. Therefore,

these two processes have the same sample path statistically. The only difference is on the

sample path of X
′ there are some points the state of Markov process transits to itself,

which cannot be observed by the observer.

3. Since we know P ′ = diag(1 − c1, . . . , 1 − cS)P + diag(c1, . . . , cS) and π′†P ′ = π′†,

π′†diag(1 − c1, . . . , 1 − cS)P = π′†diag(1 − c1, . . . , 1 − cS).

That is,

π′†diag(1 − c1, . . . , 1 − cS)(P − I) = 0. (9.14)

By πB = 0, we have

πdiag(λ(1), . . . , λ(S))(P − I) = 0. (9.15)

Comparing (9.14) and (9.15), we get

π′†diag(1 − c1, . . . , 1 − cS) = Kπdiag(λ(1), . . . , λ(S)),
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where K is a constant. That is, π′†(i) = Kπ(i) λ(i)
1−ci

, for all i ∈ S. If π′†(i) = π(i), for all

i ∈ S, we obtain K λ(i)
1−ci

= 1 for all i. Then ci = 1 − Kλ(i), which also need to satisfy

0 < K < 1
max λ(i)

since 0 < ci < 1 for all i. We also can get λ′(i) = λ(i)
1−ci

= 1
K

.

A.9 Let X
† be the embedded Markov chain of Markov process X. Assume X

† is ergodic.

Let λ(i), i ∈ S = {1, 2, · · · , S} be the transition rates of X; and π†(i), π(i), i ∈ S, be the

steady-state probabilities of X
† and X, respectively. Prove

π(i) = c
π†(i)

λ(i)

where

c =
∑

i∈S
π(i)λ(i) =

1
∑

i∈S
π†(i)
λ(i)

.

[Solution]

We assume P † is the transition probability matrix of the embedded Markov Chain X†.

From the definition of infinitesimal generator, we know:

B = diag(λ1, λ2, ..., λS)(P † − I).

Since π† = π†P †, we have

π†(P † − I) = 0. (9.16)

Moreover, for Markov process X we have πB = 0 and πe = 1, which have the unique

solution. Then, we get

πdiag(λ1, λ2, ..., λS)(P † − I) = 0. (9.17)

Comparing the aforementioned two equations (9.16) and (9.17), we obtain

πdiag(λ1, λ2, ..., λS) = cπ†.

Therefore, π(i) = cπ†(i)
λ(i)

.

Since c
S∑

i=1

π†(i)
λ(i)

=
S∑

i=1

π(i) = 1 and
S∑

i=1

π(i)λ(i) =
S∑

i=1

cπ†(i) = c,

c =

S∑

i=1

π(i)λ(i) =
1

S∑
i=1

π†(i)
λ(i)

.
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A.10 Consider an ergodic Markov chain X = {X0, X1, · · ·} with transition probability

matrix P = [p(j|i)]. Let π be the steady-state probability vector. Define a performance

function that depends on two consecutive states: f(i, j), i, j ∈ S. Prove that the following

ergodicity equation holds:

lim
n→∞

{
1

L

L−1∑

l=0

f(Xl, Xl+1)} = Eπ,P [f(Xl, Xl+1)]

:=
S∑

i=1

S∑

j=1

{f(i, j)π(i)p(j|i)} =
S∑

i=1

[f̄(i)π(i)], w.p.1, (9.18)

where f̄(i) =
∑S

j=1[f(i, j)p(j|i)]. Extend this results to function f(Xl, Xl+1, · · · , Xl+N)

for a finite integer N .

[Solution]

We define Zl = (Xl, Xl+1), then we can easily prove Z = {Zl, l = 0, 1, 2, . . .} is Markov

chain. Since X is ergodic, Z is also ergodic. By using the ergodicity theorem for ergodic

Markov chain, we have

lim
n→∞

{
1

L

L−1∑

l=0

f(Xl, Xl+1)} = Eπ,P [f(Xl, Xl+1)],

where Eπ,P is the steady-state expectation of Markov chain Z. Because the steady state

probability of Z is π(i, j) = π(i)p(j|i), i, j ∈ S. Thus we have

lim
n→∞

{
1

L

L−1∑

l=0

f(Xl, Xl+1)} = Eπ,P [f(Xl, Xl+1)]

:=

S∑

i=1

S∑

j=1

{f(i, j)π(i)p(j|i)} =

S∑

i=1

[f̄(i)π(i)], w.p.1.

For the function f(Xl, Xl+1, · · · , Xl+N), we can define Zl = {Xl, Xl+1, . . . , Xl+N). Sim-

ilarly, applying the ergodicity theorem, we can obtain

lim
L→∞

1

L

L−1∑

l=0

E [f(Xl, Xl+1, . . . , Xl+N)]

= Eπ,P [f(Xl, Xl+1, . . . , Xl+N)]

=
∑

i∈S

∑

j1∈S
· · ·
∑

jN∈S
f(i, j1, . . . , jN )π(i)p(j1|i)Π

N−1
k=1 p(jk+1|jk)
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=
∑

i∈S
π(i)f̄(i),

where f̄(i) =
∑

j1∈S · · ·
∑

jN∈S f(i, j1, . . . , jN )p(j1|i)Π
N−1
k=1 p(jk+1|jk).

A.11 Prove that the sojourn time that a Markov process stays in a state i is exponentially

distributed, using the Markov property (A.10).

