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One distinguishable feature of our algorithms is that at each stepvdferen;. is ap-dimensional noise vector. The problem is to estimate
the recursion, the received data are directly used to update the estima¢ = 0, ..., L, on the basis of observatiofig:. }. Note thats, xs,
tion of the channel parameters; statistic quantities, such as moments,andy;. can be complex numbers.
are not required. The algorithms are based on the deterministic modeThe channels can be characterized by B+ 1)-dimensional vector
developed in [15], and the development of these algorithms was maditi-. First we define
vated by stochastic approximation methods [1]-[3], [5]. Therefore, our .
algorithms differ from the previous ones. Algorithms with stochastic R = (h((f), hf)>
models require accurate estimations for stochastic quantities such as
moments, which usually need a large data sample, while the determiten let
istic algorithms developed in [15] are “block” in nature and they rely

on least squares techniques for noisy channels. However, as it is well h = [(h“))r./ (h(P))T]T. 4)
known, with fixed size of noisy data least squares estimations may not
converge to the true values. We want to develop an estimali¢k) for 1* attimek =1, 2, ..., on

The problem considered in this correspondence is stated in Sgfe basis of{y;, i < k} (or {x:, i < k} when there is no noise). Our
tion Il. In Section ”l we describe the fundamentals of our two alg%0a| is to give an adaptive a|gorithm fb(k) e} thath(].) is updated

rithms, one for the noise-free case and the other for noisy channgjg.line on a sample path arhﬂlk) — ah*, wherex is an arbitrary
The convergence properties of the algorithms are stated in Sectiond¥stant. >

for different settings. In Section IV-A, we assume that the observed
data do not contain noise. Two subcases are considered. In the first
subcase, only a finite noise-free data sequence is received; the set of
data has to be used repeatedly, i.e., after the recursion finishes at th& comparison between our results and the approach presented in
end of the data sequence, it starts again from the beginning of the [§&] will help to explain the significance of our approach. Thus, our
guence, and so on. In the second case, the algorithm is applied tcaalgorithms are stated in parallel to the approach of [15]. Denote
infinite data sequence obtained from independent input signals. The - v
proofs of the convergence of the algorithms are given in the Appendi)xﬁc‘v’ = [y,(c U/(CL L} 592}) = [.r,(k‘) TEC ) L}
In Section IV-B, the convergence of the algorithm is given for indepen- o —

. . . - . . i=1,....,p, k>2L
dent input signals with additive channel noise. The proof is presented
in the Appendix. A few simulation examples are given in Section Vt\%hereyi) andgvﬁj) are theith component ofy, andary., respectively.
illustrate the performance of the algorithms. The results indicate tha

rom (2), we have
in addition to the desirable recursive nature, the algorithms perform
reasonably well compared with the “block” algorithms. One example RO IO
At (Z)Ik, =h" ()Y (
shows how the algorithms can be used to track a time-varying system. i ) 0 )
In Section VI, we discuss the pros and cons of the proposed approach. =R (D (2)sk = B (2)x7,
Vi, j=1,....,p, k=2L,20L+1,.... (5)

Il. THE ALGORITHM

Il. THE PROBLEM
Using the observed datgy or = in the noise-free case), the above set

Consider a system consisting pffinite impulse response (FIR) of equations can be written in a matrix form

channels withL being the maximum order of the channels. kgt
k = 0,1,2,..., N, be the one-dimensional (1-D) input signal,
andz, = (21", . <2‘, e ™Y k=L, L+1,..., N, be the
p-dimensional output signal, wher€ is the number of samples andwhereYL isa(N —2L+1)[p(p—1)/2] x [(L+ 1)p] matrix, andV is
may not be fixed; the superscriptdenotes transpose, the superscnp?1e number of samples (see [15] for the specific formkaf). Xu et al.

(i) denotes theéth component, and the subscripis the time index. [15] proposed to solve (6) far* in the deterministic case (noise-free),

X.h™=0 (6)

Then or to solve the following constrained least squares problem when the
L observations are corrupted by noise
T = Z hisp—i, k>1L (1)
=0 h* = arg {min IX ), (IR = 1}. 7
where h
b= [h“) h(p)] T This approach describes the essential feature of the problem very well.
AR ’ The only drawback of the approach is that the ma¥fixis usually very

large sinceV is normally a large number, thus, solving (7) is time-con-

, suming. In addition/V is fixed; when new data are available, one has

x&f') =p (z)sk (2) to solve (6) again to obtain new estimates. Besides, as mentioned in
the Introduction, applying least squares methods requires a large data
sample, which makes the computation in the algorithm very compli-

(D). A3 (5 ... (1) L P , cated.
PR ST e e T i= Ly () In this correspondence, we propose adaptive algorithms in which

with z being the shift operator estimates foi.™ are obtained at every stép= 2L, 2L + 1, ..., N

by updating the estimates obtained at the previous step. The estimates

converge to:* whenN goes to infinity or the data is repeatedly used.

