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OPTIMAL CONTROL OF ERGODIC CONTINUOUS-TIME
MARKOV CHAINS WITH AVERAGE SAMPLE-PATH REWARDS∗
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Abstract. In this paper we study continuous-time Markov decision processes with the average
sample-path reward (ASPR) criterion and possibly unbounded transition and reward rates. We
propose conditions on the system’s primitive data for the existence of ε-ASPR-optimal (deterministic)
stationary policies in a class of randomized Markov policies satisfying some additional continuity
assumptions. The proof of this fact is based on the time discretization technique, the martingale
stability theory, and the concept of potential. We also provide both policy and value iteration
algorithms for computing, or at least approximating, the ε-ASPR-optimal stationary policies. We
illustrate with examples our main results as well as the difference between the ASPR and the average
expected reward criteria.
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1. Introduction. Markov decision processes (MDPs) with the long-run aver-
age expected reward (AER) criterion have been widely studied in literature; see, for
instance, the books [1, 6, 12, 22, 23, 25, 31, 32, 33, 35], the survey paper [3], and
their extensive references. However, the sample-path reward corresponding to an
optimal policy that maximizes the average expected rewards may have fluctuations
from its expected reward value. To take these fluctuations into account, the av-
erage sample-path reward (ASPR) criterion has been proposed and studied; see, for
instance, [3, 10, 15, 23, 24] and their extensive bibliographies. To the best of our knowl-
edge, all the existing works with the ASPR criterion are on discrete-time MDPs. On
the other hand, many real-world problems, for instance, in communication engineer-
ing, queueing systems, and other control problems, require continuous-time models.
Therefore, there is a large amount of works in literature on continuous-time MDPs;
see, for instance, [4, 5, 16, 18, 19, 20, 21, 26, 27, 29, 31, 35, 37, 39] and their references.
All of these works, however, consider only the AER criterion. Our paper is a first
attempt to fill the gap between the works on discrete-time MDPs with the ASPR
criterion and those on continuous-time MDPs with the AER criterion.

Denumerable continuous-time MDPs are specified by the system’s four primitive
data: a countable state space S; action sets A(i), which may depend on the current
state i ∈ S; transition rates q(j|i, a) with a ∈ A(i) and j ∈ S; and reward rates r(i, a)
with a ∈ A(i). In this paper, we consider these MDPs with the ASPR criterion in the
class of randomized Markov policies satisfying some additional continuity assumptions.
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The state processes here are possibly nonhomogeneous continuous-time Markov chains
with possibly unbounded transition rates, and the reward rates may have neither upper
nor lower bounds. Under suitable conditions on the primitive data, we first prove
the existence of a solution to the optimality equation. The proof is constructive,
using policy iteration, which is based on the concept of potentials [8, 7] and is rather
different from both the “vanishing discount approach” in [16, 18, 19, 21, 26] and the
“uniformization technique” in [29, 31, 36]. We then establish the existence of ε(≥ 0)-
ASPR-optimal stationary policies by introducing a time-discretization approach to
continuous-time martingales and by using the extended generator technique. This
approach is different from those used for the discrete-time case; see, for instance, [3,
6, 10, 15, 23, 24]. Also, we provide both policy and value iteration algorithms for
computing, or at least approximating (when the algorithms take infinitely many steps
to converge), ε(≥ 0)-ASPR-optimal stationary policies. Furthermore, we use several
examples to explain our conditions and to show the difference between the AER and
ASPR criteria.

The policy iteration approach developed in this paper to establish a solution to
the optimality equation does not require any result about discounted continuous-
time MDPs. Thus, this approach is simple and direct. Also, our method to prove
the existence of an ASPR-optimal stationary policy is straightforward and different
from those in [29, 31, 36, 37], which require the equivalence between continuous- and
discrete-time MDPs as well as results about discrete-time MDPs. Finally, it should
be mentioned that the ergodicity results about continuous-time Markov chains and
the convergence results for continuous martingales available in the literature cannot
be applied to our problems because in this paper the Markov chains may be non-
homogeneous and the associated reward and transition rates may be time-dependent
and unbounded. In addition, a key feature of our results is that the conditions are
imposed on the primitive data (see (2.1)) and can be easily verified.

The rest of this paper is organized as follows. In section 2, we introduce the control
model and the optimal control problem considered in this paper. After some technical
preliminaries developed in section 3, we study the existence of the ε(≥ 0)-ASPR
optimal stationary policies in section 4. The policy and value iteration algorithms
are described in section 5. Our hypotheses and the difference between the AER and
ASPR criteria are illustrated with examples in section 6. We conclude in section 7
with some general remarks.

2. The optimal control problem. The control model that we are concerned
with can be described by

{S,A(i), q(j|i, a), r(i, a), i, j ∈ S},(2.1)

where S is the state space; A(i) is a set of admissible actions at state i ∈ S; q(j|i, a)
with i, j ∈ S and a ∈ A(i) are the system’s transition rates; and r(i, a) with i ∈ S
and a ∈ A(i) are the reward rates. Let K := {(i, a) : i ∈ S, a ∈ A(i)} be the set of all
state-action pairs.

In this paper we assume that S is denumerable and in fact we write it as the
set of nonnegative integers, i.e., S = {0, 1, 2, . . .}. Furthermore, we assume that for
each i ∈ S the set A(i) is a Borel space endowed with the Borel σ-algebra B(A(i)).
The transition rates q(j|i, a) in (2.1) satisfy q(j|i, a) ≥ 0 for all (i, a) ∈ K and
j �= i. Moreover, we assume that the matrix [q(j|i, a)] with (i, j)-element q(j|i, a)
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is conservative, i.e., ∑
j∈S

q(j|i, a) = 0 ∀(i, a) ∈ K,

and stable, which means that

q(i) := sup
a∈A(i)

qi(a) < ∞ ∀i ∈ S,

where qi(a) := −q(i|i, a) ≥ 0, for all (i, a) ∈ K. In addition, q(j|i, a) is measurable in
a ∈ A(i) for each fixed i, j ∈ S.

Finally, the function r(i, a) on K is a real-valued reward rate, and r(i, a) is as-
sumed to be measurable in a ∈ A(i) for each fixed i ∈ S. (As r(i, a) is allowed to
take positive and negative values, it can be interpreted as a cost rate rather than a
“reward” rate.)

We first introduce randomized Markov policies.
Definition 2.1 (randomized Markov policies). A randomized Markov policy is

a function πt(B|i) that satisfies the following conditions:
(1) for each i ∈ S and B ∈ B(A(i)), the mapping t �→ πt(B|i) is Borel measurable

on [0,∞), and
(2) for each i ∈ S and t ≥ 0, B �→ πt(B|i) is a probability measure on B(A(i)).

Let A :=
⋃

i∈S A(i). A (deterministic) stationary policy is a function f : S → A such
that f(i) is in A(i) for all i ∈ S.

Let Φ be the set of all randomized Markov policies and let F be the set of all
stationary policies. Note that a function f ∈ F can be viewed as a function πt(B|i) ∈
Φ for which, for all t ≥ 0 and i ∈ S, πt(·|i) is the Dirac measure at f(i). Thus, F ⊂ Φ.
We will write a randomized Markov policy πt(B|i) in Φ simply as (πt). The subscript
“t” in πt indicates the possible dependence on time; it will be dropped for simplicity
when there is no confusion.