[Solution]

Let T0 = 0, T1, T2, · · ·, be the instants of transitions for the Markov process X = {Xt}

and X0, X1, X2, · · · be the successive states visited by X. Tl+1 − Tl is called the sojourn

time in state Xl. We assume that the sample paths are right-continuous, i.e., Xl = XTl+0,

and Xl = i, then Tl+1 − Tl is the sojourn time in state i.

Next, to prove the result, we prove

P{Tl+1 − Tl ≥ t|Xl = i} = exp(−λ(i)t),

where λ(i) is the transition rate of Markov process at state i. Because of the right-

continuous property, we have

P{Tl+1 − Tl ≥ t|Xl = i} = P{Xu = i, Tl ≤ u ≤ Tl + t|Xl = i}.

Firstly, set B := {Xu = i, Tl ≤ u ≤ Tl + t} =
⋂

Tl≤u≤Tl+t{Xu = i}. Dividing [0, t] into 2n

equal parts, set

An := {XTl+
kt
2n

= i, k = 0, 1, . . . , 2n} =
2n⋂

k=0

{XTl+
kt
2n

= i}.

Since An+1 ⊂ An, set A := limn→∞An. Obviously, B ⊂ A. On the other hand, from the

right-continuous property, we have P(A−B) = 0, so,

P{Tl+1 − Tl ≥ t|Xl = i} = P{Xu = i, Tl ≤ u ≤ Tl + t|Xl = i}

= P{B|Xl = i} = P{A|Xl = i}

= lim
n→∞

P{An|Xl = i}

= lim
n→∞

P{XTl+
kt
2n

= i, k = 0, 1, . . . , 2n|Xl = i}

= lim
n→∞

Pii(t/2
n)2n

(Markov property)
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= lim
n→∞

exp{2nln[Pii(t/2
n)]}

= lim
n→∞

exp
{ ln[1 − λ(i)t/2n + o(t/2n)]

−λ(i)t/2n
(−λ(i)t)

}

= exp(−λ(i)t).

A.12 Is the following statement true?

If the inter-transition times of a semi-Markov process are exponentially distributed,

i.e., if P[Tl+1 − Tl ≤ t|Xl = i] = 1 − e−λ(i)t, i ∈ S, then the semi-Markov process is a

Markov process.

If your answer is “yes”, prove it; if the answer is “no”, explain why and give a counter

example.

[Solution]

This argument is wrong.

From the definition of Semi-Markov process, we have

P[Xl+1 = j, Tl+1 − Tl ≤ t|X0, . . . , Xl = i;T0, . . . , Tl]

= P[Xl+1 = j, Tl+1 − Tl ≤ t|Xl = i]

= P[Tl+1 − Tl ≤ t|Xl = i]P [Xl+1 = j|Xl = i, Tl+1 − Tl ≤ t]

= [1 − e−λ(i)t]P [Xl+1 = j|Xl = i, Tl+1 − Tl ≤ t].

As we know, by the Markov process definition, we have

P [Xl+1 = j, Tl+1 − Tl ≤ t|X0, . . . , Xl = i;T0, . . . , Tl] = p(j|i)[1 − e−λ(i)t].

As we can see from these two definitions, the state transition probability in the Markov

process p(j|i) will have no relation with state sojourn time Tl+1 −Tl. Therefore, although

the state sojourn time Tl+1−Tl of Semi-Markov process has memory-less property, we can-

not assert it is Markov process. Here is a counter-example. Suppose the state transition

probability P (Xl+1|Xl) of Semi-Markov process is related to Tl+1 − Tl. In this situation,

although Tl+1 −Tl is memory-less, the Semi-Markov process is still not a Markov process.

If we have further condition that P[Xl+1 = j|Xl = i, Tl+1 − Tl ≤ t] = p(j|i), then this
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semi-Markov process is a Markov process.

Appendix B

B.1 In the canonical form (B.1), what if Rm+1 may be further irreducible.

a. Write Rm+1 in a canonical form, and

b. Explain the meaning of this canonical form in terms of the transitions of the transient

states.

[Solution]

Rm+1 may be further reduced to

Rm+1 =




Q1 0 0 · · · · 0

0 Q2 0 · · · · 0

· · · · · · · ·

0 0 0 · · · Qc 0

T1 T2 T3 · · · Tc Tc+1




,

b. This canonical form means the transient states can be further divided into c + 1

parts. The part corresponding to Qi, i = 1, 2, . . . , c, can only transit to itself. The c+1th

part can transit to any part.

B.2 Derive a general form for the solution to (B.6) and (B.7).

[Solution]

Denote P as it’s canonical form:

P =




P1 0 0 · · · · 0

0 P2 0 · · · · 0

· · · · · · · ·

0 0 0 · · · Pm 0

R1 R2 R3 · · · Rm Rm+1




. (9.19)



243

Recall that (B.6) and (B.7) are respectively

P ∗e = e, (9.20)

and

P ∗P = PP ∗ = P ∗P ∗ = P ∗. (9.21)

Denote the solution to (9.20) and (9.21) as

P ∗ =




P ∗
11 P ∗

12 P ∗
13 · · · · P ∗

1(m+1)

P ∗
21 P ∗

22 P ∗
23 · · · · P ∗

2(m+1)

· · · · · · · ·

P ∗
m1 P ∗

m2 P ∗
m3 · · · P ∗

mm P ∗
m(m+1)

P ∗
(m+1)1 P ∗

(m+1)2 P ∗
(m+1)3 · · · P ∗

(m+1)m P ∗
(m+1)(m+1)




, (9.22)

