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Convergence of Stochastic-Approximation-Based
Algorithms for Blind Channel Identification

Han-Fu Chen, Fellow, IEEE, Xi-Ren Cao, Fellow, IEEE, and
Jie Zhu, Member, IEEE

Abstract—In this correspondence, we develop adaptive algorithms for
multichannel (single-input–multiple-output, or SIMO) blind identification
with both statistic and deterministic models. In these algorithms, the esti-
mates are continuously improved while receiving new signals. Therefore,
the algorithms can track the channel continuously and thus are amenable
to real applications such as wireless communications. At each step, only
a small amount of computation is involved. The algorithms are based on
stochastic approximation methods. Convergence properties of these algo-
rithms are proved. Simulation examples are presented to show the perfor-
mance of the algorithms.

Index Terms—Stochastic approximation, wireless communication.

I. INTRODUCTION

Because of its potential applications in wireless communication and
other areas, blind channel identification and equalization have become
very active areas of research in recent years (see, e.g., [4], [8]–[12],
[14]–[17]). The recent surveys [13], [7], and [6] contain comprehensive
overviews in the area.

As characterized in [13], there are two major approaches in blind
channel estimation: statistical methods and deterministic methods. In
the formal approach, statistic assumptions are made for the input sig-
nals; and in the latter, input signals are assumed to be deterministic
sequences. Most algorithms developed so far have been “block” algo-
rithms in nature, i.e., a block of data sample is collected first and then
processed together to get the estimation of the channel parameters; in
the statistic methods, statistic quantities such as moments, etc., are es-
timated based on the data sample, and in the deterministic methods a
set of linear equations usually with large dimensions are established.

In this correspondence, we develop adaptive algorithms for multi-
channel (single-input–multiple-output, or SIMO) blind identification
with both statistic and deterministic models. Compared with the
“block” algorithms, adaptive algorithms have their own advantages.
Instead of estimating the channel parameters after the entire block
of data have been received, the parameter estimates are updated
when each single signal is received. The estimates are continuously
improved while receiving new signals. Thus, these algorithms are
more amenable to real applications such as wireless communications
because channels can be tracked continuously (even for time-varying
systems). Moreover, instead of a large amount of computation when
all data are received, the computation is distributed at every step, and
each step involves only a small amount of computation.
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One distinguishable feature of our algorithms is that at each step of
the recursion, the received data are directly used to update the estima-
tion of the channel parameters; statistic quantities, such as moments,
are not required. The algorithms are based on the deterministic model
developed in [15], and the development of these algorithms was moti-
vated by stochastic approximation methods [1]–[3], [5]. Therefore, our
algorithms differ from the previous ones. Algorithms with stochastic
models require accurate estimations for stochastic quantities such as
moments, which usually need a large data sample, while the determin-
istic algorithms developed in [15] are “block” in nature and they rely
on least squares techniques for noisy channels. However, as it is well
known, with fixed size of noisy data least squares estimations may not
converge to the true values.

The problem considered in this correspondence is stated in Sec-
tion II. In Section III, we describe the fundamentals of our two algo-
rithms, one for the noise-free case and the other for noisy channels.
The convergence properties of the algorithms are stated in Section IV
for different settings. In Section IV-A, we assume that the observed
data do not contain noise. Two subcases are considered. In the first
subcase, only a finite noise-free data sequence is received; the set of
data has to be used repeatedly, i.e., after the recursion finishes at the
end of the data sequence, it starts again from the beginning of the se-
quence, and so on. In the second case, the algorithm is applied to an
infinite data sequence obtained from independent input signals. The
proofs of the convergence of the algorithms are given in the Appendix.
In Section IV-B, the convergence of the algorithm is given for indepen-
dent input signals with additive channel noise. The proof is presented
in the Appendix. A few simulation examples are given in Section V to
illustrate the performance of the algorithms. The results indicate that
in addition to the desirable recursive nature, the algorithms perform
reasonably well compared with the “block” algorithms. One example
shows how the algorithms can be used to track a time-varying system.
In Section VI, we discuss the pros and cons of the proposed approach.

II. THE PROBLEM

Consider a system consisting ofp finite impulse response (FIR)
channels withL being the maximum order of the channels. Letsk,
k = 0; 1; 2; . . . ; N , be the one-dimensional (1-D) input signal,
andxk = (x

(1)
k ; x

(2)
k ; . . . ; x

(p)
k )� , k = L; L + 1; . . . ; N , be the

p-dimensional output signal, whereN is the number of samples and
may not be fixed; the superscript� denotes transpose, the superscript
(i) denotes theith component, and the subscriptk is the time index.
Then

xk =

L

i=0

hisk�i; k � L (1)

where

hi = h
(1)
i ; . . . ; h

(p)
i

�

:

Equation (1) can be written as

x
(i)
k = h(i)(z)sk (2)

where

h(i)(z)
�
= h

(i)
0 + h

(i)
1 z + � � �+ h

(i)
L zL; i = 1; . . . ; p (3)

with z being the shift operator

zsk = sk�1:

The observationsyk may be corrupted by noisenk

yk = xk + nk

wherenk is ap-dimensional noise vector. The problem is to estimate
hi, i = 0; . . . ; L, on the basis of observationsfykg. Note thatsk, xk,
nk, andyk can be complex numbers.

The channels can be characterized by ap(L+1)-dimensional vector
h�. First we define

h(i) = h
(i)
0 ; . . . ; h

(i)
L

�

then let

h� = h(1)
�

; . . . ; h(p)
� �

: (4)

We want to develop an estimateh(k) for h� at timek = 1; 2; . . ., on
the basis offyi; i � kg (or fxi; i � kg when there is no noise). Our
goal is to give an adaptive algorithm forh(k) so thath(k) is updated
on-line on a sample path andh(k) !

k!1
�h�, where� is an arbitrary

constant.

