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IV. CONCLUSION

In this note, a new method is developed to test stability of piecewise
discrete-time linear systems based on a piecewise Lyapunov function.
It is shown that the stability can be determined by solving a set of LMIs.
The approach can be extended to performance analysis of such systems
as in [2] and [3] for their continuous counterparts.
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A Note on the Relation Between Weak Derivatives and
Perturbation Realization

Bernd Heidergott and Xi-Ren Cao

Abstract—This note studies the relationship between two important ap-
proaches in perturbation analysis (PA)—perturbation realization (PR) and
weak derivatives (WDs). Specifically, we study the relation between PR and
WDs for estimating the gradient of stationary performance measures of a
finite state-space Markov chain. Will show that the WDs expression for the
gradient of a stationary performance measure can be interpreted as the ex-
pected PR factor where the expectation is carried out with respect to a dis-
tribution that is given through the weak derivative of the transition kernel
of the Markov chain. Moreover, we present unbiased gradient estimators.

Index Terms—Markov chains, perturbation analysis (PA), weak deriva-
tives (WDs).

I. INTRODUCTION

Today,perturbation analysis(PA) is the most widely accepted gra-
dient estimation technique; see [5]–[7] for details. In this note, we work
in particular with the interpretation of PA viaperturbation realization
(PR) factors, see [1]. The aim of our analysis is to establish a connec-
tion between PR and the concept ofweak derivatives(WDs), see [8].
Whereas PA is a sample-path based approach, WDs are a measure the-
oretic approach to gradient estimation.

WDs translate the analysis of the gradient into a particular splitting
of the sample path into two subpaths and observing these subpaths until
they couple, that is, until the perturbation dies out. The basic principle
for PA with PR is as follows. A small change in parameters induces a
sequence of changes (either small perturbations in timing, or big jumps
in states) in a sample path; the effect of such a change on a performance
in a long term can be measured by the PR factors, which can be esti-
mated on a single sample path. Thus, the performance gradient can be
obtained by the expectation (in some sense depending on the problem)
of the realization factor.

In this note, we study the gradient of stationary performance mea-
sures of (discrete time) finite state-space Markov chains via WDs and
PR. Our analysis will show that the WDs expression for the gradient of
a stationary performance measure of finite state Markov chain can be
interpreted as the expected PR factor where the expectation is carried
out with respect to a distribution that is given through the weak deriva-
tive of the transition probability matrix of the Markov chain.

The note is organized as follows. Section II provides a short introduc-
tion to PR and WDs. In Section III, we illustrate the relation between
the PA via PR and the weak derivative estimator for the stationary per-
formance of a finite state-space Markov chain. In Section IV, we show
the application of realization factors to the weak derivative of the tran-
sition matrix. In Section V, we deduce unbiased estimators from the
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results obtained in Section III. We conclude the note with a discussion
on the relation between realization factors and WDs.

II. BACKGROUND ON PERTURBATION REALIZATION AND WEAK

DERIVATIVES

A. PA via PR

The basic principle for PA via PR is to decompose the performance
sensitivity into the effect of a set of perturbations (big or small) in a
sample path, which can be measured precisely by a quantity called
PR factor. The idea was first applied to infinitesimal perturbations in
queueing networks [1], and has been further developed to the case of
discrete time Markov chains in [3] and [4].

Let X = fXk: k � 0g be an ergodic Markov chain with finite
state-spaceS = f1; . . . ;Mg and transition probability matrixP . Let
f :S ! IR be a performance function and writef in vectorial notation
by f = (f1; . . . ; fM )T , with fi = f(i) for 1 � i � M , where “T ”
represents the transpose. We denote the unique stationary distribution
of X by � = (�1; . . . ; �M), and the stationary performance ofX is
thus given by

� = E�(f) =

M

i=1

�ifi = �f:

Let Q be a nonzero square matrix with

Qe = 0 for e = (1; 1; . . . ; 1)T (1)

and assume that a neighborhood of� = 0, denoted by�, exists, so that
for any� 2 � the matrixP (�) = P + �Q is a transition probability
matrix onS. Denote the performance measure associated withP (�) by
�Q(�) (which implies� = �Q(0)). The derivative of� in the direction
of Q is defined as

d�Q
d�

:=
d�Q(�)

d�
�=0

= lim
�!0

�Q(�)� �

�
:

In this setup, a perturbation means that the Markov chain is perturbed
from one statei to another statej. For example, consider the case where
qki = ��, qkj = �, andqkl = 0 for all l 6= i; j. Suppose that in the
original sample path the system is in statek and jumps to statei, then
in the perturbed path it may jump to statej instead. Thus, we study two
independent Markov chainsX = fXn;n � 0g andX0 = fX 0n;n �
0g with X0 = i andX 00 = j; both of them have the same transition
matrixP . Therealization factoris defined as [4]:

d(i; j) = E

1

n=0

(f(X 0n)� f(Xn)) X0 = i;X 00 = j (2)

for i; j = 1; . . . ;M . Thus,d(i; j) represents the long term effect of a
change fromi to j on the system performance.

