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Abstract Priority queueing models have been commonly

used in telecommunication systems. The development of an-

alytically tractable models to determine their performance

is vitally important. The discrete time batch Markovian ar-

rival process (DBMAP) has been widely used to model the

source behavior of data traffic, while phase-type (PH) distri-

bution has been extensively applied to model the service time.

This paper focuses on the computation of the DBMAP/PH/1
queueing system with priorities, in which the arrival pro-

cess is considered to be a DBMAP with two priority lev-

els and the service time obeys a discrete PH distribution.

Such a queueing model has potential in performance eval-

uation of computer networks such as video transmission

over wireless networks and priority scheduling in ATM or

TDMA networks. Based on matrix-analytic methods, we

develop computation algorithms for obtaining the station-

ary distribution of the system numbers and further deriving
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the key performance indices of the DBMAP/PH/1 priority
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1. Introduction

The Markovian arrival process (MAP) [9] and the discrete

time Markovian arrival process (DMAP) were introduced to

model source behavior with correlations, which is a distinc-

tive feature of data traffic. MAP and DMAP were extended

to the batch arrival case, called the batch Markovian arrival

process (BMAP) [10, 11] and the discrete-time batch Marko-

vian arrival process (DBMAP) [3], respectively. BMAP and

DBMAP were introduced to capture the bursty nature of traf-

fic source behavior. They were thus well suited to model mul-

timedia data [2]. There have been extensive studies on queue-

ing systems with BMAP or DBMAP input. For instance, the

BMAP/G/1 single server queue was studied in [10], and the

DBMAP/G/1/N single server queue was investigated in [3].

Phase-type (PH) distributions were shown to approximate

many general distributions, particularly in modeling the ser-

vice time [13]. A DBMAP/PH/1 queue with different service

disciplines was studied in [5]. However none of these models

consider priority in their queueing systems.

Priority queueing models are commonly used in telecom-

munications systems. The development of analytically

tractable models to determine the performance of such mod-

els is essential. Traditional M/G/1 priority queues with Pois-

son arrivals were studied in [16], in which average perfor-

mance measures were obtained. Queue length distribution
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for continuous-time M/M/1 priority queues were obtained

in [12]. The DMAP/PH/1 priority queue was especially stud-

ied in [1], in which the arrival process was modeled as a

single arrival MAP with two priority levels, and the service

process was modeled to follow discrete time PH-type distri-

bution. Based on the quasi-birth-death (QBD) type of tran-

sition probability matrix of the underlying Markov chain, a

matrix-geometric solution was derived. Furthermore, based

on the upper triangular structure of the R measure (defined

below in Section 4.1), computation algorithms were devel-

oped for the queue length and waiting time distributions. This

paper considers the computation of a queueing system con-

sisting of a DBMAP arrival process with two priority levels

and a single server with a PH-type service distribution, which

we call the DBMAP/PH/1 priority queue. Our work builds

upon the existing DMAP/PH/1 queueing model with prior-

ity support by taking into account the fact that batch arrival

accurately captures the bursty and correlation nature of data

traffic generated in computer communication networks.

The main contributions of this paper are summarized as

follows. We extend the DBMAP definition [3] to support dif-

ferent types of arrivals. The extension is based on Markov

chains with marked transitions [8]. We derive the transition

probability matrices for the underlying Markov chains of

the DBMAP/PH/1 priority queue under both non-preemptive

and preemptive disciplines. We show that the related Markov

chains are M/G/1-type [14]. The transition probability ma-

trix for the Markov chain has a block structure with an infinite

number of blocks and each block element has infinitely large

dimensions. It is known that there is no general solution for

this type of Markov chain, where the block elements of the

transition probability matrix have infinite dimensions. The

matrix-analytic methods [6] can handle the case only when

the block elements are of finite size. In this paper, we de-

velop an analytical solution for the problem. We firstly study

the relationships among the R measures [19] for the related

Markov chains. We then prove that the R0,k and �0 mea-

sures are in upper-Hessenberg form and have row-repeating

structures. We proceed to show that the Rk measures have

upper-triangular form structures with row-repeating proper-

ties. Based on these special structures and the relationships

among Rk , R0k and �0, we develop algorithms to compute

these measures and present detailed computation steps. Sub-

sequently, we solve the underlying Markov chains of the

DBMAP/PH/1 priority queues by adopting matrix-analytic

methods, and we obtain the stationary queue length distri-

butions for both the high and low priority queues. We also

analyze the time and memory complexity of the computation.

Finally, we offer numerical results and discuss possible ap-

plications of the DBMAP/PH/1 priority queues in modeling

computer and communication networks.

In what follows, we introduce the DBMAP process in

Section 2.1 and the PH-type distribution in Section 2.2. In

Section 3, we discuss the basic model of the DBMAP/PH/1

queueing system under both non-preemptive and preemptive

disciplines. We then describe the computation algorithms that

solve the DBMAP/PH/1 priority queue in Section 4. Finally,

we provide numerical examples in Section 5 and present con-

cluding remarks in Section 6.

2. The DBMAP arrival process and PH distribution

2.1. The DBMAP arrival process

In this subsection, we give a brief introduction to the discrete-

time batch Markovian arrival process (DBMAP) [3]. Con-

sider a sequence of n × n substochastic matrices, Dk , k =
0, 1, 2 . . . ∞, and an n state discrete-time Markov chain with

transition probability matrix D, which is the sum of the Dk

elements, i.e., D = ∑∞
k=0 Dk . Suppose that, at time t , t ≥ 0,

the Markov chain is in state j , 1 ≤ j ≤ n; then, at time epoch

t + 1, with conditional probability Dk( j, j ′), k ≥ 0, the ar-

rival process enters state j ′, 1 ≤ j ′ ≤ n, and triggers a batch

of k arrivals. Therefore, the D0 matrix corresponds to state

transitions with no arrival, and the Dk matrix with k ≥ 1,

corresponds to state transitions with a batch arrival of size k.

In other words, when the state of the arrival process changes

from j to j ′, the batch size distribution of the triggered arrival

is given by

[D0( j, j ′), D1( j, j ′), D2( j, j ′), D3( j, j ′), . . . ].

Obviously, we have

∞∑
k=0

n∑
j ′=1

Dk( j, j ′) = 1, for all 1 ≤ j ≤ n,

which is equivalent to

∞∑
k=0

Dke = De = e,

where e denotes a column vector with all elements being 11.

Assume the process is in stationary state, and let α be the

steady state probability vector for D, we have{
αD = α,

αe = 1.

The arrival rate λ of a stationary DBMAP process is given by

λ = α(
∞∑

k=0

k Dk)e.

1 In this paper, we always let e denote a column vector with all 1s, with
proper dimensions according to the context.
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The probability of having an arrival, regardless of the batch

size, is given by α
∑∞

k=1 Dke.

Let N (t) be the number of arrivals in the duration (0, t],
let the random variable J (t) be the state of the underlying

Markov chain immediately after time t , the bivariate se-

quence (N (t), J (t)), t ≥ 0 is a two dimensional discrete time

Markov chain on the state space {(i, j), i ≥ 0, 1 ≤ j ≤ n}.
The states can be listed in the form of (level, phase) pairs

as follows:

(0, 0), (0, 1), (0, 2), · · · (0, n),

(1, 0), (1, 1), (1, 2), · · · (1, n),

(2, 0), (2, 1), (2, 2), · · · (2, n),
...