III. T HE ALGORITHM

A comparison between our results and the approach presented in
[15] will help to explain the significance of our approach. Thus, our
algorithms are stated in parallel to the approach of [15]. Denote

 
(i)
k = y

(i)
k � � � y

(i)
k�L ; '

(i)
k = x

(i)
k � � � x

(i)
k�L ;

i = 1; . . . ; p; k � 2L

wherey(i)k andx(i)k are theith component ofyk andxk, respectively.
From (2), we have

h(i)(z)x
(j)
k =h(i)(z)h(j)(z)sk

=h(j)(z)h(i)(z)sk = h(j)(z)x
(i)
k ;

8 i; j = 1; . . . ; p; k = 2L; 2L+ 1; . . . : (5)

Using the observed data (yk orxk in the noise-free case), the above set
of equations can be written in a matrix form

XLh
� = 0 (6)

whereXL is a(N�2L+1)[p(p�1)=2]� [(L+1)p]matrix, andN is
the number of samples (see [15] for the specific form ofXL). Xu et al.
[15] proposed to solve (6) forh� in the deterministic case (noise-free),
or to solve the following constrained least squares problem when the
observations are corrupted by noise

h� = arg min
h

kXLhk
2; khk = 1 : (7)

This approach describes the essential feature of the problem very well.
The only drawback of the approach is that the matrixXL is usually very
large sinceN is normally a large number, thus, solving (7) is time-con-
suming. In addition,N is fixed; when new data are available, one has
to solve (6) again to obtain new estimates. Besides, as mentioned in
the Introduction, applying least squares methods requires a large data
sample, which makes the computation in the algorithm very compli-
cated.

In this correspondence, we propose adaptive algorithms in which
estimates forh� are obtained at every stepk = 2L; 2L + 1; . . . ; N
by updating the estimates obtained at the previous step. The estimates
converge toh� whenN goes to infinity or the data is repeatedly used.
In the noise-free case, this can be viewed as a recursive method for
solving (6). For systems with noise, it is a stochastic approximation
approach.
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Our algorithms can be presented as follows. First, we define two
p(p�1)

2
� p(L+ 1) matrices denoted as	k and�k

	k =

 
(2)
k � 

(1)
k 0 � � � � � � 0

 
(3)
k 0 � 

(1)
k 0 � � � 0

...
...

...
. . .

. . .
...

 
(p)
k  

(2)
k 0 � � � 0 � 

(1)
k

0  
(3)
k � 

(2)
k 0 � � � 0

...
...

. . .
. . .

0  
(p)
k 0 � � � 0 � 

(2)
k

� � � � � � � � � � � � � � � � � �

...
...

� � � � � � � � � � � � � � � � � �

0 � � � � � � 0  
(p)
k � 

(p�1)
k

: (8)

Note thatXL in (6) is (N � 2L+1) times as large as	(i)
k . We define

�k as the matrix that has the same structure as (8) with 
(i)
k replaced

by '(i)k 8 i = 1; 2; . . . ; p. 	k (or�k) contains the observationxk in
the noise-free case (oryk for noisy observations) in a window of size
L+ 1 back from time instantk (i.e.,k; k � 1; . . . ; k � L); these are
the observations that are related to signalsk�L. It is worth emphasizing
that neither	k nor�k depends onN in contrast toXL.

Let fakg be a sequence of step sizes to be specified later. In the
noise-free case, we take an initial valueh(2L� 1) 6= 0, and define the
adaptive algorithm forh(k) as follows:

h(k + 1) = h(k)� ak�
y
k+1�k+1h(k); k = 2L; 2L+ 1; . . . :

(9)

In the noisy observation case, letkh(2L� 1)k < � and define

h(k + 1)

= h(k)� ak 	yk+1	k+1 � EN
y
k+1Nk+1 h(k)

� I
[kh(k)�a (	 	 �EN N )h(k)k<�]

+ h(2L� 1)I
[kh(k)�a (	 	 �EN N )h(k)k��]

;

k = 2L; 2L+ 1; . . . (10)

whereI[�] is an indicator function, the superscripty denotes transpose
with complex conjugate, andNk = 	k � �k, k = 2L; 2L+ 1; . . ..
Without loss of generality, we can choose� = 1. In both cases, we will
prove that

h(k) !
k!1

�h
�

where� is a scalar multiple.
In fact, (10) is a truncated algorithm, which does not allowkh(k)k to

be greater than or equal to� = 1. Oncekh(k)k reaches the truncation
bound1, the estimate is pulled back to the initialh(2L�1). This does
not mean that it repeats over the estimate from the beginning, because
the step size has been reduced. This truncation is needed only when
the initial step size is not small enough to avoid the “blow-up” of the
estimate. Theoretically, we will prove that the number of such trunca-
tions is finite; in practice, truncation does not happen in our simulation
presented in Section VI. The necessity for truncation also depends on
the noise. WhenNk = 0 for all k, truncation will not occur and (10)
becomes (9) for the deterministic case. In the following two sections,
we will study the convergence properties of the above two algorithms.

From the input sequencefs0; s1; . . . ; sN ; N � 2L+1g, we form
the(N � 2L+ 1)� (2L+ 1) Hankel matrixSN(2L+ 1)

SN(2L+ 1)
�
=

s0 s1 � � � s2L

s1 s2 � � � s2L+1

� � �

sN�2L sN�2L+1 � � � sN

: (11)

It is clear that the maximal rank ofSN (2L+1) is2L+1. If SN (2L+1)
is of full rank, then the finite sequencefsi; i = 1; . . . ; Ng in [15] is
said to have linear complexity greater than or equal to2L+ 1.

