is then given to reveal the relationship between state-space
models and transfer functions in Chapter 3. Following that,
some special systems with constraints are discussed with
the same mathematical style in Chapter 4.

Part IT deals with finite-dimensional nonlinear systems.
With a structure almost parallel to that of Part I, the three
chapters in Part II are presented corresponding to the first
three chapters of Part I to introduce results on controllability,
stabilizability, and realization, respectively, for nonlinear
systems. Material on optimal control of finite-dimensional
systems follows in Part III. Dynamic programming is first
presented in Chapter 1, with the optimal control of impul-
sive systems introduced in Chapter 2. The maximum princi-
ple is presented in Chapter 3, followed by the Fillipov
theorem on the existence of optimal strategies in Chapter 4.

Part IV handles the control of infinite-dimensional sys-
tems using operator-based approaches. Chapter 1 in this
part lays the related mathematical groundwork and is fol-
lowed by basic concepts such as controllability, stabilizabili-
ty, and optimality in the three chapters that follow for
infinite-dimensional systems.

DISCUSSION

The contents of this well-organized book mainly include the
analysis of control properties and optimization. I enjoyed
reading the concise mathematical description with the clean
logical structure. I also learned several new things or
reviewed some materials from new angles, for example, the
topological stabilizability criteria for control systems in Chap-
ter 2 of Part II and the Filipov-based existence results in
Chapter 4 of Part IIl. However, due to space limitations, some
general discussions and detailed analysis are missing in this
monograph. For example, various versions of controllability
in nonlinear or infinite-dimensional systems and their rela-
tionships are not fully displayed. The readers who are inter-
ested in the extended or generalized results may have to
consult other books such as [2]. Moreover, the feedback con-
trol synthesis problems, such as robust and adaptive control
design, which have attracted more and more attention in
recent years, are absent. This omission may make the book
less attractive to readers who are eager to learn new advances
in feedback design.

In some sense, Mathematical Control Theory is not suitable
for a textbook since it is too difficult for general postgraduate
students unless they have a strong mathematical back-
ground. Moreover, the presentation style of the book does
not facilitate the understanding of practical control meaning
behind the mathematics. Many students will find the chap-
ters full of mathematical formulas and equations without
enough introduction of physical intuition or engineering
background. As such, the book may not be a good choice for
lower level classes, for newcomers to the control science and
technology field, or for those to be trained as practicing con-
trol engineers. However, I recommend the book to readers
who are interested in the rigorous mathematical buildup of
control systems and problems. Indeed, for mathematicians
who look for the basic ideas or a general picture about the
main branches of control theory, I believe this book can pro-
vide an excellent bridge to this area. Finally, for students
who are ready for a more rigorous approach after grasping
suitable mathematical preliminaries and control engineering
background, this book can be helpful owing to its theoretical
beauty and clarity.
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Stochastic Learning and Optimization:
A Sensitivity-Based Approach

by XI-REN CAO
Reviewed by Pravin Varaiya

he typical graduate control curriculum introduces
stochastic control through the linear-quadratic-
Gaussian (LQG) problem, using only the basic prop-
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erties of discrete-time linear systems and quadratic forms
as well as elementary probability. State estimation can be
formulated as weighted least squares, leading to the
Kalman filter. The LQG control is obtained by means of the
separation theorem and the feedback control for minimum
quadratic cost. A more advanced course might deal with
spectral factorization, linear system identification, and
adaptive control, requiring a firmer background in proba-
bility and statistics. Twenty years ago a student with this
background could read the current literature and begin
research in stochastic control.
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Today, a grounding in lin-
ear stochastic systems is inade-
quate for formulating
problems of sequential deci-
sion-making in nonlinear and
discrete-event stochastic sys-
tems or to become familiar
with developments over the
past 20 years in analytical and
computational techniques,
results, and applications of sto-
chastic learning and optimiza-
tion. The instructor faces three
interdependent questions in
preparing a course that covers
these developments. Can pre-
requisites be limited to basic
stochastic processes, such as
Markov chains and applica-
tions such as queuing net-
works? What should be covered in terms of models,
techniques, and applications? What reading material should
be selected from the array of specialized books and articles?

One attractive answer to these questions is offered by Sto-
chastic Learning and Optimization: A Sensitivity-Based Approach.
This book presents a unique synthesis of research over the
past two decades in stochastic optimization and learning,
including Markov decision problems (MDPs), perturbation
analysis (PA), reinforcement learning (RL), and identification
and adaptive control (I&AC). The book is divided into three
parts. Part I, chapters 2-7, covers the above-mentioned top-
ics. Part II, chapters 8-9, presents the author’s original work
on event-based optimization, extending the discussion in

Stochastic Learning
and Optimization

A Sensitivity-Based Approach

i\

Xi-Ren Cao

Springer, 2007,

119 illustrations and

212 problems

ISBN-13: 978-0-387-36787-3,
e-ISBN-13: 987-0-387-69082-7,
US$129, 566 pages.