In the noise-free case, this can be viewed as a recursive method for

solving (6). For systems with noise, it is a stochastic approximation

Yk = Tk + Nk approach.

Equation (1) can be written as

where

Z8k = Sk—1-

The observationg, may be corrupted by noise,
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Our algorithms can be presented as follows. First, we define twoFrom the input sequendeo, s1, ..., sy, N > 2L+ 1}, we form
ple=1) » p(L 4 1) matrices denoted ak; and®y, the(N — 2L 4 1) x (2L + 1) Hankel matrixSx (2L + 1)
r 'lfl/’](\?) _,wl(“l) 0 0 B S0 S1 Sor1,
,(3) _ ’,',(1) p 81 89 S2T41
Oy 0 v 0 0 Sv(2L+1)2 (11)
: " ’ SN—2I, SN—2L+1 SN
wow o 0w’ Itis clear that the maximal rank Sy (2L+1) is2L+1.If Sy (2L+1
. ) | is clear tha emaX|m_a_ran v(2L+1)is2L+1. N_( + _)
0 wi —Yy 0 is of full rank, then the finite sequende;, i = 1, ..., N} in[15]is
said to have linear complexity greater than or equalfict 1.
U, = (8) i
: We need the following lemma.
0 yP 0 0 —p?) Lemma 1: Assume that. is known and the following conditions
hold.
Al h(z),i=1, ..., p, given by (3) have no common factor.
A2 The Hankel matrixSx (2L + 1) given by (11) is of full rank
(=2L +1).
0 0 9y Thenh™ is the unique (up to a scalar multiple) nonzero vector simul-
L k ke 4

Note thatX, in (6) is(lN — 2L 4 1) times as large a\ﬂ‘) . We define
®,. as the matrix that has the same structure as (8) méjth replaced
by «pﬁf) Vi=1,2,...,p. ¥y (or ®;) contains the observation. in
the noise-free case (g¥. for noisy observations) in a window of size
L + 1 back from time instank (i.e.,k, k — 1, ..., k — L); these are
the observations that are related to signal;, . Itis worth emphasizing
that neither¥,. nor &, depends oV in contrast taX /..

taneously satisfying

b h* =0, k=2L,2L4+1,..., N. (12)

This lemma can be deduced from [15, Theorem 1]. For complete-
ness, we provide a direct proof in the Appendix.

IV. MAIN RESULTS

Let {ar} be a sequence of step sizes to be specified later. In the Noise-Free Observations

noise-free case, we take an initial valug L — 1) # 0, and define the
adaptive algorithm fof.(%) as follows:

h(k41) = h(k) — @} Seprh(k),  k=2L, 2041, ....

©)
In the noisy observation case, |pt(2L — 1)|| <  and define
h(k+1)

— (h(k) — ax (\Ifzﬁqfkﬂ - ENZHNHI) h(k))
I

Ula(k)—ap (W] Weq—£N] N D)R(k)I<x]

HREL = Dl —agwl wiga— 8] Ny 020

k=2L,2L+1,... (10)

wherel,) is an indicator function, the superscriptlenotes transpose
with complex conjugate, an¥, = ¥, — ®;, k =2L, 2L+ 1, ....
Without loss of generality, we can choose= 1. In both cases, we will
prove that

k) — ah”
k—oco

where« is a scalar multiple.

In fact, (10) is a truncated algorithm, which does not aljjgwk )|| to
be greater than or equal to= 1. Once||i(k)|| reaches the truncation
bound1, the estimate is pulled back to the initigl2 L — 1). This does

We first consider the case where a finite noise-free data sequence
{xr,Tr41,..., 2N} is observed. In this casque‘), i =1,...,p,
2L <k <N, are available. Thus, we can constrigt, k=2L,..., N.
Since the algorithm will not converge to the true value in a finite
number of steps, we need to use these data repeatedly to form a
sequence of infinitely many samples. To this end, we denote

, N, kE=0,1,.... (13)

The sequence can be divided into periods each with a lenghh of
2L + 1 and consisting of the same data as the first one.
For step sizegas }, we need the following condition.

A3 ar > 0, apt: ap, Vk =
ey Ok = 00.

Theorem 1: Assume A1-A3 hold, and is known. Then, for (k)
given by (9) and (13) with initial valué(2L — 1)

Prnv_2r41)+i = Pi, t=2L, ...

—
k’d()()

< 1,2,..., ak 0 and

h(k) T ah”.
The proof of this theorem is given in the Appendix. As shown in the
proof, we have

. (K)Th(2L - 1)
lI2*]]?

