
696 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005

A Basic Formula for Online Policy Gradient Algorithms

Xi-Ren Cao

Abstract—This note presents a (new) basic formula for sample-path-
based estimates for performance gradients for Markov systems (called
policy gradients in reinforcement learning literature). With this basic
formula, many policy-gradient algorithms, including those that have
previously appeared in the literature, can be easily developed. The formula
follows naturally from a sensitivity equation in perturbation analysis. New
research direction is discussed.

Index Terms—Markov decision processes, online estimation, perturba-
tion analysis (PA), perturbation realization, Poisson equations, potentials,
reinforcement learning.

I. INTRODUCTION

The policy-gradient approach has recently attracted increasing atten-
tions the optimization and reinforcement learning communities. In the
terminology of perturbation analysis (PA) [18], [6], [5], [13], policy-
gradient algorithms are called single-sample-path-based performance
gradient algorithms. This note presents a basic formula for policy gradi-
ents, based on which many policy-gradient algorithms, including those
that have previously appeared in literature (e.g., [1], [2], [12], [19], and
[20]), can be developed. This basic formula follows naturally from a
performance sensitivity equation derived by using perturbation analysis
of Markov processes [7], [8]. Performance optimization algorithms for
Markov systems can be developed by using this basic formula together
with stochastic approximation methods.

The main contributions of this note are as follows. First, for the first
time, we derive the basic formulas (7) and develop a general algorithm
for performance gradients (8) and prove its convergence. Second, we
show that various algorithms in the existing literature can be obtained
as special cases of the general algorithm. Third, this general algorithm
provides a direction for developing new performance-gradient algo-
rithms, especially for problems with special structures.

II. BASIC FORMULA

Consider an irreducible and aperiodic Markov chain X = fXn :
n � 0g on a finite state S = f1; 2; . . . ;Mg with transition probability
matrix P = [p(i; j)] 2 [0; 1]M�M . Let � = (�(1); . . . ; �(M)) be
the (row) vector representing its steady-state probabilities, and f =
(f(1); f(2); . . . ; f(M))T be the (column) performance vector, where
“T” represents transpose. We have Pe = e, where e = (1; 1; . . . ; 1)T

is anM-dimensional vector whose components all equal 1, and�e = 1.
The steady-state probability flow balance equation is � = �P . The
performance measure is the long-run average defined as

� = E�(f)=

M

i=1

�(i)f(i)= �f= lim
L!1

1

L

L�1

l=0

f(Xl); w:p:1:

We start with the Poisson equation

(I � P)g + e� = f: (1)

Manuscript received November 25, 2003; revised August 23, 2004. Recom-
mended by Associate Editor R. S. Srikant. This work was supported in part by
a grant from the Hong Kong UGC.

The author is with the Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong (e-mail: eecao@ee.ust.hk).

Digital Object Identifier 10.1109/TAC.2005.847037

Its solution g = (g(1); . . . ; g(M))T is called a performance potential
vector, and g(i) is the potential at state i. (It is equivalent to the value
function in dynamic programming, or the “differential” or “relative cost
vector” [3], and “bias” [21].) The solution to (1) can only be obtained
up to an additive constant, i.e., if g is a solution to (1), then so is g+ce.
The difference of the potentials at two states is called a perturbation
realization factor in PA literature and is denoted as d(i; j) = g(j) �
g(i), i; j 2 S [7], [8].

Let P 0 be another irreducible and aperiodic transition probability
matrix on the same state–space and �0 be its steady-state probability.
Let f 0 be the performance function for the system with P 0, Q = P 0 �
P = [q(i; j)] and h = f 0 � f . Then, Qe = 0. The steady-state
performance corresponding to P 0 is �0 = �0f 0. Multiplying both sides
of (1) with �0, we can verify that

�0 � � = �0(Qg + h): (2)

Now, suppose thatP changes toP (�) = P+�Q = �P 0+(1��)P ,
and f changes to f(�) = f+�h, with � 2 (0; 1]. Then the performance
measure changes to �(�) = � + ��(�). The derivative of � in the
direction of Q is defined as d�=d� = lim�!0��(�)=�. Taking P (�)
as the P 0 in (2), we have �(�)�� = �(�)(�Qg+ �h). Letting � ! 0,
we get

d�

d�
= �(Qg + h): (3)

For references, see, e.g., [7] and [8]. SinceQe = 0, for any g satisfying
(1) for any constant c, we have Qg = Q(g+ ce), thus both (3) and (2)
still hold for g0 = g + ce.

