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Abstract— Learning and optimization of stochastic systems the parameter changes [5]. For Markov chains, parameters
is a multi-disciplinary area that attracts wide attentions from  are the transition probabilities, a perturbation is a “jtmp
researchers in control systems, operations research and com- f.om one state to another statg, and the realization factor

puter science. Areas such as perturbation analysis (PA), Markov . .
decision process (MDP), and reinforcement learning (RL) share equals the difference of the potentials at the two states.

the common goal. In this paper, we offer an overview of the It has been shown that by the above principle, we can
area of learning and optimization from a system theoretic use potentials or realization factors as building blocks to

perspective. We show how these seemly different disciplines are construct performance sensitivities for many systems. When
closely related, how one topic leads to the others, and how this the changes are discrete, this leads to formulas for the

perspective may lead to new research topics and new results, f diff f Mark hai d wh
and how the performance sensitivity formulas can serve as the performance diiference ol two Markov: chains, and when

basis for learning and optimization. the changes are infinitesimal, it leads to the formula for
performance gradients [7].
I. INTRODUCTION These two standard formulas are the basis for performance

Perturbation analysis [12] was originally developed foroptlmlza_tlon [6]:_Opt|m|z_at|on can b_e achlevgd by combgin
estimating performance derivatives with respect to syste e gradugnt gstlm.ate W't.h stochastic approxm_atlon o
parameters in stochastic systems with queueing structur(?ersby policy |te.rat|on which can be easily .derlved frgm the
(queueing networks, generalized semi-Markov process grformance_ dn‘ferepce formula .(see_ section Il). This sead
etc); the estimates can be obtained by analyzing a singtl% the following main research directions:
sample path of such a system; it was shown that although thel) Develop efficient algorithms to estimate the potentials
approach requires some conditions for the system strycture ~ @nd/or the derivatives. Reinforcement learning, X(
it is very efficient since it utilizes the special dynamic neuro-dynamic programming, etc, are efficient ways
properties of the system. The fundamental concept of PA,  Of estimating the performance potentials, realization
perturbation realization [5], has been extended to Markov  factors, and related quantities such as Q-factors, etc.,

processes. Recent research in this direction reveals mgstro ~ Pased on sample paths (section IlI-A). In addition,
connection among PA, MDP(Markov decision processes), ~ algorithms can be developed to estimate performance
and RL (reinforcement learning) [6]. gradients directly from a single sample path.

In this paper, we offer an overview of learning and opti- 2) Develop efficient optimization algorithms with the po-
mization from a system theoretic perspective. We show how  tential or gradient estimates

these seemly different disciplines are closely relatedy ho a) Gradient-based optimization for parameterized
one topic leads to the others, and how this perspective may systems; this approach combines the gradient
lead to new research topics and new results. Our discussion estimates with stochastic gradient algorithms.

is based on the general model of discrete time Markov b) On-line policy iteration; this approach combines
chains. For simplicity, we discuss Markov chains with finite the potential estimates with stochastic approxima-
state space denoted 4%,2,---,M}. The central piece of tion to implement policy iteration (section V).
learning and optimization is the performance potentjdi3, c) Gradient-based policy iteration; this is an open
i=1,---, M, orequivalently, perturbation realization factors problem.

d(i,j) = g(j4) — g(#) [7]. From perturbation analysis point Il. A GENERAL VIEW OF OPTIMIZATION

of view, a change in system parameters induces a series . . . L
9 y P Consider an irreducible and aperiodic Markov chXin=

of perturbations on a sample path, the effect of a singl o
perturbation on a system performance can be measured g‘ﬁ" : n > 0} on a finite state spacé — {1’2"'1'\4’ ]V]{I}
with transition probability matrixP = [p(i, j)] € [0, 1] *.

the realization factor of the perturbation, and the totéaf fr o be th " i
of the parameter change on the performance is then the Slﬁtﬁ 7: d (7;1 o ,mé)b'l'?' € (rowl vector representing
of the realization factors of all the perturbations induted '™ St€ady-stale probabilities, andd = (1, f2’“' ',;’fM)

be the (column) performance vector, where “T” represents

— T 3
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me = 1. The steady state probability flow balance equation ithe performance difference for two discrete parametéts (
7 = wP. The performance measure is the long-run averagmd P’). Both of them depend mainly on the same quantity:
defined as the performance potential. Note that both depend on only

