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Abstract— Learning and optimization of stochastic systems
is a multi-disciplinary area that attracts wide attentions from
researchers in control systems, operations research and com-
puter science. Areas such as perturbation analysis (PA), Markov
decision process (MDP), and reinforcement learning (RL) share
the common goal. In this paper, we offer an overview of the
area of learning and optimization from a system theoretic
perspective. We show how these seemly different disciplines are
closely related, how one topic leads to the others, and how this
perspective may lead to new research topics and new results,
and how the performance sensitivity formulas can serve as the
basis for learning and optimization.

I. INTRODUCTION

Perturbation analysis [12] was originally developed for
estimating performance derivatives with respect to system
parameters in stochastic systems with queueing structures
(queueing networks, generalized semi-Markov processes,
etc); the estimates can be obtained by analyzing a single
sample path of such a system; it was shown that although the
approach requires some conditions for the system structure,
it is very efficient since it utilizes the special dynamic
properties of the system. The fundamental concept of PA,
perturbation realization [5], has been extended to Markov
processes. Recent research in this direction reveals a strong
connection among PA, MDP(Markov decision processes),
and RL (reinforcement learning) [6].

In this paper, we offer an overview of learning and opti-
mization from a system theoretic perspective. We show how
these seemly different disciplines are closely related, how
one topic leads to the others, and how this perspective may
lead to new research topics and new results. Our discussion
is based on the general model of discrete time Markov
chains. For simplicity, we discuss Markov chains with finite
state space denoted as{1, 2, · · · ,M}. The central piece of
learning and optimization is the performance potentialsg(i),
i = 1, · · · ,M , or equivalently, perturbation realization factors
d(i, j) = g(j) − g(i) [7]. From perturbation analysis point
of view, a change in system parameters induces a series
of perturbations on a sample path, the effect of a single
perturbation on a system performance can be measured by
the realization factor of the perturbation, and the total effect
of the parameter change on the performance is then the sum
of the realization factors of all the perturbations inducedby
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the parameter changes [5]. For Markov chains, parameters
are the transition probabilities, a perturbation is a “jump”
from one statei to another statej, and the realization factor
equals the difference of the potentials at the two states.
It has been shown that by the above principle, we can
use potentials or realization factors as building blocks to
construct performance sensitivities for many systems. When
the changes are discrete, this leads to formulas for the
performance difference of two Markov chains, and when
the changes are infinitesimal, it leads to the formula for
performance gradients [7].

These two standard formulas are the basis for performance
optimization [6]: Optimization can be achieved by combining
the gradient estimate with stochastic approximation methods,
or by policy iteration which can be easily derived from the
performance difference formula (see section II). This leads
to the following main research directions:

1) Develop efficient algorithms to estimate the potentials
and/or the derivatives. Reinforcement learning, TD(λ),
neuro-dynamic programming, etc, are efficient ways
of estimating the performance potentials, realization
factors, and related quantities such as Q-factors, etc.,
based on sample paths (section III-A). In addition,
algorithms can be developed to estimate performance
gradients directly from a single sample path.

2) Develop efficient optimization algorithms with the po-
tential or gradient estimates

a) Gradient-based optimization for parameterized
systems; this approach combines the gradient
estimates with stochastic gradient algorithms.

b) On-line policy iteration; this approach combines
the potential estimates with stochastic approxima-
tion to implement policy iteration (section V).

c) Gradient-based policy iteration; this is an open
problem.

II. A GENERAL VIEW OF OPTIMIZATION

Consider an irreducible and aperiodic Markov chainX =
{Xn : n ≥ 0} on a finite state spaceS = {1, 2, · · · ,M}
with transition probability matrixP = [p(i, j)] ∈ [0, 1]M×M .
Let π = (π1, . . . , πM ) be the (row) vector representing
its steady-state probabilities, andf = (f1, f2, · · · , fM )T

be the (column) performance vector, where “T” represents
transpose. We havePe = e, where e = (1, 1, · · · , 1)T is
an M-dimensional vector whose all components equal 1, and



πe = 1. The steady state probability flow balance equation is
π = πP . The performance measure is the long-run average
defined as

η = Eπ(f) =

M
∑

i=1

πifi = πf = lim
L→∞

1

L

L−1
∑

l=0

f(Xl), w.p.1.

We start with thePoisson equation

(I − P )g + eη = f. (1)

Its solutiong = (g(1), · · · , g(M))T is called aperformance
potentialvector, andg(i) is the potential at statei. g is also
called the value function in dynamic programming, or the
“differential” or “relative cost vector” [3], and “bias”. The
solution to (1) is only up to an additive constant; i.e., ifg is
a solution to (1), then so isg + ce.