In (3), a linear structure P (�) = P + �Q is assumed. In general,
the transition probability matrix may depend on an arbitrary parameter
�, which is normalized to lie in [0,1]; i.e., P (�) = P + Q(�) with
Q(�)e = 0, Q(0) = 0, P (0) = P , and Q(1) = P (1)�P = P 0�P .
Similarly, we assume f(�) = f + h(�). Thus, for � � 1, we have
P (�) = P+fdQ=d�g�=0�, and f(�) = f+fdh=d�g�=0�. Replacing
Q in (3) with fdQ=d�g�=0 and h with fdh=d�g�=0 and noting that
dP=d� = dQ=d� and df=d� = dh=d� we get

d�

d�
j�=0= �

dP

d�
�=0

g +
df

d�
�=0

: (4)

Therefore, without loss of generality, we shall mainly discuss the linear
case (3).

Both sensitivity equations (3) and (2) depend mainly on the same
quantity: the performance potential, and both depend on only the po-
tential g (not g0). These two equations form the basis for performance
optimization of Markov systems. Two basic approaches can be devel-
oped from them. First, policy iteration algorithms can be developed
using (2) (see, e.g., [10]). Next, performance gradients can be estimated
using (3); this is called perturbation analysis in control literature and
policy gradient in reinforcement learning. Combining the gradient esti-
mation with stochastic approximation techniques leads to performance
optimization algorithms.

Compared with policy iteration, the policy gradient method (or per-
turbation analysis) has some advantages: both � and g can be esti-
mated based on a single sample path of the Markov chain with tran-
sition matrix P . Thus, for any given Q and h in (3) [or (dP=d�)�=0
and (df=d�)�=0 in (4)], we can estimate the gradient on a sample path
with P . Furthermore, algorithms can be developed to estimate �Qg di-
rectly without estimating each component of g.

0018-9286/$20.00 © 2005 IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005 697

There are a number of policy gradient algorithms in literature. In this
note, we present a basic formula for online estimations of the perfor-
mance gradient. This fundamental formula provides a clear picture for
the existing policy gradient algorithms as well as points to the direction
of the development of new algorithms.

Consider a stationary Markov chainX = (X0; X1; . . . ;). (This im-
plies the initial probability distribution is the steady-state distribution
�.) Let E denote the expectation on the probability space generated by
X. Denote a generic time instant as k. Because it is impossible for a
sample path with transition matrix P to contain information about P 0

(or Q = P 0 � P), we need to use a standard technique in simulation
called importance sampling. First, we make a standard assumption in
importance sampling: for any i; j 2 S , if q(i; j) 6= 0, then p(i; j) 6= 0.
Then, we have

d�

d�
=�(Qg + h) =

i2S j2S

[�(i)q(i; j)g(j)] +
i2S

[�(i)h(i)]

=
i2S j2S

�(i) p(i; j)
q(i; j)

p(i; j)
g(j) + h(i)

=E
q(Xk; Xk+1)

p(Xk;Xk+1)
g(Xk+1) + h(Xk) : (5)

Next, let ĝ(Xk+1; Xk+2; . . .) be an unbiased estimate of g(xk+1), i.e.,

g(i) = Efĝ(Xk+1; Xk+2; . . .) j Xk+1 = ig; i 2 S: (6)

With (6), we have

E
q(Xk;Xk+1)

p(Xk;Xk+1)
ĝ(Xk+1; Xk+2; . . .) + h(Xk)

=E E
q(Xk;Xk+1)

p(Xk;Xk+1)
ĝ(Xk+1; Xk+2; . . .)

