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Algorithms for Sensitivity Analysis of Markov
Systems Through Potentials and

Perturbation Realization
Xi-Ren Cao,Fellow, IEEE, and Yat-wah Wan

Abstract—We provide algorithms to compute the performance
derivatives of Markov chains with respect to changes in their
transition matrices and of Markov processes with respect to
changes in their infinitesimal generators. Our algorithms are
readily applicable to the control and optimization of these
Markov systems, since they are based on analyzing a single
sample path and do not need explicit specification of transition
matrices, nor infinitesimal generators. Compared to infinitesimal
perturbation analysis (IPA), the algorithms have a wider scope
of application and require nearly the same computational effort.
Numerical examples are provided to illustrate the applications
of the algorithms. In particular, we apply one of our algorithms
to a closed queueing network and the results are promising.

Index Terms—Importance sampling, on-line optimization, per-
formance sensitivity, perturbation methods, queueing networks.

I. INTRODUCTION

PERTURBATION analysis is one of the single sample
path-based performance sensitivity analysis techniques

for discrete-event dynamic systems (see e.g., [7], [14], and
[19]). The main objective of perturbation analysis is to obtain
performance sensitivities with respect to system parameters
by analyzing a single sample path of a discrete-event sys-
tem. This research area is promising because of its practical
usefulness: First, perturbation analysis saves a great amount of
computation in simulation for system optimization, since many
derivatives can be obtained by analyzing the same sample
path; second and perhaps more importantly, the derivatives can
be applied to on-line performance optimization of real world
systems where changing the values of parameters to estimate
derivatives is infeasible. (Papers regarding the applications of
perturbation analysis to various engineering problems include
[3], [6], [9], [17], [26], and [27], just to name a few.)
The computation of the performance derivatives based on a
single sample path of a system is especially useful in the
optimization of modern communication systems where the
rapid changing environment makes it hard to implement any
off-line simulation methods.
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It has been proved that the simple perturbation analysis algo-
rithms (called the infinitesimal perturbation analysis) provide
unbiased or strongly consistent estimates of the performance
derivatives for many systems [9], [14], [19], [24]; it is also
known that this is not true for many others [14], [19]. Much
effort has been made to extend infinitesimal perturbation
analysis (IPA) to cases where it does not work well; useful
techniques that apply to different cases where IPA fails have
been proposed (see, e.g., [2], [8], [10]–[13], [16], [20], and
[25]). However, a general approach that is simple and applies
to a wide class of problems is yet to be developed.

Recently, a new approach was proposed in [4] in this
direction. The work was motivated by [10]–[13]. The approach
is based on Markov models; it provides formulas for ,
the derivative of the steady-state performance measureof
a Markov process (or Markov chain) with respect to, the
changein the infinitesimal generator (or transition matrice

). It is shown in [4] that the quantities involved in the
derivative formulas can be easily estimated by analyzing a
single sample path of a Markov process (or Markov chain), and
that the derivative estimates obtained using these formulas are
strongly consistent. It is well known that IPA does not yield the
correct estimates of performance derivatives for this problem.
Since the Markov model is the most fundamental model for
stochastic systems, the formulas developed in [4] provide a
new widely applicable approach for sensitivity estimation. For
example, can be the expected number of customers in a
closed queueing network, and the effect of a change in
the routing matrix, the service rates, or both. With estimated

, one can consider the optimal routing matrix, service
rates, or both, with respect to.

While principles and formulas are developed in [4], it
stops short of providing practically applicable algorithms for
sensitivity estimation. The goal of this paper is to develop
algorithms based on the analysis in [4] that yield unbiased
and strongly consistent estimates of performance sensitivities.
The algorithms are based on a single sample path of a Markov
system, and the computation involved is almost comparable to
that of IPA.

The rest of this paper is organized as follows. Section II
describes the problem and summarizes the results in [4],
leaving proofs and details to the original paper. The algorithms
for Markov chains and Markov processes are presented in
Section III and IV, respectively. All algorithms are illustrated
by numerical examples with discussion. In Section V, we
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apply an algorithm from Section IV to a closed queueing net-
work. We first estimate the derivatives of the average number
of customers in stations; then we estimate the derivatives of the
probability of the number of customers in a station exceeding a
prefixed threshold. The latter problem has a practical meaning
in that it models the blocking probability in manufacturing
and communication systems; it cannot be solved by IPA. Our
results show that the approach yields accurate estimates with
a reasonable computational and analytical complexity. Finally,
we conclude our paper in Section VI.