However, becausé™ is unknown, this equation does not help us

not mean that it repeats over the estimate from the beginning, becainseéetermining the absolute value &f". It is worth noting that

the step size has been reduced. This truncation is needed only whieh "7.(2L — 1) = 0 is a noninteresting case, because the fact that
the initial step size is not small enough to avoid the “blow-up” of thé (%) tends to zero gives no information abdudt So, the initial value
estimate. Theoretically, we will prove that the number of such trunca¢2L — 1) should have a nonzero projection bh.

tions is finite; in practice, truncation does not happen in our simulation Theorem 1 shows that our algorithm converges to the true value (with
presented in Section VI. The necessity for truncation also dependsaoscaling factory) if we repeatedly apply the sequence of finite sam-

the noise. WherdV;, = 0 for all &, truncation will not occur and (10)

ples. Starting with any initial valug(2 L — 1), after applying the adap-

becomes (9) for the deterministic case. In the following two sectiortije algorithm to the sequence of samples, we obtain an estimate.
we will study the convergence properties of the above two algorithma&/henN is small,2 (V') may not be very accurate; in this case, we can
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useh(NV) as the initial value and apply the algorithm again on the same A4 {s.} and{n.} are mutually independent and each of them
set of data (see (13)). WhéW is large,h( V) is accurate enough even is a sequence of mutually independent random variables such
after applying the adaptive algorithm to the sequence only once; re- that E|sz|* # 0, and
peatedly using the data is not needed.

In a sense, the algorithm discussed in this section can be viewed as
a recursive gpproach to _solvllng (6). The_recurswe nature makes theA5 MainGo B) > A > 0,Y) > 0,%k > 0, wherehun(j, k) is
implementation more flexible: channel estimates can be updated when - . ) ;

. : . . . the minimal nonzero eigenvalue &% ;. defined in (14).
new samples are received. One nice feature of the recursive algorithm is
thatV is not required to be fixed. That is, the algorithm can be applied Theorem 3: AssumeL is known, A1, A3', A4, and A5 hold, and
to an infinitely long sequence. As the length of the sequence increadgs;) is given by (10) with initial valué:(2L — 1). Then after a finite
the estimate improves and eventually may converge to the true vatlugmber of steps there is no truncation in (10) and
under some very mild assumptions. Next, we will prove that this is
indeed true if the samples are chosen from a system with independent
random input signals. ) ) o wherea is a random variable specified later by (55).

We assume that the input sigal } is a sequence of infinitely many
mutually independent random variables and that the observations ddhe proof is given in the Appendix.
not involve noise;i.en; = 0. Similarly to Lemma 1 for deterministic
sequences, we have the following. V. SIMULATION EXAMPLES

sup {[se] + [nel} <n < oo, Ep* < o
k

h(k) P ah”, a.s.

— 00

Lemma 2: Assume Al holdsZ is known, ands; is a sequence In this section, we present three computer simulation examples. In

of mutually independent random variables wihs;|> # 0. Then the first example, we illustrate the convergence of the algorithm in a
T A

h™ = 1™ /||h7| is the unique unit eigenvector corresponding to zemoisy time-invariant wireless environment. In particular, we investigate
eigenvalue for the matrices the impact of the noise covariance matrix on the channel estimation. In
GH(RH1)(2T41)—1 the second one, we compare the performance of the recursive algorithm
B; 2 Z E(I)j(bi, VYji>0,Vk>0 (14) withthat of the “block” algorithms proposed in [15]. In the third one,
i=j+k(2L+1) we illustrate the capability of the algorithm in tracing a time-variant
and the rank of3, . is p(L + 1) — 1. channel. In all the examples, the modulation of the input signal is qua-

ternary phase shift keying (QPSK) and the channel order is assumed
to be knownra priori. We repeat the simulation fo¥ different random

environments and compute the root-mean-square error (RMSE) as the
measure of the accuracy of the channel estimates; the RMSE is defined

The proof is given in the Appendix.

Since we have an infinitely long sequencelgf®;, we need some
assumptions on the minimal nonzero eigenvaluds of . Let Amin (%)
denote the minimal nonzero eigenvaluel .. On{s;} we need the

following condition. as
A2' {s,} is a sequence of mutually independent random variables 1 1 & . i
with E|sy|? # 0, sup, E|s;"7| < oc for somey > 0, and RMSE = I\ N Z 1Bihi = k|| (16)
i=1
Z aj+1)(2L+1)—1Amin(j) = oc. (15) where#; is the channel estimate in ttigh Monte Carlo run and a

= scalar that minimizes the value i 7; — h*[|; i.e.,

A3 will be strengthened to the following. R
A3' A3 holds and 3 — IR
2 . ' ilﬁ * ilz '
S < s

=1

17

o ] Example 1: In this example, we select a transmitter with raised-
wherey is given in AZ. cosine pulse(t) whose rolloff factor i).1. The raised-cosine pulse

Itis obvious that if{s; } is an independent and identically distributec?(?) is truncated ta7" whereT is the baud period. A two-ray wireless
(i.i.d.) sequence, theh.,;, (7) is a positive constant, and hence (15) igadio channel with along delay multipath is used as the channel model.