Part I to systems in which, instead of observing the state, the
system is observed through “events.” Part III covers the nec-
essary background in Markov chains and queuing theory.
Parts I and III can be comfortably covered in one semester.
The text flows effortlessly, the figures enhance intuition, and
the problems at the end of each chapter test understanding
and further explore the topics covered.

SENSITIVITY-BASED APPROACH

The author’s sensitivity-based approach provides both a
unifying perspective for optimization and a sample path-
based physical interpretation for learning. Here are the key
ideas. Consider a discrete-time MDP with state X; € S,
action or control A; € A, and decision rule or feedback
policy d: S — A. System performance is measured by the
long-term average reward

1 L-1
d .
n' = Lli>moo Z ;Ef(xls d(Xl))
1 L-1
= lim - l;) F(Xy, d(X)p)), 1)

where f(i, «) is the one-period reward and E denotes
expectation. Consider two policies, d and h. Let P be the
transition probability matrix under d, = the steady-state
probability row vector, f the one-step reward column vec-
tor, and 7 the average reward. The corresponding quanti-
ties for i are distinguished by primes, for example, P, 7’
Let AP=P —-P, Af=f—f, Ps=P+3§(AP), and
0 < é < 1. The sensitivity-based approach refers to the
search for good or optimal policies through the analysis
and computation of the performance difference

Final Touchdown

H owever, in reality the situation may be more complicated. Namely, if the sys-
tem is subject to unknown but bounded disturbances, or if the system para-
meters are not exactly known it may become necessary to compute the set of
states reachable despite the disturbances or data uncertainty or, if exact reacha-
bility is impossible, to find guaranteed errors for reachability. These questions
have implicitly been present in traditional studies on feedback control under
uncertainty for continuous-time systems. They have had very serious motiva-
tions from problems like calculation of landing ranges during the liquidation of

space station “Mir”.

—*“National achievements in control theory;

The aerospace perspective,” By V.F. Krotov, and A.B. Kurzhanski,
Annual Reviews in Control, Vol. 29, 2005, p. 26.
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An=n"—n, @)
or the performance gradient (ns is the performance for Ps)

dns . ms—n
G5 T am T @)

Relations (1)-(3) structure the organization and limit the
scope of the book.

Evidently, the average reward n = f. The potential g
satisfies the Poisson equation

(I-P)g+ne=f, 4)

in which e is the column vector of all 1s. The solution g of
(4) is unique up to an additive constant. The performance
difference (2) is given by

n' —n=nl[(AP)g+ Af], 5)

and the performance gradient (3) is given by

d
B~ xl(AP)g+ Af]. ©)
das
The book shows how many results in optimization and
stochastic learning are derived or explained from these

two fundamental sensitivity formulas.

OPTIMIZATION

Formula (6) allows one to conduct a gradient search to
improve the current policy d. Observe that (6) depends only
on r and g, which are determined by d. Further, (6) implies
that n; is differentiable arbitrarily often, and the book
develops a MacLaurin series expansion of ns, which can be
used to compute 1s. The performance difference (5) on the
other hand depends on both d and /, which makes it less
immediately useful for policy improvement. However, the
policy iteration algorithm follows directly from this equa-
tion. From (5), we obtain

[ —n=rl(f+Pg—(f+PYI

which leads to the following policy iteration algorithm: At
step k, choose

diiq € arg max [fd + Pdgdk] ; @)

and the optimality condition in which d is optimal if and
only if for all policies

f+Pg>f +Pg ®)
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The book shows how the performance difference leads to
the solution of various optimization problems, including
the bias and n-bias optimality and Blackwell optimality,
for the multi-chain case.

LEARNING

Using (3) or (7) requires calculating = and g, which may be
computationally difficult or even impossible if P is not
known. Learning refers to estimation of the potential (or the
transition probabilities P) from a sample path, which may
be obtained from a simulation or online measurements. The
key observation is

o0

g =E D [fXpn) —nl 1 X =i
k=0
= E([f(X) — n]+ gX141) | X = i}, )

so that, in the spirit of stochastic approximation, one
obtains an update rule for the estimate of the potential

§Xp < ¢Xp + —xfgXp) — [f(XD —n + gXi+D}

= g(X) + K18y, (10)

wherein the temporal difference (TD) is defined as
8= [fXD —n+8Xp1) —gXp]. [=0,1,....

