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In this note, a new method is developed to test stability of piecewise
discrete-time linear systems based on a piecewise Lyapunov function.
Itis shown that the stability can be determined by solving a set of LMIs.
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IV. CONCLUSION A Note on the Relation Between Weak Derivatives and
Perturbation Realization

Bernd Heidergott and Xi-Ren Cao

The approach can be extended to performance analysis of such systems
as in [2] and [3] for their continuous counterparts. Abstract—This note studies the relationship between two important ap-

proaches in perturbation analysis (PA)—perturbation realization (PR) and
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dient of a stationary performance measure can be interpreted as the ex-
pected PR factor where the expectation is carried out with respect to a dis-
tribution that is given through the weak derivative of the transition kernel
of the Markov chain. Moreover, we present unbiased gradient estimators.
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results obtained in Section IIl. We conclude the note with a discussitite Lyapunov equatio® — PDPT = F, whereF = efT — feT,
on the relation between realization factors and WDs. ande = (1,1,....1)7, and the performance derivative is
De _ optat. 4)
Il. BACKGROUND ON PERTURBATION REALIZATION AND WEAK db
DERIVATIVES FurthermoreD;; = g; — g:, whereg = (g1, ..., g ) is the potential
) vector satisfying the Poisson equatidn— P +ew)g = f, and (4) can
A. PAvia PR be written as

The basic principle for PA via PR is to decompose the performance & oo
sensitivity into the effect of a set of perturbations (big or small) in a % =7QY (P'—em)f. (5)
sample path, which can be measured precisely by a quantity called . =0
PR fagtor. The idea was first applied to infinitesimal perturbations n I}/Iarkov chain literature, the matri ﬁO(P, ey =(I-P+
queueing networks [1], and has been further developed to the case of_; . . /1=

. ' L e% — em is sometimes called theeviationor thefundamentama-
discrete time Markov chains in [3] and [4]. trix

Let X = {X,:k > 0} be an ergodic Markov chain with finite =
state-spacé = {1,..., M} and transition probability matri®. Let g \Wps
f: S — IR be a performance function and wrifeéin vectorial notation

by f = (fi..... fa)", with f; = f(i) for 1 < i < M, where ‘T” WDs p_rovid_e an approach to writ_e gradients as differe.n_ces between
represents the transpose. We denote the unique stationary distribugRectation with respeft to appropriately chosen probability measures.
of X by 7 = (1....,7u), and the stationary performance Xfis More formally, |?I<E,u) denote a Polish measurable space .a.nd let
thus given by {1o:6 € O}, with © := (a,b) C IR, be a family of probability
measures ofE, £). We call .o weakly differentiable af if a signed
M finite measureu;, exists, such that for any continuous bounded real-
n=E(f)=) mfi=nf. valued functionsf on (E, &) it holds that
=t L([, . , : ,
lim - ds) — s)po(ds
Let @ be a nonzero square matrix with A A </E F(s)uo+a(ds) /E F(s)ol 5)>
Qe =0fore = (1,1,...§1)T Q) :/ F(s)ub(ds).
E

and assume that a neighborhood &f 0, denoted byo, exists, so that
for anyé € © the matrixP(6) = P + 6Q is a transition probability
matrix onS. Denote the performance measure associated(ith by
n¢(6) (which impliesy = 7 (0)). The derivative of; in the direction
of @ is defined as

Note thatu;, is not a probability measure. To see this, tdike 1, which
implies [ 11p(ds) = 0. Hence,u; has positive and negative parts.
However, any finite signed measure can be written as difference be-
tween two probability measures (apply, for example, the Hahn—Jordan

decomposition).
Ch_"? — d"Q@ — lim M We call a triple(co, i, 11, ), whereut are probability measures
dé do 5oy 50 6 on(E, &) andcy is a finite number, a weak derivative gf if for any

In this setup, a perturbation means that the Markov chain is perturb&shtinuous bounded functiofion (E, &) it holds that

from one staté to another statg. For example, consider the case where . 1 - - )

ari = =6, qr; = 8, andgy; = 0 for all I # i, j. Suppose that in the EEIO N </E F($)nora(ds) - /Ef(s)l""(ds)>

original sample path the system is in statand jumps to statg then -

in the perturbed path it may jump to stgtastead. Thus, we study two = / f(s)po(ds)

independent Markov chai¥ = {X,;n > 0} andX' = {X];n > E .

0} with Xy = i and Xy = j; both of them have the same transition =cy </ F(s)uf (ds) - / f(s)p,j(ds)) . (6)
E E

matrix P. Therealization factoris defined as [4]: » ) . .