For each (πt) ∈ Φ, the associated transition and reward rates are defined, respec-
tively, as follows:

q(j|i, πt) :=

∫
A(i)

q(j|i, a)πt(da|i) for i, j ∈ S and t ≥ 0,(2.2)

r(i, πt) :=

∫
A(i)

r(i, a)πt(da|i) for i ∈ S and t ≥ 0.(2.3)

Obviously, the transition rate q(j|i, πt) and reward rate r(i, πt) can depend on time t
if π is not stationary. When π = f ∈ F , we write q(j|i, πt) and r(i, πt) as q(j|i, f(i))
and r(i, f(i)), respectively.

For each π := (πt) ∈ Φ, let Q(πt) := [q(j|i, πt)] with t ≥ 0 be the transition
rate matrices. Any (possibly substochastic and nonhomogeneous) transition function
p̃(s, i, t, j, π) such that

lim
γ→0+

p̃(t, i, t + γ, j, π) − δij
γ

= q(j|i, πt) ∀i, j ∈ S and t ≥ 0

is called a Q-process with the transition rate matrices Q(πt), where δij is the Kronecker
delta. To guarantee the existence of such a Q-process, we now define the class of
admissible policies.
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Definition 2.2 (admissible policies). A randomized Markov policy (πt) in Φ is
said to be admissible if q(j|i, πt) is continuous in t ≥ 0 for each fixed i, j ∈ S. We
denote by Π the class of all admissible policies.

Π is nonempty because it contains F . Moreover, as shown in Example 6.3 below,
Π contains a randomized Markov policy which is not in F .

On the other hand, Q(πt) is also conservative and stable, i.e.,

qi(πt) := −q(i|i, πt) =
∑
j �=i

q(j|i, πt) < ∞ ∀i ∈ S and t ≥ 0.

Hence, for each π ∈ Π, the existence of a Q-process such as the minimum Q-process
denoted by pmin(s, i, t, j, π) (i.e., pmin(s, i, t, j, π) ≤ p̃(s, i, t, j, π) for any Q-process
p̃(s, i, t, j, π)) is guaranteed but is not necessarily regular; that is, we might have∑

j∈S pmin(s, i, t, j, π) < 1 for some i ∈ S and t ≥ s ≥ 0 (see [13] or Theorem 4.2.6
in [2]).

To ensure the regularity of a Q-process, we use the following ergodicity conditions.
Assumption A. There exist a sequence {Sn, n ≥ 1} of subsets of S, a nondecreas-

ing function w ≥ 1 on S, and two constants c > 0 and b ≥ 0, such that
(1) supi∈Sn

q(i) < ∞ for each n ≥ 1, and Sn ↑ S in the sense of convergence of
a set sequence;

(2) limn→∞[infj �∈Sn w(j)] = +∞;
(3)

∑
j∈S q(j|i, a)w(j) ≤ −cw(i) + bδ0i∀ (i, a) ∈ K; and

(4) for each f ∈ F , the minimum Q-process pmin(s, i, t, j, f) is monotone, i.e.,∑
j≥k

q(j|i, f(i)) ≤
∑
j≥k

q(j|i + 1, f(i + 1)) ∀i, k ∈ S with k �= i + 1,

and irreducible, i.e., for each pair of states i and j, either q(j|i, f(i)) > 0, or there are
an integer l (which may depend on i, j, and f) and l states i1, i2, . . . , il with i �= i1,
j �= il, ik−1 �= ik, k = 2, . . . , l, such that

q(i1|i, f(i))q(i2|i1, f(i1)) · · · q(il|il−1, f(il−1))q(j|il, f(il)) > 0.

Lemma 2.3. (a) If Assumptions A(1), A(2), and A(3) hold, then for each π =
(πt) ∈ Π the corresponding Q-process with transition rate matrices Q(πt) is regular;
that is, ∑

j∈S

pmin(s, i, t, j, π) = 1 ∀i ∈ S and t ≥ s ≥ 0.

(b) If Assumption A holds, then for each f ∈ F the corresponding Q-process with
transition rate matrices [Q(j|i, f(i))] is ergodic, and its unique invariant probability
measure μf (with μf (i) > 0 for all i ∈ S) can be determined by the equation∑

i∈S

μf (i)q(j|i, f(i)) = 0 ∀j ∈ S.(2.4)

Moreover, for each i ∈ S and t ≥ 0∣∣∣∣∣
∑
j∈S

pmin(0, i, t, j, f)h(j) − μf (h)

∣∣∣∣∣ ≤ 2e−ct

[
w(i) +

b

c

]
≤ 2e−ct

(
1 +

b

c

)
w(i)(2.5)
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for any function h on S such that |h| ≤ w, where μf (h) :=
∑

j∈S h(j)μf (j).
Proof. (a) Under Assumptions A(1)–A(3), by Theorem 3.1 in [17] we see that (a)

is true.
(b) By (a) and Proposition 5.4.1 in [2], we see that (2.4) is true. Moreover, from

the proof of (3.9) in [30] we see that the condition (2.1) in [30] is not required for
Theorem 2.2(ii) in [30]. Thus, by (3.9) in [30] and Assumption A we see that (2.5) is
also true.

Under Assumptions A(1)–A(3), Lemma 2.3 shows that for each π = (πt) ∈ Π
a Q-process with transition rate matrices Q(πt) is regular. Thus, under Assump-
tion A, we will denote by {x(t, π)} the associated right-continuous Markov chain with
values in S, and write the regular Q-process pmin(s, i, t, j, π) simply as p(s, i, t, j, π).
Furthermore, for each initial state i ∈ S at time s = 0, we denote by (Ω,F , Pπ

i )
the probability measure space determined by p(s, i, t, j, π), by Eπ

i the corresponding
expectation operator, and by x(t, π)(e) the value of x(t, π) at e ∈ F .

Remark 2.4. (a) For the case where supi∈S q(i) < ∞ (see, for instance, [7, 26,
31, 35, 39]), Assumptions A(1) and A(2) are not required because they are used only
to guarantee the regularity of a Q-process. For the case of unbounded transition rates
(e.g., [18, 19]), the conditions for a Q-process to be regular are usually imposed on
both the possibly nonhomogeneous minimum Q-processes and the transition rates.
Hence, our Assumptions A(1)–A(3) are quite different from those in [18, 19].

(b) Assumptions A(1)–A(3) are an extension of both the “drift condition” in [30]
and the hypotheses of Corollary 2.2.16 in [2] for a homogeneous Q-process to be
regular. Assumption A(4) is a variant of the monotonicity conditions in Theorem 7.3.4
and the irreducibility conditions in Proposition 5.3.1 in [2].

(c) It should be mentioned that if there is a set S̄ of transient states which is
independent of stationary policies, then μf (i) = 0 for each i ∈ S̄ and f ∈ F . In this
case, Lemma 3.4 below may not hold because its proof uses the result μf (i) > 0 for
all i ∈ S.

Now we define the ASPR criterion Vsp(·, ·) as follows: for each π = (πt) ∈ Π and
i ∈ S

Vsp(π, i) := lim sup
T→∞

1

T

[∫ T

0

r(x(t, π), πt)dt

]
,(2.6)

where the subscript “sp” stands for “sample-path.” Note that Vsp(π, i) has been
defined by the so-called sample-path rewards r(x(t, π), πt); therefore, it is a random
variable rather than a number as in the AER-criterion defined as

V̄ (π, i) := lim sup
T→∞

1

T

[∫ T

0

Eπ
i r(x(t, π), πt)dt

]
(2.7)

(see [4, 7, 16, 19, 20, 21, 26, 27, 31, 35, 39], for instance). Thus, the following definition
of optimal policies for the ASPR criterion is different from that for the AER criterion.