Let P ′ andπ′ be another irreducible transition probability
matrix on the same state space and its steady state probability.
Let f ′ be the performance function for the system withP ′,
Q = P ′ − P = [q(i, j)] andh = f ′ − f . ThenQe = 0. The
steady state performance corresponding toP ′ is η′ = π′f ′.
Multiplying both sides of (1) withπ′, we can verify that

η′ − η = π′(Qg + h). (2)

Now, suppose thatP changes toP (δ) = P +δQ = δP ′ +
(1 − δ)P , andf changes tof(δ) = f + δh, with δ ∈ (0, 1].
Then the performance measure changes toη(δ) = η+∆η(δ).
The derivative ofη in the direction ofQ is defined asdη

dδ
=

limδ→0
∆η(δ)

δ
. TakingP (δ) as theP ′ in (2), we haveη(δ)−

η = π(δ)(δQg + δh). Letting δ → 0, we get

dη

dδ
= π(Qg + h). (3)

For references, see, e.g., [6], [7]. SinceQe = 0, for any g

satisfying (1) for any constantc, we haveQg = Q(g + ce),
thus both (3) and (2) still hold forg′ = g + ce. This verifies
again that potentials are determined only up to an additive
constant; this is the same as the potential energy in physics.

In (3), a linear structureP (δ) = P + δQ is assumed.
In general, the transition probability matrix may depend on
an arbitrary parameterθ, which is normalized in[0, 1]; i.e.,
P (θ) = P + Q(θ) with Q(1) = P (1) − P = P ′ − P .
Similarly, we assumef(θ) = f + h(θ). Thus, forθ << 1,
we haveP (θ) = P +{dQ

dθ
}θ=0θ, andf(θ) = f +{dh

dθ
}θ=0θ;

i.e., in the neighboring area ofθ = 0, P (θ) and f(θ) take
a linear form. ReplacingQ in (3) with {dQ

dθ
}θ=0 andh with

{dh
dθ
}θ=0 and noting thatdP

dθ
= dQ

dθ
and df

dθ
= dh

dθ
we get

dη

dθ
|θ=0 = π

{

(
dP

dθ
)θ=0g + (

df

dθ
)θ=0

}

. (4)

Therefore, without loss of generality, we shall mainly discuss
the linear case (3).

The two simple equations (3) and (2) represent the per-
formance sensitivity; (3) is the performance derivative (or
gradient) with respect to continuous variables, and (2) is

the performance difference for two discrete parameters (P

andP ′). Both of them depend mainly on the same quantity:
the performance potential. Note that both depend on only
potential g (not g′), and π and g can be estimated based
on a single sample path of the Markov chain with transition
matrix P (see section III-A).

The two equations (3) and (2) form the basis for per-
formance optimization of Markov systems. Two basic ap-
proaches can be developed from them. The first one is the
gradient-based optimization, which combines the gradient
estimation based on (3) and the stochastic approximation
techniques. This approach applies to systems that can be
parameterized by continuous variables. This is in the same
spirit as the perturbation analysis (or PA) based optimization
(see, e.g. [9], [10]). The sensitivity formula (3) can indeed be
derived by applying the PA principles. The second approach
is the policy-iteration based optimization. It can be shown
that policy iteration algorithms in Markov decision problems
can be easily derived from (2) (see, e.g., [6]). The main issues
here is to design fast policy iteration procedures that converge
to the optimal policy. Both approaches depend heavily on the
estimation of potentials. Q-learning [14], actor-critic type of
algorithms, etc., are variants of this approach: they aim atto
find directly the potentials (or the equivalent Q-factors) for
the optimal policy. These are simulation based algorithms
since they require the sample path to visit very state-action
pair.

III. ESTIMATION OF POTENTIALS AND
PERFORMANCE DERIVATIVES

A. Estimation of Performance Potentials

We first brief review that the potentials of a Markov chain
can be estimated with a single sample path of the Markov
chain. Sinceg is only up to an additive constant, we may
choose the one that satisfiesπg = πf = η. Thus, (1) becomes

(I − P + eπ)g = f. (5)

With (5), the potentialg can be estimated on a sample
path either “directly” [8], or by TD(λ) algorithms etc, [14].