...
... · · · ... .

The transition probability matrix for the above Markov chain

is given by

⎡⎢⎢⎢⎣
D0 D1 D2 D3 · · ·
0 D0 D1 D2 · · ·
0 0 D0 D1 · · ·
...

...
. . .

. . .
. . .

⎤⎥⎥⎥⎦ . (1)

The above two-dimensional Markov chain (1) completely

describes the corresponding DBMAP process. The transition

from state (i, j) to state (i + k, j ′), where k ≥ 1, 1 ≤ j ≤ n,

1 ≤ j ′ ≤ n, corresponds to an arrival with batch size k.

It has been shown that many traditional arrival pro-

cesses, such as the Bernoulli arrival process, the discrete-

time Markov modulated Bernoulli process, and the batch

Bernoulli process with correlated batch arrivals, etc., are all

special cases of the DBMAP process [3].

2.2. The phase-type distribution

Consider an m + 1 state Markov chain with initial probabil-

ity vector (β, βm+1) and transition probability matrix

P =
[

S S0

0 1

]
,

where β is a row vector with m elements, (β, βm+1) is a row

probability vector with m + 1 elements, S0 = e − Se, S is

substochastic and I − S is nonsingular2. A discrete phase-

type (PH) distribution is defined as the time until absorption

of state m + 1 in the finite discrete Markov chain defined

by the above stochastic matrix P . The probability density

2 In this paper we let I denote the identity matrix with a proper dimen-
sion.

function pk of the PH-type distribution is given by

p0 = βm+1, pk = βSk−1S0, k ≥ 1,

and the mean equals to β(I − S)−1e. The pair (β, S) is called

a representation of the PH-type distribution [13] and m is

called the dimension of the PH-type distribution in this paper.

3. The DBMAP/PH/1 priority queueing model

In this section, we establish the DBMAP/PH/1 priority queue-

ing model for both the non-preemptive and preemptive dis-

ciplines. We firstly define the DBMAP arrival process with

priorities in Section 3.1, and then introduce the service dis-

ciplines in Section 3.2. We formulate the non-preemptive
DBMAP/PH/1 priority queue in Section 3.3, and the pre-
emptive DBMAP/PH/1 priority queue in Section 3.4.

3.1. The DBMAP arrival process with priorities

The DBMAP process introduced in Section 2.1 describes only

a single class or a single priority of arrivals. To extend the

DBMAP process to distinguish more than one class or more

than one priority of arrivals, we take a similar approach as

the Markovian chain with marked transitions model in [7, 8]

and extend the one-dimensional index for the Dk matrices in

Section 2.1 to a two-dimensional index below.

We consider an n state discrete-time Markovian arrival

process with two types of batch arrivals, one for high priority

jobs and the other for low priority jobs. The maximum batch

sizes are given by b1 and b2 for high priority and low priority

arrivals, respectively. The corresponding parameter matrices

for the DBMAP are given by {D00, D01, . . . Di1i2
, . . . Db1b2

}.
Each Di1i2

is a substochastic matrix with dimension n × n.

Suppose that at time t ≥ 0, the underlying Markov chain of

the DBMAP process is in state j , 1 ≤ j ≤ n; then, at the next

time epoch, t + 1, with conditional probability Di1i2
( j, j ′),

where 0 ≤ i1 ≤ b1, 0 ≤ i2 ≤ b2, the process changes to state

j ′, 1 ≤ j ′ ≤ n, with a simultaneous batch arrival of i1 high

priority jobs and i2 low priority jobs. In other words, when

the state of the arrival process changes from j to j ′, the two-

dimensional batch size distribution of the triggered arrival is

given as follows:

[D00( j, j ′), D01( j, j ′), . . . Di1i2
( j, j ′), . . . Db1b2

( j, j ′)].

The transition probability matrix of the underlying Markov

chain is given by D = ∑b1

i1=0

∑b2

i2=0 Di1i2
.

Assume that the arrival process is in a stationary state and

the initial probability vector of the arrival process is given by
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α. We have{
αD = α,

αe = 1.

The arrival rate for the high priority jobs is given by

λh = α(
b1∑

i1=0

b2∑
i2=0

i1 Di1i2
)e;

the arrival rate for the low priority jobs is given by

λl = α(
b1∑

i1=0

b2∑
i2=0

i2 Di1i2
)e;

and the total arrival rate is given by

λ = λh + λl .

The aggregated arrival process that consists of all the high

and low priority jobs is a normal DBMAP with parameters

{D0, D1, D2, . . . Db1+b2
}, where D0 = D00, D1 = D01 +

D10, D2 = D02 + D11 + D20, D3 = D03 + D12 + D21 +
D30, . . . Db1+b2

= Db1b2
. The arrival rate for this DBMAP

process is given by λ = α(
∑b1+b2

i=1 i Di )e.

3.2. Service disciplines

We consider a queueing system described as follows.� The arrival process follows the DBMAP process with two

priority levels, defined by {D00, D01, D02, . . . , Db1b2
}. All

Di1i2
matrices are of dimension n × n.� The service processes for both the high and low priority

jobs follow discrete PH-type distributions with (β1, S1) in-

dicating the high priority jobs and (β2, S2) indicating the

low priority jobs. β1 is a row vector with m1 elements and

S1 is an m1 × m1 substochastic matrix; β2 is row vector

with m2 elements and S2 is an m2 × m2 substochastic ma-

trix.� There is a single priority server in the system and the ser-

vice discipline can be preemptive or non-preemptive by

nature. In the preemptive case, we consider only the pre-

emptive resume discipline. That is, when the server returns

to serve the preempted low priority job, processing will

start from the service phase when the job was preempted.

Recording the exact preempting phase leads to a relatively

large state space. Thus, we take the same approach as in [1]

and let β∗
2 be the service phase when the preempted low

priority job resumes service, where β∗
2 satisfies{

β∗
2 e = 1,

β∗
2 = β∗

2 (S2 + S0
2β2).

Here β∗
2 can be interpreted as the limiting probability vec-

tor of the phase from which the low priority job resumes

service. We expect that replacing the exact service preemp-

tion phase with β∗
2 would not bring a major impact on the

performance measures. In the non-preemptive case, there

is no need to consider the β∗
1 problem because once the

low priority job is serviced, there is no interruption until

the job is completed.

The above queueing model is called a DBMAP/PH/1 prior-

ity queue with two levels of priority. It differs from the single

arrival model [1] in two ways. Firstly, since the arrival process

of the DBMAP/PH/1 priority queue allows batch arrivals, the

model has much broader application in practice. An wireless

multimedia example is given in Section 5.2. Secondly, the so-

lution is also different from that of the single arrival model.

For the DMAP/PH/1 priority queue, direct computation of

the R measure is possible, since R is the solution of a matrix

quadratic equation. However, for the DBMAP/PH/1 prior-

ity queue, direct computation of the R measures can not be

done, since they are related by a system of matrix equations,

as shown in Section 4.2. We next derive the transition prob-

ability matrices under both preemptive and non-preemptive

service disciplines.

