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Algorithms for Sensitivity Analysis of Markov
Systems Through Potentials and
Perturbation Realization

Xi-Ren Cao,Fellow, IEEE, and Yat-wah Wan

Abstract—We provide algorithms to compute the performance It has been proved that the simple perturbation analysis algo-
derivatives of Markov chains with respect to changes in their rithms (called the infinitesimal perturbation analysis) provide
transition matrices and of Markov processes with respect 10\ nhiased or strongly consistent estimates of the performance

changes in their infinitesimal generators. Our algorithms are L N
readily applicable to the control and optimization of these derivatives for many systems [9], [14], [19], [24]; it is also

Markov systems, since they are based on analyzing a singleknown that this is not true for many others [14], [19]. Much
sample path and do not need explicit specification of transition effort has been made to extend infinitesimal perturbation
matrices,_ nor infinite_simal generators._Compared to in_finitesimal analysis (IPA) to cases where it does not work well; useful
perturbation analysis (IPA), the algorithms have a wider scope o nniques that apply to different cases where IPA fails have
of application and require nearly the same computational effort.
Numerical examples are provided to illustrate the applications P€€N proposed (see, e.g., [2], [8], [10]-[13], [16], [20], and
of the algorithms. In particular, we apply one of our algorithms  [25]). However, a general approach that is simple and applies
to a closed queueing network and the results are promising. to a wide class of problems is yet to be developed.

Index Terms—mportance sampling, on-line optimization, per- Recently, a new approach was proposed in [4] in this
formance sensitivity, perturbation methods, queueing networks. direction. The work was motivated by [10]-[13]. The approach
is based on Markov models; it provides formulas &oy/9(Q,
the derivative of the steady-state performance meagusé
a Markov process (or Markov chain) with respect@o the

ERTURBATION analysis is one of the single samplehangein the infinitesimal generatas (or transition matrice

path-based performance sensitivity analysis techniques. It is shown in [4] that the quantities involved in the
for discrete-event dynamic systems (see e.g., [7], [14], aB@rivative formulas can be easily estimated by analyzing a
[19]). The main objective of perturbation analysis is to obtaigingle sample path of a Markov process (or Markov chain), and
performance sensitivities with respect to system parametgigt the derivative estimates obtained using these formulas are
by analyzing a single sample path of a discrete-event S\grongly consistent. It is well known that IPA does not yield the
tem. This research area is promising because of its practigg}rect estimates of performance derivatives for this problem.
usefulness: First, perturbation analysis saves a great amoung@fce the Markov model is the most fundamental model for
compu.tation in simulatioq for system opti.mization, since marygchastic systems, the formulas developed in [4] provide a
derivatives can be obtained by analyzing the same samplgy widely applicable approach for sensitivity estimation. For
path; second and perhaps more importantly, the derivatives B mple,n can be the expected number of customers in a
be applied to on-line performance optimization of real world|yseg queueing network, ang the effect of a change in
systems where changing the values of parameters to estimgle routing matrix, the service rates, or both. With estimated
derivatives is infeasible. (Papers regarding the appllcauonsg)r;/aQ, one can consider the optimal routing matrix, service
perturbation analysis to various engineering problems inclupﬁes, or both, with respect to
[3], [6], 9], [17], [26], and [27], just to name a few.) \yhile principles and formulas are developed in [4], it
The computation of the performance derivatives based ory@ng short of providing practically applicable algorithms for

single sample path of a system is especially useful in t@qjivity estimation. The goal of this paper is to develop

optimization of modern communication systems where tr};\Gfgorithms based on the analysis in [4] that yield unbiased

f?fpl',d che_mgllng. enwronhmgnt makes it hard to implement any,y grongly consistent estimates of performance sensitivities.
off-ine simulation methods. The algorithms are based on a single sample path of a Markov
system, and the computation involved is almost comparable to
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apply an algorithm from Section IV to a closed queueing net- Assumption A:

work. We first estimate the derivatives of the average number

of customers in stations; then we estimate the derivatives of the E-(lf]) = Z mi| f(1)] < o0

probability of the number of customers in a station exceeding a €

prefixed threshold. The latter problem has a practical meaniggq

in that it models the blocking probability in manufacturing )

and communication systems; it cannot be solved by IPA. Our tliJgO E[|f(Xt{Z})|] = E-(|f), 1€E&.

results show that the approach yields accurate estimates with

a reasonable Computational and analytical CompleXity. Fina"y, For {Xt{z}} the expected cost incurred up to ep(ﬁ(b())
we conclude our paper in Section VI. is E[f; f(x ") dt]. The difference in cost incurred up

by starting from statg rather thani should then be
_ / f(X}“) dt / f(X}”) dt.

Markov process{ = {X;;¢ > 0} with a countable state space 0 0

£ = {1,2,---} and an infinitesimal generatod = [a;;],

where a; < 0,a;; > 0,¢ # j, and |a;| < K, a finite It is proved in [4] that the limits of differences in costs by

constant. A real-valued function defined 6nf : € — R, is Starting from .diﬁerent states exist. o
called theperformance functiorassociated withX, if a cost ~ 1heorem 1:Under Assumption A, the limit

f(@) is incurred per unit time when the process is at state T ' T ‘
] {E | e e | f(Xt{Z})dt] }

Let e = (1,1, ---)', where the prime represents transposed;; = lim
7 = (71, 72, - - -) be the steady-state probability vector &t t,j €E
exists, i.e., the above expression converges to a finite number

Il. THE MODEL AND EXISTING RESULTS

Consider a regular, positive recurrent, and irreducible E _E

-F

be the column vector whose components are all ones, and
We know thatr can be found from

re=1 when T goes to infinity.
and Thesed,;'s are calledperturbation realization factorsand
7A =0 (1) they form therealization matrixD = [d;;]. There are various

equivalent forms ofl;;’s. One form involvesSt/} (i) = inf{¢ :

and the steady-state performance measur& dfom t>0, Xt{j - ¢}, thefirst passage tim&om statej to state:.