II. THE MODEL AND EXISTING RESULTS

Consider a regular, positive recurrent, and irreducible
Markov process with a countable state space

and an infinitesimal generator ,
where , and , a finite
constant. A real-valued function defined on, , is
called theperformance functionassociated with , if a cost

is incurred per unit time when the process is at state.
Let , where the prime represents transpose,
be the column vector whose components are all ones, and

be the steady-state probability vector of.
We know that can be found from

and

(1)

and the steady-state performance measure offrom

The sensitivity of with respective to is an interesting
and important question. Supposechanges to ,
where is a very small positive real number, , and

for , and for . Under this
construction, is a well-defined infinitesimal generator, and
hence its steady-state distributionand performance measure

are also clearly defined. We are interested in derivatives
defined by

and we have

It is clear that for a fixed , varies when changes.
Consequently, what we will present is in fact the derivative
(sensitivity) of with respect to the change in in the
direction of . The notation used here is consistent with that
of the “directional derivative” in the calculus of multivariable
functions. In the following, for compactness, we will put
behind the scene and express derivatives in terms of, or its
variants.

Let be a Markov
process starting from state . Assume that it satisfies the
following assumption, which is held by all Markov processes
with practical significance.

Assumption A:

and

For the expected cost incurred up to epoch
is . The difference in cost incurred up to
by starting from state rather than should then be

It is proved in [4] that the limits of differences in costs by
starting from different states exist.

Theorem 1: Under Assumption A, the limit

exists, i.e., the above expression converges to a finite number
when goes to infinity.

These ’s are calledperturbation realization factors, and
they form therealization matrix . There are various
equivalent forms of ’s. One form involves

, thefirst passage timefrom state to state .
Theorem 2:

(2)

From Theorem 1, one can easily show that

(3)

Such a functional form of is analogous to those in physics,
and hence reveals that can be defined throughpotential, or
performance potentialassociated with states: arbitrarily pick
up and real number, the potential of states
can be defined

and

(4)

which easily shows that

for all (5)

Since the datum level of a potential can be set arbitrarily,
there can be uncountably many different versions of potential.
One of them is

(6)
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It is shown that

(7)

where

(8)

is the group inverseof . We have [4]

(9)

and hence for a fixed , can be estimated by

(10)

The main result in [4] is as follows.
Theorem 3: The performance derivative can be calculated

from the group inverse , the realization matrix , or the
potential vector

(11)

(12)

(13)

For any constant, can be chosen as a potential
vector. satisfies (5). Since , we have .
Thus, in (13) can be replaced by . In particular, we can
simply use

(14)

instead of (10) as an estimate of the potential vector in (13).
There is a completely analogous problem in the setting

of Markov chains. Let be a positive
irreducible Markov chain on the state space with the
transition probability matrix . We will use the
same symbols , and for Markov chains with the obvious
modification in their interpretation. Supposechanges to

, where for , and . Again, our interest
is in a derivative defined by ,
which is the sensitivity of with respect to , the change in
the probability transition matrix .

The sensitivity analysis of Markov chains follows directly
from that of Markov processes. Given the transition probability
matrix , we can treat the Markov chain as the embedded
chain of the Markov process with infinitesimal generator

, which is equivalent to saying that all infinitesimal
rates out of states are equal to one, and

if
if

It can be shown that the performance measure of any em-
bedded Markov chain is the same as the Markov process
constructed as above [21]. With , changing to

is equivalent to changing to , and derivatives
in the direction of can be deduced from the corresponding
results, e.g., Theorem 3, of Markov processes by substituting

with .
To be complete, we list out terms relevant to our algorithms

for Markov chains. Let

be a Markov chain starting from state, and
be the first passage time from state

to state . We consider Markov chains that satisfy the following
assumption.