3.3. The non-preemptive DBMAP/PH/1 priority queue

For the non-preemptive DBMAP/PH/1 priority queue,

we define state space � to be {(n1, n2, i, s, p)}3. State

(n1, n2, i, s, p) in � has the following conditions.� The arrival process is in state s, s = 1, 2, . . . , n.� A high priority job is being served if i = 1; or a low priority

job is being served if i = 2. Here i is an index variable.� The service process is in phase p, depending on which

type of job is in service, as indicated by i . When i = 1,

p = 1, 2, . . . , m1; when i = 2, p = 1, 2, . . . , m2.� There are n1 high priority jobs in the system, including the

one being served, if any.� In the case of n1 = 0 and n2 = 0, state (n1, n2, i, s, p) can

be reduced to (0, 0, s), since the whole system is idle and

there is no need to record the service phase. In this case

the number of high and low priority jobs in the system is

zero.

In the case of n1 = 0 and n2 ≥ 1, state (n1, n2, i, s, p)

can be reduced to (0, n2, s, p), since only a low priority

job can be in service. In this case, n2 denotes the number

of low priority jobs in the system.

In the case of n1 ≥ 1, the server may be busy with a high

or low priority job, due to the non-preemptive service dis-

cipline. In this case, n2 denotes the number of low priority

3 We refer to n1 and n2 as the system numbers in this paper.
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jobs waiting in the queue. Thus if the server is busy serving

a low priority job, the total number of low priority jobs in

the system is n2 + 1, otherwise the total number of low

priority jobs in the system is n2.

The system can be described by an M/G/1-type Markov
chain with state space �. The transition probability matrix
for the non-preemptive case, Pnpm (the subscript npm stands
for non-preemptive), is given by

Pnpm

=

⎡⎢⎢⎢⎢⎢⎣
B00 B01 B02 · · · B0b1

B10 A0 A1 · · · Ab1−1 Ab1

A−1 A0 · · · Ab1−2 Ab1−1 Ab1

A−1 · · · Ab1−3 Ab1−2 Ab1−1 Ab1

. . .
. . .

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ ,

(2)

with the following sub-matrices4:

B00

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B00
00 B01

00 B02
00 · · · B0b2

00

B10
00 B0

00 B1
00 · · · Bb2−1

00 Bb2
00

B−1
00 B0

00 · · · Bb2−2
00 Bb2−1

00 Bb2
00

B−1
00 · · · Bb2−3

00 Bb2−2
00 Bb2−1

00 Bb2
00

. . .
. . .

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B00
00 = D00,

B0i2
00 = D0i2 ⊗ β2, i2 = 1, 2, . . . , b2,

B10
00 = D00 ⊗ S0

2 ,

Bi2
00 = D0i2 ⊗ S2 + D0(i2+1) ⊗ S0

2β2, i2 = 0, 1, . . . , b2 − 1,

Bb2
00 = D0b2

⊗ S2,

B−1
00 = D00 ⊗ S0

2β2,

and

B0i1
=

⎡⎢⎢⎢⎣
B00

0i1
B01

0i1
B02

0i1
· · · B0b2

0i1

B−1
0i1

B0
0i1

B1
0i1

· · · Bb2−1
0i1

B−1
0i1

B0
0i1

· · · Bb2−2
0i1

Bb2−1
01

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎦ ,

i1 = 1, 2, . . . , b1,

4 In this paper, the superscript −1 denotes an index, while the bold
superscript −1 denotes the inverse of a matrix. The symbol ⊗ denotes
Kronecker product operation.

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B0i2

0i1
= [

Di1i2
⊗ β1 0

]
, i2 = 0, 1, . . . , b2,

B−1
0i1

= [
Di10 ⊗ S0

2β1 Di10 ⊗ S2

]
,

Bi2

0i1
= [

Di1(i2+1) ⊗ S0
2β1 Di1(i2+1) ⊗ S2

]
,

i2 = 0, 1, . . . , b2 − 1,

and

B10 =

⎡⎢⎣B00
10 B1

10 B2
10 · · · Bb2

10

B0
10 B1

10 · · · Bb2−1
10 Bb2

10

. . .
. . .

. . .
. . .

. . .

⎤⎥⎦ ,

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
B00

10 =
[

D00 ⊗ S0
1

0

]
,

Bi2

10 =
[

D0i2
⊗ S0

1β2

0

]
, i2 = 0, 1, . . . , b2,

and

Ai1
=

⎡⎢⎣A0
i1

A1
i1

A2
i1

· · · Ab2

i1

A0
i1

A1
i1

· · · Ab2−1
i1

Ab2

i1

. . .
. . .

. . .
. . .

. . .

⎤⎥⎦ ,

i1 = 0, 1, . . . , b1,

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ai2

i1
=

[
D(i1+1)i2

⊗ S0
1β1 + Di1i2

⊗ S1 0

Di1i2
⊗ S0

2β1 Di1i2
⊗ S2

]
,

for i1 = 0, 1, . . . , b1 − 1, i2 = 0, 1, . . . , b2,

Ai2

b1
=

[
Db1i2

⊗ S1 0

Db1i2
⊗ S0

2β1 Db1i2
⊗ S2

]
, i2 = 0, 1, . . . , b2,

and

A−1 =

⎡⎢⎣A0
−1 A1

−1 A2
−1 · · · Ab2

−1

A0
−1 A1

−1 · · · Ab2−1
−1 Ab2

−1

. . .
. . .

. . .
. . .

. . .

⎤⎥⎦ ,

where

Ai2

−1 =
[

D0i2
⊗ S0

1β1 0

0 0

]
, i2 = 0, 1, . . . , b2.

Some elements of the blocks in (2) are briefly ex-

plained here. Other elements can be understood in a similar

way.
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� B0i2

00 : This represents the probability of the following event.

The original state for both the high and low priority queue

is 0. A batch arrival happens (with probability D0i2
), which

brings 0 high priority job and i2 low priority jobs into the

system. Thus, the state of the low priority queue is changed

to i2 but the high priority queue remains 0, and the server

is initialized (by the initial service vector β2) to serve a

newly arrived low priority job.� Bi2

00: This represents the probability of the following two

events. In the first event, a batch arrival brings 0 high

priority job and i2 low priority jobs, and the server re-

mains busy with a low priority job. The probability of this

event is D0i2
⊗ S2. In the second event, a batch arrival

brings 0 high priority job and i2 + 1 low priority jobs.

The server completes the low priority job during the cur-

rent time slot and becomes ready to serve the next low

priority job. The probability of this event is D0(i2+1) ⊗
S0

2β2.� Ai2

i1
: This can be understood as the transition probability

matrix governing switches in the service between the high
and low priority jobs, as follows:

[
Prob.{Continue with high} Prob.{Switch from high to low}
Prob.{Switch from low to high} Prob.{Continue with low}

]
.

3.4. The preemptive DBMAP/PH/1 priority queue

For the preemptive DBMAP/PH/1 priority queue, we define

the state space � to be {(n1, n2, s, p)}, where n1 is the num-

ber of high priority jobs in the system; and n2 is the num-

ber of low priority jobs in the system; s denotes the arrival

process state, and s = 1, 2, . . . , n; p is the current service

phase, depending on which type of job is in service, i.e.,

when n1 = 0 and n2 ≥ 1, p is for the low priority job ser-

vice phase and p = 1, 2, . . . , m2; when n1 ≥ 1, p is for high

priority service phase and p = 1, 2, . . . , m1. Further, when

n1 = 0 and n2 = 0, state (n1, n2, s, p) can be reduced to

(0, 0, s).