Then from PP ∗ = P ∗, we get

PjP
∗
ji = P ∗

ji, j = 1, 2, · · · , m, i = 1, 2, · · · , m+ 1, (9.23)
m+1∑

k=1

RkP
∗
kl = P ∗

(m+1)l, l = 1, 2, · · · , m+ 1. (9.24)

Since Pi, i = 1, 2, · · · are irreducible non-negative matrix, then it is well-known that 1

is the simple eigenvalue of Pi. Combining with Piei = ei and (9.23), we know that

P ∗
ji = [c1(j, i)ej , c2(j, i)ej , · · · , cni

(j, i)ej ], j = 1, 2, · · · , m, i = 1, 2, · · · , m+ 1, (9.25)

and

P ∗
(m+1)l = (I − Rm+1)

−1
m∑

k=1

RkP
∗
kl, l = 1, 2, · · ·m+ 1, (9.26)

where ei = [1, 1, · · · , 1]T and it’s dimension is the same as Pi, denoted by ni and ck(j, i)

is a constant scalar.

Noting that P ∗e = e, we know that

m+1∑

i=1

ni∑

l=1

cl(j, i) = 1 for j = 1, 2, · · · , m.

Then from P ∗P = P ∗, we get

P ∗
jiPi + P ∗

j(m+1)Ri = P ∗
ji, i = 1, 2, · · · , m, j = 1, 2, · · · , m+ 1, (9.27)

P ∗
j(m+1)Rm+1 = P ∗

j(m+1), j = 1, 2, · · · , m+ 1, (9.28)
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By (9.28), we know P ∗
j(m+1) = 0 noting Rm+1e � e, j = 1, 2, · · · , m + 1. Then (9.27)

becomes

P ∗
jiPi = P ∗

ji, i = 1, 2, · · · , m, j = 1, 2, · · · , m+ 1.

Combining with (9.25), we get that

P ∗
ji = c(j, i)ejπi, i = 1, 2, · · · , m, j = 1, 2, · · · , m+ 1, (9.29)

where 0 ≤ c(j, i) ≤ 1 is any constant and πi is the steady state probability of Pi. That is,

cl(j, i) = c(j, i)πi(l). Noting that P ∗e = e and c(j,m+ 1) = 0, we know that

m+1∑

i=1

ni∑

l=1

c(j, i)πi(l) =

m+1∑

i=1

c(j, i)

ni∑

l=1

πi(l) =

m+1∑

i=1

c(j, i) =

m∑

i=1

c(j, i) = 1 for j = 1, 2, · · · , m.

Finally from P ∗P ∗ = P ∗, we obtain

m+1∑

k=1

P ∗
jkP

∗
ki = P ∗

ji, i, j = 1, 2, · · · , m+ 1. (9.30)

Since we have proved that P ∗
j(m+1) = 0 and P ∗

ji = c(j, i)ejπi, we get

m∑

k=1

c(j, k)c(k, i) = c(j, i), i, j = 1, 2, · · · , m,

and
m∑

k=1

c(m+ 1, k)c(k, i) = c(m+ 1, i), i = 1, 2, · · · , m.

Combining (9.26) and (9.29), we know that

m∑

k=1

Rkc(k, l)ekπl = (I − Rm+1)c(m+ 1, l)em+1πl, l = 1, 2, · · · , m.

P ∗ =




c(1, 1)e1π1 c(1, 2)e1π2 · · · · · c(1, m)e1πm 0

c(2, 1)e2π1 c(2, 2)e2π2 · · · · · c(2, m)e2πm 0

· · · · · · · ·

c(m, 1)emπ1 c(m, 2)emπ2 · · · · · c(m,m)emπm 0

c(m+ 1, 1)em+1π1 c(m+ 1, 2)em+1π2 · · · · · c(m+ 1, m)em+1πm 0




,

(9.31)
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where c(j, i) satisfy

0 ≤ c(j, i) ≤ 1, i = 1, 2, · · · , m, j = 1, 2, · · · , m+ 1
m∑

k=1

c(j, k)c(k, i) = c(j, i), i = 1, 2, · · · , m, j = 1, 2, · · · , m+ 1

m∑

i=1

c(j, i) = 1, j = 1, 2, · · · , m+ 1

m∑

k=1

Rkc(k, l)ekπl = (I − Rm+1)c(m+ 1, l)em+1πl, l = 1, 2, · · · , m.

The following is a group of solutions

P ∗ =




c(1)e1π1 c(2)e1π2 c(3)e1π3 · · · · c(m)e1πm 0

c(1)e2π1 c(2)e2π2 c(3)e2π3 · · · · c(m)e2πm 0

· · · · · · · ·

c(1)emπ1 c(2)emπ2 c(3)emπ3 · · · · c(m)emπm 0

c(1)em+1π1 c(2)em+1π2 c(3)em+1π3 · · · · c(m)em+1πm 0




. (9.32)

where 0 ≤ c(i) ≤ 1 and
∑m

i=1 c(i) = 1.

B.3 Many results for a series of real numbers have their counterparts in matrix form.

For example, for real number series we have 1
1−x

= 1 + x + x2 + · · · if |x| < 1; and for

matrix series we have (I − P )−1 = I + P + P 2 + · · · if ρ(P ) < 1. In real analysis we

have the following Stolz theorem: for two series of real numbers xn and yn, n = 1, 2, · · ·,

if yn+1 > yn, n = 1, 2, · · ·, limn→∞ yn = ∞, and limn→∞
xn+1−xn

yn+1−yn
exists, then

lim
n→∞

xn

yn

= lim
n→∞

xn+1 − xn

yn+1 − yn

.

a. Prove the Stolz theorem.

b. Prove if limn→∞ xn exists, then limn→∞
1
n

∑n
k=1 xn = limn→∞ xn.

c. Prove the matrix formula (B.8).

