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Abstract—The basic concepts of three branches of game theory,
leader–follower, cooperative, and two-person nonzero sum games,
are reviewed and applied to the study of the Internet pricing issue.
In particular, we emphasize that the cooperative game (also called
the bargaining problem) provides an overall picture for the issue.
With a simple model for Internet quality of service (QoS), we
demonstrate that the leader–follower game may lead to a solution
that is not Pareto optimal and in some cases may be “unfair,”
and that the cooperative game may provide a better solution
for both the Internet service provider (ISP) and the user. The
practical implication of the results is that government regulation
or arbitration may be helpful. The QoS model is also applied
to study the competition between two ISPs, and we find a Nash
equilibrium point from which the two ISPs would not move out
without cooperation. The proposed approaches can be applied to
other Internet pricing problems such as the Paris Metro pricing
scheme.

Index Terms—Bargaining problems, cooperative games,
leader–follower games, quality of services, Paris Metro pricing,
two-person nonzero sum games.

I. INTRODUCTION

I N RECENT years, substantial progress has been made to
understand Internet economics by both the engineering and

economic research communities [10], [29]–[31]. The central
issue of Internet economics is pricing, which can be used as an
effective means to recover cost, to increase competition among
different service providers, and to reduce congestion or to con-
trol the traffic intensity. There are many approaches in deter-
mining a pricing strategy, e.g., the cost-based approach, the op-
timization-based approach, andedge pricing[16].

The optimization-based approach may provide insight about
market value of the services (how much others are willing to
pay). This approach is referred to asyield managementin op-
eration research literature. It has been widely practiced in ca-
pacity-constrained service industries (e.g., airline and hotel ser-
vices) to match prices to demand, and has begun to be employed
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in computer networks [19], [20]. The fundamentals of the mul-
tiparty (ISPs and users) optimization problems can be captured
by game theory (see, e.g., [1], [10], [21], [23], [24], [27]). An-
other closely related area is the application of game theory to the
resource allocation problem (e.g., routing) in networks [4]–[6],
[8], [18], [22], [25], [26].

Most of the existing works applying game theory to Internet
pricing adopt a leader–follower game framework in which the
ISP sets up a price as a leader and the users respond with a de-
mand (see, e.g., [1], [28]). The ISP’s task is to set up the right
price to induce a desirable demand from the users to achieve
a profit (or a welfare function) as large as possible. This be-
longs to the domain of noncooperative game. In this paper, we
propose to study the Internet pricing problem by using another
branch of game theory, i.e., the cooperative game, or the bar-
gaining problems. With this approach, we study all the possible
outcomes in a utility space, and the players (ISP and user) deter-
mine, through negotiation or arbitration, a particular outcome as
theirfair solution. The solution of a bargaining problem depends
on the concept of fairness, which can be specified clearly by a
set of axioms. The study confirms our original concern about the
solution of the leader–follower game approach: it may not be on
the Pareto boundary and may not be fair. Thus, we show that by
cooperation a “fair” solution can be obtained at which both the
ISP and the user are better off than the leader–follower solu-
tion. This result seems to be consistent with the current industry
trend toward cooperation between corporations [11], and indi-
cates that government regulations or arbitration may be helpful.
The cooperative game approach was used in [5] to study the fair-
ness issue of the admission control of broadband networks.

One engineering feature distinguishes Internet pricing from
other pricing problems: users pay for quality of service (QoS),
which deteriorates as the demands increase if the bandwidth is
shared. Therefore, determining QoS is an important part of In-
ternet pricing. Different applications require different QoS; an-
alytical results do not always exist in most cases. To facilitate
analysis, in this paper, we propose a simple model for QoS; with
this model, we are able to analyze the pricing issue by numerical
methods. This QoS model is also used in the two ISP competi-
tion study with the two-person nonzero sum game theory; we
find a Nash equilibrium for the two ISPs. A few special cases
based on the model are studied. For problems where analyt-
ical formulas for numerical methods do not exist (e.g., priority
queueing), we use simulation to evaluate QoS. The main insight
obtained by these examples are the same and do not depend on
the particular model.