We need the following lemma.

Lemma 1: Assume thatL is known and the following conditions
hold.

A1 h(i)(z), i = 1; . . . ; p, given by (3) have no common factor.

A2 The Hankel matrixSN(2L+ 1) given by (11) is of full rank
(=2L + 1).

Thenh� is the unique (up to a scalar multiple) nonzero vector simul-
taneously satisfying

�kh
� = 0; k = 2L; 2L+ 1; . . . ; N: (12)

This lemma can be deduced from [15, Theorem 1]. For complete-
ness, we provide a direct proof in the Appendix.

IV. M AIN RESULTS

A. Noise-Free Observations

We first consider the case where a finite noise-free data sequence
fxL; xL+1; . . . ; xNg is observed. In this case,'(i)k , i = 1; . . . ; p;
2L�k�N , are available. Thus, we can construct�k, k=2L; . . . ; N:
Since the algorithm will not converge to the true value in a finite
number of steps, we need to use these data repeatedly to form a
sequence of infinitely many samples. To this end, we denote

�k(N�2L+1)+i = �i; i = 2L; . . . ; N; k = 0; 1; . . . : (13)

The sequence can be divided into periods each with a length ofN �
2L+ 1 and consisting of the same data as the first one.

For step sizesfakg, we need the following condition.

A3 ak > 0, ak+1 � ak , 8 k = 1; 2; . . ., ak !
k!1

0 and
1
k=1 ak = 1.

Theorem 1: Assume A1–A3 hold, andL is known. Then, forh(k)
given by (9) and (13) with initial valueh(2L� 1)

h(k) !
k!1

�h
�
:

The proof of this theorem is given in the Appendix. As shown in the
proof, we have

� =
(h�)yh(2L� 1)

kh�k2
:

However, becauseh� is unknown, this equation does not help us
in determining the absolute value ofh�. It is worth noting that
(h�)yh(2L � 1) = 0 is a noninteresting case, because the fact that
h(k) tends to zero gives no information abouth�. So, the initial value
h(2L� 1) should have a nonzero projection onh�.

Theorem 1 shows that our algorithm converges to the true value (with
a scaling factor�) if we repeatedly apply the sequence of finite sam-
ples. Starting with any initial valueh(2L�1), after applying the adap-
tive algorithm to the sequence of samples, we obtain an estimateh(N).
WhenN is small,h(N) may not be very accurate; in this case, we can
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useh(N) as the initial value and apply the algorithm again on the same
set of data (see (13)). WhenN is large,h(N) is accurate enough even
after applying the adaptive algorithm to the sequence only once; re-
peatedly using the data is not needed.

In a sense, the algorithm discussed in this section can be viewed as
a recursive approach to solving (6). The recursive nature makes the
implementation more flexible: channel estimates can be updated when
new samples are received. One nice feature of the recursive algorithm is
thatN is not required to be fixed. That is, the algorithm can be applied
to an infinitely long sequence. As the length of the sequence increases,
the estimate improves and eventually may converge to the true value
under some very mild assumptions. Next, we will prove that this is
indeed true if the samples are chosen from a system with independent
random input signals.

We assume that the input signalfsig is a sequence of infinitely many
mutually independent random variables and that the observations do
not involve noise; i.e.,nk � 0. Similarly to Lemma 1 for deterministic
sequences, we have the following.

Lemma 2: Assume A1 holds,L is known, andsi is a sequence
of mutually independent random variables withEjsij2 6= 0. Then
h �

�
= h�=kh�k is the unique unit eigenvector corresponding to zero

eigenvalue for the matrices

Bj;k
�
=

j+(k+1)(2L+1)�1

i=j+k(2L+1)

E�yi�i; 8 j � 0; 8 k � 0 (14)

and the rank ofBj; k is p(L+ 1)� 1.

The proof is given in the Appendix.
Since we have an infinitely long sequence of�yk�k, we need some

assumptions on the minimal nonzero eigenvalues ofBj; k. Let�min(k)
denote the minimal nonzero eigenvalue ofB0; k. Onfsig we need the
following condition.

A20 fskg is a sequence of mutually independent random variables
with Ejskj

2 6= 0, supk Ejs2+k j <1 for some > 0, and
1

j=1

a(j+1)(2L+1)�1�min(j) =1: (15)

A3 will be strengthened to the following.
A30 A3 holds and

1

i=1

a
1+=2
i <1

where is given in A20.

It is obvious that iffsig is an independent and identically distributed
(i.i.d.) sequence, then�min(j) is a positive constant, and hence (15) is
automatically satisfied because of A3.

Theorem 3: AssumeL is known, A1, A20, and A30 hold, andh(k)
is given by (9) with initial valueh(2L� 1). Then

h(k)! �h� a.s.

where� = h h(2L�1)

kh k
.

Again, the proof is given in the Appendix.

B. Noisy Observations

We now consider the general case where the observations are cor-
rupted by noise:yk = xk + nk, andfskg is a sequence of mutually
independent random variables.

We will use the following conditions.

A300 A30 holds and a
a

< c, 8 k, wherec is a constant.

A4 fskg andfnkg are mutually independent and each of them
is a sequence of mutually independent random variables such
thatEjskj2 6= 0, and

sup
k
fjskj+ jnkjg � � <1; E�2+ <1:

A5 �min(j; k) � � > 0, 8 j � 0, 8 k � 0, where�min(j; k) is
the minimal nonzero eigenvalue ofBj; k defined in (14).