Definition 2.5. For a given ε ≥ 0, a policy π∗ ∈ Π is said to be ε-ASPR-optimal
if there exists a constant g∗ such that

Pπ∗

i (Vsp(π
∗, i) ≥ g∗ − ε) = 1 and Pπ

i (Vsp(π, i) ≤ g∗) = 1 ∀i ∈ S and π ∈ Π.

A 0-ASPR-optimal policy is simply called an ASPR-optimal policy.
The main goal of this paper is to give conditions on the primitive data in (2.1)

that ensure the existence of an ASPR-optimal stationary policy.
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3. Preliminaries. In this section we present some preliminary facts that are
needed to prove our main results.

Let w ≥ 1 be the function in Assumption A. Following the concept of a weighted
supremum norm introduced by Lippman [28] and widely used by many authors
(e.g., [23, p. 2]), we define the weighted supremum norm ‖v‖w for a real-valued func-
tions v on S by

‖v‖w := sup
i∈S

[w(i)−1|v(i)|]

and the Banach space by Bw(S) := {v : ‖v‖w < ∞}.
Lemma 3.1. Let w̄ be any nonnegative function on S, and c̄, b̄ two constants

such that b̄ ≥ 0 and c̄ �= 0. Then, for each π = (πt) ∈ Π, the following statements are
equivalent:

(a)
∑

j∈S pmin(s, i, t, j, π)w̄(j) ≤ e−c̄(t−s)w̄(i) + b̄
c̄ [1 − e−c̄(t−s)] for all i ∈ S and

t ≥ s ≥ 0;
(b)

∑
j∈S q(j|i, πt)w̄(j) ≤ −c̄w̄(i) + b̄ for all i ∈ S and t ≥ 0.

Proof. See Lemma 3.2 in [16].

It should be noted that in Lemma 3.1, Assumption A is not required.

To establish the so-called optimality equation, we will use a policy iteration algo-
rithm instead of the vanishing discount approach in [16, 19, 21, 26]. To state the policy
iteration algorithm, in addition to Assumption A we also need the following standard
continuity-compactness conditions (Assumption B); see, for instance, [3, 19, 23, 31, 35]
and their references.

Assumption B. (1) For each i ∈ S, A(i) is compact.

(2) r(i, a) and q(j|i, a) are continuous in a ∈ A(i) for each fixed i, j ∈ S.

(3) The function
∑

j∈S q(j|i, a)w(j) is continuous in a ∈ A(i) for each fixed i ∈ S.

(4) There exists a positive constant M such that |r(i, a)| ≤ Mw(i) for all i ∈ S
and a ∈ A(i).

In the spirit of the potential concept in [8, 7], for a given f ∈ F and the corre-
sponding unique invariant probability measure μf , we define the potential

u(f, i) :=

∫ ∞

0

[Ef
i r(x(t, f), f(x(t, f))) − g(f)]dt ∀ i ∈ S,(3.1)

where the constant g(f) is defined as

g(f) :=
∑
j∈S

r(j, f(j))μf (j).(3.2)

Lemma 3.2. Let Assumptions A and B(4) hold. Then

(a) g(f) and ‖u(f, ·)‖w are both bounded in f ∈ F ,
(b) the Poisson equation g(f) = r(i, f(i)) +

∑
j∈S q(j|i, f(i))u(f, j) holds for all

i ∈ S and f ∈ F .

Proof. By (3.1) and (2.5) we see that ‖u(f, ·)‖w is bounded in f ∈ F . With the
constants M , c, and b as in Assumptions A and B(4), by Lemma 3.1, (3.1), (2.5), and
(2.7), we have |V̄ (f, ·)| = |g(f)| ≤ Mb

c for all f ∈ F , and so (a) follows. Obviously,
(b) follows from Lemma 5.1 in [16].

Under Assumptions A and B, we now state the policy iteration algorithm.
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Policy iteration algorithm 3.1.
Step I. Take n = 0 and fn ∈ F .
Step II. Solve (2.4) for μfn and then calculate u(fn, ·) and g(fn) as in (3.1) and

(3.2).
Step III. Define a new stationary policy fn+1 in the following way:

Set fn+1(i) := fn(i) for all i ∈ S for which

r(i, fn(i)) +
∑
j∈S

q(j|i, fn(i))u(fn, j) = max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u(fn, j)

}
;(3.3)

otherwise (i.e., when (3.3) does not hold), choose fn+1(i) ∈ A(i) such that

r(i, fn+1(i)) +
∑
j∈S

q(j|i, fn+1(i))u(fn, j)(3.4)

= max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u(fn, j)

}
.

Step IV. If fn+1(i) satisfies (3.3) for all i ∈ S, then stop because (by Theorem 4.1
below) fn+1 is ASPR-optimal; otherwise, replace fn with fn+1 and go back to Step II.

Finally, to prove the existence of an ASPR-optimal stationary policy, in addition
to Assumptions A and B we propose the following conditions.

Assumption C. There exist nonnegative functions w∗
k ≥ 1 on S as well as constants

c∗k > 0, b∗k ≥ 0, and M∗
k > 0 (k = 1, 2) such that, for each i ∈ S and a ∈ A(i),

(1) w2(i) ≤ M∗
1w

∗
1(i) and

∑
j∈S q(j|i, a)w∗

1(j) ≤ −c∗1w
∗
1(i) + b∗1, and

(2) [q(i)w(i)]2 ≤ M∗
2w

∗
2(i) and

∑
j∈S q(j|i, a)w∗

2(j) ≤ −c∗2w
∗
k(i) + b∗2.

Remark 3.3. (a) Assumption C allows us to use the martingale stability theorem;
see Lemma 3.11 in [22], for instance. However, it is not required when a solution u∗

in (4.1) below and the transition rates are both uniformly bounded.
(b) Assumption C(2) is slightly different from Assumption B(4) in [16], but all

conclusions in [16] still hold after Assumption B(4) in [16] is replaced by Assump-
tion C(2) here.

For each n ≥ 1, take fn as the policy obtained in the policy iteration algorithm
3.1, and for each i ∈ S let

ε(fn, i) := r(i, fn(i)) +
∑
j∈S

q(j|i, fn(i))u(fn−1, j) − g(fn−1).(3.5)

Lemma 3.4. Let Assumptions A, B, and C(2) hold. Then g(fn+1) > g(fn) when
fn+1 �= fn, and for each i ∈ S, ε(fn, i) → 0 as n → ∞.

Proof. As in the proof of Theorem 5.2 and Lemma 5.3 in [16], by Lemma 3.2
above we obtain Lemma 3.4.

Lemma 3.4 will be used to establish the optimality equation (4.1) below.