In Section II, we briefly review the fundamental concepts of
game theory that will be used in this paper. In Sections III and IV,
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we study the ISP versus user case. We propose a simple model
for QoS, and based on it some analytical formulas are devel-
oped. The numerical examples show that the leader–follower
game does not lead to the Pareto optimum and the cooperative
game solution is better for both the ISP and the user; these exam-
ples also indicate that in some sense the leader–follower solution
may not be “fair.” In Section V, we study the two-ISP case and
illustrate, by a numerical example, that Nash equilibriums exist
(no rigorous proof is provided, nor is uniqueness established).
The example also shows that cooperation is better for both ISPs
at the cost of a reduced profit for the user. The paper concludes
with some discussion in Section VI.

II. NONCOOPERATIVE ANDCOOPERATIVEGAMES

We start with reviewing some basic concepts of game theory
[14], [9], [15], [17], [2] by using the Internet pricing framework.
We will discuss both cooperative (bargaining problems) and
noncooperative games (leader–follower games and two-person
games). Two players of the game are the ISP and the user (rep-
resenting a group of users having the same characteristics). The
ISP sets up a price for its service; based on the price and other
considerations, the user determines the amount of request that
it wants to submit to the Internet. The outcomes of a game are
theutilities of each player (i.e., profits for the ISP and the user).
In the game, the ISP and the user choose respectively their best
strategies(price for the ISP and demand for the user) to get their
desired outcomes.

The leader–follower game model has been widely used
in studying the pricing issue. Let be the price that the
ISP announces. With this price, the user determines its de-
mand . The utilities for the user and the ISP are denoted
as and . Given any price , the user chooses

, where is the set of all ’s,
to maximize its utility. Knowing this reaction of the user, the
ISP chooses a price , where
is the set for all ’s, to maximize its utility.

In a cooperative game [9], [15], [17], [2], the two players
are called bargainers. They work on the utility space

. Each pair of policies corresponds to one point
in the utility space. The set of all

the points in the utility space corresponding to all the feasible
policies, , is called abargaining set. With random policies
if necessary, is a convex set. The problem that the two
bargainers face is to negotiate for a “fair” point on this convex
set as the outcome. If no agreement can be reached by the two
bargainers, one particular point , called the
starting point, will be the outcome of the game. Thus, only
those points in with and should be considered.
Such a bargaining problem is denoted as . The fair point
chosen by the two players is called thesolutionto the problem.

The outcome is chosen based on certainfairnesscriteria that
both bargainers agree upon. The fairness criteria are clearly ex-
pressed by a set of axioms, which usually uniquely determines
a points on the bargaining set [15]. The first three axioms are
very simple and have clear meanings:

• Symmetry:If is symmetric with respect to the axis
and the starting point is on this axis, then the solution is
also on this axis (two players are treated equally).

• Pareto optimality:The solution is on the Pareto boundary
(no outcome is better for both players).

• Invariance with respect to utility transformations:The
solution to bargaining problem is ,
where is the solution to problem is any posi-
tive affine transformation, and all .
(the solution is the same if different currencies are used).

Three arbitration schemes are of particular interest: Nash,
Raiffa–Kailai–Smorodinsky (henceforth called Raiffa), and the
modified Thomson solutions. The Nash bargaining solution is
uniquely determined by the above three axioms and the fol-
lowing one [15]:

• Independence of irrelevant alternatives (IIA):If the solu-
tion for is , and , then the solu-
tion for is also . (Since is fairer than all the
other points in , and , then must be fairer than
all the other points in .)

The Nash solution maximizes the value of the product of the two
utilities, . It is the tangent point of the hyperbola

with the Pareto boundary.
The Raiffa solution [9] can be uniquely determined by the

first three axioms and the following axiom.

• Monotonicity:If and
and

, then , with
and being the solutions to

problems and , respectively.
The modified Thomson solution was defined in [2] by mod-

ifying the utilitarian rule [17] that maximizes the sum of
in the normalized problem defined below.

One of the drawbacks of Nash’s fairness criteria is that it im-
plies that each player does not care about how much the other
side has given up. With this observation, [2] proposed a set of so-
lutions that represent the concerns of each player for how much
it gets as well as how much the other side gives up, with a pa-
rameter whose value indicates the tradeoff between those two
concerns.

First, with the third axiom, any game problem can be normal-
ized into a problem with starting point and

. With the nor-
malized problem, thepreference functions[2] for both players
are defined as

Since the maximum utility is , or represents how
much the player has given up.