Assumption B:

and

The realization factor for a Markov chain is found from

(15)

which also defines the realization matrix. The potential
vector remains unchanged as long asis calculated from

; the discrete analog of (10) and (14) are

(16)

and

(17)

III. A LGORITHMS FOR MARKOV CHAINS

We will concentrate on a practical approach by estimat-
ing , and , from a sample path. Our approach is
documented in six algorithms: Algorithms 1c, 2c, and 3c
for Markov chains; Algorithms 1p, 2p, and 3p for Markov
processes. The estimation of and on a sample path is
straightforward. Let be the indicator function for state,
i.e., for , and otherwise. Then

(18)

and

(19)

The estimation of and the expected total cost
accumulated during on a sample path is equally
straightforward. Define two sequences of epochs and
for eachpair of states and , where

the epoch that first visits state

after

the epoch that first visits state

after (20)

and are well defined on a sample path. Now define
and . The Markov
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property ensures that ’s are independently identically
distributed (i.i.d.), and each is stochastically equivalent
to the first passage time from state to state . By the
same argument, ’s are i.i.d., and each is stochastically
equivalent to the total cost accumulated within a first passage
time from state to state . Since the chain is assumed to be
positive recurrent, we have

(21)

and

(22)

based on which ’s can be estimated from (15). When ’s
are known, the potentials can be obtained in the same fashion
as (4) by using any row of . To get a more accurate estimate,
we may estimate the potential through all’s, that is, we get

from (6). The first algorithm estimates based on (13)
and the procedure outlined above.

Algorithm 1c:

1) Estimate , and
on a single sample path.

2) Calculate ’s and the realization matrix by using
(15).

3) Set .
4) Calculate by (13).

Example 1: We consider a Markov chain with ten states.
The state transition matrix is shown in (22a) at the bottom of
the page and the performance function is

and the matrix representing the direction of change inis
shown in (22b) at the bottom of the page. All the parameters
are chosen arbitrarily. We did ten simulation runs, and each
consists of state transitions.

The theoretical values as well as the means and standard
deviations of the estimated realization factors are listed in
Tables I, II, and III, respectively. The estimated matrix
is indeed skew-symmetric and standard deviations are of the
order 10 . The statistics of the potentials based on
are listed in Table IV. The performance derivative
is 0.1176; the estimated value is0.1173 with a standard
deviation 0.0013.

The estimation of in the first algorithm is a bit involved.
One needs to keep track of the cumulative sums of
and for every pair of and . At each transition,
the number of variables that one needs to update is of the
same order of the state space, which makes the updating
computationally intensive.

The second algorithm estimatesfrom (17) and then uses
(13) to calculate the performance derivative. The potential
can be estimated on sample path in a way similar to. Based
on the ergodicity of a positive recurrent Markov chain, (17)
leads to

(23)

The convergence in (23) is not obvious, since the items
for different may not be independent.

(22a)

(22b)
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TABLE I
THE THEORETICAL VALUES OF REALIZATION ERRORS IN EXAMPLE 1

TABLE II
THE MEAN REALIZATION ERRORS IN EXAMPLE 1

The proof of (23) is based on a fundamental theorem on
ergodicity [1]: Let be an ergodic
process on state space be a measurable
function on . Then the process with

is also ergodic. In our case, we
define ; then is
ergodic. Thus, (23) holds. The same theorem can be applied
to prove many similar results.

Algorithm 2c:

1) Estimate the steady-state probabilitiesand potentials
by using (18) and (23).

2) Calculate by (13).

One problem remaining is how to choose. According to
the meanings of potentials, what matters is their differences,
i.e., the realization factors . We use the expectation
of the sum of the performance function over a period with
a fixed length to approximate , . Ideally, to

estimate , the length should be the first passage time from
state to state and hence the length of the period,, should
be comparable to the mean of the first passage time.

It is clear that the larger the is, the smaller the bias of
as an estimate of is. On the other hand, the larger the

is, the larger the variance of the estimate is. Therefore, there
is a tradeoff in choosing. One can prove that the distribution
of the first passage times has an exponential tail, and we
expect that may be chosen as a small number. The following
simulation example provides some empirical evidence.