M = potential g (not ¢’), and = and g can be estimated based
n=E:(f)= mei =rf= lim — f(X;),w.p.1. on a single sample path of the Markov chain with transition
=1 L—oo L 4= matrix P (see section [lI-A).
We start with thePoisson equation The two equations (3) and (2) form the basis for per-
formance optimization of Markov systems. Two basic ap-
(I—-Plg+en=f (1) proaches can be developed from them. The first one is the
Its solutiong = (g(1),- -, g(M))7 is called aperformance gradient-based optimization, which combines the gradient

potential vector, andg(i) is the potential at state g is also ~ estimation based on (3) and the stochastic approximation
called the value function in dynamic programming, or théechniques. This approach applies to systems that can be
“differential” or “relative cost vector” [3], and “bias”. fie parameterized by continuous variables. This is in the same
solution to (1) is only up to an additive constant; i.e.giis ~ SPirit as the perturbation analysis (or PA) based optiropat
a solution to (1), then so ig + ce. (see, e.g. [9], [10]). The sensitivity formula (3) can inddoe

Let P’ and7’ be another irreducible transition probability d€rived by applying the PA principles. The second approach
matrix on the same state space and its steady state propabiliS the policy-iteration based optimization. It can be shown
Let f’ be the performance function for the system with that policy iteration algorithms in Markov decision proivig
Q=P —P=q(i,j) andh = f' — f. ThenQe = 0. The €an be easily derived from (2) (see, e.g., [6]). The maindssu
steady state perfo7rmance correspondingPtas i’ = 7' f'. here is to design fast policy iteration procedures that enye/

Multiplying both sides of (1) withr’, we can verify that to the optimal policy. Both approaches depend heavily on the
estimation of potentials. Q-learning [14], actor-critypé of

n —n=n"(Qg+h). (2) algorithms, etc., are variants of this approach: they aito at
Now, suppose thaP changes ta?(6) = P +8Q = 6P’ + find dir(_actly the_ potentials (or th_e equi_valent Q-factore_p f
(1—6)P, and f changes tof (§) = f -+ oh, with & € (0, 1]. the optimal poll_cy. These are S|mulat|o_n_based algonthr_ns
Then the performance measure changeg(d = 1+ An(s). since they require the sample path to visit very state-actio

The derivative ofy in the direction of@ is defined asy! = pair.
lim;_o =42, Taking P(5) as theP” in (2), we havey(s) - lIl. ESTIMATION OF POTENTIALS AND
n = m(5)(3Qg + 6h). Letting § — 0, we get PERFORMANCE DERIVATIVES
ili_g =7m(Qg + h). (3) A. Estimation of Performance Potentials
For references, see, e.g., [6], [7]. SinGe = 0, for any g We first brief review that the potentials of a Markov chain

satisfying (1) for any constant we haveQg = Q(g + ce), an be estimated with a single sample path of the Markov
thus both (3) and (2) still hold fog’ = g + ce. This verifies chain. Sinceg is only up _to an additive constant, we may
again that potentials are determined only up to an additi&'00se the one that satisfieg = 7 f = 5. Thus, (1) becomes
constant; thi§ is the same as the potential energy in physics (I—P+en)g=]f (5)

In (3), a linear structureP(6) = P + 6Q is assumed.
In general, the transition probability matrix may depend on With (5), the potentialy can be estimated on a sample
an arbitrary parametet, which is normalized ir[0,1]; i.e., path either “directly” [8], or by TD{) algorithms etc, [14].
P(0) = P+ Q(6) with Q(1) = P(1) — P = P' — P. _ o
Similarly, we assumef(#) = f + h(6). Thus, forg << 1, B Gradient Estimation
we haveP(f) = P+{%2},_00, and f(0) = f+ { %} y_ob; Consider a stationary Markov chal = (X, X3, -, ).
i.e., in the neighboring area &f = 0, P(¢) and f(0) take (This implies the initial probability distribution is.) Let E
a linear form. Replacing? in (3) with {gTQ}9=0 andh with  denote the expectation on the probability space generated