+ h(Xk)j Xk;Xk+1

=E
q(Xk;Xk+1)

p(Xk;Xk+1)
E [ĝ(Xk+1; Xk+2; . . .) j Xk; Xk+1]

+ h(Xk)

=E
q(Xk;Xk+1)

p(Xk;Xk+1)
g(Xk+1) + h(Xk) :

Therefore

d�

d�
= E

q(Xk;Xk+1)

p(Xk;Xk+1)
ĝ(Xk+1; Xk+2; . . .) + h(Xk) : (7)

Next, we develop single-sample-path-based algorithms for esti-
mating the gradients. It is natural to consider

1

K

K�1

k=0

q(Xk;Xk+1)

p(Xk;Xk+1)
ĝ(Xk+1; Xk+2; . . .) + h(Xk) : (8)

Because ĝ(Xk+1; Xk+2; . . .), k = 0; 1; . . ., are not independent, so
the law of large numbers for K ! 1 does not apply directly. Fortu-
nately, a theorem on ergodicity can be used to prove the convergence
of (8).
Theorem 1: For an ergodic Markov chainX = fX0;X1; . . . ; g, let

ĝ(Xk+1; Xk+2; . . .) be an unbiased estimate of g(Xk+1) satisfying
(6). Suppose for any i; j 2 S , if q(i; j) 6= 0 then p(i; j) 6= 0. Then,
for the performance gradient defined in (3), we have (9), as shown at
the bottom of the page.

Proof: The proof is based on a fundamental theorem on ergod-
icity [4]: If X = fXk; k � 0g is an ergodic process on state S , let
�(x1; x2; . . .) be a measurable function on S , then the process Z =
fZk; k � 0gwithZk = �(Xk;Xk+1; . . .) is also ergodic. In our case,
we define Zk =(q(Xk;Xk+1)=p(Xk;Xk+1))ĝ(Xk+1; Xk+1;. . .) +
h(Xk); then Z = fZk; k � 0g is ergodic. Thus, (9) converges w.p. 1.
to the steady-state mean inZ, which is (7). The theorem is thus proved.

The ergodic theorem in [4] is very useful in provong many similar
results. It was first used to prove a special case of (9) ([12]; see Algo-
rithm 1) and later in [1] and [2] for similar results.

III. ONLINE POLICY GRADIENT ALGORITHMS

In this section, we show how (9) can be used to derive specific policy-
gradient algorithms and present several such algorithms.
Algorithm 1. (Approximation by Truncation): It is well known that

(see, e.g., [7] and [8])

g(i) = E

1

k=0

[f(Xk)� �] j X0 = i :

To avoid the difficulty in computation caused by the infinite sum, we
use an approximation by truncation

g(i) � E

L�1

k=0

[f(Xk)� �] j X0 = i :

Because the potentials are defined only up to an additive constant, we
may ignoring the constant term L� and obtain

g(i) � E

L�1

k=0

f(Xk) j X0 = i :

Therefore, from (6) we may choose

ĝ(Xk+1; Xk+2; . . .) �

L�1

l=0

f(Xk+l+1):

Using this ĝ in (9) (for simplicity, assume h(Xk) � 0), we get

d�

d�
� lim
K!1

1

K

K�1

k=0

q(Xk;Xk+1)

p(Xk;Xk+1)

L�1

l=0

f (Xk+l+1) ; w:p:1:

(10)
This is equivalent to

d�

d�
� lim
K!1

1

K

K�1

k=0

f(Xk+L)

L�1

l=0

q(Xk+l; Xk+l+1)

p(Xk+l; Xk+l+1)
; w:p:1:

(11)
This algorithm and similar ones for Markov processes and queueing
networks are presented in [12].

d�

d�
= lim

K!1

1

K

K�1

k=0

q(Xk;Xk+1)

p(Xk;Xk+1)
ĝ(Xk+1; Xk+2; . . .) + h(Xk) ; w:p:1 (9)

698 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005

Algorithm 2. (Approximation by Discount Factors): Potential g can
be approximated by the �-potential g�, satisfying the following dis-
counted Poisson equation [9]:

(I � �P + �e�)g� = f

with 0 < � < 1 being a discount factor. It is shown [9] that

lim
�!1

g� = g:

Ignoring the constant term, we have [9]

g�(i) = E

1

l=0

�lf(Xl) j X0 = i :