M . Theorem 2:
n=E.(f)=)Y_ mf(@)=rf. S5
i=1 ) i ST
N o dy=B| [ rxdr| - BV @l
The sensitivity of with respective toA is an interesting 0

and important question. Suppodechanges tods; = 4 + 60, s (i) '
whereé is a very small positive real numbeQe = 0, and :E{/ FXNH =) dt}. )
gij = 0fora;; =0, 4 # j, andg;; < 0for a;; = 0. Under this 0

construction,As is a well-defined infinitesimal generator, and

hence its steady-state distributiap and performance measure From Theorem 1, one can easily show that

15 are also clearly defined. We are interested in derivatives di; = di + dpj, i, 5,k €E. (3)
defined by
an ns—n Ot . wms—n Such a functional form of;; is analogous to those in physics,
90 ~ e S 90 ~ gl_l}}J S and hence reveals thdf; can be defined througbotential or

performance potentiahssociated with states: arbitrarily pick

and we have up k* € £ and ¢ € real number, the potential of statés; }

0A As — A

gy [ - can be defined
aQ ~ @
Itis clear that for a fixedd, 91/0Q varies whern) changes. Ik =G
Consequently, what we will present is in fact the derivativend
(sensitivity) of n with respect to the change ia in the Gi = Qi+ + dpess i Ak 4)

direction of Q. The notation used here is consistent with that
of the “directional derivative” in the calculus of multivariablewhich easily shows that
functions. In the following, for compactness, we will pdt
behind the scene and express derivatives in terntg, afr its

variants. Since the datum level of a potential can be set arbitrarily,

(@). _ — . ) . .
Let {Xy7; ¢ > 0f = {X[Xo = ¢;¢ > 0} be @ Markov here can be uncountably many different versions of potential.
process starting from state: € £. Assume that it satisfies theqne of them is

following assumption, which is held by all Markov processes
with practical significance. g=D'r". (6)

dij =45 — 9, for all i, j€E. (5)
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It is shown that be a Markov chain starting from staig and L1/} (i) =
g=—A%*f 7) inf{n|X,{Lj} = 4; n > 0} be the first passage time from stgte
to statei. We consider Markov chains that satisfy the following
where assumption.
A* = (A4er) L —en (8) Assumption B:
is the group inverseof A. We have [4] Ex(|f)) = milf()] < o0

T )
FxEHY ar
| o(x)
and hence for a fixed’, g; can be estimated by
T .
FxFY ar
| o(x)

The main result in [4] is as follows.
Theorem 3: The performance derivative can be calculated

T—o0

iCE
- TU} (9) and

g; = lim {E
Jm B[S = EL(F), ek

The realization factor for a Markov chain is found from
LU y—1 '
dj=E{ S f(x b - BlLUN @

gi(l)=FE = 1. (10)

from the group inversei#, the realization matrixD, or the LY (@)-1 ,
potential vectorg =E¢ > [Fx Uty — ] (15)
877 . o k=0
oQ =-mRATS (1) \which also defines the realization matri. The potential
=71QD' 7’ (12) vectorg remains unchanged as long dsis calculated from
—7Qg. (13) P — I, the discrete analog of (10) and (14) are
For an*y constant, g* = g+ ce can be chosen as*a potential gi(n) =E Z f(X{ }) . (16)
vector. g* satisfies (5). Sinc&e = 0, we haveQg* = Qg.

Thus, g in (13) can be replaced by*. In particular, we can gpg
simply use fn—1 7

r am) =B |3 7(x{7)]. (17)
g(T)=E / f(Xt[”}) dt (14) I ]
0
instead of (10) as an estimate of the potential vector in (13). [ll. ALGORITHMS FOR MARKOV CHAINS

There is a completely analogous problem in the setting
of Markov chains. LetX = {X,;n > 0} be a positive
irreducible Markov chain on the state spaéewith the
transition probability matrixP = [p;;] € £. We will use the
same symbolsg, f, and@ for Markov chains with the obvious
modification in their interpretation. Suppogechanges ta”+
6Q2, whereg;; > 0for p;; = 0, andQe = 0. Again, our interest
is in a derivative defined byn/0Q = lims_o(ns — n)/6,

We will concentrate on a practical approach by estimat-
ing 7,7, g, and D, from a sample path. Our approach is
documented in six algorithms: Algorithms 1c, 2c¢, and 3c
for Markov chains; Algorithms 1p, 2p, and 3p for Markov
processes. The estimation of and  on a sample path is
straightforward. Let’(x) be the indicator function for state
i.e., ¢’(xz) = 1 for x = 4, and= 0 otherwise. Then

N-1
which is the sensitivity of; with respect to?), the change in b 1 i
the probability transition matrix. = Algréo N ;0 (X&), w.p.1 (18)
The sensitivity analysis of Markov chains follows d|rectly -
from that of Markov processes. Given the transition probablhty
matrix P, we can treat the Markov chain as the embedded n= lim — Z F(X), w.p.l. (19)

chain of the Markov process with infinitesimal generator N—oo N
A = P—1I, which is equivalent to saying that all |m‘|n|teS|maL|.he estimation of £

[L[J}( )] and the expected total cost
rates out of states are equal to one, and

accumulated duringL’}(i) on a sample path is equally

s — { —[1 = pal, if { Iq straightforward. Define two sequences of epoghs$ and{:}
X Dijs if @7 . for eachpair of statesj and, where
It can be shown that the performance measure of any em- io =0

bedded Markov chain is the same as the Markov process

constructed as above [21]. With = P — I, changingP to = the epoch tha{.X..} first visits state

P+6Q is equivalent to changing to A+6Q, and derivatives J afteri,_q, s21

in the direction of@ can be deduced from the corresponding is = the epoch tha{ X,,} first visits state

results, e.g., Theorem 3, of Markov processes by substituting i after j,, s> 1. (20)
A with P — I.