{4h}4_ and noting that’l = 99 and & = 4k e get by X. Denote a generic time instant &s Because it is
dn AP df impossible for a sample path with to contain information
—lp=o =7 {(—)g_gg + (—)9_0} . (4) aboutP’, we need to use a standard technique in simulation
do do do calledimportance samplingWe have

Therefore, without loss of generality, we shall mainly diss dn

the linear case (3). - m(Qg + h)

The two simple equations (3) and (2) represent the per- a(i, )
formance sensitivity; (3) is the performance derivative (o = Z Z{W(i)[p(i,j) 22 g(7) + h(i)]}
gradient) with respect to continuous variables, and (2) is ieS jeS p(i.J)
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- E {Mg(XkH) + h(Xk)} . (6) Finally, by the ergodicity, we have
p(Xka Xk+1)

On
Furthermore, ifg is a random variable defined ad such a5 Qe

that E(g) = ¢g and § is independent of the transition from _
Xj, to Xgy1, then we have = KIEHOOK L+1ZZ kZ;
J
dn { q( Xk, Xpet1) }
S =E TG L (X 7 a( Xk, X
do (Xk;XkJrl) (Xk) 0 € (Xrt1) XZ X;:i Zf (Xkti+1) }
Sample path based algorithms can be developed by using =0
(7) and the estimates @f Let us first use _
T ey Ty s L+1 ZZZ{Q (Xe)x
L—1 @
gr(i) = E (X)X =1]. (Xr, X
L() [; ( )| 0 } Ej(XkH qX:XI,:i Zka+l+l
Each term inmQg takes the formr(i)q(Z, j)g(j). Note that N T 1
(for notational simplicity, we set = 0) kA KLyl
w(i)p(i. 4)9() {Z{ ol W Fin) } w.p.1.(9)
= E{ei(Xn)ej(Xit1)g(Xpt1)} b Xei1) T
1
~ Khinoo K_r511”~ It can be shown that (9) is equivalent to [8]
K—L L—1 on I 1 y
{ D eXne (XY f(Xk+l+1)]} ,w.p.1(8) 2 KK = L + 1
k=0 1=0 = (X (Xt Xii41) 1 (10
The Convergence can be proved. Defining a function= kz; k“)z (Xt Xoren) | (P (10)

el(Xk)ej(XkH)[Zl . ' f(Xk4i41)], We get an ergodic pro-
cessZ = {Z, k > 0}. Therefore, the right-hand side of (8) !n (9) and (10),g is apprOX|mated by truncation. We can
equals also use am-potentialg,, 0 < « < 1, to approximatey. g,

satisfies the following discounted Poisson equation:

L—-1
Efei(Xe)e;(Xer) D f(Xngirn)l} (I —aP +aem)ga = f.
L1 =0 It is shown that
= B{Y ) f(Xpprs)le(Xn)es(Xpp1) = 1} x lim g = g.
1=0 a—
plei(Xk)ej (Xir1) = 1], Ignoring the constant term, we have
where p* is the steady-state probability oX; = ¢ and (X)X
Xi41 = j. By the Markov property, the first term equals 9 L ZO‘ F(X)|Xo = 1].
g(7), and the second term equai$i)p(i, j). ) ) f _0
From (8), we have [8] Using this as thegj in (7), we get (cf. (9))
TR on .1
m(i)q(i, 7)9(j) 2 R K—L+1 "
K—-L
N . 1 q( Xk, Xpy1)
~ Klgnoo K_L+1 { 2 € (Xk)ej (Xpq1)x {Z{ X Xr1) Za F(Xkt141)] ¢ wp.l. (11)
X5, Xn This is equivalent to (C.f. (10))
MZJCXHIH)] w.p.1
P( Xk, Xg41) P
=0 _T] . Z «
ing(i. 1), 7(i)q(i, )g(j RS