automatically satisfied because of A3. The overall channel impulse response is
Theorem 3: AssumeL is known, Al, A2, and A3 hold, and: (%) . . .
P ’ h(t) = p(t) — 0.7(1 4+ j)p(t — 1.3T). 18
is given by (9) with initial valueh(2L — 1). Then ) =»®) T+ 3T) (18)
h(k) — ah* as. The channel is corrupted by a Gaussian noise of 25 dB. The received
ot ‘ signal is oversampled by a factor 8f(p = 3) and thus each input
wherea = M . . .
T2 symbol corresponds to a three-dimensional (3-D) output signal (a mul-
Again, the proof is given in the Appendix. tichannel system with one input and three outputs). The number of
input symbols is fixed to 100 thus the received signal consists>of 3
B. Noisy Observations 100 samples. All components of the initial valie2L — 1) are set to

We now consider the general case where the observations are ome. In each Monte Carlo run, the set of samples is repeatedly used 100
rupted by noiseyr = xx + nx, and{s,} is a sequence of mutually times in the same manner as Theorem 1. Thus, the channel estimates
independent random variables. are updated 9700 times. The step size is initially chosen fblband

We will use the following conditions. is reduced by 2% each time the received sequence of signals is repeat-

A3" A3 holds and% < ¢, Vk, wherec is a constant. edly used.
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Fig. 1. The Average RMSE in 100 Monte Carlo runs.
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Fig. 2. Comparison of Xu'’s least squares and the adaptive algorithm for varying symbol size 50-300.

To study how sensitive the channel estimate is to the knowledge ofExample 2: In the second example, we compare our algorithm with
Rx~, we implemented two sets of simulations. In the first set, we us@’s least squares algorithm in [15]. To this end, we use the same
the true value foR? v, i.e., 25 dB; and in the second set, we simply sethannel responses as presented in [15, Table I1]. In addition, as in [15],
Ry = 0inthe algorithm (in (10)). Each set contains 100 Monte Carlowve choose SNR to be 20 dB and let the number of symbols vary from
runs. The RMSEs are computed after each update. Fig. 1 presentssihi¢o 300. The step size for our algorithm is chosef.ad initially
results after 100 Monte Carlo runs. It is apparent that for both casasd is reduced by 0.08% after each channel estimate update. For each
(i.e., whenRx is known andR is simply set to zero) the adaptive case, 500 Monte Carlo runs are conducted. In each Monte Carlo run
procedure is convergent. When the number of updates increases thigechannel estimate is updated for 6000 times. Again, two cases using
effect of ignoringRx also increases. However, the difference of tha true Ry and Ry = 0 are simulated. Fig. 2 shows the RMSEs of
RMSEs for both cases always remains reasonably small. This shdtws channel estimate from Xu’s paper [15] and our simulation results.
that the algorithm is relatively insensitive to errors in estimating this not surprising that the adaptive algorithm (10) performs a channel
variance matrixk . estimate quite close to Xu’s.
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Fig. 4. Envelopes of 3 uncorrelated radio rays, Doppler frequendy Hz.

We repeated the comparison under the above conditions. This titive, in this example we apply it to a time-varying three-ray wireless
the number of symbols is kept at 100 but the signal-to-noise ratio (SNRdio channel to evaluate its adaptability. It is worthwhile to mention
changes from 10 to 40 dB. Fig. 3 shows the results after 500 Moriteat the convergence of the algorithm is still an open problem in such
Carlo runs. Again, the results are quite similar. The channel estimitee-varying environment.

with a knownR is even better than Xu’s result when SNR is poorer The time-varying simulation channel used in this example is defined
than 20 dB. as

Example 3: The channel in the above examples is assumed to bd(t) = E1(t)p(t) + Ex(t)p(t — 0.4T) 4+ Ex(t)p(t — 1.3T). (19)
time-invariant, which is a common requirement by most blind channehereF (¢), E-(t), andEs(t) are the envelopes of three radio rays at
identification methods. As the algorithm developed is inherently adagimet, generated by Jakes model with Doppler frequency 10 Hz. Fig. 4
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Fig. 6. RMSE for the time-varying system with SNR 35 dB.

shows the change of these envelopes wiigrg), F->(t), andEs(t)  symbol rate 300 kHz. The noise effect on the update is neglected, i.e.,
are indicated by “No Delay,” “Delay 0.4 T,” and “Delay 1.3 T,” re-Rx = 0.

spectively. When the carrier frequency is 900 MHz in the group specialTo study the tracking capability of our adaptive algorithm, we
mobile (GSM) context, 10-Hz Doppler frequency is equivalent to thehoose the initial channel parameters be their true values. The
receiver moving toward the transmitter with velocity 12 km/h. Agairgstimated channel parameters are updated once at the arrival of each
the shaping filtep(¢) is chosen with raised-cosine pulse truncated tsymbol signal with previous estimated parameters as their current
4T . The rolloff factor is0.5. p = 3 and SNR= 35 dB. The channel initial values. The step size is chosen to ®6015. The estimated
order used is fixed td. Consequently, there are 15 channel coefficienRMSE is presented by the curve in Fig. 6. From the figure, the
to be identified. As an example, the channel coefficients of subchannelgorithm has a good tracing capability for the 35000 symbols where
1 are drawn in Fig. 5. The symbols are unit-variant white QPSK witthe RMSE is always less than06.
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Channel Estimate with SNR=20dB