With the utility function replaced by the preference function
and applying the first three axioms and the axiom IIA, we obtain
a set of solutions (parameterized by)

It is shown in [2] that the Nash, Raiffa, and modified Thomson
solutions are special cases corresponding to , , and

, respectively, and when changes continuously from
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to , the solution moves monotonically and continuously on the
Pareto boundary of from the modified Thomson solution to
the Nash solution and then to the Raiffa solution. The bargaining
problem now becomes to determine a value forthat is accept-
able for both players. Onceis agreed upon, a fair solution can
be uniquely determined.

Finally, the two-person (nonzero sum) game model can be ap-
plied to study the competition between two ISPs. Each ISP can
set up different prices, denoted as . Based on the prices,
the user chooses to submit its request to either one or both ISPs
to maximize its utility. Each ISP may reduce its price to attract
more requests to make more profits. However, in many cases
there exist one or more pairs of prices such that if one changes
its price without the cooperation of the other, one cannot im-
prove its utility. Such points are calledNash equilibriums. See
Section V for more details.

III. ONE ISP WITH A SINGLE CLASS OFUSERS

In this section, we study the case where there is only one ser-
vice provider with link capacity unit. Users generate(say,
packets). Since we assume that the behavior of all users are iden-
tical, we can view all the requests as being from the same user
and simply use the singular word “user.” We will apply both the
leader–follower game and cooperative game approaches to the
problem and compare the results obtained.

Each request is associated with a QoS requirement. QoS may
take many different forms, such as response time, bit-error rate,
or both; we choose response time as QoS in our examples (other
QoS criteria can also be studied by the same principle with
more complicated analytical or simulation techniques). It is well
known that the analytical solutions to response time distribu-
tions are only available for some simple systems. Thus, we will
make further assumptions, which are for the purpose of facili-
tating analysis; when an analytical solution does not exist, we
use simulation to evaluate QoS. We hope that with the simpli-
fied assumptions, we can clearly illustrate the main ideas and
insights.

We first assume that the requests come from a Poisson process
with arrival rate , and each request requires a unit bandwidth
to serve for an exponentially distributed time with a unit mean.
Then we propose a simple model for the QoS requirement. We
assume that each request has a maximal acceptable response
time, denoted as; if the real service response time (the trans-
mission time plus the waiting time) is smaller than, the service
is successful; otherwise, it is considered a failure. We assume
that has a distribution density function . (This function
can be discretized by using Dirac delta functions to represent a
finite set of QoS requirements corresponding to different appli-
cations, such as voice over IP (VoIP), and email; see Examples
2 and 3.) A user earns for a successful service with
a maximal acceptable response time( can also be dis-
cretized), and earns 0 for a failed service.

We first study the case where the ISP provides only one type
of service (best effort); thus, for every request, the ISP charges
a fee . (More realistically, the charge should depend on the
length of the request. However, since in our model the service
discipline does not depend on the request length, each request

will have the same probability distribution for its waiting time,
regardless of its length. Thus, the results will be the same if we
use a constant charge which equals the average.) Later, we will
study the case where the ISP provides two types of services
with different priorities and prices. Next, we assume that the
user only employs static policies; i.e., its policy depends only
on statistics, not on the state of the system. When a request with
maximal acceptable response timearrives, the user submits
it to the Internet with a probability and discards it with a
probability . We will see that if is a continuous
function, is either 0 or 1. When is discretized,
specifies the portion of a particular application that is submitted
by the user. Overall, the arrival rate to the Internet is, where

(1)

With the above setting, the link can be modeled simply by
an M/M/1 queue with arrival rate and service rate . Let

be the traffic intensity, and , be the
steady-state probability that there arerequests in the system.
Then From this, it is easy to
verify that the response time of an M/M/1 queue is exponentially
distributed with mean . Let denote the response
times in the queue. Then for any given, the probability of
is

(2)

The user’s utility is

(3)

The ISP’s utility is

(4)

First, let us determine for a fixed traffic intensity , i.e.,
to maximize under the constraint of (1) with being a
constant. For any , we define

if and

where

It is easy to see that for a fixed reaches its maximum
when we choose as the indicator function of

if
otherwise

(5)

Note that is the expected gain for a request with maximal
accepted response time; thus, the user should submit all the
requests which have the largest expected gains.is an interval
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if is continuous and has only one peak. (In fact, ifcon-
sists of two intervals, then has at least two peaks. There-
fore, concavity is not required.) In this case, is

if
otherwise

(6)

where and satisfy

(7)

and

if if (8)