To be complete, we list out terms relevant to our algonthm{s’  and{i,} are well defined on a sample path. Now define

is—1 -
for Markov chains. Let{ X"} = {X,|X, = i;n > 0} L () = i — j. and R, = Y2 f(Xo). The Markov
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property ensures thdtij}(i)’s are independently identically and the matrix representing the direction of changePins
distributed (i.i.d.), and each!’* (i) is stochastically equivalent sShown in (22b) at the bottom of the page. All the parameters
to the first passage time from stajeto statei. By the are chosen arbitrarily. We did ten simulation runs, and each
same argumentR,’s are i.i.d., and eaclR, is stochastically consists 0f100_000 state transitions.

equivalent to the total cost accumulated within a first passagelhe theoretical values as well as the means and standard
time from statej to statei. Since the chain is assumed to béleviations of the estimated realization factors are listed in

positive recurrent, we have Tables I, II, and lll, respectively. The estimated matiix
r is indeed skew-symmetric and standard deviations are of the

lim 1 ZLgﬂ'}(i) = E[LY}(3)], w.p.1 (21) order 102, The statistics of the potentials basedgs D'’
Nooo N 7~ are listed in Table IV. The performance derivatidg/0Q

and is —0.1176; the estimated value is0.1173 with a standard
LN LY (5)—1 deviation 0.0013. O

lim —S R,=E X, wol (22 The estimation ot/;; in the first algorithm is a bit involved.
N-ooco N ; kZ:o fxw pl @2 One needs to keep track of the cumulative sum&lcif’}{i}}

and {R,} for every pair of ¢« and j. At each transition,

are known, the potentials can be obtained in the same fashmﬁ nhumber of variables that one ngeds to update is of the
as (4) by using any row ab. To get a more accurate estimate?ame order of t_he stgte space, which makes the updating
we may estimate the potential through d)’s, that is, we get computationally intensive.

. : ; The second algorithm estimatgesrom (17) and then uses
from (6). The first algorithm estimatés;/9¢} based on (13 ¥
gnd thé zjrocedure oStIined above /90 (13) (13) to calculate the performance derivative. The potemntial

Algorithm 1c: can be estimated on sample path in a way similar.tBased

) L3 (-1 0 o on the ergodicity of a positive recurrent Markov chain, (17)
1) EstimateE{}>;_, FGY, BILUWN (O], 7, and  leads to
77 on a single sample path.

based on whicll;;’s can be estimated from (15). Whel's

. . . . N—n+1 n—1
2) Calculated;,;’s and the realization matriY) by using ;
i (X)) | Y F(Xngy
(15). §=I (Xx) §=j (Xt )
3) Setg = D'«’'. gi(n) = lim Fg—— w.p.l.
4) Calculatedn/oQ by (13). N=oo S ()
Example 1: We consider a Markov chain with ten states. o "
The state transition matrix is shown in (22a) at the bottom of (23)

the page and the performance function is
The convergence in (23) is not obvious, since the items

F=(10 5 1 15 3 0 7 20 2 18Y Z}:éf(XkH) for different £ may not be independent.

0.20 0.00 0.05 0.10 0.15 0.15 0.05 0.05 0.05 0.20
0.30 0.00 0.00 0.20 0.10 0.15 0.15 0.05 0.05 0.00
0.00 0.15 0.05 0.30 0.00 0.05 0.20 0.20 0.05 0.00
0.05 0.10 0.25 0.00 0.30 0.00 0.05 0.20 0.05 0.000
p— 0.00 0.20 0.15 0.00 0.15 0.00 0.15 0.25 0.00 0.100 (22a)

0.00 0.10 0.30 0.00 0.20 0.10 0.10 0.00 0.15 0.050
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.100
0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.200
0.05 0.15 025 0.00 0.15 0.15 0.15 0.00 0.00 0.100

0.15 0.05 0.00 0.20 0.15 0.10 0.20 0.10 0.05 0.000

—0.010 0.000 0.005 0.005 -0.010 0.010 0.010 0.005 0.005 —0.020
—0.010 0.000 0.000 0.015 0.005 0.005 -0.005 -0.005 —0.005 0.000
0.000 0.010 0.010 0.010 0.000 -0.010 0.000 -0.010 -0.010 0.000
0.005 -0.020 0.005 0.000 0.005 0.000 0.010 -0.010 0.005 0.000
0= 0.000 0.010 -0.010 0.000 0.010 0.000 -0.010 0.010 0.000 -0.010 (22b)
0.000 0.010 -o0.010 0.000 —-0.020 0.005 0.005 0.000 0.005 0.005

0.010 -0.010 0.010 -0.010 0.010 -0.010 0.010 -0.010 0.010 -0.010
0.000 0.010 0.000 -0.010 0.000 0.010 0.000 —0.005 0.000 —0.005
0.010 -0.010 -0.020 0.000 0.010 0.010 0.010 0.000 0.000 -0.010

0.010 -0.010 0.000 0.010 -0.010 -0.010 0.010 -0.010 0.010 0.000
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TABLE |
THE THEORETICAL VALUES OF REALIZATION ERRORS IN EXAMPLE 1

1 2 3 4 5 6 7 8 9 10
1 0.000 | -5.890 | -6.987 | 4.403 | -5.124 | -15.418 | -3.863 | 12.232 | -11.899 | 7.749
2 5.890 0.000 | -1.097 | 10.293 0.766 | -9.528 2.028 | 18.122 | -6.009 | 13.639
3 6.987 1.097 0.000 | 11.389 1.863 | -8.430 3.124 | 19.219 | -4.912 | 14.735
4 -4.403 | -10.293 | -11.389 | 0.000 | -9.527 | -19.820 | -8.265| 7.830 | -16.302 } 3.346
5 5.124 | -0.766 | -1.863 1} 9.527 0.000 | -10.294 1.260 | 17.356 | -6.775 | 12.873
6 | 15418 9.528 8.430 | 19.820 | 10.294 0.000 | 11.556 | 27.650 3.519 | 23.167
7 3.863 | -2.028 | -3.124 | 8.265| -1.261 | -11.556 0.000 | 16.095 | -8.036 | 11.611
8 | -12.232 | -18.122 | -19.219 | -7.830 | -17.356 | -27.650 | -16.095 | 0.000 | -24.130 | -4.484
9 | 11.899 6.009 4.912 | 16.302 6.775 | -3.519 8.036 | 24.130 0.000 | 19.647
10 | -7.749 | -13.639 | -14.735 | -3.346 | -12.873 | -23.167 | -11.610 | 4.484 | -19.647 | 0.000