Similarly, the system can be described by an M/G/1-type

Markov chain with state space �. The transition probability

matrix for the preemptive case, Ppm (the subscript pm stands

for preemptive), is given by

Ppm =

⎡⎢⎢⎢⎢⎢⎣
B00 B01 B02 · · · B0b1

B10 A0 A1 · · · Ab1−1 Ab1

A−1 A0 · · · Ab1−2 Ab1−1 Ab1

A−1 · · · Ab1−3 Ab1−2 Ab1−1 Ab1

. . .
. . .

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ ,

(3)

with the following sub-matrices:

B00 =

⎡⎢⎢⎢⎢⎢⎢⎣
B00

00 B01
00 B02

00 · · · B0b2
00

B10
00 B0

00 B1
00 · · · Bb2−1

00 Bb2
00

B−1
00 B0

00 · · · Bb2−2
00 Bb2−1

00 Bb2
00

B−1
00 · · · Bb2−3

00 Bb2−2
00 Bb2−1

00 Bb2
00

. . .
. . .

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B00
00 = D00,

B0i2

00 = D0i2
⊗ β2, i2 = 1, 2, . . . , b2,

B10
00 = D00 ⊗ S0

2 ,

Bi2

00 = D0i2
⊗ S2 +D0(i2+1) ⊗ S0

2β2, i2 = 0, 1, . . . , b2−1,

Bb2

00 = D0b2
⊗ S2,

B−1
00 = D00 ⊗ S0

2β2,

and

B0i1
=

⎡⎢⎢⎢⎣
B00

0i1
B01

0i1
B02

0i1
· · · B0b2

0i1

B−1
0i1

B0
0i1

B1
0i1

· · · Bb2−1
0i1

Bb2

0i1

B−1
0i1

B0
0i1

· · · Bb2−2
0i1

Bb2−1
0i1

Bb2

0i1

. . .
. . .

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎦,

i1 = 1, 2, . . . , b1,

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B0i2

0i1
= Di1i2 ⊗ β1, i2 = 0, 1, . . . , b2,

B−1
0i1

= Di10 ⊗ S0
2β1,

Bi2
0i1

= Di1(i2+1) ⊗ S0
2β1 + Di1i2 ⊗ S2eβ1, i2 = 0, 1, . . . , b2 − 1,

Bb2
0i1

= Di1b2
⊗ S2eβ1,

and

B10 =

⎡⎢⎢⎢⎣
B00

10 B01
10 B02

10 · · · B0b2

10

B0
10 B1

10 · · · Bb2−1
10 Bb2

10

B0
10 · · · Bb2−2

10 Bb2−1
10 Bb2

10

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎦ ,

where

⎧⎪⎨⎪⎩
B00

10 = D00 ⊗ S0
1 ,

B0i2

10 = D0i2
⊗ S0

1β2, i2 = 1, 2, . . . , b2,

Bi2

10 = D0i2
⊗ S0

1β
∗
2 , i2 = 0, 1, . . . , b2,
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and

Ai1
=

⎡⎢⎣A0
i1

A1
i1

A2
i1

· · · Ab2

i1

A0
i1

A1
i1

· · · Ab2−1
i1

Ab2

i1

. . .
. . .

. . .
. . .

. . .

⎤⎥⎦ ,

i1 = 0, 1, . . . , b1,

where⎧⎪⎨⎪⎩
Ai2

i1
= D(i1+1)i2

⊗ S0
1β1 + Di1i2

⊗ S1,

for i1 = 0, 1, . . . , b1 − 1, i2 = 0, 1, . . . , b2,

Ai2

b1
= Db1i2

⊗ S1, i2 = 0, 1, . . . , b2,

and

A−1 =

⎡⎢⎣A0
−1 A1

−1 A2
−1 · · · Ab2

−1

A0
−1 A1

−1 · · · Ab2−1
−1 Ab2

−1

. . .
. . .

. . .
. . .

. . .

⎤⎥⎦ ,

where

Ai2

−1 = D0i2
⊗ S0

1β1, i2 = 0, 1, . . . , b2.

3.5. Stability of the queueing system

The stability condition for the single-arrival DMAP/PH/1 pri-

ority queue in [1] applies to the batch-arrival DBMAP/PH/1
priority queue in this paper as well. The system is stable only

if λh t̄h + λl t̄l < 1; or equivalently, the system is stable only

if ρ = ρh + ρl < 1, where ρh and ρl are the traffic intensity

for the high and low priority arrivals, respectively.

The above necessary condition is quite intuitive, since

otherwise if ρ ≥ 1, the low priority queue length will add

up to infinity. Throughout the rest of the paper, we assume

that the queueing system is stable and that the steady state

distribution of the system numbers exists.

4. Computational algorithms for the queueing model

In this section, we calculate the R measures for the related

M/G/1-type Markov chains in Section 4.1. We then intro-

duce the computation algorithms for the stationary distribu-

tion of the system numbers in Section 4.2. We analyze the

time and storage complexity for the computation algorithms

in Section 4.3. Finally, we compute the performance mea-

sures for the queueing system in Section 4.4, and give a brief

summary in Section 4.5.

4.1. Characteristics of the R measures

We now introduce the definitions for the R measures for a

G I/G/1-type Markov chain [19]. Consider a discrete-time

Markov chain with transition matrix

P =

⎡⎢⎢⎢⎢⎢⎣
D0 D1 D2 D3 · · ·

D−1 C0 C1 C2 · · ·
D−2 C−1 C0 C1 · · ·
D−3 C−2 C−1 C0 · · ·

...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎦ , (4)

where D0 is an m0 × m0 matrix and Ck is an m × m matrix.

The dimensions of Dk , k > 0, can be determined accordingly.

Let C = ∑∞
k=−∞ Ck , which is assumed to be stochastic and

irreducible. P is assumed to be stochastic, irreducible and

aperiodic. The structure of (4) has similar row elements, i.e.,

row i + 1 can be obtained by shifting row i to the right di-

rection by one block element. Such a transition probability

matrix is said to have the row-repeating property in this pa-

per. The Markov chain defined in (4) is called a Markov

chain of Toeplitz type or G I/G/1-type. Furthermore, if P
is in the upper-Hessenberg form, the Markov chain is called

M/G/1-type [6, 14]. We notice that both (2) and (3) are

M/G/1-type.

Let us define⎧⎪⎨⎪⎩
L0 = {(0, j); j = 0, 1, 2, . . . , m0},
Li = {(i, j); j = 0, 1, 2, . . . , m}, i ≥ 1,

L≤i = ∪i
k=0Lk .

Then, the state space S of the Markov chain P can be written

as

S = ∪∞
i=0Li .

For an arbitrary state (i, j), i and j are called level and phase,

respectively5. The R measures for a G I/G/1-type Markov

chain are defined as follows [19].� For j > 0, R0, j is a matrix of size m0 × m, whose (r, s)th

entry is

R0, j (r, s) = Expected number of visits to ( j, s)

before hitting L≤( j−1), given

a start at (0, r ).