Theorem 3: AssumeL is known, A1, A300, A4, and A5 hold, and
h(k) is given by (10) with initial valueh(2L� 1). Then after a finite
number of steps there is no truncation in (10) and

h(k) !
k!1

�h�; a.s.

where� is a random variable specified later by (55).

The proof is given in the Appendix.

V. SIMULATION EXAMPLES

In this section, we present three computer simulation examples. In
the first example, we illustrate the convergence of the algorithm in a
noisy time-invariant wireless environment. In particular, we investigate
the impact of the noise covariance matrix on the channel estimation. In
the second one, we compare the performance of the recursive algorithm
with that of the “block” algorithms proposed in [15]. In the third one,
we illustrate the capability of the algorithm in tracing a time-variant
channel. In all the examples, the modulation of the input signal is qua-
ternary phase shift keying (QPSK) and the channel order is assumed
to be knowna priori. We repeat the simulation forN different random
environments and compute the root-mean-square error (RMSE) as the
measure of the accuracy of the channel estimates; the RMSE is defined
as

RMSE=
1

kh�k

1

N

N

i=1

k�iĥi � h�k2 (16)

whereĥi is the channel estimate in theith Monte Carlo run and� a
scalar that minimizes the value ofk�iĥi � h�k; i.e.,

�i =
ĥ0i � h

�

ĥ0i � ĥi
: (17)

Example 1: In this example, we select a transmitter with raised-
cosine pulsep(t) whose rolloff factor is0:1. The raised-cosine pulse
p(t) is truncated to4T whereT is the baud period. A two-ray wireless
radio channel with a long delay multipath is used as the channel model.
The overall channel impulse response is

h(t) = p(t)� 0:7(1 + j)p(t� 1:3T ): (18)

The channel is corrupted by a Gaussian noise of 25 dB. The received
signal is oversampled by a factor of3 (p = 3) and thus each input
symbol corresponds to a three-dimensional (3-D) output signal (a mul-
tichannel system with one input and three outputs). The number of
input symbols is fixed to 100 thus the received signal consists of 3�

100 samples. All components of the initial valueh(2L� 1) are set to
one. In each Monte Carlo run, the set of samples is repeatedly used 100
times in the same manner as Theorem 1. Thus, the channel estimates
are updated 9700 times. The step size is initially chosen to be0:1 and
is reduced by 2% each time the received sequence of signals is repeat-
edly used.
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Fig. 1. The Average RMSE in 100 Monte Carlo runs.

Fig. 2. Comparison of Xu’s least squares and the adaptive algorithm for varying symbol size 50–300.

To study how sensitive the channel estimate is to the knowledge of
RN , we implemented two sets of simulations. In the first set, we use
the true value forRN , i.e., 25 dB; and in the second set, we simply set
RN = 0 in the algorithm (in (10)). Each set contains 100 Monte Carlo
runs. The RMSEs are computed after each update. Fig. 1 presents the
results after 100 Monte Carlo runs. It is apparent that for both cases
(i.e., whenRN is known andRN is simply set to zero) the adaptive
procedure is convergent. When the number of updates increases, the
effect of ignoringRN also increases. However, the difference of the
RMSEs for both cases always remains reasonably small. This shows
that the algorithm is relatively insensitive to errors in estimating the
variance matrixRN .

Example 2: In the second example, we compare our algorithm with
Xu’s least squares algorithm in [15]. To this end, we use the same
channel responses as presented in [15, Table II]. In addition, as in [15],
we choose SNR to be 20 dB and let the number of symbols vary from
50 to 300. The step size for our algorithm is chosen as0:04 initially
and is reduced by 0.08% after each channel estimate update. For each
case, 500 Monte Carlo runs are conducted. In each Monte Carlo run
the channel estimate is updated for 6000 times. Again, two cases using
a trueRN andRN = 0 are simulated. Fig. 2 shows the RMSEs of
the channel estimate from Xu’s paper [15] and our simulation results.
It is not surprising that the adaptive algorithm (10) performs a channel
estimate quite close to Xu’s.
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Fig. 3. Comparison of Xu’s least squares and the adaptive algorithm for varying SNR 10–40 dB.

Fig. 4. Envelopes of 3 uncorrelated radio rays, Doppler frequency= 10 Hz.

We repeated the comparison under the above conditions. This time
the number of symbols is kept at 100 but the signal-to-noise ratio (SNR)
changes from 10 to 40 dB. Fig. 3 shows the results after 500 Monte
Carlo runs. Again, the results are quite similar. The channel estimate
with a knownRN is even better than Xu’s result when SNR is poorer
than 20 dB.

Example 3: The channel in the above examples is assumed to be
time-invariant, which is a common requirement by most blind channel
identification methods. As the algorithm developed is inherently adap-

tive, in this example we apply it to a time-varying three-ray wireless
radio channel to evaluate its adaptability. It is worthwhile to mention
that the convergence of the algorithm is still an open problem in such
time-varying environment.

The time-varying simulation channel used in this example is defined
as

h(t) = E1(t)p(t) + E2(t)p(t� 0:4T ) + E3(t)p(t� 1:3T ): (19)

whereE1(t),E2(t), andE3(t) are the envelopes of three radio rays at
timet, generated by Jakes model with Doppler frequency 10 Hz. Fig. 4
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Fig. 5. Channel finite impulse response,h , SNR = 35 dB.

Fig. 6. RMSE for the time-varying system with SNR= 35 dB.

shows the change of these envelopes whereE1(t), E2(t), andE3(t)

are indicated by “No Delay,” “Delay 0.4 T,” and “Delay 1.3 T,” re-
spectively. When the carrier frequency is 900 MHz in the group special
mobile (GSM) context, 10-Hz Doppler frequency is equivalent to the
receiver moving toward the transmitter with velocity 12 km/h. Again,
the shaping filterp(t) is chosen with raised-cosine pulse truncated to
4T . The rolloff factor is0:5. p = 3 and SNR= 35 dB. The channel
order used is fixed to4. Consequently, there are 15 channel coefficients
to be identified. As an example, the channel coefficients of subchannels
h(2) are drawn in Fig. 5. The symbols are unit-variant white QPSK with

symbol rate 300 kHz. The noise effect on the update is neglected, i.e.,
RN = 0.