TABLE 1
THE MEAN REALIZATION ERRORS IN EXAMPLE 1

1 2 3 4 5 6 7 8 9 10
1 0.000 | -5.801| -6.983 | 4.336 | -5.106 | -15.377 | -3.827 | 12.286 | -11.727 | 7.756
2 5.800 0.000 | -1.012 | 10.294 0.780 -9.474 2.097 1 18.204 | -5.898 | 13.682
3 6.983 1.012 0.000 { 11.381 1.838 -8.416 3.146 | 19.217 | -4.912 | 14.769
4 -4.336 | -10.294 | -11.381 ] 0.000 | -9.492 | -19.690 | -8.143 | 7.876 | -16.217 | 3.442
5 5.105 | -0.782 | -1.838 | 9.491 0.000 | -10.223 1.390 | 17.408 | -6.582 | 12.918
6 | 15.376 9.472 8.414 | 19.689 | 10.221 0.000 | 11.684 | 27.629 3.647 | 23.214
7 3.827 | -2.098 | -3.147 | 8.142| -1.391| -11.687 0.000 | 16.014 | -7.999 | 11.629
8 |-12.285 | -18.204 | -19.218 | -7.875 | -17.409 | -27.630 | -16.014 | 0.000 | -24.069 | -4.491
9 | 11.726 5.895 4.910 | 16.214 6.579 -3.653 7.997 | 24.067 0.000 | 19.709
10| -7.755 | -13.683 | -14.768 | -3.440 | -12.920 | -23..216 | -11.629 | 4.493 | -19.713 | 0.000

The proof of (23) is based on a fundamental theorem @stimated;;, the length should be the first passage time from
ergodicity [1]: Let X = {X,, k& > 0} be an ergodic state; to statei and hence the length of the period,should
process on state spac&; ¢(x1, 2, ---)be a measurable be comparable to the mean of the first passage time.
function on&. Then the proces¥ = {Zi, k > 0} with It is clear that the larger the is, the smaller the bias of
Zy = ¢(Xy, Xpy1, ---) is also ergodic. In our case, weg;—g; as an estimate af, ; is. On the other hand, the larger the
define Z, = ¢/(X3)[X72y f(Xaty)l: then {Zyk > 0} is nis, the larger the variance of the estimate is. Therefore, there
ergodic. Thus, (23) holds. The same theorem can be applie@ tradeoff in choosing. One can prove that the distribution

to prove many similar results. of the first passage times has an exponential tail, and we
Algorithm 2c: expect that. may be chosen as a small number. The following
1) Estimate the steady-state probabilitteand potentials simulation example provides some empirical evidence.
g by using (18) and (23). Example 2: We consider the same Markov chain as in
2) Calculatedn/oQ by (13). Example 1. We choose = 13,5,10,15,20. For each value

One problem remaining is how to choose According to of n, we do two sets of simulation, each set of ten runs. Each
the meanings of potentials, what matters is their differencesimulation run contains af00000 state transitions in the first
i.e., the realization factor$; = g, —g;. We use the expectationset, andl 000 000 transitions in the second set. The means and
of the sum of the performance function over a period witbtandard deviations of the estimated performance derivatives
a fixed length to approximate;, i = 1, 2, ---. Ideally, to as well as its theoretical value are listed in Tables V and VI.
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TABLE 1l

THE STANDARD DEVIATIONS OF REALIZATION ERRORS IN EXAMPLE 1

487

10

0.000 | 0.017 | 0.060 | 0.043
0.017 { 0.000 | 0.020 | 0.027
0.060 | 0.020 | 0.000 | 0.029
0.043 | 0.028 | 0.029 | 0.000
0.052 | 0.011 | 0.050 | 0.038
0.017 | 0.024 | 0.054 | 0.027
0.047 | 0.036 | 0.025 | 0.025
0.077 | 0.024 | 0.024 | 0.041
0.146 | 0.110 | 0.065 | 0.117
0.064 | 0.040 | 0.076 | 0.101

D=l B B Y O T - T -

Ju
<

0.052
0.011
0.049
0.037
0.000
0.020
0.037
0.044
0.042

0.025

0.017 | 0.047
0.025 | 0.035
0.054 | 0.025
0.028 | 0.025
0.021 | 0.037
0.000 | 0.025
0.025 | 0.000
0.041 | 0.039
0.039 | 0.059

0.068 | 0.031

0.077 | 0.144
0.025 | 0.109
0.024 | 0.065
0.041 | 0.116
0.045 | 0.041
0.041 | 0.037
0.039 | 0.059
0.000 | 0.128
0.130 | 0.000
0.065 | 0.097

0.063
0.040
0.076
0.100
0.026
0.070
0.032
0.064
0.102

0.000

TABLE IV
THE POTENTIALS BASED ON REALIZATION FACTORS IN EXAMPLE 1

Theoretic | 1.865 | -4.025 | -5.121 | 6.26
Mean 1.859 | -4.039 | -5.092 | 6.23

SD 0.0122 | 0.0074 | 0.0105 | 0.0127

8 | -3.259 | -13.553

7 |-3.273

-13.517

0.0111 | 0.0038

-1.997
-1.912
0.0148

14.098
14.132
0.0146

-10.033 | 9.614
-9.932 | 9.671
0.0405 | 0.0206

THE PERFORMANCE DERIVATIVES IN EXAMPLE 2 WiTH 100000 TRANSITIONS

TABLE V

n 1 2 3 5 10 15 20 Theoretic
Mean | -0.0979 | -0.1224 | -0.1162 | -0.1172 | -0.1180 | -0.1183 | -0.1176 -0.1176