Therefore, we can choose

ĝ(Xk+1; Xk+2; . . .) �

1

l=0

�lf(Xk+l+1):

Using this as the ĝ in (7), we get

d�

d�
� lim
K!1

1

K

K�1

k=0

q(Xk;Xk+1)

p(Xk;Xk+1)

1

l=0

�lf(Xk+l+1) ; w:p:1:

(12)
If we can exchange the order of f(Xk) and

q(Xk;Xk+1)=p(Xk;Xk+1)

in the aforementioned double sum, then we have

d�

d�
� lim

K!1

1

K

K�1

k=0

f(Xk)

k�1

l=0

�k�l�1
q(Xl;Xl+1)

p(Xl;Xl+1)
; w:p:1:

(13)
This is the policy-gradient algorithm developed in [1], [2]. [1] also con-
tains a proof for the fact that the order of the double sum in (12) is in-
deed exchangable.

It is easy to estimate

zk :=

k�1

l=0

�k�l�1(q(Xl;Xl+1)=p(Xl;Xl+1))

recursively

zk+1 = �zk +
q(Xk;Xk+1)

p(Xk;Xk+1)
:

On the other hand, to estimate

L�1

l=0

[q(Xk+l; Xk+l+1)=p(Xk+l; Xk+l+1)]

one has to store L values.
Finally, the discount factor approximation is also used in [20] to re-

duce the variance in estimating the performance gradients.
Algorithm 3 (Based on Perturbation Realization Factors): It is

sometimes easier to estimate the differences between the potentials
of two states, called perturbation realization factors in perturbation
analysis [7], [10], [8], which is defined as

d(i; j) = g(j)� g(i); i; j 2 S:

The matrixD = [d(i; j)] is called a realization matrix.We haveDT =
�D and D = egT � geT . D satisfies the Lyapunov equation

D � PDPT = F

with F = efT � feT .

Now, we consider a Markov chain X = fXk; k � 0g with initial
state X0 = i, we define Li(j) = minfn : n � 0; Xn = jg, i.e., at
n = Li(j), the Markov chain reaches state j for the first time. We have
E[Li(j) j X0 = i] < 1 [14], and from [7], [8]

d(j; i) = E

L (j)�1

k=0

[f(Xk)� �] j X0 = i : (14)

To develop an algorithm, we first use (14) to obtain a ĝ. To this end,
we choose any regenerative state i�. For convenience, we set X0 = i�

and define u0 = 0, and um+1 = minfn : n > um; Xm = ig be
the sequence of regenerative points. Set g(i�) = 0. From (14), for any
Xn = i 6= i� and um � n < um+1 we have

g(i) = d(i�; i) = E

u �1

l=n

[f(Xl)� �] j Xn = i :

Because the lengths um+1 � n are not the same for different
i, we cannot ignore the term � in the above equation. Choose
ĝ(Xk+1; . . .) =

u �1

l=k+1 [f(Xl)� �]. Then, by (9), we have

d�

d�
= lim
K!1

1

K

K�1

k=0

q(Xk;Xk+1)

p(Xk;Xk+1)

u �1

l=k+1

[f(Xl)� �] ; w:p:1

where um+1 is the first time after Xk+1 that the Markov chain reaches
state i�. (If k + 1 = um+1, then g(Xk+1) = 0, and the term in
the above sum is zero.) The optimization scheme proposed in [19] is
essentially a result of combining the previous algorithm with stochastic
approximation techniques.
Algorithm 4. (Partially Observable Markov Decision Pro-

cesses): The algorithms can be easily extended to the partially
observable Markov decision processes (POMDP) (see, e.g., [1], [2]).
The POMDP model in [1] and [2] is described as follows. In addition
to the state–space S = f1; . . . ;Mg, there is a control space denoted
as U = f1; . . . ; Ng consisting of N controls and an observation space
Y = f1; . . . ; Lg consisting ofL observations. Each u 2 U determines
a transition probability matrix P u, which does not depend on the
parameter �. When the Markov chain is at state i 2 S , an observation
y 2 Y is obtained according to a probability distribution �i(y). For
any observation y, we may choose a random policy �y(u), which is
a probability distribution over the control space U . It is assumed that
the distribution depends on a parameter � and, therefore, is denoted as
�y(�; u).