4. The existence of ASPR-optimal stationary policies. In this section, we
state and prove our main result, Theorem 4.1.

Theorem 4.1. Under Assumptions A, B, and C, the following statements hold.
(a) There exist a unique constant g∗, a function u∗ ∈ Bw(S), and a stationary

policy f∗ ∈ F satisfying the optimality equation

g∗ = r(i, f∗(i)) +
∑
j∈S

q(j|i, f∗(i))u∗(j)
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= max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u∗(j)

}
∀i ∈ S.(4.1)

(b) The policy f∗ in (a) is ASPR-optimal, and P f∗

i (Vsp(f
∗, i) = g∗) = 1 for all

i ∈ S.
(c) A policy f in F is ASPR-optimal if and only if it realizes the maximum of

(4.1).
(d) For given ε ≥ 0 and f ∈ F , if there is a function ū ∈ Bw(S) such that

g∗ ≤ r(i, f(i)) +
∑
j∈S

q(j|i, f(i))ū(j) + ε ∀i ∈ S,

then f is ε-ASPR-optimal.
Proof. (a) Let {fn} be the sequence of the stationary policies obtained by the

policy iteration algorithm 3.1. By Assumption B(1) and the Tichonoff theorem, the
policy class F is compact. Thus, by Lemma 3.2(a), there exist a subsequence {fnk

}
of {fn} and u∗ ∈ Bw(S) such that for each i ∈ S

lim
k→∞

u(fnk
, i) = u∗(i), lim

k→∞
fnk

(i) =: f∗(i), and lim
k→∞

g(fnk
) =: g∗.(4.2)

On the other hand, by Lemmas 3.2(b), (3.4), and (3.5), we have

g(fnk
) = r(i, fnk

(i)) +
∑
j∈S

q(j|i, fnk
(i))u(fnk

, j)

= max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u(fnk
, j)

}
− ε(fnk+1, i)

≥ r(i, a) +
∑
j∈S

q(j|i, a)u(fnk
, j) − ε(fnk+1, i) ∀i ∈ S and a ∈ A(i).(4.3)

Letting k → ∞ in (4.3), by the “extension of Fatou’s Lemma” 8.3.7 in [23] and our
Lemma 3.4 and (4.2), we have

g∗ = r(i, f∗(i)) +
∑
j∈S

q(j|i, f∗(i))u∗(j)

≥ r(i, a) +
∑
j∈S

q(j|i, a)u∗(j) ∀i ∈ S and a ∈ A(i),

and so

g∗ = r(i, f∗(i)) +
∑
j∈S

q(j|i, f∗(i))u∗(j)

= max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u∗(j)

}
∀i ∈ S,

which gives (4.1). Moreover, the proof of the uniqueness of the constant g∗ satisfying
(4.1) follows from Theorem 4.1(b) in [16] and Remark 3.3(b).

(b) To prove (b), for each i ∈ S, π = (πt) ∈ Π, and t ≥ 0, let

Δ(i, πt) := r(i, πt) +
∑
j∈S

q(j|i, πt)u
∗(j) − g∗,(4.4)
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Ft(π) := σ{x(s, π), 0 ≤ s ≤ t},
g(i, πt) :=

∑
j∈S

q(j|i, πt)u
∗(j).(4.5)

In particular, let Δ(i, f(i)) =: r(i, f(i)) +
∑

j∈S q(j|i, f(i))u∗(j) − g∗ for all f ∈ F .
We now define a (continuous-time) stochastic process,

M(t, π) :=

∫ t

0

g(x(y, π), πy)dy − u∗(x(t, π)) for t ≥ 0.(4.6)

Then {M(t, π),Ft(π), t ≥ 0} is a Pπ
i -martingale in continuous-time; that is,

Eπ
i [M(t, π)|Fs(π)] = M(s, π) ∀t ≥ s ≥ 0.(4.7)

Indeed, for each t ≥ s ≥ 0, by (4.6) and the Markov property we have

Eπ
i [M(t, π)|Fs(π)] = M(s, π) + Eπ

i

[∫ t

s

g(x(y, π), πy)dy|Fs(π)

]
+u∗(x(s, π)) − Eπ

x(s,π)u
∗(x(t, π)).(4.8)

Since u∗ ∈ Bw(S) (by (4.2) and Lemma 3.2(a)), it follows from Assumption A(3) that∣∣∣∣∣
∑
j∈S

q(j|i, a)u∗(j)

∣∣∣∣∣ ≤ ‖u∗‖w

[∑
j∈S

q(j|i, a)w(j) − 2q(i|i, a)w(i)

]

≤ ‖u∗‖w[−cw(i) + b + 2q(i)w(i)]

≤ ‖u∗‖w[b + 2q(i)w(i)](4.9)

for all a ∈ A(i) and i ∈ S. Therefore, by (4.5) and (2.2) we obtain

|g(i, πy)| ≤ ‖u∗‖w[b + 2q(i)w(i)] ∀y ≥ 0 and i ∈ S.(4.10)

On the other hand, by the Markov property we have

Eπ
i

[ ∫ t

s

g(x(y, π), πy)dy|Fs(π)

]
= Eπ

x(s,π)

[ ∫ t

s

g(x(y, π), πy)dy

]
,

which together with (4.10), Assumption C(2), Lemma 3.1, and Fubini’s theorem gives

Eπ
i

[ ∫ t

s

g(x(y, π), πy)dy|Fs(π)

]
=

∫ t

s

[
Eπ

x(s,π)g(x(y, π), πy)

]
dy.(4.11)

From Lemma 2.1(b) in [21] and (4.10) in [16] about the extended generator of a possibly
nonhomogeneous continuous-time Markov process, by (4.11) and (4.5) we obtain

Eπ
i

[ ∫ t

s

g(x(y, π), πy)dy|Fs(π)

]
= Eπ

x(s,π)u
∗(x(t, π)) − u∗(x(s, π)),

which together with (4.8) gives (4.7).
It follows from (4.7) that {M(n, π),Fn(π), n ≥ 1} is also a Pπ

i -martingale in
discrete-time. Moreover, By Assumption C and Lemma 3.1 we have

Eπ
i w

∗
k(x(t, π)) ≤ w∗

k(i) +
b∗k
c∗k

∀t ≥ 0 and k = 1, 2,(4.12)
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which together with (4.6), (4.10), the Hölder inequality, and Assumption C gives

Eπ
i [M(n + 1, π) −M(n, π)]2

= Eπ
i

[∫ n+1

n

g(x(y, π), πy)dy + u∗(x(n, π)) − u∗(x(n + 1, π))

]2

≤ 2Eπ
i

[∫ n+1

n

g(x(y, π), πy)dy

]2
+ 2Eπ

i [u∗(x(n + 1, π)) − u∗(x(n, π))]2

≤ 2Eπ
i

[∫ n+1

n

g2(x(y, π), πy)dy

]
(by the Hölder inequality)

+ 4‖u∗‖2
wE

π
i [w2(x(n + 1, π)) + w2(x(n, π))]

≤ 2Eπ
i

[∫ n+1

n

‖u∗‖2
w[b + 2q(x(y, π))w(x(y, π))]2dy

]
(by (4.10))

+ 4M∗
1 ‖u∗‖2

wE
π
i [w∗

1(x(n + 1, π)) + w∗
1(x(n, π))] (by Assumption C(1))

≤ 4‖u∗‖2
wE

π
i

[∫ n+1

n

(b2 + 4[q(x(y, π))w(x(y, π))]2)dy

]
+ 4M∗

1 ‖u∗‖2
wE

π
i [w∗

1(x(n + 1, π)) + w∗
1(x(n, π))]

≤ 4‖u∗‖2
wE

π
i

[∫ n+1

n

(b2 + 4M∗
2w

∗
2(x(y, π)))dy

]
(by Assumption C(2))

+ 4M∗
1 ‖u∗‖2

wE
π
i [w∗

1(x(n + 1, π)) + w∗
1(x(n, π))],

which gives

Eπ
i [M(n + 1, π) −M(n, π)]2(4.13)

≤ 16‖u∗‖2
w

[
b2 + M∗

2

(
w∗

2(i) +
b∗2
c∗2

)
+ M∗

1

(
w∗

1(i) +
b∗1
c∗1

)]
(by (4.12)).