To study the tracking capability of our adaptive algorithm, we
choose the initial channel parameters be their true values. The
estimated channel parameters are updated once at the arrival of each
symbol signal with previous estimated parameters as their current
initial values. The step size is chosen to be0:0015. The estimated
RMSE is presented by the curve in Fig. 6. From the figure, the
algorithm has a good tracing capability for the 35 000 symbols where
the RMSE is always less than0:06.
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Fig. 7. RMSE for the time-varying system with SNR= 20 dB.

Fig. 7 shows the same results for SNR= 20 dB. One can notice that
the performance of tracking deteriorates as the noise increases.

This example shows that even for the time-varying system shown in
Fig. 5, the algorithm can trace the channel reasonably well with one up-
date each symbol. The initial parameters in this simulation are chosen
to be the true value. Thus, a possible application is to combine this al-
gorithm together with some existing identification techniques such as
the training signal approach. That is, to use training signals to iden-
tify the channel at the beginning of each interval, and then apply our
adaptive algorithm to follow the channel in the internal. Only recur-
sive algorithms can achieve such a goal. Further research is certainly
needed.

VI. CONCLUSION

In this correspondence, we proposed some adaptive algorithms for
blind channel identification by exploiting channel diversity. In these
algorithms, the channel estimates are updated every time a new sample
is received. The convergence of the algorithms is proved. Recursive
algorithms are easyly implemented in real systems such as wireless
channels. The algorithms converge to the true channel parameters even
when the number of samples is finite if the samples are repeatedly used.
In this case, the algorithm becomes a recursive version of the approach
proposed in [15] for deterministic inputs.

The algorithm for noisy observations requires knowledge of the co-
varianceRN of the noise. In principle,RN can be estimated based on
the sequence of the observed data; the implementation details remain
a future research topic. However, from the simulation results, we may
expect that the estimate does not depend so much onRN . As shown in
Fig. 1, one can simply setRN � 0 and the additional RMSE induced
is reasonably small.

The channel orderL is, in general, unknown in advance. However,
if Condition A4 holds and if each of the sequences are i.i.d., then the
covariance matrix of observations

Ry(k) = E[(yi �Eyi)(yi+k � Eyi+k)]

is independent ofi, and it does not equal zero fork = 0; 1; 2; . . . ; L
and is0 for k = L + 1. Using this property and replacingRy(k) by
its sampling approximation, we can obtain consistent estimates forL

as the data size increases to infinity. In practice, one may not estimate
L in advance, but simply take it sufficiently large. This kind of over-
parametrization technique works quite well in modeling for systems
like (1).

The adaptive nature of the algorithms allow them to be applied to
time-varying systems. We did one simulation example to explore this
property. The example shows that the tracking ability is reasonably
good with 35 000 symbols. Further research is needed to study the ap-
plicability to time-varying systems.

APPENDIX

Proof of Lemma 1:From (5), it is readily seen thath� satisfies (12).
It remains to prove the uniqueness.

Assume thath
�
= [(h

(1)
)� ; . . . ; (h

(p)
)� ]� is also a solution to (12)

buth 6= h�, whereh
(i)

= [h
(i)
0 ; . . . ; h

(i)
L ]� is (L+ 1)-dimensional,

i = 1; . . . ; p. Define

h
(i)

(z)
�
= h

(i)
0 + h

(i)
1 z + � � �+ h

(i)
L z

L
:

Sinceh is a solution to (12), we have

h
(i)

(z)x
(j)
k � h

(j)
(z)x

(i)
k = 0;

8 i; j = 1; . . . ; p; k = 2L; . . . ; N � (2L+ 1);

and by (2)

h
(i)

(z)h(j)(z)� h
(j)

(z)h(i)(z) sk = 0;

8 i; j = 1; . . . ; p; k = 2L; . . . ; N � (2L+ 1): (20)

The above set of equations implies

h
y(i; j)SN(2L+ 1) = 0; 8 i; j = 1; . . . ; p

whereh(i; j) denotes the(2L + 1)-dimensional vector composed
of coefficients of h

(i)
(z)h(j)(z) � h

(j)
(z)h(i)(z) written in an

increasing order ofz. By A2, h(i; j) = 0. In other words

h
(i)

(z)h(j)(z)� h
(j)

(z)h(i)(z) = 0; 8 i; j = 1; . . . ; p: (21)
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For a fixedj, (20) is valid for alli = 1; . . . ; p, i 6= j. Therefore, all
roots ofh(j)(z) should be roots ofh

(j)
(z)h(i)(z) for all i 6= j. By

A1, it follows that all roots ofh(j)(z) coincide with roots ofh
(j)

(z).
This means that there is a constant�j such that

h
(j)

(z) = �jh
(j)(z); 8 j = 1; . . . ; p:

Substituting this into (20) leads to

�ih
(i)(z)h(j)(z)� �jh

(j)(z)h(i)(z) = 0

and hence�i = �j
�
= �, 8 i; j = 1; . . . ; p. Thus, we conclude that

h = �h�.