RMSE

No Repeat

0 0.5 1 15 2 2.5 3 3.5 4
Received samples % 10°
Fig. 7. RMSE for the time-varying system with SNR 20 dB.
Fig. 7 shows the same results for SNR20 dB. One can notice that is independent of, and it does not equal zero for=10, 1, 2, ..., L

the performance of tracking deteriorates as the noise increases. and is0 for & = L 4 1. Using this property and replacing, (k) by
This example shows that even for the time-varying system shownit sampling approximation, we can obtain consistent estimates TOF
Fig. 5, the algorithm can trace the channel reasonably well with one f—_the data size increases to infinity. In practice, one may not estimate
date each symbol. The initial parameters in this simulation are choded @dvance, but simply take it sufficiently large. This kind of over-
to be the true value. Thus, a possible application is to combine this rametrization technique works quite well in modeling for systems

. . R : ike (1).
gorithm together with some existing identification techniques such aSthe adaptive nature of the algorithms allow them to be applied to

the training signal approach. That is, to use training signals t0 ideflne_yarying systems. We did one simulation example to explore this
tify the channel at the beginning of each interval, and then apply ogfoperty. The example shows that the tracking ability is reasonably
adaptive algorithm to follow the channel in the internal. Only recuigood with 35 000 symbols. Further research is needed to study the ap-
sive algorithms can achieve such a goal. Further research is certajilgability to time-varying systems.
needed.

APPENDIX

V1. CONCLUSION Proof of Lemma 1: From (5), it is readily seen that* satisfies (12).

In this correspondence, we proposed some adaptive algorithms fgiemains to prove the uniqueness.

blind channel identification by exploiting channel diversity. In these Assume thal = [(1_1(1))’, e (ﬁ(p))f]’ is also a solution to (12)
algorithms, the channel estimates are updated every time a new sarbpté: # /*, whereh " = [ . ... 7717 is (L + 1)-dimensional,
is received. The convergence of the algorithms is proved. Recursive- 1, ..., p. Define

algorithms are easyly implemented in real systems such as wireless ﬁ(l)(z) A ﬁgi) + mi)z 4ot E(Lz‘)ZL_

channels. The algorithms converge to the true channel parameters e%_en 7 lution to (12 h
when the number of samples is finite if the samples are repeatedly us_I l)ce ‘7' '?,)a SO_lEIjI)OI’I O(Z,() ), we have
In this case, the algorithm becomes a recursive version of the approéch (2)ay)) = h 7 (2)a;” =0,
proposed in [15] for deterministic inputs. Vi,j=1,....,p, k=2L ....,N—-(2L+1),

The algorithm for noisy observations requires knowledge of the cgpq py (2

: : o . hd by (2)

variancel?x of the noise. In principlel? can be estimated based on,_;, ) —() 0
the sequence of the observed data; the implementation details ren(:iin ()07 (z) =B (2)h (2)) e =0,
a future research topic. However, from the simulation results, we may Yi,j=1,...,p, k=2L,...,N—(2L+1). (20)
Ie:>_(pe1c:t that the egtimlatee(;?oes n(())t dedptehnd s;dr?udh?oé?ﬂsssgc_)mén in . The above set of equations implies

ig. 1, one can simply séty = 0 and the additiona induce . o
is?eaéonably Smallpy N th(z, HSN(2L+1) =0, Vi,j=1,....p

The channel ordek is, in general, unknown in advance. HoweverWhere h.(i., i) dengtg)s the(Z_L, + 1)-9i(njj)ensional vector composed
if Condition A4 holds and if each of the sequences are i.i.d., then thé coefficients of i (2)h\)(z) — 7" (2)h!(z) written in an
covariance matrix of observations increasing order of. By A2, i(i, j) = 0. In other words

Ry (k) = E[(y: — Ey:)(Wirk — Eyiys)] RO () =RV (r D () =0, Vij=1...p (20)
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For a fixedy, (20) is valid for alli = 1,
roots of /) (z) should be roots of. “( )h( )( z) foralli # j.By
A1, it follows that all roots of:”) (=) coincide with roots of ’(2).
This means that there is a constantsuch that

E(J)(Z) _ (y]»h(j)(z), Vi=1,...,p.

i # j. Therefore, all

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 5, MAY 2002

Denote byAwin the minimal nonzero eigenvalue of

N—-2L

> el i
=0

Leth' be anarbitrary( L+1)-dimensional vector such thatt »* = 0.
Thenh' can be expressed by

Substituting this into (20) leads to p(L+1)—1
n = QU
ah()()(])() (J)()()(>_0 ;
and hencev; = a; £ a, Vi, j = 1, ..., p. Thus, we conclude that Whereéui,i = 1..... p(L +1) — 1, are unit eigenvectors of
h=ah”. O N—2L

Proof of Theorem 1:First, we decomposé(2L — 1) and h(k),
respectively, into orthogonal vectors

+ *
h(2L —1) = ah™ + ' (2L — 1), h(k) = hH,(lfﬂil '+ h'(F).
=

R (k)R =0, k=2L—-1,2L,.... (22)

If ah™ serves as the initial value for (9), then by (I2):) = ah”.
Again, by (12)

Bt (I - ak¢£+1@k+1) W(k)=0, Vk>2L-1.