Example 2: We consider the same Markov chain as in
Example 1. We choose . For each value
of , we do two sets of simulation, each set of ten runs. Each
simulation run contains of state transitions in the first
set, and transitions in the second set. The means and
standard deviations of the estimated performance derivatives
as well as its theoretical value are listed in Tables V and VI.
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TABLE III
THE STANDARD DEVIATIONS OF REALIZATION ERRORS IN EXAMPLE 1

TABLE IV
THE POTENTIALS BASED ON REALIZATION FACTORS IN EXAMPLE 1

TABLE V
THE PERFORMANCE DERIVATIVES IN EXAMPLE 2 WITH 100000 TRANSITIONS

TABLE VI
THE PERFORMANCE DERIVATIVES IN EXAMPLE 2 WITH 1000000 TRANSITIONS

These tables show that the estimate is quite accurate even
when is as small as two or three. The standard deviation
is acceptable even if is 20. Thus, the results are not so
sensitive to the value of . It is interesting to note that even
if we choose in this case, the error is only about 17%.

means using the performance function to approximate
the potentials, i.e., assuming . This corresponds to the
“myopic” policy in optimization: when the system jumps to

state , we just use the one step performance to represent
the long-term performance.

Table VII lists the potentials [in the form of (16), with
] estimated with and simulation length .

One disadvantage of Algorithms 1c and 2c is that they have
to estimate the potential for every state. This is sometimes
difficult for a number of reasons: the number of states may
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TABLE VII
THE POTENTIALS IN EXAMPLE 2 WITH 100000 TRANSITIONS AND n = 5

be too large; some states may be visited very rarely; and for
systems with special structures (e.g., queueing networks), it
may not be convenient even to list out all the states. In the
following, we develop an algorithm that can be used to esti-
mate the performance derivatives directly without estimating
each individual potential.

An analog is the estimation of the performance measure.
There are two ways to get the estimation: we may estimate all

first and then use to calculate the performance, or
we may estimate directly by

(24)

We want to develop an algorithm similar to (24) for .
Each term in takes the form . Because it

does not seem straightforward to estimate this term directly
on a sample path, we propose to use a standard technique
in simulation, importance sampling. First, we observe that

can be estimated according to the following equation:

(25)

To prove this equation, we use the same ar-
gument as for (23). Define a function

, we get an ergodic
process . Therefore, the right-hand side
of (25) equals ,
where is the expectation with respect to the steady-state
probability measure of , which equals

where is the steady-state probability of and
. By the Markov property, the first term equals

, and the second term equals .
From (25), we have

In the above, the quantity involving , , is estimated
by simulating a quantity involving . This is a vari-
ant of the standard important sampling technique in simulation,
which is widely applied to study the performance of a stochas-
tic system with a probability distribution by simulating another
stochastic system with a different probability distribution.

Finally, we have

(26)

This equation suggests an algorithm, which is as simple
as (23), for estimating the performance derivative. Compared
with (23), the modification is: when the system jumps from
state to state , a modifying factor is multiplied to
the term .

Algorithm 3c:

1) Estimate by using (26).

Example 3: We repeat the simulation for the same Markov
system as in Example 2 by applying Algorithm 3c. We did ten
simulation runs for each value of and the results are listed
in Table VIII.

Before ending this section, we make some comparisons of
the algorithms developed for Markov chains. Algorithm 1c is
unbiased and Algorithms 2c and 3c are biased for any finite

. Among the three algorithms, Algorithm 1c has the least
standard deviation. The standard deviation of Algorithm 2c is
in general small, and that of Algorithm 3c is larger than the
other two algorithms. These observations are evidenced by
the simulation results in the examples and can be explained
intuitively. From (15), in Algorithm 1c, is estimated as
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TABLE VIII
THE PERFORMANCE DERIVATIVES IN EXAMPLE 3 WITH 1000000 TRANSITIONS

a mean of the sum of a number of random variables, and
the potentials are obtained from by with .
In Algorithm 2c, the values of , with ,
contribute to a term with mean zero, and they just increase
the variance. Algorithm 3c uses less information from the
sample path than Algorithm 2c: in Algorithm 2c all the terms

starting from are used for estimating
, while in Algorithm 3c, only those terms starting from a

state transition from to are used to estimate in . In
addition, applying importance sampling increases the variance:
the exact quantity is replaced through a random variable

.
Nevertheless, Algorithms 2c and 3c are more convenient to

use than Algorithm 1c. Algorithm 3c estimates the derivative
without recording any intermediate values of and ,

. This feature is particular important when the
state space is large. Compared with Algorithm 2c, Algorithm
3c may save some computation when estimating the derivative
with respect to a given . However, with algorithm 2c, the
derivatives with respect to many’s can be obtained almost
simultaneously by simply calculating after is estimated;
this is not true for Algorithm 3c.

