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Column-Anchored Zeroforcing Blind Equalization
for Multiuser Wireless FIR Channels
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Abstract—We propose a direct blind zeroforcing approach to
cancel intersymbol interference (ISI) in multiple user finite im-
pulse response (FIR) channels. By selectively anchoring columns
of the channel convolution matrix, we present two column-
anchored zeroforcing equalizers (CAZE), one without output
delay and one with a chosen delay. Unlike many known blind
identification algorithms, these equalizers do not need an accurate
estimate of the channel orders. Exploiting second-order statistics
(SOS) of the received signals, they can retain preselectedddd
columns in the channel convolution matrix (ddd is the number
of users) and force the remaining columns to zero. CAZE can
effectively equalize single-input–multiple-output (SIMO) systems
and can reduce dynamic multiple-input–multiple-output (MIMO)
systems into a memoryless signal mixing system for source sep-
aration. Simulation results show that the CAZE is not only
effective for blind equalization of linear quadrature amplitude
modulation (QAM) systems, but it is also applicable to the non-
linear GMSK modulation in the popular wireless GSM systems
when computational cost severely limits the use of nonlinear
methods such as the Viterbi algorithm.

Index Terms—Blind equalization, digital wireless communica-
tions, GSM systems, multiuser systems.

I. INTRODUCTION

BLIND equalization has been one of the most active areas
of research in recent years. The potential application

of blind equalization in wireless communication is one of
the main reasons for its popularity. Although initial studies
of blind equalization were focused on single-user systems,
cochannel interference (CCI) typically arises in wireless sys-
tems and has generated a great deal of research interest in the
blind equalization of multiple-input–multiple-output (MIMO)
systems.

Blind equalization typically relies on both higher order
statistics (HOS) and second-order statistics (SOS) of channel
output signals. The paper by Tonget al. [1] provided a
successful blind equalizer based only on SOS for single-
input–multiple-output (SIMO) systems. Since then, a number
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of SOS-based algorithms have been developed to rely on the
SIMO system model in which the multiple output channels
must be diverse enough to share no common zeros [2]–[4],
[6], [7], [9]–[12]. Many of these SIMO algorithms can be
generalized to MIMO systems so long as the number of virtual
users is smaller than the number of virtual outputs [13].

SOS methods require that channel diversity be available
in terms of additional antennas or from oversampling output
signals of channels with excess bandwidth. Clearly, all SOS-
based algorithms rely critically on channel diversity. If there
are common (or near common) zeros among diversity chan-
nels, blind channel identification is no longer possible from
SOS alone, and HOS can be used to compensate the loss of
information.

Another major drawback of many existing SOS methods
is the fact that many tend to be sensitive to channel order
estimate. When channel order is unknown, accurate channel
order estimate is difficult to achieve and poor blind channel
identification results are common. Another feature common to
many existing blind algorithms is that they must first perform
blind channel identification [1], [9], [13]. Although channel
estimates are essential to nonlinear equalizers such as the
Viterbi sequence estimator, linear equalizers based on blind
channel estimate do not always perform well since channel
estimation errors tend to be magnified by linear equalizers.

In this paper, our goal is to develop an SOS blind equaliza-
tion approach that is less sensitive to channel order estimates
and directly equalize the channel without channel identifica-
tion. We shall focus on SOS methods that can be applied to
MIMO systems for direct linear equalization. Our goal is to
develop a direct blind equalization approach that is less sensi-
tive to channel order estimation. The fact that many existing
methods first estimate the channel response and then design the
equalizer makes them more sensitive to channel order estimate.
For a system with inputs, our new approach can cancel
all intersymbol interference (ISI) while retaining (anchoring)
the preselected columns of channel convolution matrix.
These column-anchored zeroforcing equalizers (CAZE) can
thus equalize both SIMO systems and MIMO systems. Their
implementation is quite simple and efficient.