In addition, n can be estimated by

N1 = — kip1lm — fFX40)]

The step sizes k) must be appropriately selected for conver-
gence. The book presents several other algorithms, includ-
ing variants of the TD method above, for estimating the
potential. These estimates can be combined with policy
iteration (7) to search for better policies, without explicitly
calculating the potential by means of the Poisson equation.

If P is unknown, the potential estimates (10) cannot be
used in the policy iteration (7). Instead one can estimate
the right-hand side of (7) as the Q-factors,

Q) = flia)+ Y p(jli )g™()), (11

jeS
and replace the iteration (7) by
o)1 € arg max Q% (i, o).
a'e A

As with (10), (11) must be replaced by a stochastic approximation
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algorithm to estimate the Q-factors. Again, the author pre-
sents many variants of such methods, which collectively
have become known as reinforcement learning. One fea-
ture of this book is its emphasis on learning algorithms for
performance gradients, which extend the scope of RL and
link PA and RL together.

QUEUING SYSTEMS

Although the discussion above is formulated in terms of dis-
crete-time MDPs, it carries over with small changes to contin-
uous-time MDPs. Some problems in the control of queuing
systems can be posed as continuous-time MDPs. However,
problems in which the decision variable d changes the service
time of a queuing system cannot be treated as MDPs. These
problems can be analyzed by means of perturbation analysis,
which can be illustrated by a single-server queue with arrival
process a; and virtual service times y, resulting in x; queued
customers. Performance is measured by

1 T
= li — dt.
n=_lim - /(; flxp)

Suppose the service-time distribution is perturbed slightly and
suppose that x} is the resulting queue. One key idea of PA is to
slightly perturb the service times y to obtain y) correspond-
ing to the perturbed distribution, so that x} is a small perturba-
tion of x; and the change in performance can be estimated by

1 T
An=n'—n~ f/o [f(x}) — flxpldL.

Since the samples of y, are obtained from those of yj, this
estimate can be computed from the latter; moreover, the
estimate above has small variance. The subtleties in PA
arise when a small perturbation in yj causes a large change
in the busy period or when there is a network of queues.
The author provides systematic algorithms for tracing the
effects of the initial perturbation. The performance differ-
ence estimates can then be used to obtain the performance
gradient in optimization.

EVENT-BASED OPTIMIZATION

Part II of the book is devoted to the author’s most recent
research. The idea of event-based control can be introduced
as follows. Consider a Markov chain. An event EC S x S is
a subset of state transitions. Let £ = {Eq, Ep, ...} be a collec-
tion of disjoint events with U;E; = S x S. At any time [ the
controller observes one of the events, say E;, with the
understanding that (X}, X;11) € E;. The controller does not
directly observe X;. Based on the observation E;, the con-
troller must select an action a € A, which determines the
probability of a transition belonging to a subset of Ej,

PY{(X}, Xj41) € E| (X1, X141) € Ef}, E C E;. An event-based
decision policy d is thus a map from & into .A. The perfor-
mance is given by (1) as above. The book gives conditions
on the structure of these conditional probabilities under
which the performance difference (5) can be expressed in
terms of an aggregated potential (g(E), E € £). The opti-
mization and learning algorithms described in Part I carry
over with suitable modifications.

Event-based control is natural in settings in which a sen-
sor or alarm signals the occurrence of an impending event,
such as the presence of a vehicle awaiting service at a traffic
light or the arrival of a call at a telephone switch. The
author explores in detail the example of a network with K
queues, whose state is # = (11, ... , ng), where ny is the
number of customers in queue k. Suppose the controller can
observe the number of customers n =Y 1y and the arrival
of a customer but not which queue the customer joins. This
event comprises all transitions (71, 71’) in which, for exactly
one k, n;{ — =1 and n} =1, j# k. Thus there are far
fewer events than states. More importantly, it is not gener-
ally possible to express event-based control as an MDP
even though the process is Markov.

CONCLUSIONS

The book contains many other interesting results, includ-
ing MDPs with continuous state space, needed to formu-
late the LQG problem as an MDP; and bias optimality for
selecting the best among many non-unique policies that
maximize the reward (1). Most importantly, this review
does not convey the deep physical insight based on sample
paths that the author employs to derive all of the results
discussed above (briefly, the performance gradient and
difference for Markov systems can be constructed by using
potentials g(i), i € S as building blocks). The concluding
chapter of Part II indicates the way in which such insight
can be used to extend the sensitivity-based approach to
new problems.

In conclusion, this book introduces stochastic learning
and optimization and original research in these areas with-
in a unified framework. It fits well the need for a textbook
for students in control and optimization to gain an
overview beyond the linear stochastic control.
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