This means that Eπ
i [M(n + 1, π) − M(n, π)]2 is bounded in n ≥ 1. Thus, by the

martingale stability theorem (e.g., [22, p. 105], or Remark 11.2.6 in [23], for instance),
we have

lim
n→∞

M(n, π)

n
= 0 a.s.− Pπ

i .(4.14)

On the other hand, for any T ≥ 1, let [T ] be the unique integer such that [T ] ≤ T <
[T ] + 1. By (4.6) we have

M(T, π)

T
=

[T ]

T

⎛
⎝M([T ], π)

[T ]
+

∫ T

[T ]
g(x(y, π), πy)dy

[T ]
− u∗(x(T, π))

[T ]
+

u∗(x([T ], π))

[T ]

⎞
⎠.

(4.15)

Moreover, for any arbitrary ε > 0, as in the proof of (4.13), by the Chebyshev’s
inequality we have

Pπ
i

⎛
⎝
∣∣∣∫ T

[T ]
g(x(y, π), πy)dy

∣∣∣
[T ]

> ε

⎞
⎠ ≤

Eπ
i

[∫ T

[T ]
|g(x(y, π), πy)|dy

]2
ε2[T ]2

≤
16‖u∗‖2

w

[
b2 + M∗

2

(
w∗

2(i) +
b∗2
c∗2

)]
ε2[T ]2

.(4.16)
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Since
∑∞

[T ]=1
1

[T ]2 < ∞, by (4.16) and the Borel–Cantelli lemma, we have

Pπ
i

⎛
⎝lim sup

[T ]

⎧⎨
⎩
∣∣∣∫ T

[T ]
g(x(y, π), πy)dy

∣∣∣
[T ]

> ε

⎫⎬
⎭
⎞
⎠ = 0.

Now let

E[T ] :=

⎧⎨
⎩

|
∫ T

[T ]
g(x(y, π), πy)dy|

[T ]
> ε

⎫⎬
⎭ ∈ F ,

E := lim sup[T ] E[T ] ∈ F , and Ec := Ω − E being the complement of set E. Then
Pπ
i (Ec) = 1. Let e ∈ Ec, which means that e is in finitely many sets E[T ]. So there

exists an integer N0(e) (depending on e) such that e �∈ E[T ] for all [T ] ≥ N0(e), i.e.,∣∣∣∫ T

[T ]
g(x(y, π)(e), πy)dy

∣∣∣
[T ]

≤ ε ∀ [T ] ≥ N0(e) and e ∈ Ec,

which together with Pπ
i (Ec) = 1 yields

lim
[T ]→∞

∫ T

[T ]
g(x(y, π), πy)dy

[T ]
= 0 a.s.− Pπ

i .(4.17)

Similarly, we have

lim
[T ]→∞

u∗(x(T, π))

[T ]
= lim

[T ]→∞

u∗(x([T ], π))

[T ]
= 0 a.s.− Pπ

i .(4.18)

Since limT→∞
[T ]
T = 1, by (4.14), (4.15), (4.17), and (4.18), we have

lim
T→∞

M(T, π)

T
= 0 a.s.− Pπ

i .(4.19)

By (4.4)–(4.6) it follows that

M(t, π) = −
∫ t

0

r(x(y, π), πy)dy +

∫ t

0

Δ(x(y, π), πy)dy − u∗(x(t, π)) + tg∗.(4.20)

By (4.1), (4.4), (2.2), and (2.3), we have Δ(i, πt) ≤ 0 and Δ(i, f∗(i)) = 0 for all t ≥ 0
and i ∈ S. Thus, by (4.18), (4.19), and (4.20) we obtain

Pπ
i (Vsp(π, i) ≤ g∗) = 1 and(4.21)

P f∗

i (Vsp(f
∗, i) = g∗) = 1,(4.22)

which, together with the arbitrariness of π and i, give (b).
(c) By (b), it suffices to prove that f(∈ F ) realizes the maximum of (4.1) if f is

SPAR-optimal. Now suppose that f is SPAR-optimal but does not realize the maxi-
mum of (4.1). Then there exist some i0 ∈ S and a constant α(i0, f) > 0 (depending
on i0 and f) such that

g∗ ≥ [r(i, f(i)) + α(i0, f)δi0i] +
∑
j∈S

q(j|i, f(i))u∗(j) ∀i ∈ S.(4.23)
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On the other hand, since f is SPAR-optimal, by (b) and (4.21) we have Vsp(f, i) = g∗

a.s. for all i ∈ S. Moreover, as in the proof of (4.22), from Lemma 3.2(b) we also
have Vsp(f, i) = g(f) a.s., and so

g∗ = g(f) =
∑
j∈S

μf (j)r(j, f(j)).(4.24)

Also, as in the proof of (4.12) in [16], by (4.23) and (4.24) as well as (2.7) we obtain

g∗ ≥
∑
j∈S

μf (j)[r(j, f(j)) + α(i0, f)δi0j ] = g∗ + μf (i0)α(i0, f),

which gives a contradiction because μf (i0) and α(i0, f) are both positive.
(d) Let Δū(i, f(i)) := r(i, f(i)) +

∑
j∈S q(j|i, f(i))ū(j) − g∗. Then, Δū(i, f(i)) ≥

−ε for all i ∈ S. Thus, as in the proof of (4.21), we have

P f
i (Vsp(f, i) ≥ g∗ − ε) = 1,

which together with (b) gives (d).
Theorem 4.1 is an important result: part (a) establishes the optimality equation

(4.1) and the existence of a so-called canonical policy f∗, whereas part (b) further
shows that the canonical policy f∗ is ASPR-optimal.

Remark 4.2. (a) Under Assumptions A, B, and C(2) only, from the proof of
Theorem 4.1 here and Theorem 4.1 in [16] we see that the canonical policy f∗ in
Theorem 4.1(a) is also optimal for the AER criterion. However, it is shown that an
optimal stationary policy for the AER criterion may not be canonical [18]. Therefore,
it is natural to guess that an ASPR-optimal stationary policy may not be canonical
either. An attempt to answer this problem faces significant technical difficulties, and
the problem remains unsolved to this date.

(b) From the proof of Theorem 4.1(b) and (c) we see that both Assumptions C(1)
and C(2) are indeed required for the ASPR criterion. That is because (i) the proof of
Theorem 4.1(b) and (c) uses the estimates in (4.13) and (4.16), and (ii) the proof of
(4.13) and (4.16) is based on both Assumptions C(1) and C(2); see the proof of (4.12)
and (4.24) (In the proof of the “if” part of Theorem 4.1(c), we cannot obtain (4.24) by
the dominated convergence theorem because Vsp(i, f) is defined via “limsup” instead
of “lim.”)

(c) To establish the optimality equation (4.1), we have used the policy iteration
algorithm 3.1, instead of the “vanishing discount factor method” used in [16, 18, 19,
21, 26], for instance. It should be noted that our approach is direct because it does
not require any result about discounted continuous-time MDPs. This is by way of the
same logic introduced in [25] for discrete-time unichain MDPs. (A similar approach
is adopted for discrete-time general MDPs with finite state and action sets in [9, 38]
by using simple algebra and properties of the Cesaro-limit of a transition probability
matrix and in [12, 31] by using vanishing discount factors.)

(d) We can also prove Theorem 4.1 by using the “vanishing discount factor
method.” More precisely, under Assumptions A and B, we can (i) establish the
average optimality inequalities by using the α-discounted optimality equation in [17],
(ii) obtain the optimality equation, and (iii) prove the existence of ASPR-optimal sta-
tionary policies under the additional Assumption C. However, this vanishing factor
method needs additional results about discounted continuous-time MDPs in [17].
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When the transition and reward rates are both uniformly bounded, we need to
impose conditions only on the embedded Markov chains to guarantee the existence of
SPAR-optimal stationary policies. This is stated in the following corollary.