B. Gradient Estimation

Consider a stationary Markov chainX = (X0,X1, · · · , ).
(This implies the initial probability distribution isπ.) Let E

denote the expectation on the probability space generated
by X. Denote a generic time instant ask. Because it is
impossible for a sample path withP to contain information
aboutP ′, we need to use a standard technique in simulation
called importance sampling. We have

dη

dδ
= π(Qg + h)

=
∑

i∈S

∑

j∈S

{π(i)[p(i, j)
q(i, j)

p(i, j)
g(j) + h(i)]}



= E

{

q(Xk,Xk+1)

p(Xk,Xk+1)
g(Xk+1) + h(Xk)

}

. (6)

Furthermore, ifĝ is a random variable defined onX such
that E(ĝ) = g and ĝ is independent of the transition from
Xk to Xk+1, then we have

dη

dδ
= E

{

q(Xk,Xk+1)

p(Xk,Xk+1)
ĝ + h(Xk)

}

. (7)

Sample path based algorithms can be developed by using
(7) and the estimates ofg. Let us first use

gL(i) ≈ E[

L−1
∑

l=0

f(Xl)|X0 = i].

Each term inπQg takes the formπ(i)q(i, j)g(j). Note that
(for notational simplicity, we seth = 0)

π(i)p(i, j)g(j)

= E {εi(Xk)εj(Xk+1)g(Xk+1)}

≈ lim
K→∞

1

K − L + 1
×

{

K−L
∑

k=0

εi(Xk)εj(Xk+1)[

L−1
∑

l=0

f(Xk+l+1)]

}

, w.p.1.(8)

The convergence can be proved. Defining a functionZk =
εi(Xk)εj(Xk+1)[

∑L−1
l=0 f(Xk+l+1)], we get an ergodic pro-

cessZ = {Zk, k ≥ 0}. Therefore, the right-hand side of (8)
equals

E{εi(Xk)εj(Xk+1)[

L−1
∑

l=0

f(Xk+l+1)]}

= E{

L−1
∑

l=0

f(Xk+l+1)|εi(Xk)εj(Xk+1) = 1} ×

p∗[εi(Xk)εj(Xk+1) = 1],

where p∗ is the steady-state probability ofXk = i and
Xk+1 = j. By the Markov property, the first term equals
g(j), and the second term equalsπ(i)p(i, j).

From (8), we have [8]

π(i)q(i, j)g(j)

≈ lim
K→∞

1

K − L + 1

{

K−L
∑

k=0

εi(Xk)εj(Xk+1)×

q(Xk,Xk+1)

p(Xk,Xk+1)
[

L−1
∑

l=0

f(Xk+l+1)]

}

, w.p.1.

In the above, the quantity involvingq(i, j), π(i)q(i, j)g(j),
is estimated by simulating a quantity involvingp(i, j),
π(i)p(i, j)g(j). This is a variant of the standard importance
sampling technique in simulation, which is widely applied
to study the performance of a stochastic system with a prob-
ability distribution by simulating another stochastic system
with a different probability distribution.

Finally, by the ergodicity, we have

∂η

∂δ
≈ πQgL

= lim
K→∞

1

K − L + 1

∑

i

∑

j

{

K−L
∑

k=0

εi(Xk)×

εj(Xk+1)
q(Xk, Xk+1)

p(Xk, Xk+1)
[

L−1
∑

l=0

f(Xk+l+1)]

}

= lim
K→∞

1

K − L + 1

{

K−L
∑

k=0

∑

i

∑

j

{εi(Xk)×

εj(Xk+1)
q(Xk, Xk+1)

p(Xk, Xk+1)
}[

L−1
∑

l=0

f(Xk+l+1)]

}

= lim
K→∞

1

K − L + 1
×

{

K−L
∑

k=0

{
q(Xk, Xk+1)

p(Xk, Xk+1)
}[

L−1
∑

l=0

f(Xk+l+1)]

}

, w.p.1. (9)

It can be shown that (9) is equivalent to [8]

∂η

∂δ
≈ lim

K→∞

1

K − L + 1
×

K−L
∑

k=0

{

f(Xk+L)

L−1
∑

l=0

[

q(Xk+l, Xk+l+1)

p(Xk+l, Xk+l+1)

]

}

, w.p.1. (10)

In (9) and (10),g is approximated by truncation. We can
also use anα-potentialgα, 0 < α < 1, to approximateg. gα

satisfies the following discounted Poisson equation:

(I − αP + αeπ)gα = f.

It is shown that

lim
α→1

gα = g.

Ignoring the constant term, we have

gα,L(i) = E[

∞
∑

l=0

αlf(Xl)|X0 = i].

Using this as thêg in (7), we get (cf. (9))

∂η

∂δ
≈ lim

K→∞

1

K − L + 1
×

{

K−L
∑

k=0

{
q(Xk, Xk+1)

p(Xk, Xk+1)
}[

∞
∑

l=0

αlf(Xk+l+1)]

}

, w.p.1. (11)

This is equivalent to (c.f. (10))

∂η

∂δ
≈ lim

K→∞

1

K

K−1
∑

k=0

×

{

f(Xk)

k−1
∑

l=0

[

αk−l−1 q(Xl,Xl+1)

p(Xl,Xl+1)

]

}

, w.p.1. (12)

An algorithm is developed in [1] to estimate∂η
∂δ

using (12).