5 For the DBMAP/PH/1 priority queue defined in Section 3.3 and Sec-
tion 3.4, we have � = ∪∞

i=0 Li , and for an arbitrary state (n1, n2, ·) in
�, n1 and n2 are called level and phase, respectively.
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134 Queueing Syst (2006) 53:127–145� �0 is a matrix of size m0 × m0, whose (r, s)th entry is

�0(r, s) = Probability of hitting (0, s) upon returning to

L0 for the first time, given a start at (0, r ).� Let i ≥ 1, for k ≥ 1, Rk is a matrix of size m × m, whose

(r, s)th entry is

Rk(r, s) = Expected number of visits to (i + k, s)

before hitting L≤(i+k−1), given a start at (i, r ).� Let i ≥ 1, � is a matrix of size m × m, whose (r, s)th entry

is

�(r, s) = Probability of hitting (i, s) upon returning to

L≤i for the first time, given a start at (i, r ).

Notice that because the transition matrix (4) has the row-

repeating property, all the R measures defined above are in-

dependent of i . The reason is that the transition probabilities

in (4) from level i (i ≥ 1) to level i + k (i, k ≥ 1) are inde-

pendent of i .

We note that for an M/G/1-type Markov chain, all the el-

ements below the sub-main diagonal of the transition prob-

ability matrix are zeros. According to the G I/G/1 results

in [19], for the M/G/1-type Markov chains (2) and (3) stud-

ied in this paper, we have the following relations for R0, j ,

Rk , �0, and �:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R0,k(I − �) = Dk + R0,k+1C−1,

Rk(I − �) = Ck + Rk+1C−1,

�0 = D0 + R0,1 D−1,

� = C0 + R1C−1.

(5)

In addition, as shown in [6, 19], the steady probability

vector π for the G I/G/1-type Markov chain satisfies

πn = π0 R0,n +
n−1∑
k=1

πk Rn−k, n ≥ 1,

where π0 is the solution of

π0 = π0�0,

subject to

∞∑
k=0

πke = 1.

Since (2) and (3) are banded matrices, with finite number

of bands b1, all the Rk and R0,k , for k > b1, are zero matri-

ces. We obtain the following recursive formulas for Rk , R0,k ,

and �0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0,k = (B0k + R0,k+1 A−1)(I − A0 − R1 A−1)−1,

for k = 1, 2, . . . , b1 − 1,

R0,b1
= B0b1

(I − A0 − R1 A−1)−1,

Rk = (Ak + Rk+1 A−1)(I − A0 − R1 A−1)−1,

for k = 1, 2, . . . , b1 − 1,

Rb1
= Ab1

(I − A0 − R1 A−1)−1,

�0 = B00 + R0,1 B10 .

(6)

Equation (6) can not obtain R measures directly, since all

of them have infinite dimensions. The key is to examine the

special structures of these R measures. We next illustrate that

R0,k has a similar structure as B0k for all k. There are two

reasons for this fact. On one hand, note that R0,k represents

the expected number of visits to level Lk before entering level

L≤k−1, given a start at level L0. R0,k is a probability measure

for the following event:

The event starts at time t when there is no high

priority job in the system, i.e., n1 = 0; at time

t + 1, a batch arrival brings at least k high pri-

ority jobs, resulting in n1 ≥ k; and during the

remaining event period, more high priority ar-

rivals and departures may occur, but the system

remains at n1 ≥ k until some time later at t + τ ,

when n1 = k and a high priority departure is

about to happen, which would end the event pe-

riod and result in n1 = k − 1.

Since during the first time slot of the above event period,

there are high priority arrivals, it is easy to see that during the

whole event period, at most one low priority job can depart

from the system. As a result, R0,k is in upper-Hessenberg

form.

On the other hand, because the number of low priority

job arrivals that occur after a given time is independent

of the number of low priority jobs present in the system

at the given time, and this number is also independent of

the service process, R0,k has the row-repeating property,

except for the first row, which is subject to the boundary

condition.

In addition, based on the same argument in [1], we

note that all Rk are upper-triangular matrices with the row-

repeating property, and �0 is also an upper-Hessenberg ma-

trix with the similar row-repeating structure as B00, since
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�0 = B00 + R0,1 B10. In summary, we have

R0,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R00
0,k R01

0,k R02
0,k R03

0,k . . .

R−1
0,k R0

0,k R1
0,k R2

0,k . . .

R−1
0,k R0

0,k R1
0,k . . .

R−1
0,k R0

0,k . . .

R−1
0,k

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 1 ≤ k ≤ b1,

Rk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R0
k R1

k R2
k R3

k . . .

R0
k R1

k R2
k . . .

R0
k R1

k . . .

R0
k . . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 1 ≤ k ≤ b1,

�0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�00
0 �01

0 �02
0 �03

0 . . .

�10
0 �0

0 �1
0 �2

0 . . .

�−1
0 �0

0 �1
0 . . .

�−1
0 �0

0 . . .

�−1
0

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Several properties for R0,k and Rk are introduced below.

Property I: R0,k and Rk are finite. According to the defini-

tion, elements of R0,k and Rk represent conditional ex-

pectation measures regarding the queue length. There-

fore, all the elements of R0,k and Rk must be finite

since the queue under study is stable.

Property II: π0 R0,ke and πn Rke are finite. This is valid

since by virtue of probability interpretation, π0 R0,ke
and πn Rke represent conditional expectations for the

low priority queue length. Therefore, π0 R0,ke and

πn Rke must be finite for a stable DBMAP/PH/1 pri-

ority queue.

Property III: limi→∞ R0i
0,k = 0, limi→∞ Ri

0,k = 0 and

limi→∞ Ri
k = 0. This was a conjecture in [1] and

here we only use Ri
1 as an illustration to prove the

correctness of the conjecture. Suppose that this is not

the case and Ri
1 ≥ ε1 as i → ∞ for some ε1. Then by

referring to (6), we have Ri
b → ∞ based on the fact

that Rb1
= Ab1

(I − A0 − R1 A−1)−1, since

(I − A0 − R1 A−1)−1 = I +
∞∑

r=1

(A0 + R1 A−1)r , (7)

and all Ak are upper triangular matrices with positive

elements on the main diagonal. However, this contra-

dicts the fact that R0,k and Rk are all finite.

4.2. Computation of the stationary distribution of the

system numbers

We next focus our discussion on the computation of

the stationary distribution of the system numbers, πn =
[πn0, πn1, πn2, . . . ], n = 0, 1, 2, . . . , for the M/G/1-type

Markov chain. The computation algorithms are identical for

both the preemptive and non-preemptive cases.

The special structures of Rk , R0,k and �0 shown in Sec-

tion 4.1 suggest that it is possible to compute these R mea-

sures by iteration, which is required to compute πi j for

i, j = 0, 1, 2, . . . . In what follows, we compute πi j by two

stages as introduced below.

4.2.1. Computation of Rk, R0,k and �0

In stage one, we compute Rk , R0,k and �0 by the following

iterative algorithm.

1. Set R0,k = B0k , Rk = Ak .

2. Update R0,k , Rk recursively according to (6) until the dif-

ferences in the results obtained in two consecutive iter-

ations are element-wise smaller than ε, which is a small

threshold value used for precision control.

3. Compute �0 according to (6).

Let R(s)
0,k and R(s)

k be the temporary results obtained in the s-

th iteration. The two sequences, {R(s)
0,k, s = 0, 1, 2, . . . , ∞}

and {R(s)
k , s = 0, 1, 2, . . . , ∞} have the following proper-

ties.