Corollary 4.3. Suppose the following conditions (1)–(3) are satisfied.
(1) ‖q‖ := supi∈S q(i) < ∞, ‖r‖ := supi∈S,a∈A(i) |r(i, a)| < ∞.
(2) For each i ∈ S, A(i) is compact; and r(i, a) and q(j|i, a) are continuous in

a ∈ A(i) for each fixed i, j ∈ S.

(3) Either infi �=j0,a∈A(i) q(j0|i, a) > 0 for some j0 ∈ S; or
∑

j∈S supi∈S,a∈A(i)(
q(j|i,a)
‖q‖

+ δij) < 2.
Then, the following results hold.
(a) There exists an ASPR-optimal stationary policy.
(b) For each ε > 0, an ε-ASPR-optimal stationary policy can be obtained in a

finite number of steps of the policy iteration algorithm 3.1.
Proof. Define maps Tk on the set M(S) of bounded functions on S as

Tku(i) := sup
a∈A(i)

⎧⎨
⎩ r(i, a)

‖q‖ + 1
+
∑
j∈S

[(
q(j|i, a)
‖q‖ + 1

+ δij

)
− μk(j)

]
u(j)

⎫⎬
⎭(4.25)

for all i ∈ S, u ∈ M(S), and k = 1, 2, where the measures μk on S are given by

μ1(j) := inf
i∈S,a∈A(i)

[
q(j|i, a)
‖q‖ + 1

+ δij

]
and

μ2(j) := sup
i∈S,a∈A(i)

[
q(j|i, a)
‖q‖ + 1

+ δij

]
for j ∈ S,

which correspond to the first and second hypotheses in the condition (3), respectively.
Thus, the maps T1 and T2 are both contractive with contraction factors β1 and β2,
respectively, where

β1 := 1 − μ1(S) ∈ (0, 1) and β2 := μ2(S) − 1 ∈ (0, 1).(4.26)

Hence, the Banach’s fixed point theorem gives the existence of u∗ ∈ M(S), f∗ ∈ F
and a unique constant g∗ satisfying (4.1). Then, as in the proof of Theorem 4.1(a)
and (d), we see that Corollary 4.3 is true.

Remark 4.4. (a) The two sets in the condition (3) in Corollary 4.3 are variants of
the ergodicity condition in [22] for discrete-time MDPs, and each set implies that the

embedded chain with the transition probability ( q(j|i,f(i))
1+‖q‖ + δij) has a unique invari-

ant probability measure; see p. 56 in [22], for instance. The difference between the
“monotonicity” condition in Assumption A(4) and the condition (3) in Corollary 4.3
can be shown by examples.

(b) Corollary 4.3 can also be obtained by using the uniformization method in [29,
31, 36] and the equivalence between continuous- and discrete-time MDPs in [31, 36,
37], as well as the results for discrete-time MDPs in [3, 10, 14, 15, 22, 24, 32, 34], for
instance.

5. Algorithms. Following the procedure in the proof of Theorem 4.1, we now
provide a policy iteration algorithm to obtain ASPR-optimal stationary policies.

Proposition 5.1. Suppose that Assumptions A, B, and C hold. Then any limit
point f∗ of the sequence {fn} obtained by the policy iteration Algorithm 3.1 is ASPR-
optimal.
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Proof. The proposition follows directly from the proof of Theorem 4.1.
Under the conditions in Corollary 4.3, we provide a value iteration algorithm to

compute ε(> 0)-ASPR-optimal stationary policies. It should be mentioned that, as
in the proof of Corollary 4.3, the choice of k = 1 (or 2) corresponds to the first (or
second) hypothesis in the condition (3) in Corollary 4.3. Thus, we will understand
that k in this algorithm is fixed.

Value iteration algorithm 5.1.
Step I. For a fixed ε > 0, take arbitrarily u0 ∈ M(S).
Step II. If Tku0 = u0, then obtain a policy f (in F ) satisfying

r(i, f(i)) +
∑
j∈S

q(j|i, f(i))u0(j) = sup
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u0(j)

}
∀i ∈ S,

and f is ASPR-optimal (by Theorem 4.1), stop; otherwise, calculate a positive integer

N ≥ 1
βk

ln ε(1−βk)
4(1+‖q‖)‖u1−u0‖ + 1 with βk as in (4.26), and uN := TN

k u0 = Tk(T
N−1
k u0)

(by (4.25)).
Step III. Choose fε(i) ∈ A(i) such that for each i ∈ S

r(i, fε(i)) +
∑
j∈S

q(j|i, fε(i))uN (j) ≥ sup
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)uN (j)

}
− ε

2
.

Then we have the following facts.
Proposition 5.2. Under the conditions in Corollary 4.3, the policy fε obtained

by the value iteration algorithm 5.1 is ε-ASPR-optimal.
For the policy iteration algorithm 3.1, if we luckily choose an initial policy such

that the algorithm 3.1 stops after a finite number of iterations, then Proposition 5.1
shows that an ASPR-optimal stationary policy can be computed. Otherwise, since the
policy space F may be infinite, the algorithm 3.1 may not stop in any finite number
of iterations. In this case, Proposition 5.1 shows that an ASPR-optimal stationary
policy can be approximated. On the other hand, Proposition 5.2 implies that under
the conditions in Corollary 4.3 an ε-ASPR-optimal stationary policy can indeed be
computed in a finite number of iterations, where ε > 0.

6. Examples. In this section, we illustrate our conditions and show the differ-
ence between the ASPR and AER criteria with examples.

Example 6.1 (a controlled birth-death system). Consider a controlled birth-
death system in which the state variable denotes the population size at any time
t ≥ 0. There are “natural” birth and death rates denoted by positive constants λ
and μ, respectively, as well as nonnegative emigration and immigration parameters.
The two parameters are assumed to be controlled by a decision-maker and denoted
by h1(i, a1) and h2(i, a2), respectively, which may depend on system’s state i and
decision variables a1 and a2 taken by the decision-maker. When the system is at
state i ∈ S := {0, 1, . . .}, the decision-maker takes an action a := (a1, a2) from a
compact set A(i) =: A1(i) × A2(i) of available actions, which increases/decreases
the emigration parameter h1(i, a1) and may incur a cost with rate c(i, a1), and also
increases/decreases the immigration parameter h2(i, a2) and gives a reward with rate
r̄(i, a2). Moreover, suppose that the benefit rate caused by a population is represented
by p > 0. Then the net income rate in this system is r(i, a) := pi+ r̄(i, a2)−c(i, a1) for
each i ∈ S and a = (a1, a2) ∈ A(i). On the other hand, when there is no population
in the system (i.e., i = 0), it is impossible to decrease/increase the emigration rate,
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and so we have h1(0, a1) ≡ 0 for all a1 ∈ A1(0). Also, in this case (i.e., i = 0)
we may assume that the decision-maker hopes to increase the immigration rate, and
then h2(0, a2) > 0 for all a2 ∈ A2(0). (This assumption guarantees the irreducibility
condition in Assumption A(4).)

We now formulate this system as a continuous-time Markov decision process. The
corresponding transition rates q(j|i, a) and reward rates r(i, a) are given as follows.