Finally, (26) is equivalent to

This expression is the same as the ensemble average impor-
tance sampling (EAIS) estimate of the performance sensitivity
of a Markov process introduced in [5]. This is not surprising
because the importance sampling technique is indeed used
in Algorithm 3c to estimate . This also explains why
Algorithm 3c has a relatively big variance. The variances of
EAIS estimates, however, are in general smaller than the time
average-based importance sampling estimates. A number of
examples applying this method to queueing networks and a
discussion about the variance of this technique can be found
in [5].

IV. A LGORITHMS FOR MARKOV PROCESSES

In this section, we develop performance sensitivity algo-
rithms for Markov processes. Algorithms 1c and 2c can be
easily modified to handle Markov processes, but developing
an algorithm similar to Algorithm 3c for Markov processes
requires some special considerations.

First, the algorithm similar to Algorithms 1c is based on
(2). The continuous-time analogue of (18), (19), (21), and (22)
are obtained by changing the summations into corresponding
integrations.

Algorithm 1p:

1) Estimate , and on
a single sample path.

2(–4) Same as Steps 2) to 4) in Algorithm 1c.

Next, we let be the th transition epoch of be
its th sojourn time, and be its state after theth transition.
By definition, and . Algorithm
2 for Markov processes is based on

(27)

and

(28)

where is a properly chosen constant.
Algorithm 2p:

1) Estimate the steady-state probabilitiesand potentials
by using (27) and (28).

2) Calculate by (13).

The difficulty in developing the third algorithm comes from
applying the importance sampling technique. Observe that
Algorithm 3 is based on a weighted ratio , which only
accounts for the effect of changes in routing probabilities
among states. For Markov processes, there can be changes in
the total infinitesimal rates of states, in addition to the changes
in routing probability. In general, the infinitesimal generator

takes the following form:

if
if

where is the infinitesimal rate at state, and represents
the routing probability when the process jumps out of state.
In the following, we will first consider the effect of changes
in routing probabilities , and then we consider the effect
of changes in state rates . After that, we will consider
the combined effect of both changes. Finally, we will discuss
the case in which is specified instead of routing and rates
changes.
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First consider the sole effect of changes in routing. Let
be the transition probability matrix of the Markov

chain embedded in jumping epochs. Supposechanges to
, where , and if . Let

and be the infinitesimal generators
before and after the change in, i.e.,

for for

. Hence the elements of , the change in
due to change in , are

and

for (29)

By defining in this way, the effect of the change in
the routing probability matrix is captured by , the
directional change of the infinitesimal generator; we will
denote the derivative of with respect to such a directional
change by . In subsequent discussion, the effect of
the change in the service rates of states is captured by, the
corresponding directional change of the infinitesimal generator

. We will denote the derivative of with respect to such a
directional change by .

Similar to (25), for , we have

Equivalently

and

(30)

An alternative to (30) is to use a uniformized embedded
Markov chain so that all integrations can be replaced by
summations. This approach applies when we simulate the
Markov process. Since the uniformized embedded chain con-
tains transitions from a state to itself, which are not observable
from a given sample path, the uniformized chain approach
cannot be used for a real system.

Now consider the sole effect of changes in infinitesimal
rates of states. Suppose changes to , where

if . By writing out elements of before
and after these changes as in the previous case, we can show

that the elements of , the change in due to
changes in rates, are given by

and

for (31)

We may proceed as in Markov chain, though there is a shorter
path through (11).