We then have

B (k+1) =1 (k) — ar®] , Briil (k) (23)

h(k) =ah™ + 1’ (k). (24)

Therefore, for proving the theorem it suffices to shi\Wk) — 0 as
Denote

A
Appr = (I — (V20411 Py v 2t
'q>(k+1)(zv—~zrl+1))
’ (I - a(k+1)(l\’*2L+1)*2(I>1(-k+1)(N72L+1)71

'(I)(k+1)(N72L+1)71>

: (I - ‘l‘k(l\’szJrl)(I)I:(.\f—2r,+1)+1 <I>k(1\’*2L+1)+1>
and
gk 2 B (k(N = 2L 4+ 1)).
From (23) it follows that
Grr1 = Ary1gr- (25)

Sincea;, — 0 and®;. is uniformly bounded with respect to,
there is a largé, such that

(k4+1)(N=2L41)—1

Appr <T= 5 ai®l Pipr, A < Ay,
i=k(N—=2T.+1)
Yk > ko. (26)
By (13)
(k+1)(N=2L41)—1 N—21I,
> B Pipr = Z ol P (2D)

i=k(N—2L+1)

Z ¢z+1 i+1

corresponding to its nonzero eigenvalues.
Noticing
N-—-2TI,

h"“ Z (bj—+l(b7+1 h, Z >\111iﬂ||hl||.2

=0
and from (25) and (26), we have fér> ho

Armin (k4 1)(N—2L41)—1 lgsl?

gt I* < gf Ansrgn < llgell® =

2
and
k41 -
il < IT (1= 25" mvmsnan-i ) ol (@8
i=kq
Since
oo 1 oo )
Z (N —2L+1) 2 N_-2L+1 Z @i =00
=1 i=N—-2L+1

it follows that the right-hand side of (28) tends to zerdkas— ~.

From (23), it is seen thdh' (k)|| is nonincreasing fok > k. Hence,

the convergencg, ——— 0 impliesh’ (k) —> 0. O
k ,,

—00

Proof of Lemma 2:S|nce{si} is a sequence of mutually indepen-
dent random variables arfd|s;|* # 0, it follows that

ESMer+nsHier+1y>0, vk (29)
where
Sk Sk+1 Sk+2L
) Sk41 Sk42 Sk42L41
i & (30)
Sk42L  Sk+2L+1 Sk44L

Proceeding along the same lines as the proof of Lemma 1, we obtain

(20),vi, j =1, ..., p,Yk > 2L. This implies that

R, S RL+1)=0
and
Wi, HESS 2L + 1)s$ (20 + 1)1(i,j) = 0,
Vi, j=1,....,p, Yk >2L. (31)

From (29) and (31), it follows thak(i, j) = 0. Following the proof
of Lemma 1, we conclude that is the unique unit vector satisfying
(12). Consequently; * is the unique unit vector satisfying

E®I®n" =0,

Vi:j+kQL+1) <i<j+(k+1)2L+1)-1,;Vj>0.

which, by Lemma 1, is of rank(L + 1) — 1 and has the unique (up to aThis shows thaB3;, . is with rankp(L+1)—1,Vj>0,Vk>0, andh”
constant) multiple eigenvectbi’ corresponding to the zero eigenvalueis its unique unit eigenvector corresponding to zero eigenvaluel]
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Proof of Theorem 2:We have shown (12) in the proof of Lemma 2we have
So, we still have (23) and (24), and, again, it suffices to show that o
1 (k) —— 0. h(k)=h'(k)+h(k)h". (36)
k—so00

With N replaced bytL in the definitions forA; andg;, we again

: Noticing ®;~* = 0, Vi and
obtain (25). Since, —— 0, {Etbzﬂ@kﬂ} is bounded and gn '
k—o0

N VVIE®] &1 = E®, ®iyy

> ai(® By — BRI Bigi) by (34), (36) we find that

i=1

converges a.s. by A2there is a largé, such that W (r+j)=h' (2L — 1) — Tki_1 aiE(bIHfIth’(i)
(k+1)(2L+1)—1 imry
Appq <I— > a; E®}, ®iq Tti—1
—h(2T41) - > aiVVIRi1ih(i) (37)

(k4+1)(2L+1)—1 =Ty

SR W +5) =h2L=1) = S aih ™ Risah(i),
+o0 (Cl‘k(ZL-&-])) =T

(k+1)(2L+1)—1 J=L e —me -1 (39)