The paper is organized as follows. In Section II, the problem
of blind equalization for MIMO systems is formulated. In
Section III, the concept of CAZE for blind ISI cancellation
is developed. Several different algorithms based on the CAZE
concept are presented in Section IV. Finally, simulation exam-
ples of CAZE are given for a standard QAM linear modulation
systems and for the GSM wireless system.
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II. PROBLEM FORMULATION

Consider a linear discrete MIMO system withuser inputs
and outputs derived from multiple antennae and over-
sampling. Denote the symbol sequence from theth user as

. Denote the input signal vector

where superscript represents matrix transpose. We also
denote as the conjugate transpose operator. Let the linear
dynamic channel be modeled by anth order finite impulse
response (FIR) system so that the sampled channel output
signal is an vector

where is an channel response matrix and
is an , independently identically distributed (i.i.d.) noise
vector.

To simplify algorithm derivation, we first assume zero noise
. Clearly, the channel response in general

contains both ISI and CCI. When all are zeros except
for one , has zero ISI. Let

...
...

. . .
. . .

. . .
. . .

. . .
...

(1)

The vector of baud output signals can be given as

(2)

Let . is an generalized
Sylvester matrix and is called “channel convolution matrix.”
Observe that has columns. We refer to every group of

columns belonging to an in as a block column and
thus has block columns.
Blind equalization needs to recover from with-

out any explicit knowledge of and . Only the structure
of and the statistics of are known. In this paper, we
focus on the development of linear blind equalizers because
of their simplicity. It should be noted, however, that when
sufficient computation power is available, nonlinear methods
such as the Viterbi algorithm will always provide superior
performance.

For linear equalization, denote as the matrix operating as
an equalizer. The equalizer output is generated from

ISI zeroforcing in MIMO systems is to force all entries in
to zero except for one block column.

Without loss of generality, we can define user indexes such
that does not have all-zero columns. We shall rely on the
use of SOS of the received signal . As in many methods
based on SOS, we assume that the channel convolution matrix

has full column rank after removing all zero columns (i.e.,
is irreducible and column reduced) [7]. This implies that

all nonzero columns of are linearly independent. If there
are indeed all zero columns, then their corresponding input
signal symbol is missing from . Therefore they cannot be
recovered. Typically, when source signals do not span the same
delays, there are all zero columns in . Our assumption
allows our algorithms to be applicable to these scenarios. Note
that if this assumption is not satisfied, one may resort to HOS
approaches.

One necessary condition for the selection ofis that
should have more rows than columns. It is therefore essential
that . Furthermore, we assume that all user symbol
sequences are uncorrelated with unit variance without loss of
generality. It is then apparent that

(3)

where is the expectation operator and denotes the
Jordan matrix whose first subdiagonal entries below the main
diagonal are unity while all remaining entries are zeros. We
also use notations

and (4)

III. COLUMN ANCHORING

A. Useful Definitions and Column Shifting

A system matrix is said to be ISI free if it has only one
nonzero block column. To remove ISI in , one possible
thought is to design a matrix so that the matrix
becomes an ISI-free matrix.

Applying (2), the auto-covariance matrix of the received
signal vector is

for (5)

Denote superscript # as the pseudoinverse operator. Then for
with full rank (column reduced), we have

(6)

where is an identity matrix except with all zero rows
corresponding to the all zero columns of. Notice that due to
the corresponding zero columns ofand the zero rows of

(7)

The following important observations must be made.

• Because of the structure of the matrix in (1),
must be full rank as all its columns are nonzero.

• Since is full rank, all zero columns can only appear
among the last block (or ) columns.

• Among the last columns, all nonzero elements in the
th column are shared by theth column. Hence if

the th column is all zero, so is th column.
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Fig. 1. Real and imaginary parts of the channelh(t) before CAZE.

Fig. 2. Real and imaginary parts of the overall system impulse response after CAZE by anchoring to the fourth column.

Because zero-forcing equalizers do not take noise effect
into account, we first consider noiseless systems for the
development of our zero-forcing equalizers. For noiseless
systems

(8)

where it is defined that

...
(9)

Note that is the same as the source signal except
for some possible zero entries corresponding to zero columns
in . In other words, now only contains signal entries
that can affect the output signal vector . Thus, they are
the only signals that can be recovered from .

We now form the basic matrices for equalization

(10)

This matrix can generate an output signal vector

(11)

Note that matrix shifts all the columns of to the left by
and as a result, is a matrix whose first block

columns are the last block columns of while the
rests have been forced to zero. Choosing ,
is ISI free, in which only the first block column is nonzero
and is the last block column of . Therefore, is a
zeroforcing equalizer.