SD 0.00045 | 0.00059 | 0.00070 | 0.00151 | 0.00186 | 0.00261 | 0.00216 -

TABLE VI
THE PERFORMANCE DERIVATIVES IN EXAMPLE 2 WITH 1000000 TRANSITIONS

n 1 2 3 5 10 15 20 Theoretic
Mean | -0.0989 | -0.1229 | -0.1167 | -0.1176 | -0.1178 | -0.1176 | -0.1174 -0.1176

SD 0.0009 } 0.00015 { 0.00016 | 0.00025 | 0.00026 | 0.00047 | 0.00059 -

These tables show that the estimate is quite accurate egéate:, we just use the one step performarfce) to represent

whenn is as small as two or three. The standard deviatidhe long-term performance.

is acceptable even ifi is 20. Thus, the results are not so Table VII lists the potentialg [in the form of (16), with
sensitive to the value of. It is interesting to note that evenwg = 0] estimated withn = 5 and simulation lengti00 000.
if we choosen = 1 in this case, the error is only about 17%.
n = 1 means using the performance function to approximate One disadvantage of Algorithms 1c and 2c is that they have
the potentials, i.e., assuming= f. This corresponds to theto estimate the potential for every state. This is sometimes
“myopic” policy in optimization: when the system jumps tadifficult for a number of reasons: the number of states may

O
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TABLE VII
THE POTENTIALS IN EXxAMPLE 2 wiTH 100 000 TRANSITIONS AND n = 5

i 1 2 3 4 5 6 7 8 9 10

Theoretic | 1.865 | -4.025 | -5.121 | 6.268 | -3.259 | -13.553 | -1.997 | 14.098 | -10.033 | 9.614
Mean 1.845 | -4.056 | -5.132 | 6.243 | -3.266 | -13.520 | -1.893 | 14.162 | -9.902 | 9.654
SD 0..098 | 0.088 | 0.163 | 0.140 | 0.140 | 0.187 | 0.116 | 0.110 | 0.185 | 0.160

be too large; some states may be visited very rarely; and farthe above, the quantity involving;, m;¢;;g;, is estimated
systems with special structures (e.g., queueing networks)pyt simulating a quantity involving;;, 7;p;;g;. This is a vari-
may not be convenient even to list out all the states. In tlaat of the standard important sampling technique in simulation,
following, we develop an algorithm that can be used to estithich is widely applied to study the performance of a stochas-
mate the performance derivatives directly without estimating system with a probability distribution by simulating another
each individual potential. stochastic system with a different probability distribution.

An analog is the estimation of the performance measure.Finally, we have
There are two ways to get the estimation: we may estimate all
m; first and then use = = f to calculate the performance, or an =71Qg
we may estimate; directly by 9Q

— fim )3)D
. 1 N—oo N —n+1
= lim —— X .p.1. 24
= lim <= kz_%f( K, wp (24) o .
N i j dij
We want to develop an algorithm similar to (24) /9. : { Z € (Xr)e (Xk+1)17{ [Z f(Xk+l+1)] }
Each term in7Qg takes the formm;q¢;;g,. Because it k=0 7 Li=0
does not seem straightforward to estimate this term directly
on a sample path, we propose to use a standard technique = l\ll—l>rcl>oN—7‘L+]_ Z ZZ
in simulation, importance samplingFirst, we observe that g
;pi;9; can be estimated according to the following equation: ‘ , i ) [i= !
{ "(Xn)e! (Xir1) J} S(Xkti41)
g = ij —
TiPijg9; — hI N —n+1 o =0
=N = - Jim ¢S (B ]
A e () | 3 i) VRN 1 & U v
k=0 =0
n—1
p.l. 25
or @) : [Z f(Xk+l+1)] }7 w.p.1. (26)
To prove this equation, we use the same ar- =0

gument ~as  for (23). Define a functionZ This equation suggests an algorithm, which is as simple

i I n—1 .
¢ (X"‘)déX"jl)[ZEIEOJ(OX"‘J:F#)]} we thget_ ﬁ?h ergodg: as (23), for estimating the performance derivative. Compared
p;ocggs N ‘i g = X} ; §(re ore, n_el ”gX' and side, it (23), the modification is: when the system jumps from
of (25) equals Ex, {eX( ."‘)6 (_"‘+1)[El=0 F XDl giatei to stateJ, a modifying factorg;;/p;; is multiplied to
where E.,, is the expectation with respect to the steady-stattﬁze term > f( ¥ ).

=0 k+i+1

probability measure of, which equals

Algorithm 3c:
n—1 . .
; p 1) Estimatedn/dQ) by using (26).
E., X X)) (X)) =1 4 )
{; FXert)|€(X)e (Xir) } Example 3: We repeat the simulation for the same Markov

system as in Example 2 by applying Algorithm 3c. We did ten

Te(Xp)e (Xpa1) =1 . . :
P (Xn)e (Xer) ] simulation runs for each value a@f and the results are listed

where p* is the steady-state probability ok, = ¢ and in Table VIII. O

Xr+1 = j. By the Markov property, the first term equals Before ending this section, we make some comparisons of
g4, and the second term equaisp;;. the algorithms developed for Markov chains. Algorithm 1c is
From (25), we have unbiased and Algorithms 2c and 3c are biased for any finite