In the above, the quantity involving(s, j), ©(¢)q(i,7)g9(j).

is estimated by simulating a quantity involving(i,j), _

m(1)p(i,7)g(j). This is a variant of the standard importance { (Xk) Z [ k—1-14 Xz,Xz+1)] } Lw.p.l. (12)
sampling technique in simulation, which is widely applied (X1, Xi41)

to study the performance of a stochastic system with a proh- . . . . .

ability distribution by simulating another stochastic teys Rn algorithm is developed in [1] tko estma% uimg (12).
with a different probability distribution. It is easy to estimatex, := ) { et ngﬁixﬁﬁﬂ
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recursively: depends on the parametérand therefore is denoted as

q( Xk, Xi+1) ty (0, ). . o
(e Xni1)’ Given an observation distributiom;(y) and a random
0y +

policy 1, (6, u), the corresponding transition probabilities are
On the other hand, to estima}e, ' M} one

P(Xp1, Xnt141) 7)) = 4 6 “(7,7)}.
has to storel values. pe(l’J) ;;{V (y)uy( 7U)p (Z’J)}

(7) can also be used to develop sample path based algo-
rithms for the performance derivatives. We first choose anyherefore,
regenerative stat&". For convenience, we séfy = * and i SN , wre - i
defineug = 0, andu,,+1 = min{n : n > uy,, X,, =i} be d@pe(z’]) o uz:{uq,(y)p (Z’j)dH'uy(e’u)}' (14)
the sequence of regenerative points. §gt) = 0. For any Y

Zk+1 = Q2 +

X, =i#i* andum < n < umis We have In POMDP, we assume that although the statg k =
. ) 0,1,---, is not completely observable, the coftX;) is
. joy known. Thus, algorithms can be developed by replacing
9(Xn) = d(i*,i) = E{ Y [f(X0) —n]}. g(i, 5) with L (i, ) of (14) in the algorithms developed
) ) t=n for standard MDPs in section IlI-B. For exampleifi) = 0
tmy1—1 t -1
d77 (I(Xk’Xk+1) d da (X X ) m+1
=B =] Z [f(Xz)—n]}+h(Xk)}-(l3) an _ p ) agPo\ Rk Akt1) X)) — 15
do {P(Xk,Xk+l) ) ds p(XkanJ,-l) {l:%;l [f( l) 77]} 7( )

Sample path based algorithms can then be developed, QHthich £(X,.) is assumed to be observable
we will not go into the details. A recursive algorithm called GPOMDP is presented in [1].

IV. GRADIENT-BASED OPTIMIZATION The algorithms uses a discount factor to approximatef.
Any gradient estimate (PA, LR or SF, or the potential baseg'z))'
estimates discussed in section Ill) can be used togethér wit V. POLICY ITERATION

the standard stochastic gradient algorithms for optingizire
cost in Markov decision processes. For applications of PA
and LR to the optimization problems, see e.g., [10]. V]. CONCLUSION
[13] proposed a potential-based recursive algorithm for . . : .
optimizing the average cost in finite state Markov reward We have provided an overview of Iearnmg and Opt'm.'za'
processes that depend on a set of parameters denoted!'&d from a system point of view. It provides a unified
6. The approach is based on the regenerative structure ofrgmework for PA, MDP, and RL. Many_ or most result§
Markov chain. The gradient estimate is similar to (13) excegcviewed here are not new; however, this new perspective
that the performance is also estimated on the sample patt'poes_ lead to some nhew _research directions, sut_:h_ as the
and the gradient is not estimated explicitly in each step (gradlent-based policy iteration and the event based stsit

the recursion, because its estimate is used in the stochaéatpag/sc'jsf byhthe con_strus;c/lon metho_d. Fhurther lrestt)a a::c_h IS
gradient algorithm to determine the step size in a recursifi €ded for these topics. We summarize the results by Figure

procedure to reach the value at which the performance
gradient is zero. The paper also provides an elegant proof VIl. REFERENCES
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Fig. 1. A System Point of View of Learning and Optimization
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