Similarly, we can define another matrix

(12)

which yields an output signal

(13)

As shifts columns to the right by one, consists
of zero block columns followed by the first block
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(a)

(b)

Fig. 3. Eyes diagrams of the received signals under SNR= 25 dB: (a)
channel one output and (b) channel two output.

columns of . Once again, for , is the
ISI free whose last block column is nonzero and is the first
block column of .

Both and reduce the amount of ISI as increases.
When

...

...

which means that they are in fact both zeroforcing equalizers
by column shifting. However, two practical considerations
render them useless. First, the actual length ofdepends on
the channel length and is in fact unknown to the receiver. It is
almost impossible to have an accurate channel order estimate
for an exact column shifting. Second, due to the low-pass
nature of the channel, the leading and the trailing elements
of impulse response and tend to be very small.
Thus, keeping the first or last column of tends to generate

Fig. 4. Eyes diagram of the equalized output after CAZE by anchoring the
fourth column under SNR= 25 dB.

output signals with very low signal power and consequently
very low signal-to-noise ratio (SNR).

In order to overcome both problems, we now present two
methods that can anchor a preselected block column for
zeroforcing equalization.

B. Fixed Delay Column Anchoring

Recall the original definition of signal vector and the
shifting property of matrix. If we denote as a
zero vector, then

...

...

(14)

From (11), we can obtain

(15)

(16)
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Fig. 5. Normalized MSE of CAZE output for different data received lengths and SNR levels.

where we have defined theth block column of as

...

in which for or .
Hence, we have successfully anchored theth block column

of by eliminating all other columns. In fact, we can anchor
any block column by selecting such that the resulting
signal is ISI free. Because the equalizer output signal
has a fixed delay of zero, we name this algorithm forward
fixed-delay CAZE (forward FD-CAZE).

Similarly, reverse shift can be realized through

(17)

which we shall call reverse FD-CAZE.
In the reverse FD-CAZE, it should be noted that certain

elements in may be zero. Hence, regardless of the
choice of , user signals absent from will be missing
from the recovered signal . This implies that the ensuing
task of source separation is made easier. On the other hand,
this is also a drawback. Zero elements in also
imply that reverse FD-CAZE cannot extract all source signals
if there are all zero columns in . Next, we develop a

different column-anchoring approach that does not share this
weakness.

C. Delay Selectable Column Anchoring

In Section III-B, column anchoring is achieved by aligning
signals generated by and (or and ). The
recovered signals from forward (or reverse) FD-CAZE must
come from signal arrivals with zero (or maximum) delay.

Here we shall present a different column anchoring strategy
without shifting output signals. Observe that

where is an zero matrix and is
the identity matrix with dimension . From the
observations regarding , we have

(18)
We can now proceed. Based on the definition of and

(7), we have

(19)
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Fig. 6. BER of DS-CAZE and SSM based on MDL rank estimate for “Bad Urban” channels.

Thus, from (18), we have

(20)

The critical matrix

(21)

is zero except for its th block entry . Hence,
define

An ISI-free equalizer output can then be obtained as

(22)

where the last equality holds because of the corresponding
positions of all-zero columns in and all-zero elements
in . Because its output delay can be selected
according to the anchor, this equalizer is named forward
delay selectable CAZE (forward DS-CAZE).

Similarly, by exchanging the roles of and , we have

(23)

This equalizer will be referred to as the reverse DS-CAZE.
Remarks:

• Both forward and reverse DS-CAZE algorithms can ex-
tract source signals with zero ISI so long as the anchored
columns are not all zero. Unlike in reverse FD-CAZE, the
last columns of matrix do not have to be nonzero.
This is one of the major differences between the two
CAZE approaches.

• If the selected columns do not contain a given source
signal, a different block of columns should be chosen
again in order to extract the missing source signal.
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Fig. 7. BER of DS-CAZE and SSM based on MDL rank estimate for “Hilly Terrain” channels.

• In order to recover the symbol sequence of a single user,
blind source separation algorithms [15]–[17] may be ap-
plied on for CCI cancellation after ISI zeroforcing.