[Solution] a. Denote limn→∞
xn+1−xn

yn+1−yn
= a.

From the definition of convergence, for every ǫ > 0 there is N(ǫ) ∈ N such that

∀n ≥ N(ǫ), we have :

a− ǫ <
xn+1 − xn

yn+1 − yn

< a+ ǫ.
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Because yn is strictly increasing we can multiply the aforementioned equation with

yn+1 − yn to get :

(a− ǫ)(yn+1 − yn) < xn+1 − xn < (a+ ǫ)(yn+1 − yn).

Let k > N(ǫ) be a natural number. Summing the last relation we get :

(a− ǫ)
k∑

i=N(ǫ)

(yi+1 − yi) <
k∑

i=N(ǫ)

(xi+1 − xi) < (a + ǫ)
k∑

i=N(ǫ)

(yi+1 − yi).

=⇒ (a− ǫ)(yk+1 − yN(ǫ)) < xk+1 − xN(ǫ) < (a+ ǫ)(yk+1 − yN(ǫ)).

Divide the last relation by yk+1 ≥ 0 to get :

(a− ǫ)(1 −
yN(ǫ)

yk+1
) <

xk+1

yk+1
−
xN(ǫ)

yk+1
< (a + ǫ)(1 −

yN(ǫ)

yk+1
).

⇐⇒ (a− ǫ)(1 −
yN(ǫ)

yk+1
) +

xN(ǫ)

yk+1
<
xk+1

yk+1
< (a+ ǫ)(1 −

yN(ǫ)

yk+1
) +

xN(ǫ)

yk+1
.

Since limn→∞ yn = ∞, this means that there is some K such that for k ≥ K we have:

a− ǫ <
xk+1

yk+1
< a+ ǫ.

Therefore,

lim
n→∞

xn

yn
= a = lim

n→∞

xn+1 − xn

yn+1 − yn
.

b. Let yn = n and zn =
∑n

k=1 xk. From part a, we know

lim
n→∞

zn

yn
= lim

n→∞

zn+1 − zn

yn+1 − yn
.

That is,

lim
n→∞

1

n

n∑

k=1

xk = lim
n→∞

xn+1 = lim
n→∞

xn.

c. Denote real matrix A(n) = (ai,j(n))S×S. If for any i, j = 1, . . . , S and for two series

of real numbers ai,j(n) and yn, n = 1, 2, · · ·, if yn+1 > yn, n = 1, 2, · · ·, limn→∞ yn = ∞,

and limn→∞
ai,j(n+1)−ai,j (n)

yn+1−yn
exists, then from part a) we have

lim
n→∞

ai,j(n)

yn

= lim
n→∞

ai,j(n + 1) − ai,j(n)

yn+1 − yn

, for all i, j = 1, . . . S.
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We write the aforementioned equation in matrix form,

lim
n→∞

An

yn
= lim

n→∞

An+1 −An

yn+1 − yn
. (9.33)

If let An =
∑n−1

k=0 P
k and yn = n, then by using (9.33), we can easily obtain

P ∗ = lim
n→∞

∑n−1
k=0 P

k

n
= lim

n→∞
P n.

B.4 Let P be an irreducible periodic stochastic matrix. We have p(i|i) = 0 for all i ∈ S. To

break the periodicity, it is enough to simply introduce a “feedback probability” p(i|i) = ǫ

for only one state i, not all the states. Therefore, we define an aperiodic matrix by setting

p′(i|i) = ǫ, p′(j|i) = (1 − ǫ)p(j|i), j 6= i for one particular state i, and p′(k|j) = p(k|j) for

k ∈ S, j 6= i.

1. Express the steady-state probabilities π′(i) of P ′ in terms of ǫ and the steady-state

probabilities π(i) of P .

2. Let f denote the reward function and η = πf be the long-run average reward for

the Markov chain with transition probability matrix P . Define a reward function

f ′ so that the long-run average performance of the Markov chain with transition

probability matrix P ′, η′ = π′f ′, equals η.

[Solution]

1. We can get that

P ′ = diag(1, . . . , 1 − ǫ, . . . , 1)P + diag(0, . . . , ǫi, . . . , 0).

By π′P ′ = π′,

π′diag(1, . . . , 1 − ǫ, . . . , 1)P + π′diag(0, . . . , ǫ, . . . , 0) = π′.

That is,

π′diag(1, . . . , 1 − ǫ, . . . , 1)P = π′diag(1, . . . , 1 − ǫ, . . . , 1).

By this, we can know π′diag(1, . . . , 1−ǫ, . . . , 1) = cπ, where c is a constant. Finally, we get

π′ = cπdiag(1, . . . , 1
1−ǫ

, . . . , 1). Noting that
∑S

i=1 π
′(i) = 1, thus c = 1∑S

k=1,k 6=i π(k)+π(i) 1
1−ǫ

.

Then, π′(k) = cπ(k) for k 6= i and π′(i) = cπ(i) 1
1−ǫ

.
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2. f ′ should be such that π′f ′ = πf . That is,

S∑

k=1,k 6=i

cπ(k)f ′(k) + cπ(i)
1

1 − ǫ
f ′(i) =

S∑

k=1

π(i)f(i).