Monotonically increasing. R(s)
0,k and R(s)

k increase as s →
∞. This can be verified by examining (6). We take Rk

(s)

as an example to reveal this property. The initial value

for R(0)
k is given by Ak . After the first iteration, we have

R(1)
k > R(0)

k since

R(1)
k = (Ak + R(0)

k+1 A−1)(I − A0 − R(0)
1 A−1)−1. (8)

Check the right-hand side of (8), the first factor (Ak +
R(0)

k+1 A−1) is greater than Ak , and the second factor

(I − A0 − R(0)
1 A−1)−1 is greater than I by referring to

(7). Therefore, the product of the two factors is greater

than R(0)
k . It is straightforward to argue that R(s+1)

k > R(s)
k

for any s > 0 by method of mathematical induction on s.

Similarly, we have R(s+1)
0,k > R(s)

0,k .

Upper bounded. R(s)
0,k and R(s)

k are finite according to Prop-

erty I of the R measures as introduced in Section 4.1.

Therefore, R(s)
0,k and R(s)

k must be bounded by some finite

values.

Based on the above two properties, we conclude that the

proposed iteration algorithm must converge. In other words,

R(s)
0,k and R(s)

k must converge to some limit value R∗
0,k and
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R∗
k , respectively, as s → ∞. The limit values of R∗

0,k and

R∗
k can be considered as the exact solution for the system of

equations (6).

Notice that in step 2 of the iteration algorithm, we must do

truncation on R0,k and Rk since it is impossible to store and

compute matrices with infinite dimensions. We now discuss

how to choose the truncation level K . First, we notice that

in real applications we do not compute πi j for an arbitrarily

large index. Instead, we have to truncate both the high and

low priority queue lengths at some level, which may depend

on the maximum queue length that we are interested in. By

intuition, we expect that very high dimension elements of

the R measures will not contribute too much to the queue

length distribution. In this paper we recommend the follow-

ing truncation method. During the iteration, we refer to the

small threshold value ε and choose the truncation level K
such that

{
R0K

0,k < ε, RK
0,k < ε, RK

k < ε, and

R0i
0,k ≥ ε, Ri

0,k ≥ ε, Ri
k ≥ ε, for i = 0, 1, . . . K − 1.

(9)

We notice that K must exist according to Property III of the R
measures as introduced in Section 4.1. We discuss the bound

of the computation error caused by this truncation method in

Section 4.2.2.

We now discuss how to compute (I − A0 − R1 A−1)−1.

We notice that all Ai are upper-triangular with the row-

repeating property, so I − A0 − R1 A−1 is also upper-

triangular with the row-repeating property, which is an im-

portant fact. As a consequence, (I − A0 − R1 A−1)−1 can be

computed as shown in [1], although it has infinite dimensions.

We omit the details in this paper.

We next discuss how to do multiplications of R0,k A−1,

R0,1 B10 and Rk A−1. It is quite straightforward to notice that

in (6), the result for R0,k A−1 (also for R0,1 B10) has the same

structure as that of R0,k , and the result for Rk A−1 has the

same structure of that of Rk , since A−1 and B10 are upper-

triangular with the row-repeating property. Let

R0,k A−1 =

⎡⎢⎢⎢⎢⎢⎣
U 00 U 01 U 02 U 03 . . .

U−1 U 0 U 1 U 2 . . .

U−1 U 0 U 1 . . .

U−1 U 0 . . .

U−1 . . .

⎤⎥⎥⎥⎥⎥⎦ ,

Rk A−1 =

⎡⎢⎢⎢⎢⎢⎣
V 0 V 1 V 2 V 3 . . .

V 0 V 1 V 2 . . .

V 0 V 1 . . .

V 0 . . .

. . .

⎤⎥⎥⎥⎥⎥⎦ .

Then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 0 j =
min(b2, j)∑

n=0

R0( j−n)
0,k An

−1,

U j =
min(b2, j+1)∑

n=0

R j−n
0,k An

−1,

V j =
min(b2, j)∑

n=0

R j−n
k An

−1.

(10)

4.2.2. Computation of πi j

In stage two, we compute the stationary distribution of the

M/G/1-type Markov chain. We firstly compute π0. Note

that �0 is an upper-Hessenberg form transition probability

matrix with the row-repeating property, which is obviously

an M/G/1-type. By standard matrix-analytic methods [6],

π0 = π0�0 can be solved. We omit the details here. Based

on π0, we can compute πn by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
πn = π0 R0,n +

n−1∑
k=1

πk Rn−k, 1 ≤ n ≤ b1,

πn =
b1∑

k=1

πn−k Rk, b1 < n < ∞.

(11)

Multiplication of π0 R0,k and πk1
Rk2

can be done in the

following way. Let π0 R0,k = [p0, p1, p2, . . . ], and let πk1

Rk2
= [q0, q1, q2, . . . ]. Then we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi = π00 R0i

0,k +
i−1∑

n=−1

π0(i−n) Rn
0,k,

qi =
i∑

n=0

πk1(i−n) Rn
k2

.

Finally, we normalize πi j and ensure that

∞∑
i=0

∞∑
j=0

πi j e = 1.

Let π∗
n be the theoretical result under the hypothesis that

there is no truncation on the R measures and that the limit

values R∗
0,k and R∗

k are applied in (11). We can expect

that the practical computation result πn > π∗
n , since πn is

obtained by truncating the probabilities for a high level queue

length. Suppose that R0,k and Rk are truncated at level K
according to the ε policy recommended in (9), then for 1 ≤
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n ≤ b1 we have

πne − π∗
n e <

[
π0�

K
1 e +

n−1∑
k=1

πk�
K
2 e

]

+
[
π∗

0 �1e +
n−1∑
k=1

π∗
k �2e

]
, (12)

and for n > b1 we have

πne − π∗
n e <

[
b1∑

k=1

πn−k�
K
2 e +

b1∑
k=1

π∗
n−k�2e

]
, (13)

in which

�1 =

⎡⎢⎢⎢⎢⎢⎣
ε ε ε ε . . .

ε ε ε ε . . .

ε ε ε . . .

ε ε . . .

ε
. . .

⎤⎥⎥⎥⎥⎥⎦ , �2 =

⎡⎢⎢⎢⎢⎢⎣
ε ε ε ε . . .

ε ε ε . . .

ε ε . . .

ε . . .

. . .

⎤⎥⎥⎥⎥⎥⎦ ,

�K
1 and �K

2 are finite dimension matrices obtained by trun-

cating �1 and �2, respectively, at level K .

Since �K
1 and �K

2 only have finite dimensions, we have

π0�
K
1 e → 0 and

∑b1

k=1 πk�
K
2 e → 0 as ε → 0. Furthermore,

according to Property II of the R measures as introduced in

Section 4.1, we have π∗
0 �1e → 0 and

∑b1

k=1 π∗
k �2e → 0 as

ε → 0. Therefore, it is evident from (12) and (13) that by

choosing sufficiently small ε, an arbitrary precision for πn

can be achieved.

4.3. Analysis of the time and memory complexity

In this subsection, we analyze the time and memory complex-

ity for the computation algorithms developed in Section 4.2.

We limit our discussion to the non-preemptive case, since the

analysis can also be applied to the preemptive case. The only

difference is that the size of the element matrices for the non-

preemptive case is 2nm × 2nm, while the size of the element

matrices for the preemptive case is nm × nm. Therefore, the

non-preemptive queue has a higher time and memory cost.