1 n. Among the three algorithms, Algorithm 1c has the least

i 95 = 111 oN—-n+1 standard deviation. The standard deviation of Algorithm 2c is
N— n—1 in general small, and that of Algorithm 3c is larger than the
{ Z ei(Xk)ej(Xk+1)@ [Z f(Xk+l+l)] } other two algorithms. These observations are evidenced by
k=0 Dii 17130 the simulation results in the examples and can be explained

w.p.1. intuitively. From (15), in Algorithm 1c.d,; is estimated as
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TABLE VIl
THE PERFORMANCE DERIVATIVES IN EXAMPLE 3 wiTH 1000000 TRANSITIONS

n 1 2 3 5 10 15 20 Theoretic
Mean | -0.0977 | -0.1224 | -0.1166 | -0.1169 | -0.1166 | -0.1165 | -0.1163 | -0.1176
SD 0.0007 | 0.0014 { 0.0017 | 0.0030 | 0.0056 | 0.0079 | 0.0108 -

a mean of the sum of a number of random variables, andFirst, the algorithm similar to Algorithms 1c is based on
the potentials are obtained from; by 7; with Zj 7; = 1. (2). The continuous-time analogue of (18), (19), (21), and (22)
In Algorithm 2c, the values off (X;), with [ > L{j}(i), are obtained by changing the summations into corresponding
contribute to a term with mean zero, and they just increalgegrations.

the variance. Algorithm 3c uses less information from the Algorithm 1p:

sarrp_plle path than Algorithm 2c: in .Algorlthm 2c all the terms 1) EstimateE[fOS{J}(Z) f(Xt[J}) dt], E[S%}(5)], andn on

> 1o f(Xg4) starting from.X; = j are used for estimating a single sample path.

g;» while in Algorithm 3c, only those terms starting from a 2(_4) Same as Steps 2) to 4) in Algorithm 1c.

state transition fromi to j are used to estimatg in 7;¢;;9;. In Next, we letT;, be thekth transition epoch of X, }; Sy be

addition, applying importance sampling increases the varianﬁg:kth sojourn time, and(;, be its state after theth transition.
the exact quantityy;; is replaced through a random variableBy definition, S, — ;Tk+1_Tk andX = X,|,_,.+. Algorithm
=k

Pij- ;
JNevertheIess, Algorithms 2c and 3c are more convenient%ofor Markov processes is based on
use than Algorithm 1c. Algorithm 3c estimates the derivative No1 o
without recording any intermediate values of and g;, i = = lim » { > CZ(Xk)Sk}a w.p.1 27)
1,2, ---, M. This feature is particular important when the " Lk=0
state space is large. Compared with Algorithm 2c, Algorithr%nd N
3c may save some computation when estimating the derivative ' it s (TodT /<
with respect to a giver®). However, with algorithm 2c, the Z {e (‘X’“)fT:Jr J(X¢) dt}
derivatives with respect to man@’s can be obtained almost ¢,(7") = lim k=0 ~ , w.p.1
simultaneously by simply calculating?g afterg is estimated,; Nmeo (X3
this is not true for Algorithm 3c. — )
Finally, (26) is equivalent to (28)
I _ lim whereT’ is a properly chosen constant.

9Q NooN-—n+1 Algorithm 2p:

N—n nl AXst, Xepipn 1) Estimate the steady-state probabilitesand potentials
R (Xhn) D <ﬁ> » wp.l. g by using (27) and (28).
I=0 MR 2) Calculatedr/dQ by (13).

This expression is the same as the ensemble average impor-he difficulty in developing the third algorithm comes from
tance sampling (EAIS) estimate of the performance sensitivpPlying the importance sampling technique. Observe that
of a Markov process introduced in [5]. This is not surprisinglgorithm 3 is based on a weighted ratig; /p;;, which only
because the importance sampling technique is indeed ugégounts for the effect of changes in routing probabilities
in Algorithm 3c to estimater;g;;g;. This also explains why among states. For Markov processes, there can be changes in
Algorithm 3c has a relatively big variance. The variances #fe€ total infinitesimal rates of states, in addition to the changes
EAIS estimates, however, are in general smaller than the tifflerouting probability. In general, the infinitesimal generator
average-based importance sampling estimates. A numberofakes the following form:

k=0

examples applying this method to queueing networks and a (), fi=j
discussion about the variance of this technique can be found Gij = {)\(i)p; if i 7£J
in [5]. e

whereA(:) is the infinitesimal rate at stateandp;,; represents
the routing probability when the process jumps out of state
In the following, we will first consider the effect of changes

In this section, we develop performance sensitivity algéa routing probabilitiesp;;, and then we consider the effect
rithms for Markov processes. Algorithms 1c and 2c can l# changes in state rates(¢). After that, we will consider
easily modified to handle Markov processes, but developittge combined effect of both changes. Finally, we will discuss
an algorithm similar to Algorithm 3c for Markov processeshe case in whichy is specified instead of routing and rates
requires some special considerations. changes.

IV. ALGORITHMS FOR MARKOV PROCESSES
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First consider the sole effect of changes in routing. Leéhat the elements o) = [qi(;\)], the change ind due to
P = [p;;] be the transition probability matrix of the Markovchanges in rates, are given by
chain embedded in jumping epochs. Suppdés&hanges to o)

Ps = P+ 68U, wherelUe = 0, andw;; > 0 if p;; = 0. Let a;" =—p(1)
A = [a;;] and AP = [agf)] be the infinitesimal generatorsand
before and after the change B, i.e., a;; = —A(%), ai; = q§j> = p()pij, fori £j, ¢, j€é&. (31)

Ny - ; FON ¢ R ¢ ) N2 A 1 |
A@)pij Tor i # g5 ai” = aii; ai = Ma)(pig + buig) for e may proceed as in Markov chain, though there is a shorter

i # j. Hence the elements @@ = [qg)], the change iM  path through (11).

due to change inP, are Observe that thekth row of QM in this case equals
® _, p(k)/A(k) times thekth row of A. Let vy, = [p(k)/A(k)]m
it =Y andv = (v, -+, vp). We haverQ™ = v A. Using (11)
and an
@ =Niyy,  forij i jef.  (29) gom = VAN =l —en)f =v(ne— 1)
M
By defining Q@) in this way, the effect of the change in _ Z{p(k) il — fk]}
the routing probability matrix” is captured byQ®, the e~ | A(k)

directional change of the infinitesimal generatér we will M M
denote the derivative of with respect to such a directional =n Z [&m} — Z {&kak}- (32)
change bydn/0Q®. In subsequent discussion, the effect of Pt A(k) =l A(k)

the change in the service rates of states is captureg(dy the
corresponding directional change of the infinitesimal genera
A. We will denote the derivative of with respect to such a

directional change by /Q™. i{p(/ﬂ) k}

t'I'he two terms in the summations of (32) can be easily
Stimated directly from a single sample path. We have