If we define f ′(k) = 1
c
f(k) for k 6= i and f ′(i) = 1−ǫ

c
f(i), then η′ = π′f ′ = πf = η.

Appendix C

C.1 Write the steady-state probability flow-balance equation for M/M/1 queue.

[Solution]

Suppose λ and µ are the arrival rate and the service rate ofM/M/1 queue respectively.

Denote p(n) as the steady-state probability of event that there are n customers in the

system. We have the following flow balance equations,

λp(n) = µp(n+ 1) for n ≥ 0.

Let ρ = λ
µ
. We know that p(n + 1) = ρp(n) = ρn+1p(0) for n ≥ 0. By

∑∞
n=0 p(n) = 1, we

get p(0) = 1 − ρ. Then p(n) = ρn(1 − ρ) for n ≥ 0.

C.2 Consider an M/G/1 queue with arrival rate λ and mean service time s̄. Prove that

the average of the number of customers served in a busy period is 1
1−λs̄

.

[Solution] Let Nbp be the number of customers served in a busy period and fn = P [Nbp =

n]. Next, we obtain a functional equation for fn’s z-transform defines as

F (z) = E[zNbp ] =

∞∑

n=1

fnz
n.

The term for n = 0 is omitted from this definition since at least one customer must be

served in a busy period. Let ṽ denote the number of arrivals during a service period.

We firstly consider ṽ’s z-transform defined as

V (z) = E[zṽ] =

∞∑

k=0

P [ṽ = k]zk.

Then we have

V (z) =

∞∑

k=0

∫ ∞

0

(λx)k

k!
e−λxb(x)dxzk
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=

∫ ∞

0

e−λx

( ∞∑

k=0

(λxz)k

k!

)
b(x)dx

=

∫ ∞

0

e−λxeλxzb(x)dx

=

∫ ∞

0

e−(λ−λz)xb(x)dx =: B∗(λ− λz),

where B∗(s) =
∫∞
0
e−sxb(x)dx and b(x) denotes the service time probability density func-

tion. We assume that k customers arrive during the service period of the first customer.

Moreover, since each of these arrivals will generate a sub-busy period and the number of

customers served in each of these sub-busy periods will have a distribution given by fn.

Let Mi denote the number of customers served in the ith sub-busy period. We have

E[zNbp |ṽ = k] = E[z1+M1+M2+···+Mk ]

and since the Mi are independent and identically distribution we have

E[zNbp |ṽ = k] = z
k∏

i=1

E[zMi ].

But each of the Mi is distributed exactly the same as Nbp and, therefore

E[zNbp |ṽ = k] = z[F (z)]k.

Removing the condition on the number of arrivals we have

F (z) =

∞∑

k=0

E[zNbp |ṽ = k]P[ṽ = k]

= z

∞∑

k=0

P[ṽ = k][F (z)]k

= zV [F (z)].

Thus, we have

F (z) = zB∗[λ− λF (z)].

Then, we have

E(Nbp) = F (1)(1) = B∗(1)(0)[−λF (1)(1)] +B∗(0)

= λs̄E(Nbp) + 1,
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thus,

E(Nbp) =
1

1 − λs̄
.

Reference: L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley & Sons,

New York, 1975.

C.3 An M/M/1 queue with arrival rate λ and departure rate µ can be constructed as

follows. Choose an initial state n0 at time 0 and a rate σ > λ + µ. Generate a Poisson

process with rate σ, denoted as t0, t1, . . . , tl, . . .. An instant tl, l = 0, 1, . . . , is chosen as

an arrival point with probability λ
σ

and as a departure point with probability µ
σ
. At an

arrival point, we increase the population by one: n := n + 1, and at a departure point

if n > 0 then we decrease the population by one: n := n − 1, and at other points we

keep the population unchanged. Prove that the discrete-time Markov chain embedded

at tl, l = 0, 1, . . . , is the discrete M/M/1 queue described on Page 526. Determine its

parameters pa and pd [148].

[Solution] When n > 0, we have p(n+ 1|n) = λ
σ

and p(n− 1|n) = µ
σ
. Thus , pa = λ

σ
and

pb = µ
σ
. when n = 0, we have p(1|0) = λ

σ
and p(0|0) = 1 − λ

σ
.

C.4 Many results in this book are stated only for discrete-time Markov models, but the

queueing systems are usually modelled by continuous-time Markov models. Therefore, we

need to use the embedded Markov chain.

a. Find the transition probabilities of the Markov chain embedded at the arrival and

departure instants of an M/M/1 queue with arrival rate λ and service rate µ.

b. If we use the reward function f(n) = n, does the long-run average of the embedded

chain equal to the mean length of the original M/M/1 queue?

c. If the answer to (b) is “No”, what can we do? (cf. Problem C.9)

[Solution]

a. It is easy to know that the transition probabilities of the embedded Markov chain

of M/M/1 queue is that, p(n + 1|n) = λ
λ+µ

, p(n− 1|n) = µ
λ+µ

, for n > 0; p(1|0) = 1; and

all the other probabilities are zero.
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Figure 9.4: An M/M/1 Queue with Feedback

b. It is obvious that the steady-state probability of embedded Markov chain is not

equal to that of the original queueing system. So the long-run average of the embedded

chain is not equal to the mean length of the original M/M/1 queue.

c. This problem can solved by the idea of uniformization in Markov process. We

should change the transition probability of embedded chain to p(1|0) = λ
λ+µ

, p(0|0) =

µ
λ+µ

and keep the other probabilities unchanged. The steady-state probability of this

embedded chain will be equal to the original queueing system and the corresponding

system performance will also be equivalent.