1
<I- 3 Z az'E<I>f+l D11, We complete the proof in five steps.
i=k(20+1) Step 1: First, we show that
Leth' be an arbitrary( L+1)-dimensional vector such thaftt »* = 0. oo '
Then, by Lemma 2 Z a;Rip1h(i) < o0 a.s. (39)
. i=1
BT Bo ik > Amin (R[] N .
nd hen By A4, D; = ®;N; + N[®,+ NN, — EN]N; is a martingale
and hence . difference sequence withip, E||D;||'T% < cc. Since
llges1ll® < g Aks1gk N
. ag . 1 Amin(k a. 2 <oo and ||k <1
< ||(]k||2 _ (k+1)(zL+12) 1 )||(1/c||2 E > k. ; i ” ( )”
Therefore, it follows that
k+1 .
2 Amin (¢ ) oo
lgrsill* < ] <1 -— ) au+1><2L+1>—1> (7 > aiDipah(i) <o as. (40)
i=kg i=1
which tends to zero since . .
- by the convergence theorem for martingale difference sequences.
S a1 a241) 1 = 50 Since ®/®; — E®!®, is independent of®!,,; . Pitori1—
i=1 E(I)j'r+2L+1<I’i+2ﬁ+1 and
/ o i ' : 2
by A2'. This Imp|lesh (k) : 0. | supEH(I’,T(I)L _ E(I’T(I)IHLFE < 00

Proof of Theorem 3:Set||h(2L — 1)|| = 6. Without loss and gen-

erality and for convenience in the proof, we take- % Define we also have

Ri=®!®, — E®/®, + /N, + N/®, + N/ N, — EN/N,. (32) > ai (<I>j+1 Diyy — ED], <I>i+1> h(i) < oo  as.
Then =
Incorporating the above inequality with (40) yields (39).
UiWw, - EN/N, = E®!®; + R.. (33) Step 2: Next, we show that for any > 7 andT > 0 with
) ) _ m(j, T) < Th41 — 7 — 1, there is aco > 0, which possibly de-
Denote by, k = 1,2, ..., the truncation times, i.e/(7:) = pends on the sample path but is independeit gf andT", such that
h(2L — 1).
From (10) we have IR(i+1)=h()I < cot, Vi j<i<m(j, t), Yt €0, T] (41)
, eI ; , _ where
Mre+§)=h2L—1)— > a;B(®], ®ip1h(i) + Rip1)h(i)
=Ty k
and ’ m(j, T) = max {k a; < T} .
(e + )l <1, j=1lc..mep —m—1, Yk (34) e
Denotel * = * /||h*|). Let By A4, there is azo > 0, possibly depending on the sample path,
B such that
U=[Vh"]

“E¢3-+1¢i+1 +R7j+1 < co, Vi.

be a Hermite matrix. Denoting

A

B (k) 2 VVTR(E), h(k) ﬁ**h(k) (35) Then, by noticind|h(i)|| < 1, (41) immediately follows from (34).
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Step 3: Third, we show that for anj’ 2yvin # 0, there exists By the definition ofr, 4+, we have
an N which is large enough, such that
m(J, )

WS 0 ER B < et heL-1)- 3 (E(I)j+1<1>i+1 +Ri+1>h(i) > 1.

T

Trr1—1

=g
Vj> N, Vie (0. T] (42) |ncorporating the above with (45) implies
wheree = m > 0 with ¢ and A given by A3’ and A5,

Th —1
respectlvely i s . 5
Let [uf ", ... u;M), _,. 7"] be the Hermite matrix composed WeL-1)- _Z 2 0 Ol g’
of e|genvectors o3, . By Lemma 2,h* is its unique eigenvector d T
corresponding to the zero eigenvalue. an L
Sinceh'*h* = 0, b’ can be expressed as /. sty .
it | n'(2L—1) — _Z a;E®], @i h' (i)
n o= Z ozilléj’k). ) ik
P o NI
Then - > aVV'Riah(i) 5 (46)
p(L+1)—1 =Tk
—RTB. b < =Amin(J, k j .
hW'B; ph' <—=Amin(J. k) ) Vi, Vk Define
(43) N
Noticing that by A4 and (43), and the fact thE®!, &, is J(k)= < min j: j < 71 — Tk,
bounded with respect toand{«; } is nonincreasing, we have
" m(j,t) ’ The1—1
—1'T N @i BBl ik WQERL=1)= > a;BE®] &1 (i)
=3 =Ty
[%{f“] G (k+1)(2L+1)—1 Tepy—1 )
<-t 3 > @ E®f, @il = > aVVIRih())| > 5 (47)
k=0 i=j+k(2T.41) i=Tg <
[m(gkﬁflj“] '
By (39),a; — 0, and the boundednessEﬁbL ®, 111/ (i), we have
<A DT agenenen-1s (44) i
| k=0 E®! D1k (1) — a;VVTIR 1 k(1) ——— 0.
where[] denotes the integer part of the real number 6B ik (i) —a #1h(D) T
Since XL > L ande > 1, from (44) it follows that for a large
enoughj ke Thus,j (k) is well-defined. Consequently
m(j,t) . .
TS Bl Do h(tk 4 j) —h(ZTfJ;rlj) 1
=7 .
m(4,t)—j+1 - Z (E(I)z-l—l i+1 + Ri"!‘l)h(l) (48)
[y e 1 2L =T
2
< =l 12 ST +1 ;aj+(k+1)(2L+1)*l and o
= 1= Tk
L mngy W(re4j)=hQRL=1) = Y a;E®] &b/ (i)
)\”h ” 1=Ty
= (2L + 1)c2l+1 Z Z Ajr(2L41) 41 i
2 [%](ZLJH)J&L B Z a;VV' Riyih(i),
_ AR 3 s =T
(2L + 1)c2L+1 g ! Vii0<j<jk), YE> K. (49)
. m(j,t)
AR "2 Next, we say that the sequence
—m ; a; +o(1) < —et||h|| ) y q
whereo(1) — 0 asj — oc. (I (re+ DN i = Lo, e+ 1, ... my)