It is easy to estimatezk :=
∑k−1

l=0

[

αk−l−1 q(Xl,Xl+1)
p(Xl,Xl+1)

]



recursively:

zk+1 = αzk +
q(Xk,Xk+1)

p(Xk,Xk+1)
.

On the other hand, to estimate
∑L−1

l=0

[

q(Xk+l,Xk+l+1)
p(Xk+l,Xk+l+1)

]

, one
has to storeL values.

(7) can also be used to develop sample path based algo-
rithms for the performance derivatives. We first choose any
regenerative statei∗. For convenience, we setX0 = i∗ and
defineu0 = 0, andum+1 = min{n : n > um,Xm = i} be
the sequence of regenerative points. Setg(i∗) = 0. For any
Xn = i 6= i∗ andum ≤ n < um+1 we have

g(Xn) = d(i∗, i) = E{

tm+1−1
∑

l=n

[f(Xl) − η]}.

With this and by (7), we have

dη

dδ
= E

{

q(Xk, Xk+1)

p(Xk, Xk+1)
{

tm+1−1
∑

l=k+1

[f(Xl) − η]} + h(Xk)

}

. (13)

Sample path based algorithms can then be developed, and
we will not go into the details.

IV. GRADIENT-BASED OPTIMIZATION

Any gradient estimate (PA, LR or SF, or the potential based
estimates discussed in section III) can be used together with
the standard stochastic gradient algorithms for optimizing the
cost in Markov decision processes. For applications of PA
and LR to the optimization problems, see e.g., [10].

[13] proposed a potential-based recursive algorithm for
optimizing the average cost in finite state Markov reward
processes that depend on a set of parameters denoted as
θ. The approach is based on the regenerative structure of a
Markov chain. The gradient estimate is similar to (13) except
that the performanceη is also estimated on the sample path
and the gradient is not estimated explicitly in each step of
the recursion, because its estimate is used in the stochastic
gradient algorithm to determine the step size in a recursive
procedure to reach the valueθ at which the performance
gradient is zero. The paper also provides an elegant proof
for the convergence of the algorithm.

The gradient based approach can be easily extended to the
partially observable Markov decision processes (POMDP)
(see, e.g., [1], [2]). The POMDP model in [1], [2] is described
as follows. In addition to the state spaceS = {1, · · · ,M},
there are a control space denoted asU = {1, · · · , N} consist-
ing of N controls and an observation spaceY = {1, · · · , L}
consisting ofL observations. Eachu ∈ U determines a
transition probability matrixPu, which does not depend on
the parameterθ. When the Markov chain is at statei ∈ S,
an observationy ∈ Y is obtained according to a probability
distribution νi(y). For any observationy, we may choose
a random policyµy(u), which is a probability distribution
over the control spaceU . It is assumed that the distribution

depends on the parameterθ and therefore is denoted as
µy(θ, u).

Given an observation distributionνi(y) and a random
policy µy(θ, u), the corresponding transition probabilities are

pθ(i, j) =
∑

u,y

{νi(y)µy(θ, u)pu(i, j)}.

Therefore,

d

dθ
pθ(i, j) =

∑

u,y

{νi(y)pu(i, j)
d

dθ
µy(θ, u)}. (14)

In POMDP, we assume that although the stateXk, k =
0, 1, · · ·, is not completely observable, the costf(Xk) is
known. Thus, algorithms can be developed by replacing
q(i, j) with d

dθ
pθ(i, j) of (14) in the algorithms developed

for standard MDPs in section III-B. For example, ifh(i) = 0
then (13) becomes

dη

dδ
= E

{

d
dθ

pθ(Xk,Xk+1)

p(Xk,Xk+1)
{

tm+1−1
∑

l=k+1

[f(Xl) − η]}

}

,(15)

in which f(Xk) is assumed to be observable.
A recursive algorithm called GPOMDP is presented in [1].

The algorithms uses a discount factor to approximateg (cf.
(12)).

V. POLICY ITERATION

Omitted to reduce the length.

VI. CONCLUSION

We have provided an overview of learning and optimiza-
tion from a system point of view. It provides a unified
framework for PA, MDP, and RL. Many or most results
reviewed here are not new; however, this new perspective
does lead to some new research directions, such as the
gradient-based policy iteration and the event based sensitivity
analysis by the construction method. Further research is
needed for these topics. We summarize the results by Figure
1.
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