(3) becomes

(9)

A. The Leader–Follower Game

In the leader–follower game approach, the problem now be-
comes: for a given price set by the ISP, the user determines
and such that in (9) is maximized under the con-
straints (7) and (8). The ISP’s task is to choose asuch that
its utility (4) is maximized. To continue the analysis, we fur-
ther assume that the value of the service decreases exponentially
as the maximal acceptable response time increases, i.e., we let

; we also assume that is exponentially dis-
tributed, i.e., . It is easy to verify that for any ,

has only one peak. Putting these into (9), we get

(10)

(11)

and

(12)

Furthermore, the optimal solution satisfies

(13)

To illustrate the idea, we provide a numerical example.
Example 1: In this example, the bandwidth of the Internet

is packet/s; the arrival rate is packet/s;
; and . For any given price and

traffic intensity (or equivalently ), we first
calculate and using (12) and (13), and then we obtain the
values of utilities corresponding to theseand by using (10)
and (11). For every price, the user can respond with different
, leading to a curve on the utility space . We plot seven

such curves in Fig. 1, corresponding to , and ,
respectively. For each, the user chooses an intensityto max-
imize its utility, such a point corresponds to the tangent point of
the vertical lines with the curve corresponding to. Connecting
these points yields the dashed curve in Fig. 1 representing the

Fig. 1. The leader–follower game solution.

Fig. 2. The cooperative game solution.

outcomes of the game for different prices. From this curve, it is
clear that the maximum utility is reached if the ISP sets up the
price as , for which the user responds with , the
maximum utility for the ISP is about 3000 and that for the user
is 1440.

To examine how good this leader–follower game solution is,
we plot out all the possible outcomes in the utility space. All
these points, including the ones corresponding to random poli-
cies, form a convex set, the bargaining set. The boundary of this
set is shown by the dark line in Fig. 2. This example clearly
shows that the solution of the leader–follower game approach
is not on the Pareto boundary. Thus, the utilities for both the
ISP and the user can be improved. However, such improvement
cannot be achieved without cooperation between both parties;
such cooperation may be realized by negotiation between the
two parties or by a third party (e.g., government) arbitration.

B. The Cooperative Game

The cooperative game theory provides guidance to the nego-
tiation or arbitration process. In this approach, the two players,
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the ISP and the user, will choose a point on the Pareto boundary
as their solution. On the Pareto boundary, the social welfare de-
fined as

is maximized. Note that does not depend on. Thus,
, on the Pareto boundary. However, the

leader–follower game solution must satisfy
for a fixed . Therefore, on this point

which is not zero. Thus, the leader–follower game solution
cannot be on the Pareto boundary.

The two players are faced with two main issues: what point
should be chosen as the starting point, and what fairness criteria
should be used. Recall that if the negotiation fails, the starting
point will be picked up as the outcome. Thus, there seem to be
two natural ways of choosing the starting point. The first one
is to pick up the solution of the leader–follower game as the
starting point of the bargaining problem. This implies that if they
fail in negotiation, the ISP will determine a price. In this case,
with the cooperative game, both the ISP and the user are better
off. Another way is to choose the origin as the starting
point. This may happen when either ISP or the user thinks that
the leader–follower game gives an unacceptable solution and
therefore decides not to have any business if negotiation fails.
In this case, the cooperative game solution is fairer than the
leader–follower one. After the starting point is determined, we
only need to consider the upper-right quadrant with the starting
point as the origin. The problem that remains is simply how to
choose a parameterto determine the fair point on the Pareto
boundary.

For the shape of the Pareto boundary shown in this example,
the solutions for different , are very close. Thus,
we can choose either Nash or Raiffa solution as the solution for
the problem. With the solution to the leader–follower game as
the starting point, the Nash solution is shown in Fig. 2. To
show that arbitration is needed to maintain the fair solution, we
consider the following scenario. Suppose pointis the desir-
able solution (with and ). Assume that one day, the
user thinks that by reducing its demands to and moving
the solution point to , it can get a larger utility and therefore
it indeed reduces the demand. Noticing this change, the ISP re-
sponds by increasing the price to , the solution point then
moves to . The user then will reduce further its demands to
increase its utility. The procedure continues until it reaches the
solution to the leader–follower game, i.e., the starting point of
the cooperative game.