Similar to (25), fori # j, we have (k)"
k=1
N-—n N—-1
. 1 . i . 1 p(Xk)
ipiig; = 1 I Xp)e (X = ‘
TiPijgj = Jam Tnoom { ;;) €' (Xp)e! (Xg+1) Algréo T kz=0 {)\(Xk)Sk ; w.p.1 (33)
[ Thi14T and
- Sk / F(Xy)de| 7, w.p.l. 1
T pk)
- > { S
Equivalently b=t .
N ~ fim - AZ_I {p(Xk)Skf(Xk)} w.p.1(34)
mqg)gj = lim T 1 {Z/ei(Xk)ej(Xk+1) N=eo Ty k=0 AX) 7 o
N—oo —n . . . . .
N=ntl k=0 It is interesting to note that the derivative (32) is expressed

does not depend o#, which is chosen in estimating
In general, if both\(:)'s and P change, we can ignore the
(higher order) composition effect of routing and rate changes,

Dy | T2+ T independent ofy; thus, the estimate based on (34) and (33
g My U f(Xt)dt]}, opl p b (34) and (33)
Dij

Tht1

and
N-—n

o _ _ lim and decompos@ into Q) andQ™, where elements ap‘®)
QW) N—oo Tn_np1 & are from (29) and elements gf* are from (31)97/9Q can
AU, X0, T 4+T be obtained by (30), (32), and
Hee Tetr aq ~ "I T T TS = 506 T oo™
w.p.l. (30)

Sometimes, we are given@ without explicitly specifying
An alternative to (30) is to use a uniformized embedddéie routing and rate changes. In such a case, we can still
Markov chain so that all integrations can be replaced IsiecomposeR into Q® and Q™. Let p(i) = —g;;. Then
summations. This approach applies when we simulate @&V is found from thesep(i)’'s through (31), and@‘® is
Markov process. Since the uniformized embedded chain cdaund back from

tains transitions from a state to itself, which are not observable QP = — W, (36)

from a given sample path, the uniformized chain approach

cannot be used for a real system. Since the original infinitesimal rate out of statés A(¢), the
Now consider the sole effect of changes in infinitesimalhange in routing from stateto statej is given by

rates of states. Supposé:) changes to\(z) + 6p(¢), where )

p(i) > 0 if A(4) = 0. By writing out elements of4 before wij = i (37)

and after these changes as in the previous case, we can show A8
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TABLE IX
THE PERFORMANCE DERIVATIVES IN EXAMPLE 4 wiTH 1 000000 TRANSITIONS

T 1 I 2 l 3 ! 5 I 10 l 15 I 20 Theoretic
%?r) Mean -0.0336 -
SD 0.0000 (> 0) -
5%?;; Mean | -0.0390 | -0.0554 | -0.0663 | -0.0784 | -0.0860 | -0.0868 | -0.0882 -

SD 0.0026 | 0.0037 | 0.0046 | 0.0050 | 0.0070 | 0.0105 | 0.0116 -

21 | Mean | -0.0727 | -0.0890 { -0.0999 | -0.1120 | -0.1196 | -0.1203 | -0.1218 | -0.1176
SD 0.0026 | 0.0037 | 0.0046 | 0.0050 j 0.0070 | 0.0105 | 0.0116 -

One can verify thaQ® and Q™ found above indeed bearmeasure. To apply algorithms in Section IV, we need to
the intended physical meaning adky/d¢@) can then follow transform quantities specified on stations to states of the
from (30), (32), and (35). underlying Markov process. In the following, we demonstrate
Algorithm 3p: our procedure on Algorithm 3p, which, as discussed before,
1) Decompose into Q@) and Q™ either from (29) only needs to collect information on a single sample path.
and (31) whenp(i) and u;; are given, or by setting Consider an exponential CON with/ stations. Let
p(i) = —g;; and using (31), (36), and (37) whepis wi; 1 < ¢ < M, be the service rate of théh station;

given instead. n; = [m(1), ---, ny(M)] be the state of the system, where
2) Estimatedn/0Q® by (30), andin/dQ™ by (32)—(34). ne(¢) is the number of customers at stationat epocht.
3) Calculatedn/dQ by (35). Between the(k — 1)th and thekth transitions, the state of

We have carried out the simulation of Algorithms 1p ani!€ System is denoted by = [nu(1), ---, mi(M)]. The
2p for a ten-state Markov process with the embedded Mark§iRtion which has a service completion at #ié transition

chain given by the transition probability matrix in Example 'S denoted byc,, while the station which has an arrival
1. The results are not presented here, since, with the saigit after the’kth transition is denoted bys. The state
(i,4) is reached when a customer moves from station

number or runs, results from the Markov process behave liKé)\*:J) 15 :
those from the chain. The standard deviatiomigfs from the 0 Station; for staten.,. Based on our notatiomy.(cx) =
Markov process tends to be larger. Such a result is expect@ﬂfrl(ck) + 1, mp(ar) + 1 = mppa(ar), and ng(er, ar) =
since the random sojourn times in the Markov process indu+L- The performance function at staiés denoted by (n),
variability. We can reduce this variability by increasing thé/hich is assumed to be equal }9,_, fi[»(¢)], where f; is
number of runs. In the following, we give the results othe performance function for thih station. This assumption

the Algorithm 3p on the Markov process mentioned at tH&€S not constrain our procedure, which can handle various
beginning of this paragraph. practical problems by adopting differenf’s. The routing

Example 4: We carry out1 000000 transitions. The result Probability matrix of customers among stations is denoted by

of 9n/Q®), an/dQ™ and ofdn/aQ are shown in Table IX. £ = [ri;] under which the Markov process is assumed to