C.5∗ Consider the queueing system with an M/M/1 queue and a feedback loop shown in

Figure 9.4. This is the simplest non-acyclic open queueing network. The external arrival

process to the system is a Poisson process. After the completion of its service at the

server, a customer leaves the system with probability 1− q and returns back to the queue

with probability q, 0 < q < 1. The total arrival process to the queue at point A is a

composition of both the external arrival process and the feedback process. Explain that

this total arrival process at point A is not a renewal process. (Hint: When the server is

idle, the inter-arrival time is larger on average. Explain that the consecutive inter-arrival

times at point A are not independent.)

[Solution]

It is known that the renewal process requires the inter-arrival time sequence should

be independent and identically distributed. In this problem, if we think the situation

where the server is idle, it is easy to know that during the idle period the inter-arrival

process is only contributed by the external arrival process. So the inter-arrival time is

larger than the average. Thus, the inter-arrival time sequence does not have the same

distribution in the combined arrival process. The total arrival process at point A is not a
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renewal process is not a renewal process. Moreover, we can find the distributions of the

inter-arrival times, when there are customers in the system, are different from those when

there are no customers. That is to say, the inter-arrival time depends on the current state.

Thus, according to the Markov property of state transitions, the internal-arrival time will

also depend on the previous state. Therefore, the consecutive inter-arrival times at point

A are not independent.

C.6 A nonblocking cross-bar switch can be modelled as a closed queueing network. Figure

9.5 illustrates the structure of a nonblocking packet switch consisting of N input links

and M output links. Packets arriving at each input queue are put in a buffer waiting

to be transmitted. Suppose that all packets belong to the same class in terms of the

statistics of their destinations: A packet arriving at any input has probability qi,j of being

destined for output j given that the previous packet at that input was destined for output

i, i, j = 1, . . . ,M . Every packet destined to output j requires an exponentially distributed

transmission time with mean s̄j . At a time, only the head of line (HOL) packet (the first

packet) in an input queue can be transmitted and the switch can only transmit one packet

to every output queue at a time. The HOL packet of an input queue contends with the

HOL packets of other input queues that have the same destination in a FCFS manner. We

wish to determine the maximum throughput of this N×M switch, i.e., how much packets

that this switch can transmit to their destinations per second if there are always packets

at every input waiting for transmission. Develop a queueing model for this problem [52,

68]. (Hint: The HOL packet of an input queue makes a request to the switch asking for

being transmitted to its destination at the time when it moves to the head position. All the

requests to the same destination output queue form a logical queue called a request queue.

The M request queues constitute a closed queueing network.)

[Solution]

Although the packet served by the switch will leave from output link, we can consider

the packet turn back to the input queue equivalently. This problem can just be modelled

as an M-server N-customer closed Jackson network. The routing probability is qi,j, i, j =

1, · · · ,M . The service time of each server is exponentially distributed with mean service
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Figure 9.5: The Model of a Nonblocking Switch

time s̄j , j = 1, · · · ,M. Our objective is to maximize the throughput of the queueing

network. It can be solved by the classical algorithm of closed Jackson network.

C.7 A cyclic queueing network of M servers is a closed network that contains M servers

connecting as a circle. A two-server cyclic network is a network of two servers with routing

probabilities q1,2 = q2,1 = 1 and q1,1 = q2,2 = 0. Consider a two-server cyclic network with

service rates λ and µ, and a population K. Show that this closed network is equivalent

to an M/M/1/K queue with arrival rate λ and service rate µ.

[Solution]

Denote the number of customers in server 2 is n. Since this is a closed network, then

the number of customers in server 1 is K − n. From the memoryless property, the state

of this closed network can be denoted as n. Since q1,2 = q2,1 = 1 and q1,1 = q2,2 = 0,

there are no feedback loops. Then the arrival process to each server is a Poisson process.

For server 2, the arrival process is a Poisson process with rate λ and it’s service time is

exponentially distributed with rate µ. Moreover, the customers in server 2 can not exceed

K. In the physical meaning, this closed network is equivalent to an M/M/1/K queue with
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arrival rate λ and service rate µ. We also get the flow-balance equations for this closed

network,

λp(n) = µp(n+ 1) for 0 ≤ n ≤ K − 1.

Solving it, we get p(n) = (1−ρ)ρn

1−ρK+1 , n ≤ K, ρ = λ
µ

6= 1, and if λ = µ, p(n) = 1
K+1

,

0 ≤ n ≤ K. This steady-state probabilities are the same as an M/M/1/K queue with

arrival rate λ and service rate µ.

C.8 Consider an open Jackson network with M servers. The service times at server i

are exponentially distributed with mean s̄i, i = 1, 2, · · · ,M ; the routing probabilities are

qi,j, i, j = 1, 2, · · · ,M ; the external arrival rate to server i is λ0,i and the leaving rate

from server i is qi0, i = 1, 2, · · · ,M . The state of the network is n = (n1, · · · , nM). Let

N :=
∑M

k=1 nk.

1. Find the conditional steady-state probability p(n|N).

2. Show that this conditional probability is the same as an equivalent closed Jackson

network with a population N .

3. Find the routing probabilities of this equivalent closed Jackson network and give

your explanation.