Observe that the th row of in this case equals
times the th row of . Let

and . We have . Using (11)

(32)

The two terms in the summations of (32) can be easily
estimated directly from a single sample path. We have

(33)

and

(34)

It is interesting to note that the derivative (32) is expressed
independent of ; thus, the estimate based on (34) and (33)
does not depend on, which is chosen in estimating.

In general, if both ’s and change, we can ignore the
(higher order) composition effect of routing and rate changes,
and decompose into and , where elements of
are from (29) and elements of are from (31). can
be obtained by (30), (32), and

(35)

Sometimes, we are given a without explicitly specifying
the routing and rate changes. In such a case, we can still
decompose into and . Let . Then

is found from these ’s through (31), and is
found back from

(36)

Since the original infinitesimal rate out of stateis , the
change in routing from stateto state is given by

(37)
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TABLE IX
THE PERFORMANCE DERIVATIVES IN EXAMPLE 4 WITH 1000000 TRANSITIONS

One can verify that and found above indeed bear
the intended physical meaning and can then follow
from (30), (32), and (35).

Algorithm 3p:

1) Decompose into and either from (29)
and (31) when and are given, or by setting

and using (31), (36), and (37) when is
given instead.

2) Estimate by (30), and by (32)–(34).
3) Calculate by (35).

We have carried out the simulation of Algorithms 1p and
2p for a ten-state Markov process with the embedded Markov
chain given by the transition probability matrix in Example
1. The results are not presented here, since, with the same
number or runs, results from the Markov process behave like
those from the chain. The standard deviation of’s from the
Markov process tends to be larger. Such a result is expected,
since the random sojourn times in the Markov process induce
variability. We can reduce this variability by increasing the
number of runs. In the following, we give the results of
the Algorithm 3p on the Markov process mentioned at the
beginning of this paragraph.

Example 4: We carry out transitions. The result
of and of are shown in Table IX.
Since the estimates in (33) and (34) do not depend on,
neither does .

V. CLOSED QUEUEING NETWORKS

On first sight the sensitivity estimate of closed queueing
networks (CQN’s) is not worthwhile to discuss in detail.
With exponential service times, the CQN can be modeled as
a Markov process, and its sensitivity analysis follows from
Section IV. On second thought, the real issue lies in practical-
ity, not mathematical equivalence. In real life, it is impossible
or impractical to specify , the infinitesimal generator of a
CQN. More importantly, in controlling a queueing system,
we usually only refer to characteristics of individual stations,
but not the state of the system, which usually involves all
stations. As a result, we seldom specify, but, instead,
specify changes in routing probabilities among stations and
in service (infinitesimal) rates of stations. We would like to
know the effect of changing these quantities to the performance

measure. To apply algorithms in Section IV, we need to
transform quantities specified on stations to states of the
underlying Markov process. In the following, we demonstrate
our procedure on Algorithm 3p, which, as discussed before,
only needs to collect information on a single sample path.

Consider an exponential CQN with stations. Let
, be the service rate of theth station;

be the state of the system, where
is the number of customers at stationat epoch .

Between the th and the th transitions, the state of
the system is denoted by . The
station which has a service completion at theth transition
is denoted by , while the station which has an arrival
right after the th transition is denoted by . The state

is reached when a customer moves from station
to station for state . Based on our notation,

, and
. The performance function at stateis denoted by ,

which is assumed to be equal to , where is
the performance function for theth station. This assumption
does not constrain our procedure, which can handle various
practical problems by adopting different ’s. The routing
probability matrix of customers among stations is denoted by

under which the Markov process is assumed to
be irreducible. Other notations defined in earlier sections are
used here with necessary modification in interpretation; e.g.,

becomes the infinitesimal rate of state, while is
the service rate of theth station.

When the context is clear, or when we aim at a generic
expression, we will suppress the subscript, which indicates
the dependence on transitions. For example,is a short form
of when the dependence on theth transition is not the
main issue; similarly, stands for .

With the above notation, the infinitesimal rate out of state
is ; the sojourn time for the system

to stay in state is , which distributes as ,
and .
Suppose changes to and to

. The change of rate in state is
. As in (31)
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and

(38)

It is clear that

By ignoring higher order terms, (36) leads to

(39)

From (30), see (40) shown at the bottom of the page. The
estimate of (40) on sample path is a simple extension of (30),
since , and are known quantities on each transition.
Similarly, (32) gives

(41)

where all terms can be easily estimated on a sample path.