Given an observation distribution �i(y) and a random policy
�y(�; u), the corresponding transition probabilities are

p�(i; j) =
u;y

f�i(y)�y(�; u)p
u(i; j)g:

Therefore

d

d�
p�(i; j) =

u;y

�i(y)p
u(i; j)

d

d�
�y(�; u) : (15)

In POMDP, we assume that although the state Xn, n = 0; 1; . . ., is
not completely observable, the cost f(Xn) is known. Thus, algorithms
can be developed by replacing q(i; j) in (7) and (9) with (d=d�)p�(i; j)
of (15). We have

d��
d�

= E
d

d�
p�(Xk;Xk+1)

p(Xk;Xk+1)

1

l=0

�lf(Xk+l+1)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005 699

in which f(Xk) is assumed to be observable. Based on this equation a
recursive algorithm called GPOMDP is presented in [1].

If the recurrent state i� is observable, we have the following algo-
rithm (cf. Algorithm 3):

d��

d�
= E

d

d�
p�(Xk; Xk+1)

p(Xk;Xk+1)

u �1

l=k+1

[f(Xl)� �] :

IV. REMARKS AND DISCUSSIONS

Early work on sample-path-based performance gradient estimation
include the PA [18], [6], [13] and the likelihood ratio (LR) [also called
the score function (SF)] methods [15], [16], [22], [23]. PA was first
developed for queueing networks; efficient algorithms have been de-
veloped [17]. The main idea of PA, perturbation realization, was later
extended to performance gradients of Markov systems [7], [8].

Policy gradient [1], [2] is a terminology used in recent years in RL
community for sample-path-based performance gradient estimate of
PA. However, there is a slight difference in their emphases. Most policy
gradient papers focus on developing simulation/online algorithms for
estimating performance gradients. PA, on the other hand, emphasizes
two aspects: deriving performance gradient formulas (those similar to
(2)), and developing estimation algorithms. With the concept of pertur-
bation realization factors, we can flexibly derive sensitivity formulas
for many problems; these formulas are otherwise difficult to conceive
[11]. Sample-path-based algorithms can be developed/designed only
after these performance gradient formulas are derived. The readers can
find some examples of the performance gradient formulas for systems
with special structures in [11]. The basic formula (7) and the general
algorithm (8) presented in this note provide a direction for developing
performance gradient algorithms using the performance gradient for-
mulas.

REFERENCES

[1] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,”
J. Art. Intell. Res., vol. 15, pp. 319–350, 2001.

[2] J. Baxter, P. L. Bartlett, and L. Weaver, “Experiments with infi-
nite-horizon policy-gradient estimation,” J. Art. Intell. Res., vol. 15, pp.
351–381, 2001.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control. Bel-
mont, MA: Athena Scientific, 1995, vol. I and II.

[4] L. Breiman, Probability. Reading, MA: Addison-Wesley, 1968.
[5] X. R. Cao, “Convergence of parameter sensitivity estimates in a sto-

chastic experiment,” IEEE Trans. Autom. Control, vol. AC- 30, no. 9,
pp. 845–853, Sep. 1985.

[6] , Realization Probabilities: The Dynamics of Queueing Sys-
tems. New York: Springer-Verlag, 1994.

[7] X. R. Cao, X. M. Yuan, and L. Qiu, “A single sample path-based per-
formance sensitivity formula for Markov chains,” IEEE Trans. Autom.
Control, vol. 41, no. 12, pp. 1814–1817, Dec. 1996.

[8] X. R. Cao and H. F. Chen, “Perturbation realization, potentials and sen-
sitivity analysis of Markov processes,” IEEE Trans. Autom. Control, vol.
42, no. 10, pp. 1382–1393, Oct. 1997.

[9] X. R. Cao, “A unified approach to Markov decision problems and per-
formance sensitivity analysis,” Automatica, vol. 36, pp. 771–774, 2000.

[10] , “From perturbation analysis to Markov decision processes and
reinforcement learning,” Discrete Event Dyna. Syst.: Theory Appl., vol.
13, pp. 9–39, 2003.