We have shown, by a numerical example, that the cooperative
game approach, which considers all the possible outcomes of
a game, provides a clear picture for Internet pricing, and that
cooperation (or arbitration) is needed in order to achieve a better
and fairer (in a sense) solution.

Fig. 3. VoIP1.

IV. M ORE EXAMPLES

In this section, we provide a few examples for different dis-
cretized functions representing some possible applications.
We will show that the basic insight remains the same. We begin
with only one application type. In other words, all the requests
have the same maximal acceptable response timeand a user
earns (with ) for a successful service. The possible ap-
plications for this case may be VoIP, which usually has a strict
delay requirement, and email, which is delay-insensitive. Re-
quests have arrival rate but the user only submits to the
Internet and thus . By (3) and (4), the user’s utility is

(14)

The ISP’s utility is

(15)

Example 2: In this example, we study three cases with
; and and .

The first two may be viewed as voice applications and the last
one, email. Since the real value ofwill not affect the shape of
the curves; here, we just normalize it to be 1. For different prices
, the user responds with different traffic intensity, leading to

a curve in the utility space. The curves for the above three cases
are shown in Figs. 3 to 5, respectively, with the solution for the
leader–follower game indicated byand the Nash solution by

.
The exact values of the solutions are shown in Table I. For

the first two cases, both the ISP and the user are better off by
negotiation. The last case is very illustrative: in the leader–fol-
lower game, the ISP can deduct the best profit by charging a high
price, leaving the user almost no profit at all. This extreme case
reflects the unfairness of the leader–follower rule. Apparently,
no business can be conducted in that way. Therefore, a reason-
able approach is to use the origin as the starting point of
the cooperative game. The Nash solution is simply dividing the
profit between the two parties.
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Fig. 4. VoIP2.

Fig. 5. Email.

In the previous analysis, we simply adopted the
first-in-first-out (FIFO) model. This is the “best effort”
service model of the current Internet. To model other service
disciplines such as those in DiffServ and IntServ, we investigate
priority queueingin this section. The ISP provides two types
of services with two different priorities and prices. Since there
are no formulae for the waiting time distributions for priority
queueing, the results are obtained by simulation.

Example 3: The user has two types of applications with
, and , with type 1

having a higher priority to be served than type 2 in a nonpre-
emptive way. Given the traffic intensities and of these
two priorities, we find out the distribution of response time
for these two types of applications by simulation. The service

TABLE I
RESULTS FOREXAMPLE 2

TABLE II
USER’S STRATEGIES(� ; � ) GIVEN THE ISP’S PRICES

TABLE III
USER’S AND THE ISP’S UTILITIES (U; V )

rate is normalized to be 1. Each simulation runs for 100 000
requests. The user’s and the ISP’s utilities are

(16)

(17)

Tables II and III show the user’s strategies to maximize its own
utility given the ISP’s prices and the resulted utilities of the two
parties. Table IV shows the leader–follower game solution and
Nash solution. Both parties are better off by cooperation.

V. TWO COMPETITIVE ISPs

In this section, we will apply the noncooperative game ap-
proach to study the competition between two ISPs, ISP1 and
ISP2. This study is based on the simple QoS model proposed in
the previous section. ISP1 provides services with bandwidth
and charges a price, ISP2 with and service charge . Let
be user’s request arrival rate. As discussed in the previous sec-
tion, the requests are characterized by two functions and
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TABLE IV
RESULTS FOREXAMPLE 3

. When a request with maximal acceptable response time
arrives, a user submits it to with probability , to

with probability , and discards a request with probability
. The arrival rates to and are and ,

respectively, where

(18)

Let and be the traffic intensities
of the two links. We use , to denote the numbers of
requests in the two queues and ,
to denote the probabilities that there are , requests at
these two queues, respectively. Then

. Let , be the response times in the
two queues. The probability of is

(19)

The user’s utility is

(20)

The ISPs’ utilities are

(21)

Let

For the sake of discussion, we assume that .
Thus, for all . Let

For any fixed and , we define and as the two subsets
of satisfying

if and

and

if and

We can verify that for fixed and , reaches its
maximum if

if
otherwise

(22)

if
otherwise

(23)