If P is irreducible, then with probability one the two sample paths
of X andX0 will merge together. That is, there is a random number
L(i; j) such that

X 0L(i;j) = XL(i;j)

provided thatX0 = i, X 00 = j. Therefore, from the Markov property

E

1

n=L(i;j)

(f(X 0n)� f(Xn))jX0 = i; X 00 = j = 0

and (2) becomes

d(i; j) = E

L(i;j)

n=0

(f(X 0n)� f(Xn)) X0 = i;X 00 = j (3)

for i; j = 1; . . . ;M . The matrixD 2 IRM�M , with Dij = d(i; j),
is called arealization matrix. It is shown in [4] and [3] thatD satisfies

the Lyapunov equationD � PDPT = F; whereF = efT � feT ,
ande = (1; 1; . . . ; 1)T , and the performance derivative is

d�Q
d�

= �QDT�T : (4)

Furthermore,Dij = gj � gi, whereg = (g1; . . . ; gM ) is the potential
vector satisfying the Poisson equation(I�P +e�)g = f , and (4) can
be written as

d�Q
d�

= �Q

1

l=0

(P l � e�)f: (5)

In Markov chain literature, the matrix 1

l=0(P
l � e�) = (I � P +

e�)�1 � e� is sometimes called thedeviationor thefundamentalma-
trix.

B. WDs

WDs provide an approach to write gradients as differences between
expectation with respect to appropriately chosen probability measures.
More formally, let(E; E) denote a Polish measurable space and let
f��: � 2 �g, with � := (a; b) � IR, be a family of probability
measures on(E; E). We call�� weakly differentiable at� if a signed
finite measure�0� exists, such that for any continuous bounded real-
valued functionsf on (E; E) it holds that

lim
�!0

1

�
E

f(s)��+�(ds)�
E

f(s)��(ds)

=
E

f(s)�0�(ds):

Note that�0� is not a probability measure. To see this, takef = 1, which
implies

E
�0�(ds) = 0. Hence,�0� has positive and negative parts.

However, any finite signed measure can be written as difference be-
tween two probability measures (apply, for example, the Hahn–Jordan
decomposition).

We call a triple(c�; �
+
� ; �

�

� ), where��� are probability measures
on (E; E) andc� is a finite number, a weak derivative of�� if for any
continuous bounded functionf on (E; E) it holds that

lim
�!0

1

�
E

f(s)��+�(ds)�
E

f(s)��(ds)

=
E

f(s)�0�(ds)

= c�
E

f(s)�+� (ds)�
E

f(s)��� (ds) : (6)

The probability measure�+� is called the (normalized) positive part of
�0� and��� is called the (normalized) negative part of�0�, respectively.
Note that the previous presentation of�0� is not unique.

Example 1: Let�� be the uniform distribution on the interval[0; �]
for 0 < � � a, with a < 1. For any continuousf : [0; a] ! IR, it
holds that

d

d�
f(x)��(dx)

=
d

d�

1

�

�

0

f(x)dx

=
1

�
f(�)�

1

�2

�

0

f(x)dx

=
1

�
f(x)��(dx)� f(x)��(dx)

where�x denotes the Dirac measure inx. Hence,(1=�; ��; ��) is a
weak derivative of��. Observe that no measure� on [0; a] exists, such
that�+� and��� are absolutely continuous with respect to�.

We now turn to Markov chains on the finite state-space
S = f1; . . . ;Mg and consider the familyP (�) = P + �Q of
transition probability matrices introduced in Section II-A. Each row of
P can be viewed as a probability measure on the state space and hence
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there exist WDs with respect to�. For anyi; j, letQ+
ij = max(Qij ; 0)

andQ�ij = max(�Qij ; 0). Note thatQe = 0 implies that

c(i) :=

M

j=1

Q+
ij =

M

j=1

Q�ij

for all i. From a measure theoretic point of view,Q�ij : 1 � j �M
are finite measures onS with total mass c(i). Re-scaling
Q�ij : 1 � j �M by c(i) yields probability measures
P�ij : 1 � j �M onS. Note that we have to avoid dividing by zero,

sincec(i) might be zero. Therefore, we set

P�ij =
Q

c
for ci > 0

Pij for ci = 0.