• In fact, based on (19) and (20), we have for any positive
integer

and

(24)

Therefore, column anchored zeroforcing equalization can
be accomplished also by

(25)

with any positive integer . Similarly, general-
ization can be made to the reverse DS-CAZE

(26)

It should be noted, however, that such a generalization is
only mathematically attractive. It may not be practically

helpful because of its increased computational cost and
possible enhancement of estimation errors due to the large
number of matrix multiplications involved.

• It should be noted that in [19], a different zeroforcing
blind equalizer was proposed. Our method here uses a
matrix operator that generates a vector of channel input
estimates by cancelling ISI dynamics while the algorithm
of [19] searches for a single equalizer filter.

D. Channel Noise Considerations

It should be noted that both FD-CAZE and DS-CAZE
are derived from the noise-free channel assumption. When
additive white channel noise with variance is presented,
the auto-covariance matrices become

(27)

The noise contribution may be subtracted if the noise level
is known.

When the noise level is unknown, can be estimated
from the singular value decomposition (SVD) of . Since
SVD of is useful for calculating its pseudoinverse, no
additional computation cost is incurred in the SVD step. How-
ever, it should be cautioned that removal of noise contribution
by subtraction often results in poorer performance and is not
recommended.



418 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 3, MARCH 1999

Fig. 8. BER of DS-CAZE and SSM based on fixed channel length assumptionM = 3 for “Bad Urban” channels.

In our implementation, the noise contribution will not be
subtracted from . In fact, we only estimate the rank and
consequently the pseudoinverse of for noisy channels.
Unlike in channel identification, the estimated rank does not
affect the length of the equalizer filters. Hence the error in rank
estimation only affects the system performance via and
has less impact.

For FD-CAZE, additive channel noise has an additional
effect on equalizer performance. Because of the signal subtrac-
tion in (15), noise tends to be enhanced. For DS-CAZE, there
is no signal subtraction. However, DS-CAZE relies on
matrix product which can enhance numerical errors. Thus,
the actual channel condition and system setup will determine
which algorithm performs better.

IV. CAZE IN SINGLE-USER SYSTEMS

In Section III, we have derived several CAZE algorithms
that can cancel ISI by anchoring a block column of the channel
convolution matrix . With these methods, blind equalizers for
a single-user system ( ) can be designed easily. However,
even in a single-user communication system, the estimate

still generates multiple outputs. There are
components in , each of which can be viewed as an
estimate of the desired symbol sequence. When the received
signals are corrupted by additive noises , SNR in each
component of is different. In what follows, we will

propose several strategies for determining the final single-user
output.

A. The Maximum Likelihood Estimate

Let be the noise in . Then (2) becomes

(28)

We first derive the maximum likelihood estimate of the user
input for DS-CAZE algorithms. For a preselected column,
an output vector is obtained as

(29)

where

is assumed to be ideal and removes all ISI in . If the noise
is white Gaussian, the maximum likelihood estimate of

the input symbol sequence is

(30)

To estimate , consider the covariance matrix of

(31)
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Fig. 9. BER of DS-CAZE and SSM based on fixed channel length assumptionM = 4 for “Bad Urban” channels.

where all noise components are assumed to have the same
variance . Observe from (20) that

(32)

where is the th entries of . Thus, if
is nonzero, we can find as the eigenvector of
corresponding to the largest eigenvalue. Otherwise, we need
to form

(33)

which implies that is a rank one matrix and is spanned by
. The vector is then the dominant vector in the space

of . Hence, can be determined as the eigenvector of
associated with the largest eigenvalue. Noting that is rank
one, the maximum likelihood estimate can be simplified as

(34)

For the maximum likelihood estimate of input sequence in
FD-CAZE algorithms, the estimate becomes more complicated
as the filtered noise covariance no longer has rank one.
However, assuming that channel noise is very weak, the
estimate by (34) can be used in the same way.

B. Single-Output Selections

A simpler approach to determine the single channel input
may be to select one of the best equalizer outputs . This
may be particularly true for FD-CAZE algorithms.