The idea is, for fixed and , the user should submit to ISP1,
who provides services with short response times, those requests
that have the largest difference of the expected gains between
the two ISPs. Now (20) becomes

(24)

With the above formulation, the problem for this two-ISP case
becomes: Given prices and , the user choosesand such
that (24) is maximized; the two ISPs set their own prices inde-
pendently, with the hope that they can improve their own utili-
ties. The goal of our study is to find the Nash equilibrium points
of the game, if any, at which both ISPs cannot change their prices
without cooperation to obtain more utilities. (The problem is ob-
viously a two-person nonzero sum game, for which Nash equi-
librium points may or may not exist. In the following, we will
show, by numerical method, that such an equilibrium does exist
for our example.)

Even with the exponential functions and , it is still
difficult to find out the optimal sets defined above. Thus, we
need to resort to numerical approaches. The first step is to find
the functions and for a fixed pair of and that yield
the best utility (24) for the user. It is obvious that with fixed
and , we only need to maximize the sum of the two integrals in
(20). Next, we observe that because the expected gain is always
positive, the equality in constraints (18) can be changed to “less
than or equal to.” The problem becomes to optimize

subject to

To analyze numerically, we divide into small intervals
and approximate the integrals by summations. Letbe a small
positive number and be a large integer such that the expected
gains for are negligible. For , define

, and
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TABLE V
ISP1’S UTILITIES IN EXAMPLE 4

TABLE VI
ISP2’S UTILITIES IN EXAMPLE 4

Then for any fixed and , the optimization problem becomes
a standard linear programming (LP) problem: To maximize

(25)

subject to

(26)

(27)

and are the probabilities that the user submits the request
with maximum acceptable response timeto ISP1 and ISP2,
respectively. We illustrate the idea with an example.

Example 4: We study the two-ISP case. Both ISPs provide
Internet services with the same bandwidth of 1000 packet/s; and

and . We apply the linear pro-
gramming (26)–(27) and choose and .
With these values, the gains for are less than 0.1% of
the maximum gain. Tables V and VI list the two ISPs’ utilities
under different prices, and Table VII lists the user’s utilities.

From Tables V and VI, with and ,
the utilities for both ISPs are 4250. Furthermore, if each ISP
changes its price individually, its utility will be reduced. That is,
no ISP has any incentive to move away from this price without
the cooperation of the other. Therefore, is a
Nash equilibrium.

It is interesting to note that the point , with
utilities for both ISPs being 4500, has a similar property. How-
ever, there is one difference: the utility for ISP1 with

TABLE VII
USER’S UTILITIES IN EXAMPLE 4

and and that for ISP2 with and
have the same value of 4500. Therefore, if ISP1 cuts its price
to because it thinks that it can still maintain the
same utility 4500, then the point will move to and

, at which ISP2 only gets 3600. This will force ISP2
also reduce its price to , i.e., the Nash equilibrium.
We can see that is not a stable point. However,
if the two ISPs work in cooperation, they may try to maximize
the sum of their utilities and then divide the total utility among
themselves. Then the maximum is obtained at .
This shows that in this two-person game case, cooperation is
also better for both ISPs. Of course, the utility of the user de-
creases.

The numerical results show that the probabilitiesand
are indeed either 0 or 1.

Finally, there are variables in the LP problem. If is
large, the problem may be computationally complicated. For-
tunately, the functions and are usually smooth, and
in many cases even may take only a few values. The size of
thus depends largely on and . As
shown in the example, already leads to a good solu-
tion. Therefore, the LP approach is computationally feasible for
practical implementation.

VI. DISCUSSION ANDCONCLUSION

In this paper, we proposed a cooperative game approach to
Internet pricing. With a simple QoS model, we demonstrated
that the leader–follower game may lead to a solution that is not
Pareto optimal and in some sense may be unfair, and the coop-
erative approach can provide a better solution. The cooperative
game approach between the ISP and the user is usually difficult
to maintain. The practical implication is that some regulations
or arbitration will be helpful for reaching a fairer and more effi-
cient solution. We also applied the QoS model to study the com-
petition between two ISPs in a numerical example and found
the Nash equilibrium point from which the two ISPs would not
move without cooperation (a rigorous study is needed). The pro-
posed approaches can be applied to other Internet pricing prob-
lems, such as the PMP scheme; see [13] for problem description
and [3] for a game-theory-based study.
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