For i = 0 and each a = (a1, a2) ∈ A(0)

q(1|0, a) = −q(0|0, a) := h2(0, a2) > 0,

and for i ≥ 1 and all a = (a1, a2) ∈ A(i)

q(j|i, a) :=

⎧⎪⎪⎨
⎪⎪⎩
μi + h1(i, a1) if j = i− 1,
−(μ + λ)i− h1(i, a1) − h2(i, a2) if j = i,
λi + h2(i, a2) if j = i + 1,
0 otherwise;

(6.1)

r(i, a) := pi + r̄(i, a2) − c(i, a1) for i ∈ S and a = (a1, a2) ∈ A(i).(6.2)

We aim to find conditions that ensure the existence of an ASPR-optimal stationary
policy. To do this, in the spirit of Assumptions A, B, and C we consider the following
conditions:

(E1) (a) μ − λ > 0. (b) Either κ := μ − λ + h∗
2 − h1∗ ≤ 0, or μ − λ > |h∗

2 − h1∗|
when κ > 0, where h∗

2 := supa2∈A2(i),i≥1 h2(i, a2), h1∗ := infa1∈A1(i),i≥1 h1(i, a1).
(E2) For each fixed i ∈ S, the functions h1(i, ·), h2(i, ·), c(i, ·), and r̄(i, ·) are all

continuous.
(E3) (a) There exist positive constants Lk(k = 1, 2) such that |c(i, a1)| ≤ L1(i+1)

and |r̄(i, a2)| ≤ L2(i + 1) for all i ∈ S and (a1, a2) ∈ A1(i) × A2(i). (b) ‖hk‖ :=
supi∈S,ak∈Ak(i) |hk(i, ak)| < ∞, for k = 1, 2.

To further explain Example 6.1, we consider the special case of birth-death pro-
cesses with controlled immigration. Consider a pest population in a region which may
be isolated to prevent immigration. Let c denote the cost rate when immigration
is always prevented, b denote the immigration rate without any control, and action
a ∈ [0, 1] denote the level of immigration prevented, where c and b are fixed positive
constants. When the population size is i ∈ S := {0, 1, . . .}, an action a from a set A(i)
consisting of available actions is taken. Then a cost rate ca is incurred, the immigra-
tion rate (1− a)b is permitted, and the evolution of the population depends on birth,
death, and immigration with parameters λ, μ, and (1−a)b, respectively, where λ and
μ are given positive constants. Suppose that the damage rate caused by the pest is
represented by p > 0. Then the reward rate is of the form r(i, a) := −pi− ca for each
i ∈ S and a ∈ A(i). Obviously, we have A(i) := [0, 1] for each i ≥ 1. However, when
there is no pest in the region (i.e., i = 0), to guarantee the irreducibility condition in
Assumption A(4) we need that A(0) := [0, β] with a given β ∈ (0, 1). (This, however,
can be explained as follows: For the ecological balance of the region, the pest is not
permitted to become extinct, and so the immigration rate (1−β)b > 0 is left.) Using
the notation in Example 6.1, for this model we have h1 ≡ 0 and h2(i, a2) = (1 − a)b
with a2 := a here. Hence, when μ − λ > b, the conditions E1, E2, and E3 above are
all satisfied.

Under E1, E2, and E3, we obtain the following.
Proposition 6.2. Under conditions E1, E2, and E3, the above controlled birth-

death system satisfies the Assumptions A, B, and C. Therefore (by Theorem 4.1),
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there exists an ASPR-optimal stationary policy, which can be computed or at least
approximated by the policy iteration algorithm 3.1.

Proof. We shall first verify Assumption A. Let Sn := {0, 1, . . . , n} for each n ≥ 1,
w(i) := i + 1 for all i ∈ S, and

ρ :=
μ− λ− h∗

2 + h1∗
2

= μ− λ− κ

2
> 0 when μ− λ > |h∗

2 − h1∗|.

Then Assumptions A(1) and A(2) are obviously true. Moreover, for each a = (a1, a2)∈
A(i) with i ≥ 1, by condition E1 and (6.1), we have∑

j∈S

q(j|i, a)w(j) = (λ− μ)(i + 1) + μ− λ− h1(i, a1) + h2(i, a2)

≤ −(μ− λ)w(i) + κ

≤
{
−(μ− λ)w(i) when κ ≤ 0,
−ρw(i) when κ > 0 (and so ρ > 0).

(6.3)

In particular, for i = 0 and each a = (a1, a2) ∈ A(0), we have∑
j∈S

q(j|i, a)w(j) = h2(0, a2) ≤ −(μ− λ)w(0) + b′ = −ρw(0) + b′ − κ

2
,(6.4)

where b′ := μ− λ + ‖h2‖ > 0.
By the inequalities (6.3) and (6.4) we see that Assumption A(3) holds with c :=

μ−λ and b := b′ when κ ≤ 0, or c := ρ and b := b′ when κ > 0. Since h2(0, a2) > 0 for
all a2 ∈ A2(0), by (6.1) we see that Assumption A(4) is true. Hence Assumption A
follows.

By E3 and (6.2), we have |r(i, a)| ≤ pi+L1(i+1)+L2(i+1) ≤ (p+L1 +L2)w(i)
for all i ∈ S and a ∈ A(i), which verifies Assumption B(4). Hence, Assumption B is
satisfied because Assumptions B(1), B(2), and B(3) follow from E2 and the model’s
description.

Finally, to verify Assumption C we let

w∗
1(i) := i2 + 1, w∗

2(i) := i4 + 1 ∀i ∈ S.(6.5)

Then

w2(i) ≤ M∗
1w

∗
1(i), [q(i)w(i)]2 ≤ M∗

2w
∗
2(i) ∀i ∈ S,(6.6)

with M∗
1 := 3 and M∗

2 := 8(λ + μ + ‖h1‖ + ‖h2‖).
Moreover, for each i ≥ 1 and a = (a1, a2) ∈ A(i), by (6.1), (6.5), and E3, we have∑

j∈S

q(j|i, a)w∗
1(j) = −2i[μi + h1(i, a1)] + μi + h1(i, a1)

+ 2i[λi + h2(i, a2)] + λi + h2(i, a2)

≤ −2(μ− λ)(i2 + 1) + 3(μ + λ + ‖h1‖ + ‖h2‖)i.

Hence, for each i ≥ 3(μ+λ+‖h1‖+‖h2‖)
μ−λ + 1 =: i∗, we have

∑
j∈S

q(j|i, a)w∗
1(j) ≤ −(μ− λ)w∗

1(i).(6.7)
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On the other hand, since A(i) is assumed to be compact for each i ∈ S, by (6.1) and
(6.5) we see that

∑
j∈S q(j|i, a)w∗

1(j) and (μ− λ)w∗
1(i) are both bounded in a ∈ A(i)

and i ≤ i∗. Thus, from (6.7) there exists a positive constant b∗1 such that

∑
j∈S

q(j|i, a)w∗
1(j) ≤ −(μ− λ)w∗

1(i) + b∗1 ∀i ∈ S and a ∈ A(i).(6.8)

Also, for each i ≥ 1 and a ∈ A(i), by (6.1) and (6.5) we have

∑
j∈S

q(j|i, a)w∗
2(j) ≤ −2(μ− λ)(i4 + 1) − (μ− λ)i4 + c3i

3 + c2i
2 + c1i + c0,(6.9)

where the constants ck(k = 0, 1, 2, 3) are determined completely by λ, μ, ‖h1‖, and
‖h2‖. Similarly, by (6.9) and (6.1), there exists a positive constant b∗2 such that

∑
j∈S

q(j|i, a)w∗
2(j) ≤ −(μ− λ)w∗

2(i) + b∗2 ∀i ∈ S and a ∈ A(i),(6.10)

which, together with (6.8) and (6.6), verifies Assumption C.

It should be noted that in Example 6.1 both the reward and transition rates are
unbounded; see (6.1) and (6.2). Next, we will show that our admissible policy class Π
can indeed be chosen to be larger than the usual stationary policy class F .