Step 4: We now show that the number of truncations in (10) is finite.

To this end, let us first assume that the converse is tile— oc. crosses an intervit, b with 0 < a < b < o, if {17 (re+ L) < a,
12 (7 +m)||? > b, a < ||W (76 +9)||* < b,Vi:lp <i < my,and

Then, by (39) anl (2L — 1)|| = 1, there exists a Iargé such that  if there is no truncation for ani 1, < ¢ S M.
et 1 From (47)-(49) and~(2L — 1)|| = 7 itis seen that the sequence
Z ai Rty h(i) <3 (1B (r + D)% i =0, 1, ..., j(k)} crosses the intervgtl, 1] for
TR eachk > K.
and . Without loss of generality, we may assurér, + [,.) converges:
) e Ak . 3 B(r, + 1) — h' ask — oc. Itis clear that||h’|| = % and
W@L-DR"R" - z; aiBivihi) 8’ h’*(h* = 0.>By (41), there is no truncation fdr(: ) el =

Vji>1, Vk> K. (45) i=te Al oAl 1 m(re 1, T) + 1
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if T is small enough. Then by Taylor's expansion and (39) and (41), itSincelim; ... 7= = 7 < oo, from (38) it follows that

follows that

|2 (e + 1, T) + 1)||2 — |12 (7% + l;<v)||2

m(rT 4+, 1)
=7+

: (Efbjﬂqnﬂh'(i) + W’*Rmh(z)) +o(T)

m(r%k,T)
=7+l

m(r%k,l')
=7+

m(ry+{,1)

2

=7+

.
ha;

- BT a; B®, @iy (B 4+ 1/ (i) — h')

B a;VVIRi 1 h(i) + o(T)

- R a; B, ®isah (i) 4+ o(1) + o(T)  (50)

whereo(1) — 0 ask — oo ando(T) — 0 asT — 0.
By (42), for a largek and a smalll’, we have

' T e
1B (m (i + 1o T) + DI = 1B (7 + 1)) < —% In'1I”. (51)

By (41),
h’(m(ﬂ + 4, T)+1) —— h/(n, + k).
T—0

1

L and||h'(1i + me)||* > L, by the
definition of crossing we see that(r. + I, T) + 1 < 7 + my, for

Noticing that||2' (7% + 1:)[|* <

lim ﬁ(k) = hT(QL — l)ﬁ* — Zazﬁ*TRth(i)

oo
A
= Q.

(55)

k—so0

(1]
(2]

(3]

(4]

(5]
(6]
(7]

(8]

(9]

1
small enougt{". In order words [10]
/ 2 1 [11]
| (m(r + 1, T) + D" > 16" (52)
Lettingk — oc in (51) leads to a contradictory inequality (12]
limsup |2 (m(m + b, T) + D < 11_6 - % 127 (53) [13]
k—so0

[14]

since the left-hand side of (53) should be greater than or eqq‘@lmy
(52). The obtained contradiction shows that— 7+ < ~ (i.e., there
are only a finite number of truncations) a.s.
Step 5: Now we are ready to complete the proof of the theorem.
We have shown that starting from a randemthe algorithm (10)
suffers from no more truncation. Now, let us first show tjat(%)||?
converges. If this were not true, then

12111 inf [|2' (k)| < limsup ||A" (k)]
P00 k—o0

and ||7/(k)||*> would cross a nonempty intervéd, b] for infinitely
many times. As shown above, this is impossible. Therefp&k)||?
converges. If the limit of||»’(%)|| were not zero, then there would
exist a convergent subsequeméék;) — h' # 0. Replacingr. + I

in (50) by k;, from (51) it follows that

T
1B (m(kj. 7) + D)II” = |8 (k;)]” < —% IR (54)
Since||h’(k)||* converges, the left-hand side of (54) tends to zero,
which makes (54) a contradictory inequality. Thus, we have proved
(k) —— 0 as.
k—s o0

(15]

[16]

(17]

i=r

Finally, by the fact’ (k) —— 0, from (36) and (55) it follows that

k— o0

lim h(k) =ah™. O

S
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