[Solution]

1. Let p(n) be the steady-state probability of state n, we have

p(n) = p(n1, n2, · · · , nM) =
M∏

k=1

p(nk) (9.34)

with

p(nk) = (1 − ρk)ρ
nk

k , ρk =
λk

µk
, k = 1, 2, · · · ,M,

where

λk = λ0,k +
M∑

j=1

λjqj,k, k = 1, 2, · · · ,M (9.35)

and µk = 1
s̄k

.

This shows that in an open Jackson network, each server behaves as if an independent

M/M/1 queue with arrival rate λk and service rate µk, k = 1, 2, · · · ,M , respectively.
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Then,

p(n|N) =

∏M
k=1 p(nk)∑

n1+···+nM=N

∏M
k=1 p(nk)

=

∏M
k=1(1 − ρk)ρ

nk

k∑
n1+···+nM=N

∏M
k=1(1 − ρk)ρ

nk

k

=

∏M
k=1 ρ

nk

k∑
n1+···+nM=N

∏M
k=1 ρ

nk

k

.

2. Let GM(N) =
∑

n1+···+nM=N

∏M
k=1 ρ

nk

k , then p(n|N) = 1
GM (N)

∏M
k=1 ρ

nk

k . We can see

that p(n|N) has the same formula as p(n) in a equivalent closed Jackson network with

a population N if ρk = cxk, that is, λk = cvk, k = 1, . . . ,M , where c is any non-zero

constant.

3. We need to have λk = cvk, k = 1, . . . ,M . Let λ0 =
∑M

k=1 λ0,k, and q0,i =
λ0,i

λ0
, for

i = 1, . . . ,M . Suppose the routing probabilities of this equivalent closed Jackson network

is q′i,j, i, j = 1, . . . ,M . Then

vi =

M∑

j=1

q′j,ivj , j = 1, 2, · · · ,M. (9.36)

Let

q′i,j = qi,j + qi,0q0,j , i, j = 1, 2, . . . ,M. (9.37)

(9.36) can be rewritten as

vi =
M∑

j=1

qj,ivj +
M∑

j=1

qj,0q0,ivj, j = 1, 2, · · · ,M.

Summing (9.35) from i = 1 to i = M , we get

λ0 =
M∑

i=1

λ0,i =
M∑

i=1

λiqi,0.

By the aforementioned two equations and (9.35), we can prove that λi = cvi satisfies

λi =
M∑

j=1

q′j,iλj, j = 1, 2, · · · ,M.

Therefore, if the routing probabilities of this equivalent closed Jackson network is defined

as (9.37), then we show that this conditional probability is the same as an equivalent

closed Jackson network with a population N .
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Observing (9.37), we can see that the routing of the customers in this closed network is

the same as that in the open network with the following modification: When a customer

completes its service at server i, he/she will leave the network with probability qi,0 and

then be immediately routed to server j with probability q0,j or will be directly routed to

server j with probability qi,j. Thus the routing probability from server i to server j is

q′i,j = qi,j + qi,0q0,j .
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Figure 9.6: The Arrival Theorem and PASTA

C.9 Figure 9.6 illustrates a sample path N(t) of an M/M/1 queue, in which the upward

arrows indicate the departure instants and the downward arrows indicate the arrival

instants. Let the arrival rate and service rate be λ and µ, respectively. We simulate the

M/M/1 queue with the uniformization approach (cf. Problem 10.8):

i. Generate a Poisson process with rate λ + µ, shown in Figure 9.6 as {t1, t2, t3, . . .}.

Set N(0) = n0 being the initial state (n0 = 0 in Figure 9.6)

ii. At tk, k = 1, 2, . . ., generate an independent and uniformly distributed random

variable ξk ∈ [0, 1),

(1) If ξk <
λ

λ+µ
, then tk is an arrival instant; set N(tk+) := N(tk) + 1.

(2) If ξk > λ
λ+µ

and N(tk) > 0, then tk is a departure instant; set N(tk+) :=

N(tk) − 1.

(3) If ξk >
λ

λ+µ
and N(tk) = 0, do nothing.

The process N(t) thus generated is left-continuous. In Figure 9.6, τa
k , k = 1, 2, . . ., indicate

the arrival instants and τd
k , k = 1, 2, . . ., indicate the departure instants; at t3 and t4 the

server is idle and nothing changes, these instants are call “dummy instants”.
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a. Explain that the process N(t) generated by the above algorithm is indeed an M/M/1

queue with arrival rate λ and service rate µ.

b. Define Xk := N(tk). Prove that the embedded chain X := {X1, X2, . . .} is a

Markov chain and its steady-state distribution is the same as that of the M/M/1

queue process N(t)(PASTA).

c. Prove that the average of the number of visits where the arriving customer or the

departing customer sees n customers in the queueing system at the non-dummy in-

stants t1, t2, t5, t6, . . ., equals the steady-state probability of the state n, n = 0, 1, . . ..

Further, prove that the average of the number of visits where n customers are seen

by the arriving customer in the system at the arrival instants τa
k , k = 1, 2, . . ., (or

the departure instants τd
k , k = 1, 2, . . .) equals the steady-state probability of the

state n, n = 0, 1, . . . (the arrival theorem).

d. Extend this explanation to (open or closed) Jackson networks.