Since the estimates in (33) and (34) do not dependZpn Pe irreducible. Other notations defined in earlier sections are
neither doesdn/0Q™. used here with necessary modification in interpretation; e.g.,

A(n) becomes the infinitesimal rate of staie while A(z) is

the service rate of theth station.
V. CLOSED QUEUEING NETWORKS When the context is clear, or when we aim at a generic
expression, we will suppress the subsciptwhich indicates

On first sight the sensitivity estimate of closed queueirme dependence on transitions. For examplgis a short form

networks (CQN'’s) is not worthwhile to discuss in deta|lbf 7. o, When the dependence on theh transition is not the

With exponential service times, the CQN can be modeled as .°*¢ T
main issue; similarlyn(c, o) stands fomy(cx, ax).

a Markov process, and its sensitivity analysis follows from ', . . o

Section IV. On second thought, the real issue lies in practical-.W'th the above notat|0n,. the |nf!n|te5|r_nal rate out of state
ity, not mathematical equivalence. In real life, it is impossibl§ 1S )‘(n? - E{l|“<?>>0} AD); thg sojourn time for the system
or impractical to specifyA, the infinitesimal generator of a © St&y In staten s 5(n), which distributes asxp[A(n)],
CON. More importantly, in controlling a queueing systemanOI Prn(ea) = Me)Tea/AM) = X)) D a@y»opa Tea-
we usually only refer to characteristics of individual stationsglmpose)‘(l,) changes toA(:) + 8p(i) and ry; 10 745 +
but not the state of the system, which usually involves difi» 1 < 47 < M. The change of rate in stata is
stations. As a result, we seldom specify, but, instead, * n) = 2 im@soy A0 As in (31)

specify changes in routing probabilities among stations and >

in service (infinitesimal) rates of stations. We would like to G = —p(n) = — Z p(l)

know the effect of changing these quantities to the performance {{in(®)>0}
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and TABLE X
N n THE PERFORMANCE DERIVATIVES IN EXAMPLE 5

p
In n(c,a) — p(n)pn,n(c,a) = ﬁ)\(cﬁ’ca

number of transitions
l -
_u %): O}p ) T=20 100,000 | 1,000,000 | 2,000,000 | L Beoretical
n(l)>
S A )‘( )ea: (38)  station 1 | mean | 1.5633 | 15760 | 15778
({0 >0} SD | 0.0693 | 0.0111 0.0068 1.6019
. station 2 | mean | -4.1886 -4.2331 -4.228
It is clear that -4.4376
SD | 0.1108 | 0.0317 0.0090 :
¢r) =0. station 3 | mean | 2.7310 | 27332 | 2.7344
2.8358
By ignoring higher order terms, (36) leads to SD_| 0.0862 | 0.0206 0.0058
(»)
Dan(e,a) = = {p(c)rca + MC)tica} — n(c )’ (39)
TABLE XI
From (30), see (40) shown at the bottom of the page. The THE PERFORMANCE DERIVATIVES IN EXAMPLE 6
estimate of (40) on sample path is a simple extension of (3GJ; : =
sinceny, cx, anday are known quantities on each transition. 20 number of transitions Theoretical
Similarly, (32) gives - 100,000 | 1,000,000 | 2,000,000
5 1 station 1 | mean | 0.3071 | 0.3092 0.3095
Ui 0.3155
— = Spf(n SD | 0.0136 | 0.0024 0.0011
Q™ { N—oo TN E:O k(0w }
p
N—oo TN o Example 5: We work with a small exponential CQN whose
actual performance derivatives can easily be found. Consider
) a three-server four-customer CQN such that= 0, ris =
—oo Iy )\ T13 = T21 = T3 = 0.5, r31 = 0.625, and r30 = 0.375. The

] Nt mean service times of the three stations are 7, 2.5, and 2 time
{ lim Z Z S fi[ng (¢ } units, respectively. We simulate for three different numbers of
]\’—)oo N

k=0 i=1 transitions, each with ten replications, aiming to determine the
Z () change in expected number of customers in the threg statigns
_ p NI (e ()0} with respect to the change in rate of the second station. With
lm To —— 5% such an objectivef;(j) = j for all ¢ and j. See Table X for
N k=0 Z A simulation settings and results.
(Ui (>0} Since the computation for the CQN is actually based on
() Algorithm 3p of Markov processes, the results behave similar
{z|m (1)>0} to those of Example 4. The means of the performance deriva-
— ;\ll_lgo TN Z D) tives are close to the theoretical values for a small number
= of runs (e.g.,100000) and a smalll’ (e.g., 20). The standard
{lln’“(l)>0} derivations of our estimates are reasonably small. O
y

The next example shows that our algorithms can be applied
to problems that IPA cannot solve.

Example 6: In this example, we study the probability that
the number of customers in a station exceeds a threshold.
Consider the same CQN as in Example 5. We take=
where all terms can be easily estimated on a sample path.P.{n; > 3} and we want to determinén/3A(2). As in

M
S film(D)] p, wpl (A1)
=1

N—n (p) T 1 +T
(977 Gny ,ny / e
= lim ) f(ny) dt
aQ(p) N—oo T]\r_n+1 b0 { pnk,nk+1 Thy1 ( t)
N—n Toar+T M
. cra A crLa DA (e “Crak o :
— lim k)[p(ck)7 war T ( )U’ k& k] (nk) (ck)7 kQk / Zfz[nt(L)] dt
N—oo TN ntl 5o Aer)reqan Tht1 i=1

w.p.1. (40)
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previous examples, we translate the changa(i) into Q), the exact performance values, we can dramatically reduce our

the directional change ial. Define f1(0) = f1(1) = f1(2) = demand in the accuracy of the estimates. We believe that using

0, /1(3) = f1(4) =1, andf;(j) = 0 for ¢ # 1. It is clear that ordinal optimization, relatively short sample paths can be used

n = E.(f); hence (40) and (41) can be directly applied. to estimate the performance derivatives to achieve the goal of
We repeat the simulation of the Markov process shown performance optimization.

Example 5 for the neyf. The results are shown in Table XII
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