One selection is to choose the one component of with
the maximum SNR in DS-CAZE. Let be the ( )th
component of matrix and the th component of .
By assuming that the ISI in has been removed, we have

SNR (35)

where SNR is the SNR of theth component of defined
by

SNR

To select an output with the maximum SNR, we
can choose the output so that the left-hand side of (35) is
maximized.

In fact, the simplest selection is to find the equalized output
with the maximum energy as we will do in simulations that
follow.

C. Column Selection

In general, middle columns of with large norms should be
selected as they provide the strongest signal contents. Without
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Fig. 10. BER of DS-CAZE and SSM based on fixed channel length assumptionM = 5 for “Bad Urban” channels.

prior knowledge on the size of , we can generally select
the th (block) column where is the estimated channel
length. Alternatively, we can also generate several outputs
from multiple column anchors and select the anchor with the
strongest output signal.

Both FD-CAZE and DS-CAZE can be directly applied
for multiple column anchors. By choosing different delay
constant , the algorithm does not need to recompute
for each delay (column). Hence, with only a modest increase
in computation cost, multiple column anchors can generate
multiple output signals with different delays.

V. SIMULATION EXAMPLES

A. Linear Multipath Channels

In this experiment, the forward DS-CAZE algorithm with
maximum likelihood output estimate is applied to a multipath
channel. We select a transmitter with raised-cosine pulse
whose roll-off factor is . The raised-cosine pulse
is truncated to , where is the baud period. The channel is a
two-ray multipath which results in an overall channel impulse
response of

(36)

A single-user input of uniform 16 QAM is transmitted. The
received signal is oversampled by a factor of two. The channel

impulse response is shown in Fig. 1 and it closes the eye
for 16 QAM. This simple channel is used to illustrate how
zeroforcing can be realized by DS-CAZE in actual QAM
systems.

In our simulation, we select and . Notice
that the channel order is unknown and estimated based on
the information theoretic criterion minimum description length
(MDL) [20]. Thus, the fourth column of the channel convolu-
tion matrix will be anchored in DS-CAZE zeroforcing. Under
SNR 25 dB, 800 2 received samples are processed. The
resulting system impulse response after equalization is shown
in Fig. 2. As expected, almost all ISI is eliminated and the
fourth coefficient of the overall system impulse response is
preserved. Figs. 3 and 4 demonstrate the eye diagrams before
and after equalization for SNR 25 dB. The eyes are clearly
opened after equalization.

We now change the channel SNR and the number of
available data samples to test their effects on our algorithm.
We vary the channel output SNR from 0 to 40 dB and the data
length from 100 to 3200. The normalized mean square error
(NMSE) from residual ISI and noise is used as performance
measure. NMSE is defined as MSE normalized by the true
signal power. The results of NMSE are obtained by averaging
over 100 Monte Carlo simulations and are shown in Fig. 5.
The results show that our forward DS-CAZE algorithm is
very effective for SNR over 15 dB. In fact, even when the
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Fig. 11. BER of DS-CAZE and SSM based on fixed channel length assumptionM = 6 for “Bad Urban” channels.

data length is as short as 100, the NMSE is still significantly
reduced.

B. Simulation in GSM Systems

Though linear blind equalization may be more suitable
for data systems such as telephone network and cable trans-
missions, its possible application in wireless mobile system
has always remained attractive to many researchers. Here we
present a simulation example for a wireless system.

GSM is one of the most widely used wireless communi-
cations systems. In GSM systems, the modulation scheme
is GMSK, which is a nonlinear phase modulation. By a
suitable approximation [21], the GSM received signal can be
approximated by a linear QAM system. However, because of
the short GSM data frame and the linear approximation error,
blind equalization in GSM system becomes difficult. In this
section, we test the feasibility of the CAZE algorithms in
GSM systems.

Because GMSK signal can be modeled as a quasi-QPSK
signal with almost no excess bandwidth, SOS algorithms such
as CAZE require additional antennas be available. This adds
to the hardware RF cost and is undesirable. We will adopt a
derotation method as described in [23]. However, we take the
real and the imaginary parts of the derotated signal to generate
two subchannel outputs. CAZE algorithms can then be applied
on these two subchannel outputs. The details of derotation for
channel diversity are provided in [24].