[11] , “The potential structure of sample paths and performance sensi-
tivities of Markov systems,” IEEE Trans. Autom. Control, vol. 49, no.
12, pp. 2129–2142, Dec. 2004.

[12] X. R. Cao and Y. W. Wan, “Algorithms for sensitivity analysis of Markov
systems through potentials and perturbation realization,” IEEE Trans.
Control Syst. Technol., vol. 6, no. 4, pp. 482–494, Jul. 1998.

[13] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems. Norwell, MA: Kluwer, 1999.

[14] E. Çinlar, Introduction to Stochastic Processes. Upper Saddle River,
NJ: Prentice-Hall, 1975.

[15] P. W. Glynn, “Likelihood ratio gradient estimation: An overview,” in
Proc. Winter Simulation Conf., 1987, pp. 366–375.

[16] , “Optimization of stochastic systems via simulation,” in Proc.
Winter Simulation Conf., 1989, pp. 90–105.

[17] Y. C. Ho and X. R. Cao, “Perturbation analysis and optimization of
queueing networks,” J. Optim. Theory Appl., vol. 40, no. 4, pp. 559–582,
1983.

[18] , Perturbation Analysis of Discrete-Event Dynamic Systems. Nor-
well, MA: Kluwer, 1991.

[19] P. Marbach and T. N. Tsitsiklis, “Simulation-based optimization of
Markov reward processes,” IEEE Trans. Autom. Control, vol. 46, no. 2,
pp. 191–209, Feb. 2001.

[20] , “Approximate gradient methods in policy-space optimization of
Markov reward processes,” J. Discrete Event Dyna. Syst., 2002, to be
published.

[21] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. New York: Wiley, 1994.

[22] M. I. Reiman and A. Weiss, “Sensitivity analysis via likelihood ratio,”
Oper. Res., vol. 37, pp. 830–844, 1989.

[23] R. V. Rubinstein, Monte Carlo Optimization, Simulation, and Sensitivity
Analysis of Queueing Networks. New York: Wiley, 1986.

A Min-Plus Derivation of the Fundamental
Car-Traffic Law

Pablo A. Lotito, Elina M. Mancinelli, and Jean-Pierre Quadrat

Abstract—We give deterministic and stochastic models of the traffic on
a circular road without overtaking. From this model the mean speed is de-
rived as an eigenvalue of the min-plus matrix describing the dynamics of
the system in the deterministic case and as the Lyapunov exponent of a
min-plus stochastic matrix in the stochastic case. The eigenvalue and the
Lyapunov exponent are computed explicitly. From these formulas, we de-
rive the fundamental law that links the flow to the density of vehicles on the
road. Numerical experiments using the MAXPLUS toolbox of SCILAB con-
firm the theoretical results obtained.

Index Terms—Cellular automata, fundamental diagram, Lyapunov ex-
ponent, max-plus algebra.

I. INTRODUCTION

For simple traffic models a well known relation exists between the
flow and the density of vehicles called fundamental traffic law. This
law has been studied empirically and theoretically using exclusion pro-
cesses (see, for example, [5]–[7], [3], [12], and [8]) and cellular au-
tomata (see [1]).

In this note, we analyze the simplest deterministic and stochastic
traffic models using the so called min-plus algebra. Within this algebra
the equations of the dynamics become linear and the eigenvalue or
the Lyapunov exponent of the corresponding min-plus matrix gives the
mean speed from which we easily derive the density-flow relation.

Manuscript received August 20, 2003; revised April 15, 2004 and July 6,
2004. Recommended by Associate Editor A. Giua.

P. A. Lotito is with the GRETIA-INRETS, 94114 Arccueil, France (e-mail:
pablo.lotito@inria.fr).

E. M. Mancinelli is with the INRIA, 78153 Le Chesnay, Cedex, France, and
also with the CONICET, Argentina (e-mail: elina.mancinelli@inria.fr).

J.-P. Quadrat is with the INRIA, 78153 Le Chesnay, Cedex, France (e-mail:
jean-pierre.quadrat@inria.fr).

Digital Object Identifier 10.1109/TAC.2005.848336

0018-9286/$20.00 © 2005 IEEE