It is easily checked that for alli; j it holds that

Qij = ci P+
ij � P�ij : (7)

Recall thatP (�) is affine linear in� and thatQ is just the derivative of
P (�) with respect to�, which implies that

d

d�
P (�)ij = Qij

(7)
=ci P+

ij � P�ij : (8)

Note that the right-hand side of the aformentioned expression is inde-
pendent of� and we set

P 0 :=
d

d�
P (�):

Let C be a square matrix withCii = ci, 1 � i � M , and otherwise
zero, then (8) reads

P 0 = C P+ � P�

and for anyf 2 IRS it holds that

d

d�
P (�)f = P 0f = C P+f � P�f : (9)

If such a representation ofP 0 exists, thenP (�) is called weakly differ-
entiable and(C;P+; P�) is called a weak derivative ofP (�). It has
been shown in [8] that ifP (�) is weakly differentiable and ergodic then

d�Q(�)

d�
=

d

d�
�=0

�(�)f = �

1

l=0

P 0P lf (10)

where�(�) denotes the stationary distribution associated withP (�)
(which implies�(0) = �). In particular, weak differentiability ofP (�)
implies finiteness of the right-hand side of the above expression, see
[8]. In Section III, we will contrast (10) to (5) in order to establish the
relation between realization probabilities and WDs.

III. D IFFERENTIATING THESTATIONARY DISTRIBUTION OF A MARKOV

CHAIN

We study the performance derivative of the Markov chainX, as de-
fined in Section II-A. The derivative of� with respect to� can be ob-
tained in a closed analytical form, see (5). However, the matrixQ in (5)
is not a stochastic matrix, that is, we cannot interpretQ as a transition
matrix of the Markov chainX. Set

A :=

1

l=0

P l � e�

then

d�Q(�)

d�
= �QAf:

As shown in [2] and [3], the entries ofA can be estimated on a single
sample path, which gives rise to the following estimation procedure for
d�Q=d�. First, estimateA on a sample path, and then evaluateQAf
by simple matrix-vector multiplication. This then yields an estimator
for d�Q=d�. The question of whether or not this estimator is unbiased

depends on the estimator forA. Various estimators forA both biased
and unbiased are discussed in [3].

According to Section II, an alternative way of facilitating (5) for
simulation is to writeQ as the difference of two transition matrices
and to translate (5) into the difference between two experiments. In
what follows, we explain this approach in more detail.

By definition

P (Xk+1 = jjXk = i) = Pij

and (8) implies
d

d�
E[f(Xk+1)jXk = i]

=
d

d�

M

j=1

Pij(�)fj

=

M

j=1

c(i) P�ij fj � P+
ij fj

= c(i) E f X+
k+1 jX+

k = i � E f X�k+1 jX�k = i

where

P X�k+1 = jjX�k = i = P�ij :

Using (8), we now rewrite (5) as the difference between two stochastic
experiments. Denote theith row ofP� byp�i , that is,p�i = (P�ij : 1 �
j � M) is a probability distribution onS for all i. By calculation

d�Q
d�

=�Q

1

l=0

(P l � e�)f

= lim
n!1

� Q

n

l=0

P lf �Q

n

l=0

e�f

(1)
= lim

n!1
�Q

n

l=0

P lf

(7)
= lim

n!1
i

�ic(i) p+i � p�i

n

l=0

P lf

= lim
n!1

i

�ic(i) p+i

n

l=0

P lf � p�i

n

l=0

P lf

=
i

�ic(i)

1

l=0

p+i P
lf � p�i P

lf

=�

1

l=0

P 0P lf (11)

which is the expression ford�Q=d� derived using WDs, cf. (10). In
particular, finiteness of the last two sums in the above row of equations
follows from finiteness in (10).

Using (11), the expression

�

1

l=0

P 0P lf

can be estimated as follows. LetX� = fX�k : k � 0g denote the
Markov chain with (a) initial stateX�0 , (b) forX+ perform the first
transition fromX+

0 to X+
1 according top+

X
and generate all other

transitions according toP , and (c) forX� perform the first transition
from X�0 to X�1 according top�

X
and generate all other transitions

according toP . With this notation, we obtain

d�Q
d�

=
i

�ic(i)

1

l=0

p+i P
lf � p�i P

lf

=
i

�ic(i)

1

l=0

E f X+
l � f X�l jX�0 = i :

(12)
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The aforementioned expression leads to estimation schemes for
d�Q=d�, as we will explain in Section V.