We assume that the channel fading over one user data frame
is unchanged. The receiver anti-aliasing filter was selected
as a root-raised cosine pulse with roll-off factor 0.1. The
impulse response is oversampled by a factor of 16. Bit
timing extraction is based on maximum sampling power at the
receiver filter output. The sampled data are then derotated, sep-
arated into two subchannels, and then sent through DS-CAZE.
The bit error rate (BER) is employed as the performance
measurement.

As we have already mentioned, the channel order is a crucial
parameter in almost all SOS-based equalizers. We compare
simulation results of DS-CAZE with the well-known subspace
method (SSM) presented in [9]. To provide fair comparison,
we used the following test conditions.

• Both algorithms use the data length of 10 in (
).

• MDL rank estimation is used for subspace estimation in
SSM and for pseudoinverse computation in “DS-CAZE
with MDL.”

• In “DS-CAZE without MDL,” the MDL rank information
is not used in computing the pseudoinverse of .

• Channel order estimate based on MDL rank estimation is
used directly in SSM for channel estimation and is used
as the anchored column for DS-CAZE.

• SSM channel estimate is used to form pseudoinverse of
the matrix for SSM linear equalization.
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• DS-CAZE output is compared with the SSM output with
the lowest BER and also with the SSM output at the
same delay.

• Only maximum energy is used to select the single DS-
CAZE output.

In each of the 100 Monte Carlo simulations, the channel
was randomly selected as a COST207 [25] hilly terrain or bad
urban channel with an additive white Gaussian noise.

The comparative BER’s are given in Fig. 6 (Bad Urban)
and Fig. 7 (Hilly Terrain). Clearly, the BER of DS-CAZE
with MDL is less than even the lowest BER among all SSM
outputs. Note that when SSM is implemented, the receiver
is at no liberty to select the best linear equalizer output.
Thus, in comparing DS-CAZE with SSM linear equalization
of the same delay, DS-CAZE significantly outperforms the
SSM linear equalizer for both types of channels. It can also
be seen that the BER for “hilly terrain” channels is generally
higher than for “bad urban” channels. This directly reflects the
effect of longer (hilly terrain) channel delay spread on linear
equalizers.

We now test the sensitivity of both algorithms to errors
in the channel order estimate. Note that we do not know
the actual channel length. Let the assumed channel order be

, respectively. We choose according
the channel order estimate so thathas minimum size as a
rectangular convolution matrix. The equalizer output estimate
with the highest energy is used as the equalizer’s output.

For “Bad Urban” channels, the resulting BER’s of DS-
CAZE with and without MDL compared with the BER of
SSM outputs are shown in Figs. 8–11. From the comparison
of BER’s, it can be seen that the performance of DS-CAZE
is consistently lower while the BER of the best SSM delay
varies significantly. This experiment demonstrates the lower
sensitivity of DS-CAZE to channel order estimates.

The main reason for the lower sensitivity of our method is
that it is a direct blind equalization approach that does not take
the intermediate step of channel estimation. The fact that many
existing methods first estimate the channel response and then
design the equalizer makes them more sensitive to channel
order estimate. It should be stated, however, that the general
performance of linear equalizers in GSM systems is much
worse than standard nonlinear equalizers such as the Viterbi
algorithm. Linear blind equalizers cannot replace nonlinear
equalizers in practice. They should only be used when the
computation power of the receiver is severely limited and the
use of the computationally costly Viterbi algorithms becomes
unrealistic.

VI. CONCLUSION

We developed a simple and effective column-anchored
zeroforcing blind equalization strategy for MIMO systems.
The CAZE algorithms rely on the SOS of the channel output
signals. They do not rely on channel order estimate, as many
other SOS algorithms do, and they are less sensitive to errors
in the channel matrix rank estimate. The receiver may preselect
any block of columns in the channel convolution matrix. The
algorithm development is very simple and easy to implement.

Maximum likelihood equalizer output for single user system is
derived. Simulation results on QAM systems demonstrate good
performance by the CAZE algorithms. The channel assumption
allows difference in delay spread for multiple users in asyn-
chronous wireless environment. The linear method of CAZE
can be useful in wireless systems where the computational
cost severely limits the use of nonlinear methods such as the
Viterbi algorithm.
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