Proof of Theorem 1:First, we decomposeh(2L � 1) andh(k),
respectively, into orthogonal vectors

h(2L� 1) = �h
� + h

0(2L� 1); h(k) =
hy(k)h�

kh�k2
h
� + h

0(k);

h
0y(k)h� = 0; k = 2L� 1; 2L; . . . : (22)

If �h� serves as the initial value for (9), then by (12)h(k) � �h�.
Again, by (12)

h
�y

I � ak�
y

k+1�k+1 h
0(k) = 0; 8 k � 2L� 1:

We then have

h
0(k+ 1) =h

0(k)� ak�
y

k+1�k+1h
0(k) (23)

h(k) =�h
� + h

0(k): (24)

Therefore, for proving the theorem it suffices to showh0(k) �! 0 as
k �! 1.

Denote

Ak+1
�
= I � a(k+1)(N�2L+1)�1�

y

(k+1)(N�2L+1)

��(k+1)(N�2L+1)

� I � a(k+1)(N�2L+1)�2�
y

(k+1)(N�2L+1)�1

��(k+1)(N�2L+1)�1

� � �

� I � ak(N�2L+1)�
y

k(N�2L+1)+1�k(N�2L+1)+1

and

gk
�
= h

0(k(N � 2L+ 1)):

From (23) it follows that

gk+1 = Ak+1gk: (25)

Sinceak �! 0 and�k is uniformly bounded with respect tok,
there is a largek0 such that

Ak+1 � I �
1

2

(k+1)(N�2L+1)�1

i=k(N�2L+1)

ai�
y
i+1�i+1; A

2
k � Ak;

8 k � k0: (26)

By (13)

(k+1)(N�2L+1)�1

i=k(N�2L+1)

�yi+1�i+1 =

N�2L

i=0

�yi+1�i+1 (27)

which, by Lemma 1, is of rankp(L+1)�1 and has the unique (up to a
constant) multiple eigenvectorh� corresponding to the zero eigenvalue.

Denote by�min the minimal nonzero eigenvalue of

N�2L

i=0

�yi+1�i+1:

Leth0 be an arbitraryp(L+1)-dimensional vector such thath0yh� = 0.
Thenh0 can be expressed by

h
0 =

p(L+1)�1

i=1

�iui

whereui, i = 1; . . . ; p(L+ 1)� 1, are unit eigenvectors of

N�2L

i=0

�yi+1�i+1

corresponding to its nonzero eigenvalues.
Noticing

h
0y

N�2L

i=0

�yi+1�i+1h
0 � �minkh

0k2

and from (25) and (26), we have fork � h0

kgk+1k
2 � g

y

kAk+1gk � kgkk
2 �

�mina(k+1)(N�2L+1)�1

2
kgkk

2

and

kgk+1k
2 �

k+1

i=k

1�
�min

2
ai(N�2L+1)�1 kgk k

2
: (28)

Since
1

i=1

ai(N�2L+1) �
1

N � 2L+ 1

1

i=N�2L+1

ai =1

it follows that the right-hand side of (28) tends to zero ask �! 1.
From (23), it is seen thatkh0(k)k is nonincreasing fork � k0. Hence,
the convergencegk ����!

k�!1
0 impliesh0(k) ����!

k�!1
0.

Proof of Lemma 2:Sincefsig is a sequence of mutually indepen-
dent random variables andEjsij2 6= 0, it follows that

ES
(k)
4L (2L+ 1)S

(k)y
4L (2L+ 1) > 0; 8 k (29)

where

S
(k)
4L

�
=

sk sk+1 � � � sk+2L

sk+1 sk+2 � � � sk+2L+1

� � �

sk+2L sk+2L+1 � � � sk+4L

: (30)

Proceeding along the same lines as the proof of Lemma 1, we obtain
(20),8 i; j = 1; . . . ; p, 8k � 2L. This implies that

h
y(i; j)S

(k)
4L (2L+ 1) = 0

and

h
y(i; j)ES

(k)
4L (2L+ 1)s

(k)y
4L (2L+ 1)h(i; j) = 0;

8 i; j = 1; . . . ; p; 8 k � 2L: (31)

From (29) and (31), it follows thath(i; j) = 0. Following the proof
of Lemma 1, we conclude thath

�
is the unique unit vector satisfying

(12). Consequently,h � is the unique unit vector satisfying

E�yi�ih
� = 0;

8 i: j + k(2L+ 1) � i � j + (k + 1)(2L+ 1)� 1; ; 8 j � 0:

This shows thatBj; k is with rankp(L+1)�1,8 j�0, 8 k�0, andh
�

is its unique unit eigenvector corresponding to zero eigenvalue.
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Proof of Theorem 2:We have shown (12) in the proof of Lemma 2.
So, we still have (23) and (24), and, again, it suffices to show that
h0(k) ����!

k�!1
0.

With N replaced by4L in the definitions forAk andgk, we again
obtain (25). Sinceak ����!

k�!1
0, fE�yk+1�k+1g is bounded and

1

i=1

ai(�
y
i+1�i+1 �E�yi+1�i+1)

converges a.s. by A20, there is a largek0 such that

Ak+1 � I �

(k+1)(2L+1)�1

i=k(2L+1)

aiE�yi+1�i+1

�

(k+1)(2L+1)�1

i=k(2L+1)

ai �yi+1�i+1 � E�yi+1�i+1

+ o ak(2L+1)

� I �
1

2

(k+1)(2L+1)�1

i=k(2L+1)

aiE�yi+1�i+1:

Leth0 be an arbitraryp(L+1)-dimensionalvector such thath0yh� = 0.
Then, by Lemma 2

h0yB0; kh
0 � �min(k)kh

0k2

and hence

kgk+1k
2 � gykAk+1gk

�kgkk
2 �

a(k+1)(2L+1)�1�min(k)

2
kgkk

2; k � k0:

Therefore,

kgk+1k
2 �

k+1

i=k

1�
�min(i)

2
a(i+1)(2L+1)�1 kgk k

2

which tends to zero since
1

i=1

�min(i)a(i+1)(2L+1)�1 =1

by A20. This impliesh0(k) ����!
k�!1

0.