- The probability measurg] is called the (normalized) positive part of

dii.j)=F Z(f(Xr’L) — (X )| Xo =i, X} = ]} (2) wy andpy, is called the (normalized) negative partdf, respectively.
n=0

Note that the previous presentationdfis not unique.

fori,j = 1,..., M. Thus,d(i. j) represents the long term effect of a Example 1: Let iy be the uniform distribution on the intervél, /]
change from to j on the system performance. for0 < ¢ < a, witha < co. For any continuoug:[0,a] — R, it
If P is irreducible, then with probability one the two sample pathBolds that ;o
of X andX' will merge together. That is, there is a random number £ / Fla)po(da)
L(i,j) such that df )
d (1 f
Xty = Xu) T <5/o ﬂx)dw)
-0
provided that\, = i, X} = j. Therefore, from the Markov property = %f(()) - Biz/ f(z)dx
0
o ; . ) ) 1 " ) "
Bl S (XL = f(Xa)IXo =i, Xo=j| =0 - ( [ twtin - | f(.r)ue(dw)>

n="1(i,5) ! . . ) .
! whereé, denotes the Dirac measure in Hence,(1/6, g, 11¢) is a

and (2) becomes weak derivative ofis. Observe that no measuren [0, a] exists, such
o L@y . . o thatu} andy; are absolutely continuous with respectto
d(i,j)=FE Z (F(Xn) = F(Xn))| Xo =i Xo = @) We now turn to Markov chains on the finite state-space
n=0 S = {1,...,M} and consider the famiyP(§) = P + 6Q of
fori,j = 1,..., M. The matrixD € R™** with D;; = d(i,5), transition probability matrices introduced in Section II-A. Each row of
is called arealization matrix It is shown in [4] and [3] thaD satisfies P can be viewed as a probability measure on the state space and hence



1114 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 7, JULY 2002

there exist WDs with respect to For anyi, j, IetQj’j = max(Q;;,0) depends on the estimator fdr. Various estimators foA both biased

and@;; = max(—=Q,;,0). Note thatQ)e = 0 implies that and unbiased are discussed in [3].
; According to Section Il, an alternative way of facilitating (5) for
— ZQ,# — ZQ; simulation is to write() as the difference of two transition matrices
! and to translate (5) into the difference between two experiments. In
for all 7. From a measure theoretic point of vie@@#: 1<5< M) what fOII(.)V\.Is.’ we explain this approach in more detail.
. . o . By definition
are finite measures onS with total mass ¢(i). Re-scaling _ ) )
(QjE 1<j<M) by c(i) yields probability measures P(Xpsr = jIXi = i) = I
(P£:1 < j < M) onS. Note that we have to avoid dividing by zero,and (8) implies
d .
smcec(z) might be zero. Thereifore we set LBl (X)X = 4]
Pt = { (ii_j fore; >0 M
iz ; _
P,‘j forc;, = 0. - d(S ZP”({S
It is easily checked that for all j it holds that y
Qij=ci (P - Pj). (7 => cli) (P i — P f))

Recall thatP(§) is affine linear ind and that? is just the derivative of "':f - . i o
P(5) with respect ta, which implies that =c(i) (B [f (X)) 1X0 =i] = B[f (Xi) 1Xy =4])

d " - where

TP(8)i; = Qi Zei (P - P). (8)

ds p()(i :*|Xi:z) PE.
Note that the right-hand side of the aformentioned expression is inde- Ahtt = A KA
pendent of and we set Using (8), we now rewrite (5) as the difference between two stochastic

p._ 4 ps), experiments. Denote thiéh row of P* by p*, thatis pi* = (P5:1 <
dé j<M)isa probablllty distribution or$ for all i. By calculation
Let C be a square matrix with’;; = ¢;, 1 < ¢ < M, and otherwise an .
zero, then (8) reads — =nQ Z(P —em)f
P'=C(P"-P7)
and for anyf € IR“ it holds that = lim 7 (QZP f-Q Z€”f>
d _
%P(é)f:P’f:C(PJrf—P f). (9)

D fim TQZPf

n—oo

If such a representation &t exists, thenP(6) is called weakly differ-

entiable and C, P+, P™) is called a weak derivative dP(6). It has ™ LI
been shownin [8] that i’(6) is weakly differentiable and ergodic then & nlgn th( ) pi - ) ZP f

dé dé|s_, P = nhjgo Z mic(i) <pj‘ Zp’f —p7 Zplf>
wherew(§) denotes the stationary distribution associated il ) e =0 =

(which impliesw(0) = «). In particular, weak differentiability aP(6) — ch(i) Z (ij’f _ ij’f)

implies finiteness of the right-hand side of the above expression, see i 1=0

[8]. In Section IlI, we will contrast (10) to (5) in order to establish the >

relation between realization probabilities and WDs. =y P'P'f 11)

which is the expression fofy g /dé derived using WDs, cf. (10). In

[Il. DIFFERENTIATING THE STATIONARY DISTRIBUTION OF A MARKOV X . ) .
particular, finiteness of the last two sums in the above row of equations