TABLE X
THE PERFORMANCE DERIVATIVES IN EXAMPLE 5

TABLE XI
THE PERFORMANCE DERIVATIVES IN EXAMPLE 6

Example 5: We work with a small exponential CQN whose
actual performance derivatives can easily be found. Consider
a three-server four-customer CQN such that

, and . The
mean service times of the three stations are 7, 2.5, and 2 time
units, respectively. We simulate for three different numbers of
transitions, each with ten replications, aiming to determine the
change in expected number of customers in the three stations
with respect to the change in rate of the second station. With
such an objective, for all and . See Table X for
simulation settings and results.

Since the computation for the CQN is actually based on
Algorithm 3p of Markov processes, the results behave similar
to those of Example 4. The means of the performance deriva-
tives are close to the theoretical values for a small number
of runs (e.g., ) and a small (e.g., 20). The standard
derivations of our estimates are reasonably small.

The next example shows that our algorithms can be applied
to problems that IPA cannot solve.

Example 6: In this example, we study the probability that
the number of customers in a station exceeds a threshold.
Consider the same CQN as in Example 5. We take

and we want to determine . As in

(40)



CAO AND WAN: ALGORITHMS FOR SENSITIVITY ANALYSIS OF MARKOV SYSTEMS 493

previous examples, we translate the change in into ,
the directional change in . Define

, and for . It is clear that
; hence (40) and (41) can be directly applied.

We repeat the simulation of the Markov process shown in
Example 5 for the new. The results are shown in Table XI.

VI. CONCLUSION

In this paper we give several algorithms to compute perfor-
mance derivatives for Markov chains and Markov processes.
The algorithms are based on a single sample path of the
Markov chain or Markov process. Compared with the existing
approaches, our approach has its own advantages. Unlike IPA,
which does not apply for systems where the performance
functions are discontinuous, our approach applies to a wide
range of systems and performance measures. Compared with
the likelihood ratio method (see, e.g., [15] and [22]) or the
score function method (e.g., [23]), which usually resorts to
regenerative structure to reduce the variance and does not
apply when the changes in the transition matrix involves
open arcs (i.e., perturbing the zero entries in a transition
matrix), our approach does not have the same restrictions. In
addition, the computation involved is mainly adding up the
performance values in some intervals, which is similar to IPA.
After the estimates of potentials are obtained, the performance
derivatives with respect to many ’s can be obtained by
simple calculation using . Thus, compared with the brute
force simulation method, our approach is more efficient when
one wants to estimate many performance derivatives; this is
the case for performance optimization problems. Furthermore,
compared with smoothed perturbation analysis (SPA) our
approach does not need complicated analysis that is problem
dependent; this is important from a practical point of view,
since engineers may not need special knowledge to implement
the approach in their real world problems.

Our empirical results show that the standard deviations are
generally small, and that in Algorithms 1c, 2c, 1p, and 2p,
it suffices to use small values of and ( 5) to estimate
the potential and hence the derivatives. While optimal values
of and are problem dependent and may increase with
the size of the state space, the variability of, etc., the
typical geometric tails of stationary distributions make us
believe that our algorithms, especially Algorithms 3c and 3p,
can be applied to problems of practical sizes. Our work also
creates some new research topics, such as state aggregation
for systems with large sizes.

Finally, as demonstrated by the examples, to get accurate
estimates we need to run the system for a large number of
transitions. This is common in estimating mean values in
stochastic systems. However, in many modern systems such
as high-speed communication networks, millions of transitions
may happen within seconds, and therefore, the application of
our approach to real-world systems is feasible.

Another strong support to our approach is the recently
developed concept ofordinal optimization [18]. The main
idea is that by softening the goal of optimization and by
comparing different schemes ordinally instead of obtaining

the exact performance values, we can dramatically reduce our
demand in the accuracy of the estimates. We believe that using
ordinal optimization, relatively short sample paths can be used
to estimate the performance derivatives to achieve the goal of
performance optimization.
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