We assume that Rk and R0k are truncated at level K and that

the algorithm converges after r∗ times of iteration.

We take a look at the time complexity for the first step of

the algorithm, which is the kernel part of the whole computa-

tion. Since �0 is only computed once for the whole algorithm

and is easy to consider, we only discuss the computation of

Rk and R0,k . We also note that the item (I − A0 − R1 A−1)−1

only needs to be computed once for each iteration of the al-

gorithm. In addition, because of the row-repeating property

of Rk+1 and A−1, the result of Rk+1 A−1 has the same struc-

ture as that of Rk+1. Therefore, we only need to compute the

first row for the result of Rk+1 A−1. Similarly, the result of

R0,k+1 A−1 has the same structure with R0,k+1, and we only

need to compute the first row and the second row for the

result of R0,k+1 A−1. The details can be better understood by

examining (10). As a result, for each iteration, we offer the

following analysis on the time complexity.

R1 A−1: (K+1)(K+2)
2

m + K (K+1)
2

a, where m and a represent

the time complexity for the multiplication and addition

operations, respectively, of two 2nm × 2nm dimensional

matrices.

I − A0 − R1 A−1: (K+1)(K+2)
2

m + (K+1)(K+4)
2

a.

(I − A0 − R1 A−1)−1: (K 2 + 3K + 1)m + (K 2 + 2K +
2)a + (K + 1)i, where i represents the time complexity

for the inverse of a 2nm × 2nm dimensional matrix.

See page 29 of [1] on how to compute the inverse of an

upper-triangular matrix.

Ak + Rk+1 A−1: (K+1)(K+2)
2

m + (K+1)(K+2)
2

a.

(Ak + Rk+1 A−1)(I − A0 − R1 A−1)−1: (K + 1)(K +
2)m + (K + 1)2a (after (I − A0 − R1 A−1)−1 has been

computed).

R0,k+1 A−1: (K + 1)(K + 2)m + K (K + 1)a.

B0k + R0,k+1 A−1: (K + 1)(K + 2)m + (K + 1)(K + 2)a.

(B0k + R0,k+1 A−1)(I − A0 − R1 A−1)−1: 2(K + 1)(K +
2)m + 2(K + 1)2a (after (I − A0 − R1 A−1)−1 has been

computed). We observe that the time complexity of

(B0k + R0,k+1 A−1)(I − A0 − R1 A−1)−1 is double the

complexity of (Ak + Rk+1 A−1)(I − A0 − R1 A−1)−1.

For some items, the above time complexity is the upper bound

for the following three reasons. Firstly, we notice that Rb1

takes less time than Rk for k = 1, 2, . . . , b1 − 1; secondly,

R0,b1
also takes less time than R0,k for k = 1, 2, . . . , b1 − 1;

and thirdly, block elements of B0k and R0,k+1 have smaller

dimensions than 2nm × 2nm, which means that the actual

involved computation is less than this estimation. Therefore,

the total time complexity for computation of Rk and R0,k is

given by

r∗b1

(
(4K 2 + 12K + 7)m + (4K 2 + 8K + 5)a + (K + 1)i

)
.

Next, we estimate the memory complexity for the compu-

tation algorithms. We only consider the required storage for

Rk , R0,k , �0, and the induced temporary storage during the

computation. Again, we assume that the truncation level for

Rk , R0,k and �0 is K . Furthermore, in order to simplify the

discussion, we assume that all the block elements for Rk , R0,k

and �0 Rk are 2nm × 2nm dimensional matrices, although

some boundary elements have smaller sizes. For Rk , we only

need to store the first row of the block elements. Therefore,

the total storage cost for all Rk is b1(K + 1)B, where B is the

storage cost of a 2nm × 2nm matrix. For R0,k and �0, we

only need to store the first and the second row of the block

elements. Therefore, the total storage cost for all R0,k and
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Table 1 Temporary matrices used during the computation

Purpose of the matrix Storage cost

Temporary matrix 1 Store and compute

(Ak + Rk+1 A−1)

Same as Rk

Temporary matrix 2 Store and compute

(I − A0 − R1 A−1)−1
Same as Rk

Temporary matrix 3 Store and compute

(B0,k + R0,k+1 A−1)

Same as R0,k

�0 is 2(b1 + 1)(K + 1)B. During the computation, we also

use three temporary matrices as explained in Table 16. As a

result, the total memory complexity is given by

3(b1 + 2)(K + 1)B.

From the above analysis, we notice that in computation

of the R measures, the memory complexity mainly depends

on the precision requirement (the K value) as well as the

application size (the b1 value). The time complexity, however,

also depends on the nature of the application (the r∗ value

or the convergence rate of the algorithm). While the time

complexity is proportional to K 2, the memory complexity is

proportional only to K . The memory complexity is greatly

reduced due to the row-repeating property of the R measures.

Finally, we have to emphasize that after all the R measures

are obtained, the complexity for computing πn depends on

the truncation level for both the high and low priority queues,

as implied by (11). Although in theory the queue length trun-

cation level can be set to an arbitrarily large value, that may

require a high time and memory cost. There is always a trade-

off between the problem size and the implementation cost.

Our experiences from the numerical examples demonstrate

that it is feasible to compute realistic DBMAP/PH/1 priority

queue without prohibitive difficulties.

4.4. Calculation of the performance measures

Before we present the performance calculation, we firstly

summarize the terms and notation below:

P{idle} : probability that the server is idle;

P{busy} : probability that the server is busy;

P{busyh} : probability that the server is busy with a

high priority job;

P{busyl} : probability that the server is busy with a

low priority job;

6 Different implementations of the algorithms may have different re-
quirements for the temporary storage.

P{Nh = i} : probability that there are i high priority jobs

in the system;

P{Nl = j} : probability that there are j low priority jobs

in the system;

P{Qh = i} : probability that there are i high priority jobs

waiting in the queue;

P{Ql = j} : probability that there are j low priority jobs

waiting in the queue;

N : average number of jobs in the system;

N h : average number of high priority jobs in system;

Nl : average number of low priority jobs in system;

Q : average number of jobs in the queue;

Qh : average high priority queue length;

Ql : average low priority queue length;

W h : average waiting time for high priority jobs;

W l : average waiting time for low priority jobs.

Based on πi j , for the preemptive DBMAP/PH/1 priority

queue in Section 3.4, the following performance measures

can be derived:

P{idle} = π00e,

P{busy} = 1 − π00e,

P{busyh} = 1 −
∞∑
j=0

π0 j e,

P{busyl} =
∞∑
j=1

π0 j e,

P{Nh = i} =
∞∑
j=0

πi j e, i ≥ 0,

P{Nl = j} =
∞∑

i=0

πi j e, j ≥ 0,

P{Qh = 0} = P{Nh = 1} + P{Nh = 0},
P{Qh = i} = P{Nh = i + 1}, i ≥ 1,

P{Ql = 0} = π00e + π01e +
∞∑

i=1

πi0e,

P{Ql = j} = π0( j+1)e +
∞∑

i=1

πi j e, j ≥ 1,

N h =
∞∑

i=0

i P{Nh = i},
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Nl =
∞∑
j=0

j P{Nl = j},

N = N h + Nl ,

Qh =
∞∑

i=0

i P{Qh = i},

Ql =
∞∑
j=0

j P{Ql = j},

Q = Qh + Ql ,

W = Q/λ,

W h = Qh/λh,

W l = Ql/λl .