[Solution]

a. It is known that these processes are generated independently. Since the total rate

of the generated process is λ + µ and we adopt it as arrival process with probability

λ
λ+µ

, with the memoryless property of Poisson process we know that the arrival process

is a Poisson process with rate (λ + µ) · λ
λ+µ

= λ. We assume a customer begins to be

served at time tk. After that, the service will be completed at tk+1 with probability

µ
λ+µ

, at tk+2 with probability λ
λ+µ

µ
λ+µ

, · · ·, at tk+n with probability
(

λ
λ+µ

)n−1
µ

λ+µ
, · · ·,

and so on. We assume ξ is a random variable which is exponential distributed with

rate λ + µ. Then from the construction of the process, we know the service time is

µ
λ+µ

ξ + λ
λ+µ

µ
λ+µ

2ξ + · · · +
(

λ
λ+µ

)n−1
µ

λ+µ
nξ + · · · = λ+µ

µ
ξ. Since ξ is is a random variable

which is exponential distributed with rate λ+ µ, we have

P(
λ+ µ

µ
ξ ≤ x) = P(ξ ≤

µ

λ+ µ
x) = 1 − exp(−(λ+ µ)

µ

λ+ µ
x) = 1 − exp(−µx).

The service time is also an exponential distribution with rate µ. So, the generated process

N(t) is indeed an M/M/1 queue with arrival rate λ and service rate µ. If a customer leave

the system and there are no customers in the system at tk, then we can similarly obtain
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the arrival time is

µ

λ + µ
ξ +

µ

λ+ µ

λ

λ+ µ
2ξ + · · · +

(
µ

λ+ µ

)n−1
λ

λ+ µ
nξ + · · · =

λ+ µ

λ
ξ.

Thus, the arrival process is Poisson process with rate λ when there are no customers in

the system.

b. From the generation of process N(t) we can see that the next state Xn+1 is only

dependent on the current state Xn, i.e., X has the Markovian property and X is a

Markov chain. It is easy to know that the transition probability of X is p(n + 1|n) =

λ
λ+µ

, p(n− 1|n) = µ
λ+µ

, n > 0; p(1|0) = λ
λ+µ

, p(0|0) = µ
λ+µ

; others probabilities are all zero.

From the equation of steady-state probability πP = π, πe = 1, we can easily know that

the steady-state probability of X is π(n) = (1 − ρ)ρn, where ρ = λ/µ. It is equivalent

with the steady-state probability of the M/M/1 queue.

c. Let ad(n) be the average of the number of arrivals or departures where the arriving

customer or the departing customer sees n customers in the queueing system at the

non-dummy instants t1, t2, t5, t6, . . . and π(n) be steady-state probability of the state n.

Viewing ad(n) and π(n) as the limiting probabilities, we have:

π(n) = lim
t→∞

P{N(t) = n},

ad(n) = lim
t→∞

P{N(t) = n|an arrival or a departure just after time t}.

This is right since time average probabilities are equal to limiting probabilities for ergodic

systems

Let A(t, t+δ) be the event an arrival or a departure occurs in the time interval [t, t+δ).

Then,

ad(n) = lim
t→∞

lim
δ→0

P{N(t) = n|A(t, t+ δ)}

= lim
t→∞

lim
δ→0

P{N(t) = n,A(t, t+ δ)|A(t, t+ δ)}

= lim
t→∞

lim
δ→0

P{A(t, t+ δ)|N(t) = n}P{N(t) = n}

P{A(t, t+ δ)}

= lim
t→∞

lim
δ→0

P{A(t, t+ δ)}P{N(t) = n}

P{A(t, t+ δ)}

= lim
t→∞

P{N(t) = n}

= π(n).
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Further, from the above result, we can proved that the average of the number of visits

where n customers are seen by the arriving customer in the system at the arrival instants

τa
k , k = 1, 2, . . ., (or the departure instants τd

k , k = 1, 2, . . .) equals the steady-state

probability of the state n, n = 0, 1, . . .

d. We may also simulate a (closed or open) Jackson network with uniformization

approach. We only consider the open Jackson network. In the network, we have more

than one arrival rates λ0i, i = 1, . . . ,M and service rates µk,nk
, k = 1, 2 . . . ,M . We may

generate a Poisson process with rate R =
∑M

i=1 λ0i +
∑M

k=1 µk,nk
as {t1, t2, . . .}. Set the

network state at epoch tk as N(tk) = (n1, n2, . . . , nM). At each epoch tk, generate an

independent and uniformly distributed random variable ξk ∈ [0, 1),

1. If
∑m−1

i=1 λ0i

R
≤ ξk <

∑m
i=1 λ0i

R
, m = 1, 2, . . . ,M with λ00 = 0, then tk is an arrival

instant and the customer arrives at server m; set N(tk+) = (n1, n2, . . . , nm−1, nm +

1, nm+1, . . . , nM).

2. If
∑M

i=1 λ0i+
∑m−1

j=1 µj,nj

R
≤ ξk <

∑M
i=1 λ0i+

∑m
j=1 µj,nj

R
with µ0,n0 = 0 and nm > 0, then tk

is an instant when the service of a customer at server m is finished. The customer

transfers according to routing probability qml. If l = 0, the customer leaves the

network; set N(tk+) = (n1, n2, . . . , nm − 1, . . . , nl, . . . , nM); otherwise, the customer

enters server l; set N(tk+) = (n1, n2, . . . , nm − 1, . . . , nl + 1, . . . , nM).

3. If
∑M

i=1 λ0i+
∑m−1

j=1 µj,nj

R
≤ ξk <

∑M
i=1 λ0i+

∑m
j=1 µj,nj

R
with µ0,n0 = 0 and nm = 0, do

nothing.