IV. WDs WITH PR FACTORS

In this section, we write the gradient expression via WDs as the ex-
pected values of PR factorsd(i; j) introduced in Section II-A. The con-
struction of the processesX� differs from that ofX only through the
first transition. More precisely, after the first transitionX� andX be-
have stochastically identical, in formula, for alli; j it holds that

P X�

l+1 = jjX�

l = i = P (Xl+1 = jjXl = i) (13)

for l � 1. Hence, we obtain

E

n

l=0

f(Xl) X0 = i = E

n+1

l=1

f X�

l X�

1 = i :

By calculation
1

l=0

E f X+

l � f X�l X�

0 = i

=
j j

1

l=0

E 1
X =j ;X =j

f X+

l � f X�

l jX�

0 = i

=
j j

E 1
X =j ;X =j

d(j1; j2) X
�

0 = i

=
j j

d(j1; j2)P X+

1 = j1;X
�

1 = j2jX
�

0 = i

=
j j

d(j1; j2)P
+

ij P�ij

where1
X =j ;X =j

denotes the indicator function. The previous

formula can be phrased as follows.P+

ij P�ij is the joint probability
with which the weak derivative ofP splits the nominal process at state
i to statej1 for the “+” part andj2 for the “�” part, respectively. Hence

j j

d(j1; j2)P
+

ij P�ij

is the expected PR factor with respect to the “splitting probability” de-
fined by the weak derivative ofP . In particular, we obtain the following
overall formula:

d�Q
d�

=
i

�ic(i)
j j

d(j1; j2)P
+

ij P�ij :

Elaborating on the interpretation ofQ as a scaled difference between
two transition probability matrices we have written (4), respectively,
(5), in way that allows to use simulation for evaluatingd�Q=�. Partic-
ular estimation schemes will be addressed in Section IV.

V. ESTIMATION SCHEMES

The expression in (12) can be simplified when stopping times are
used. To see this, define the coupling time ofX+ andX� by �� =
inffl:X+

l = X�

l g. Then

d�Q
d�

=

M

i=1

�ic(i)

1

l=1

E f(X+

l )� f(X�

l ) X�

0 = i

=

M

i=1

�ic(i) E

�

l=1

f(X+

l )�

�

l=1

f(X�

l ) X�

0 = i :

There is close relation between the stopping times�� andL(i; j), de-
fined in Section II-A:�� counts the number of transitions from the
last statebefore splittinguntil the sample paths merge, whereasL(i; j)
counts the number of transition until the sample paths merge provided
that the sample pathhas splitup to statei andj, respectively, or, more
formally, 1

X =j ;X =j
�� is identical withL(j1; j2) + 1.

A stationary version ofX can be constructed as follows. Fix a state
j�, start the chainX in j�, denote the recurrence time toj� by � and let
� be uniformly distributed overf1; . . . ; �g independent of everything
else. Let the random variableX� have distribution

P (X� = i) =
E[�P (X� = ij� )]

E[� ]

thenX� is a stationary version of the processX, see [9]. Hence, we
may replace� in the previous estimator by sampling from�, which
yields

d�Q
d�

=
1

E[� ]
E �c(X�)E

�

l=1

f X+

l

�

�

l=1

f X�

l X�

0 = X� X0 = j�

where� in uniformly distributed overf1; . . . ; �g and independent of
everything else, or, equivalently

d�Q
d�

=
1

E[� ]
E

�

l=1

c(Xl)E

�

k=1

f X+

k

�

�

k=1

f(X�

k ) X�

0 = Xl X0 = j� :

Elaborating on the fact that the state-space ofX is finite, the above
expression can be estimated from a single sample path of the nominal
systems using a cut-and-past type of approach; see [2] and [3] for de-
tails.

VI. DISCUSSION

We have shown the connections between PR and WD. WD naturally
transfers the performance derivative into the performance differences
on different sample paths and offers an explanation of the performance
derivative as the expected PR factor with respected to the “splitting
probability” defined by the WD of the transition kernelP . PR factors
provide a mechanism for obtaining a quantitative result for the weak
derivative approach. We believe that PR factors can be used for quan-
titative analysis of many other problems which are involved with com-
parison of performance difference due to parameter changes and hope
that the present note offers such an example.

We conclude with the remark that the PA approach via realization
factors is used in [2] to develop� into a Taylor series. A WDs-based
approach to developing stationary performance measures into a Taylor
series has still to be found. This is topic of further research.
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