Proof of Theorem 3:Setkh(2L� 1)k = �. Without loss and gen-
erality and for convenience in the proof, we take� = 1

4
. Define

Ri = �yi�i �E�yi�i + �yiNi +Ny
i �i +Ny

i Ni � ENy
i Ni: (32)

Then

	yi	i �ENy
i Ni = E�yi�i +Ri: (33)

Denote by�k; k = 1; 2; . . ., the truncation times, i.e.,h(�k) =
h(2L � 1).

From (10) we have

h(�k + j) =h(2L� 1)�

� +j�1

i=�

aiE(�yi+1�i+1h(i) +Ri+1)h(i)

and

kh(�k + j)k < 1; j = 1; . . . ; �k+1 � �k � 1; 8 k: (34)

Denoteh � = h�=kh�k. Let

U = V h �

be a Hermite matrix. Denoting

h0(k)
�
= V V yh(k); h(k)

�
= h

�y
h(k) (35)

we have

h(k) = h0(k) + h(k)h �: (36)

Noticing�ih
� = 0, 8 i and

V V yE�yi+1�i+1 = E�yi+1�i+1

by (34), (36) we find that

h0(�k + j) =h0(2L� 1)�

� +j�1

i=�

aiE�yi+1�i+1h
0(i)

�

� +j�1

i=�

aiV V
yRi+1h(i) (37)

and

h(�k + j) =h(2L� 1)�

� +j�1

i=�

aih
�y
Ri+1h(i);

j = 1; . . . ; �k+1 � �k � 1: (38)

We complete the proof in five steps.
Step 1: First, we show that

1

i=1

aiRi+1h(i) <1 a.s. (39)

By A4, Di
�
= �iNi + Ny

i �i+ Ny
i Ni � ENy

iNi is a martingale
difference sequence withsupi EkDik

1+ < 1. Since

1

i=1

a
1+

i <1 and kh(i)k < 1

it follows that

1

i=1

aiDi+1h(i) <1 a.s. (40)

by the convergence theorem for martingale difference sequences.
Since �yi�i � E�yi�i is independent of�yi+2L+1�i+2L+1�

E�yi+2L+1�i+2L+1 and

sup
i

Ek�yi�i �E�yi�ik
1+ <1

we also have
1

i=1

ai �yi+1�i+1 �E�yi+1�i+1 h(i) <1 a.s.

Incorporating the above inequality with (40) yields (39).
Step 2: Next, we show that for anyj � �k and T > 0 with

m(j; T ) � �k+1 � �k � 1, there is ac0 > 0, which possibly de-
pends on the sample path but is independent ofk, j, andT , such that

kh(i+1)�h(j)k � c0t; 8 i: j� i�m(j; t); 8 t 2 [0; T ] (41)

where

m(j; T ) = max k:

k

i=j

ai � T :

By A4, there is ac0 > 0, possibly depending on the sample path,
such that

E�yi+1�i+1 +Ri+1 < c0; 8 i:

Then, by noticingkh(i)k < 1, (41) immediately follows from (34).
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Step 3: Third, we show that for anyh0
�
= V V yh 6= 0, there exists

anN which is large enough, such that

�h0y
m(j; t)

i=j

aiE�yi+1�i+1h
0 � ��tkh0k2;

8 j � N; 8 t 2 (0; T ] (42)

where� = �

2(2L+1)c
> 0 with c and� given by A300 and A5,

respectively.
Let [u(j; k)1 ; . . . ; u

(j; k)
p(L+1)�1; h

�] be the Hermite matrix composed
of eigenvectors ofBj; k. By Lemma 2,h � is its unique eigenvector
corresponding to the zero eigenvalue.

Sinceh0yh � = 0, h0 can be expressed as

h
0 =

p(L+1)�1

i=1

�iu
(j; k)
i :

Then

�h0yBj; kh
0���min(j; k)

p(L+1)�1

i=1

j�ij
2���kh0k2; 8 j; 8 k:

(43)

Noticing that by A4 and (43), and the fact thatkE�yi+1�i+1k is
bounded with respect toi andfaig is nonincreasing, we have

�h0y
m(j;t)

i=j

aiE�yi+1�i+1h
0

� �h0y
[ ]

k=0

j+(k+1)(2L+1)�1

i=j+k(2L+1)

aiE�yi+1�i+1h
0

� ��kh0k2
[ ]

k=0

aj+(k+1)(2L+1)�1; (44)

where[x] denotes the integer part of the real numberx.
Since a

a
� 1

c
andc � 1, from (44) it follows that for a large

enoughj

�h0y
m(j;t)

i=j

aiE�yi+1�i+1h
0

� ��kh0k2
[ ]

k=0

1

2L+ 1

2L

i=0

aj+(k+1)(2L+1)�1

� �
�kh0k2

(2L+ 1)c2L+1

[ ]

k=0

2L

i=0

aj+k(2L+1)+i

= �
�kh0k2

(2L+ 1)c2L+1

[ ](2L+1)+2L

i=0

aj+i

= �
�kh0k2

(2L+ 1)c2L+1

m(j;t)

i=0

ai + o(1) � ��tkh0k2

whereo(1) �! 0 asj �! 1.
Step 4: We now show that the number of truncations in (10) is finite.

To this end, let us first assume that the converse is true:�k ����!
k�!1

1.