Example 6.3. In Example 6.1, for each i ∈ S we take arbitrarily two actions ak(i)
(k = 1, 2) from A(i) which may depend on i, and then define an admissible policy
π̃ = (π̃t) as

π̃t(B|i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
e−ρ0it if B = {a1(i)},

1 − 1

2
e−ρ0it if B = {a2(i)},

0 otherwise

(6.11)

for some fixed constant ρ0 > 0.

Then, by (6.1), (6.11), and (2.2), we see that π̃ is in Π but not in F . Therefore, we
have Π ⊃ F , but Π �= F. It is also noted that the associated Q-process p(s, i, t, j, π̃)
is nonhomogeneous, and so is the associated continuous-time Markov chain x(t, π̃).
Moreover, the corresponding reward rates r(i, π̃t) are time-dependent and unbounded;
see (6.2) and (2.3).

Finally, in the following example we show that in general the AER and ASPR
criteria are different.

Example 6.4. Let S := {1, 2}. For some π̂ = (π̂t), f ∈ Π, suppose that for
0 ≤ t ≤ 1,

Q(π̂t) :=

(
−1 + t 1 − t
2 − 2t −2 + 2t

)
and Q(f) :=

(
0 0
0 0

)
.(6.12)

Let t0 := 1, and define

Q(π̃t) :=

{
Q(π̂t) when 0 ≤ t ≤ t0,
Q(f) when t ≥ t0.

(6.13)
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By (6.12), (6.13), and Definition 2.2, we see that the associated policy π̃ belongs
to Π. For reference, we recall that for any π ∈ Π the associated regular Q-process
p(s, i, t, j, π) can be constructed as follows [13, 16, 17]: for i, j ∈ S and n ≥ 0, let

p0(s, i, t, j, π) := δije
−
∫ t

s
qi(πy)dy

,(6.14)

pn+1(s, i, t, j, π) :=

∫ t

s

e
−
∫ y

s
qi(πv)dv

∑
k �=i

q(k|i, πy)pn(y, k, t, j, π)dy.(6.15)

Then

p(s, i, t, j, π) =

∞∑
n=0

pn(s, i, t, j, π).(6.16)

For each i, j ∈ S, by (6.12)–(6.16), p(0, i, t0, j, π̂) > 0. Hence, 0 < p(0, i, t0, 2, π̂) < 1.
Moreover,

p(s, i, t, j, π̃) =

{
p(s, i, t, j, π̂) when 0 ≤ t ≤ t0,
p(s, i, t, j, f) when t ≥ s ≥ t0.

(6.17)

Let r(1, a) = 0, r(2, a) = 1 for all a ∈ A(i) with i = 1, 2. Then, by (6.12) and (6.13)
we see that states 1 and 2 are absorbing after time t0. By (6.12), (6.14)–(6.17), we get

p(t0, i, t, i, π̃) = 1 ∀i ∈ S and t ≥ t0.(6.18)

Noting that r(1, π̃t) = 0 and r(2, π̃t) = 1 for each t ≥ 0, by (6.18) and (2.6) we have
that for each i ∈ S

Vsp(π̃, i) = 1 for any sample path in {x(t, π̃) = 2, t ≥ t0}.(6.19)

On the other hand, by the Chapman–Kolmogorov equation and (6.18), we have

p(0, i, t, 2, π̃) = p(0, i, t0, 1, π̃)p(t0, 1, t, 2, π̃) + p(0, i, t0, 2, π̃)p(t0, 2, t, 2, π̃)

= p(0, i, t0, 2, π̃) < 1 ∀t0 ≤ t.(6.20)

Using again r(1, π̃t) = 0 and r(2, π̃t) = 1 for each t ≥ 0, by (6.20) and (2.7) we get

V̄ (π̃, i) = lim sup
T→∞

∫ T

0
p(0, i, t, 2, π̃)dt

T

= lim sup
T→∞

∫ T

t0
p(0, i, t, 2, π̃)dt

T

= p(0, i, t0, 2, π̂) < 1 ∀i ∈ S,(6.21)

which together with (6.19) and P π̃
i ({x(t, π̃) = 2, t ≥ t0}) = p(0, i, t0, 2, π̂) > 0 shows

the difference between the ASPR and AER criteria.

7. Concluding remarks. In the previous sections we have studied ASPR op-
timality for denumerable continuous-time Markov chains determined by possibly un-
bounded transition rates. Under suitable assumptions we have shown the existence
of a solution to the optimality equation and the existence of an ASPR-optimal sta-
tionary policy. In addition, we have presented two algorithms to compute, or at least
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approximate, the ASPR-optimal stationary policies. Our formulation and approach
are sufficiently general and can be used to analyze other important problems, such as
the relation among potentials, perturbation analysis, and Markov decision processes
in general spaces, as well as minimax control problems. These problems, as far as we
can tell, have not been previously studied for continuous-time Markov chains with un-
bounded transition or reward rates. It should be mentioned that Example 6.4 shows
that in general the ASPR and AER criteria are different, and it is an interesting
and challenging problem to further show the difference between the two criteria un-
der some ergodicity condition. Also, it remains open to show that an ASPR-optimal
stationary policy is not necessarily canonical. Research on these topics is in progress.
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[22] O. Hernández-Lerma, Adaptive Markov Control Processes, Springer-Verlag, New York, 1989.
[23] O. Hernández-Lerma and J.B. Lasserre, Further Topics on Discrete-Time Markov Control

Processes, Springer-Verlag, New York, 1999.
[24] O. Hernández-Lerma, O. Vega-Amaya, and G. Carrasco, Sample-path optimality and

variance-minimization of average cost Markov control processes, SIAM J. Control Optim.,
38 (1999), pp. 79–93.

[25] R.A. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA,
1960.

[26] P. Kakumanu, Nondiscounted continuous-time Markov decision processes with countable state
space, SIAM J. Control, 10 (1972), pp. 210–220.

[27] M.E. Lewis and M.L. Puterman, A note on bias optimality in controlled queueing systems,
J. Appl. Probab., 37 (2000), pp. 300–305.

[28] S.A. Lippman, On dynamic programming with unbounded rewards, Management Sci., 21
(1974/75), pp. 1225–1233.

[29] S.A. Lippman, Applying a new device in the optimization of exponential queuing systems,
Operations Res., 23 (1975), pp. 687–710.

[30] R.B. Lund, S.P. Meyn, and R.L. Tweedie, Computable exponential convergence rates for
stochastically ordered Markov processes, Ann. Appl. Probab., 6 (1996), pp. 218–237.

[31] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming,
Wiley, New York, 1994.

[32] S.M. Ross, Applied Probability Models with Optimization Applications, Holden-Day, San Fran-
cisco, 1970.

[33] S.M. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, New York,
1983.

[34] S.M. Ross, Non-discounted denumerable Markovian decision models, Ann. Math. Statist., 39
(1968), pp. 412–423.

[35] L.I. Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley,
New York, 1999.

[36] R. Serfozo, Optimal control of random walks, birth and death processes, and queues, Adv. in
Appl. Probab., 13 (1981), pp. 61–83.

[37] R. Serfozo, An equivalence between continuous and discrete time Markov decision processes,
Oper. Res., 27 (1979), pp. 616–620.

[38] A.F. Veinott, On finding optimal policies in discrete dynamic programming with no discount-
ing, Ann. Math. Statist., 37 (1966), pp. 1284–1294.

[39] A.A. Yushkevich and E.A. Feinberg, On homogeneous Markov model with continuous-time
and finite or countable state space, Theory Probab. Appl., 24 (1979), pp. 156–161.