CHAIN follows from finiteness in (10).
We study the performance derivative of the Markov ch¥inas de- Using (11), the expression
fined in Section II-A. The derivative of with respect ta> can be ob- : L
tained in a closed analytical form, see (5). However, the métiix (5) 0 Z rry

is not a stochastic matrix, that is, we cannot interg}ets a transition

matrix of the Markov chaitk . Set can be estimated as follows. L&* = {XF:k > 0} denote the

oo Markov chain with (a) initial state;", (b) for X perform the first
A= Z (P’ — m) transition fromX ;" to X~ according t0p+, and generate all other
1=0 transitions according t&, and (c) forX™ perform the first transition
then from X to X[ according top and generate all other transitions
dng(6) according taP. With this notatlon we obtain

=mwQAS.
db an Zﬂ'l 7)2( Plf_pi—Plf)

As shown in [2] and [3], the entries of can be estimated on a single

sample path, which gives rise to the following estimation procedure for i o L

dne/dé. First, estimated on a sample path, and then evaluéte f = ZTM ZE (X)) = (X)) 1X5 =1].

by simple matrix-vector multiplication. This then yields an estimator

for dng /dé. The question of whether or not this estimator is unbiased (12)
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The aforementioned expression leads to estimation schemes foA stationary version oX can be constructed as follows. Fix a state

dng/ds, as we will explain in Section V.

IV. WDs WITH PR FACTORS

In this section, we write the gradient expression via WDs as the ex-
pected values of PR factaisi. j) introduced in Section II-A. The con- o, x

struction of the process@™ differs from that ofX only through the
first transition. More precisely, after the first transitisi* andX be-
have stochastically identical, in formula, for allj it holds that

P(X5, =i1X =i) = P (X = j]1Xi =)

for! > 1. Hence, we obtain

> (X))

By calculation
> [ (57 - £ (7)) [ =]
=0
I [1X1+=n,xl—=jzf (X) =7 (X) 1x5 = i]
Jijz 1=0

=2 F {Lx'fzn,x;:jzd(j‘ J2)

11712

(13)

n—41

E Xo=i|=E|> f(X")
=1

Xﬁ[:i:| .

Xt = z'}

_ Z(l(leZ)P (er =Jj1, X, = JZ|AX()i = i)
J1j2
=S it i, P
J1i2
where 1X1+:]v1,xlf:j2

formula can be phrased as fO||OWB;;1Pi;2 is the joint probability

denotes the indicator function. The previous

j*, startthe chaiX in j*, denote the recurrence timetbby = and let
o be uniformly distributed ovef1, ..., 7} independent of everything
else. Let the random variablé* h[ave distribut|io)r]1

vx o ElTP(X, =11
P(X"=i)= T
is a stationary version of the proceXs see [9]. Hence, we
may replacer in the previous estimator by sampling from which
yields

dng 1 X : - —t
i~ B R ;f (x0)
=D (&) (X = X | |Xo =7
=1
wheres in uniformly distributed ovef1,..., 7} and independent of

everything else, or, equivalently

D CXDE Y (X])
k=1

=1

dng 1
=——F
Elr]

db

=Y XX =X | [Xo ="
k=1

Elaborating on the fact that the state-spacéofs finite, the above
expression can be estimated from a single sample path of the nominal
systems using a cut-and-past type of approach; see [2] and [3] for de-
tails.

VI. DISCUSSION

We have shown the connections between PR and WD. WD naturally
transfers the performance derivative into the performance differences

with which the weak derivative aP splits the nominal process at statepn different sample paths and offers an explanation of the performance
i to statey; for the “+” part and;. for the “—" part, respectively. Hence derivative as the expected PR factor with respected to the “splitting

> di.52) P, P,
J1j2

is the expected PR factor with respect to the “splitting probability’

fined by the weak derivative d?. In particular, we obtain the following

overall formula:
dng

75 = 2 mieli) 3o d(jj2) P, Py,

Jiie

probability” defined by the WD of the transition kernBl PR factors
provide a mechanism for obtaining a quantitative result for the weak

» g&lerivative approach. We believe that PR factors can be used for quan-

titative analysis of many other problems which are involved with com-
parison of performance difference due to parameter changes and hope
that the present note offers such an example.

We conclude with the remark that the PA approach via realization
factors is used in [2] to developinto a Taylor series. A WDs-based

Elaborating on the interpretation ¢f as a scaled difference betweerapproach to developing stationary performance measures into a Taylor
two transition probability matrices we have written (4), respectivelgeries has still to be found. This is topic of further research.

(5), in way that allows to use simulation for evaluatihg, /§. Partic-
ular estimation schemes will be addressed in Section IV.
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