Then, by (39) andkh(2L� 1)k = 1
4
, there exists a largeK such that

� +j

i=�

aiRi+1h(i) �
1

8

and

h
y(2L� 1)h �h � �

� +j

i=�

aiRi+1h(i) <
3

8
;

8 j � 1; 8 k � K: (45)

By the definition of�k+1, we have

h(2L� 1)�

� �1

i=�

ai E�yi+1�i+1 +Ri+1 h(i) � 1:

Incorporating the above with (45) implies

h
0(2L� 1)�

� �1

i=�

aiE�yi+1�i+1h
0(i) �

5

8
;

and

h
0(2L� 1)�

� �1

i=�

aiE�yi+1�i+1h
0(i)

�

� �1

i=�

aiV V
y
Ri+1h(i) >

1

2
: (46)

Define

j(k)
�
= min j: j < �k+1 � �k;

h
0(2L� 1)�

� �1

i=�

aiE�yi+1�i+1h
0(i)

�

� �1

i=�

aiV V
+
Ri+1h(i) >

1

2
: (47)

By (39),ai �! 0, and the boundedness ofE�yi+1�i+1h
0(i), we have

aiE�yi+1�i+1h
0(i)� aiV V

y
Ri+1h(i) ����!

i�!1
0:

Thus,j(k) is well-defined. Consequently

h(�k + j) =h(2L� 1)

�

� +j�1

i=�

ai(E�yi+1�i+1 +Ri+1)h(i) (48)

and

h
0(�k + j) =h

0(2L� 1)�

� +j�1

i=�

aiE�yi+1�i+1h
0(i)

�

� +j�1

i=�

aiV V
y
Ri+1h(i);

8 j: 0 � j � j(k); 8 k � K: (49)

Next, we say that the sequence

fkh0(�k + i)k2; i = lk; lk + 1; . . . ; mkg

crosses an interval[a; b] with 0 < a < b <1, if kh0(�k+ lk)k
2 � a,

kh0(�k +mk)k
2 � b, a < kh0(�k + i)k2 < b, 8 i: lk < i < mk, and

if there is no truncation for anyi: lk � i � mk.
From (47)–(49) andkh(2L� 1)k = 1

4
it is seen that the sequence

fkh0(�k + i)k2; i = 0; 1; . . . ; j(k)g crosses the interval[ 1
16
; 1
4
] for

eachk � K.
Without loss of generality, we may assumeh0(�k + lk) converges:

h0(�k + lk) �! h0 as k �! 1. It is clear thatkh0k = 1
4

and
h0yh� = 0. By (41), there is no truncation forh(i)

i = �k + lk; �k + lk + 1; . . . ; m(�k + lk; T ) + 1
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if T is small enough. Then by Taylor’s expansion and (39) and (41), it
follows that

kh0(m(�k + lk; T ) + 1)k2 � kh0(�k + lk)k
2

= �

m(� +l ; T )

i=� +l

h
0y
ai

� E�yi+1�i+1h
0(i) + V V

y
Ri+1h(i) + o(T )

= �

m(� +l ;T )

i=� +l

h
0y
aiE�yi+1�i+1(h

0 + h
0(i)� h

0)

�

m(� +l ;T )

i=� +l

h
0y
aiV V

y
Ri+1h(i) + o(T )

= �

m(� +l ;T )

i=� +l

h
0y
aiE�yi+1�i+1h

0(i) + o(1) + o(T ) (50)

whereo(1) �! 0 ask �! 1 ando(T ) �! 0 asT �! 0.
By (42), for a largek and a smallT , we have

kh0(m(�k + lk; T ) + 1)k2 � kh0(�k + lk)k
2 � �

�T

2
kh0k2: (51)

By (41),

h
0(m(�k + lk; T ) + 1)����!

T�!0
h
0(�k + lk):

Noticing thatkh0(�k + lk)k
2 � 1

16
andkh0(�k +mk)k

2 � 1
4
, by the

definition of crossing we see thatm(�k + lk; T ) + 1 < �k +mk for
small enoughT . In order words

kh0(m(�k + lk; T ) + 1)k2 >
1

16
: (52)

Lettingk �! 1 in (51) leads to a contradictory inequality

lim sup
k�!1

kh0(m(�k + lk; T ) + 1)k2 <
1

16
�

�T

2
kh0k2 (53)

since the left-hand side of (53) should be greater than or equal to1
16

by
(52). The obtained contradiction shows that�k �! � <1 (i.e., there
are only a finite number of truncations) a.s.

Step 5: Now we are ready to complete the proof of the theorem.
We have shown that starting from a random� , the algorithm (10)

suffers from no more truncation. Now, let us first show thatkh0(k)k2

converges. If this were not true, then

lim inf
k�!1

kh0(k)k2 < lim sup
k�!1

kh0(k)k2

and kh0(k)k2 would cross a nonempty interval[a; b] for infinitely
many times. As shown above, this is impossible. Therefore,kh0(k)k2

converges. If the limit ofkh0(k)k were not zero, then there would
exist a convergent subsequenceh0(kj) �! h0 6= 0. Replacing�k + lk

in (50) bykj , from (51) it follows that

kh0(m(kj; � ) + 1)k2 � kh0(kj)k
2 � �

�T

2
kh0k: (54)

Sincekh0(k)k2 converges, the left-hand side of (54) tends to zero,
which makes (54) a contradictory inequality. Thus, we have proved
h0(k) ����!

k�!1
0 a.s.

Sincelimk�!1 �k = � <1, from (38) it follows that

lim
k�!1

h(k) = h
y(2L� 1)h � �

1

i=�

aih
�y
Ri+1h(i)

�
= �: (55)

Finally, by the facth0(k) ����!
k�!1

0, from (36) and (55) it follows that

lim
k�!1

h(k) = �h
�
:
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