For the non-preemptive priority case in Section 3.3, the

same set of performance measures can be derived. Notice

that for the non-preemptive queue, state (n1, n2, ·), n1 ≥ 1,

may correspond to the case of having a low priority system

number of n2 or n2 + 1, depending on which priority level

the server is currently busy with. Therefore, calculation of

P{Nl = j} is different from the preemptive case as follows:

P{Nl = 0} = π00e +
∞∑

i=1

πi0eh,

P{Nl = j} = π0 j e +
∞∑

i=1

πi j eh +
∞∑

i=1

πi( j−1)el , j ≥ 1,

where eh and el are column vectors of dimension 2nm, eh =
〈e, e0〉, el = 〈e0, e〉, e is an nm-dimensional column vector

of all 1s, and e0 is an nm-dimensional column vector of all

0s. Here n and m are the dimensions of the arrival and service

processes, respectively.

4.5. Section summary

The DBMAP/PH/1 priority queueing model defined in this

paper is a natural extension of the single arrival DMAP/PH/1
priority queue in [1]. In the single arrival model, the un-

derlying Markov chain is quasi-birth-death (QBD) type and

there is only a single R measure. Furthermore, this R mea-

sure is the solution of a matrix quadratic equation R =
A0 + R A1 + R2 A2 (see page 26 in [1]). This makes it pos-

sible to directly compute the elements of R, although R has

infinite dimensions. Based on R, the steady state probability

vector of the QBD-type Markov chain can be obtained.

For the batch arrival queueing model introduced in this

paper, the underlying Markov chains are M/G/1-type, since

(2) and (3) are both in upper-Hessenberg form. Therefore,

there exists a set of interrelated R measures, which cannot

be explicitly solved. Standard M/G/1-type Markov chains

may have infinite number of levels, but usually the phase

number has to be finite [6, 19]. The Markov chains involved

in this paper, however, have infinite number of levels and

infinite number of phases, which is the main challenge in

solving the DBMAP/PH/1 priority queue.

In this section, we showed that the R measures play a

key role in the analysis of the involved Markov chain. We re-

vealed that the structure of Rk and R0k are in upper-triangular

and upper-Hessenberg form, respectively, and proved that a

solution for these R measures exists. Based on the special

structure of the R measures, we developed algorithms for

computing the stationary distribution of the system numbers

and obtained the queue length distribution.

5. Numerical results

In this section, we present numerical results for the compu-

tation algorithms. In Section 5.1, we provide a simple non-

preemptive DBMAP/PH/1 priority queue and demonstrate

how to apply the computation algorithms to calculate the

queue length distribution. In Section 5.2, we provide another

non-preemptive DBMAP/PH/1 priority queue with realistic

parameters to model wireless multimedia communications.

In Section 5.3, we present simulation results for an exam-

ple preemptive DBMAP/PH/1 priority queue with different

traffic intensities.

In all the examples we implement the algorithms (without

any optimization) on a normal PC with the Maple Linear

Algebra software package. The computation is completed

within reasonable time. The computation time can be saved

by optimizing the algorithm code and by utilizing the more

efficient Matlab software package.

5.1. A simple example

In this subsection, we consider a simple non-preemptive
DBMAP/PH/1 priority queue with the following settings:

S1 =

⎡⎢⎢⎣
0.0 0.05 0.0 0.0

0.0 0.0 0.05 0.0

0.0 0.0 0.0 0.05

0.0 0.0 0.0 0.0

⎤⎥⎥⎦ ,

S2 =
⎡⎣0.0 0.05 0.0

0.0 0.0 0.05

0.0 0.0 0.0

⎤⎦ ,

β1 = [1.0, 0.0, 0.0, 0.0],

β2 = [1.0, 0.0, 0.0],

S0
1 = [0.95, 0.95, 0.95, 1.0]t,

S0
2 = [0.95, 0.95, 1.0]t,

D =
[

0.1 0.9

0.2 0.8

]
,
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D00 = 3/5D, D10 = D20 = D30 = D40 = 1/15D, D01 =
D02 = 1/15D and all other Di1i2

= 0, α = [2/11, 9/11].

The mean arrival rate for the high priority jobs is λh =
0.6666666668; the mean arrival rate for the low priority jobs

is λl = 0.2000000000. The mean service time for the high

priority jobs is t̄h = 1.052625; the mean service time for

the low priority jobs is t̄l = 1.0525. The traffic intensity is

ρ = λh t̄h + λl t̄l = 0.91225.

We apply the computing algorithms for the above non-

preemptive DBMAP /PH/1 priority queue. We firstly com-

pute R0,k , Rk and �0. Shown below is a list of the elements

for Ri
0,ke, Ri

ke and �i
0e, in which [vector]t with a super-

script t indicates the transpose of the [vector]. The results

demonstrate that Ri
0,k , Ri

k and �i
0 are monotonically decreas-

ing with index i .

�3
0e = [0.0172293722644972607, 0.0172293722649843467]t,

�4
0e = [0.0132203930775591089, 0.0132203930779325532]t,

�5
0e = [0.0067718964634043803, 0.0067718964635953664]t,

R3
0,1e = [0.0195025931377530854, 0.0195025931383034196]t,

R4
0,1e = [0.0151775459130132143, 0.0151775459134413857]t,

R5
0,1e = [0.0080271161708515993, 0.0080271161710779408]t,

R3
1e = [0.01133058092, 0.01132962692, 0.01130833870,

0.01090051265, 0.01133058092, 0.01132962692,

0.01130833870, 0.01090051265, 0.01994472184,

0.01992589597, 0.01950259314, 0.01950259314,

0.01994472184, 0.01992589597, 0.01950259314,

0.01950259314]t,

R4
1e = [0.008749152227, 0.008748311523, 0.008730811283,

0.008410852562, 0.008749152227, 0.008748311523,

0.008730811283, 0.008410852562, 0.01554337650,

0.01552671376, 0.01517754591, 0.01517754591,

0.01554337650, 0.01552671376, 0.01517754591,

0.01517754591]t,

R5
1e = [0.004560695169, 0.004560147956, 0.004549954131,

0.004378279617, 0.004560695169, 0.004560147956,

0.004549954131, 0.004378279617, 0.008242636244,

0.008231717680, 0.008027116171, 0.008027116171,

0.008242636245, 0.008231717680, 0.008027116171,

0.008027116171]t,

R3
2e = [0.005058656884, 0.005057806411, 0.005040650502,

0.004751228003, 0.005058656884, 0.005057806412,

0.005040650502, 0.004751228004, 0.01126018458,

0.01124333005, 0.01090051265, 0.01090051265,

0.01126018458, 0.01124333005, 0.01090051265,

0.01090051265]t,

R4
2e = [0.003936848553, 0.003936144055, 0.003922704609,

0.003701408279, 0.003936848553, 0.003936144055,

0.003922704609, 0.003701408279, 0.008694236453,

0.008680219463, 0.008410852562, 0.008410852562,

0.008694236454, 0.008680219464, 0.008410852562,

0.008410852562]t,

R5
2e = [0.002080874794, 0.002080459269, 0.002073270137,

0.001959981413, 0.002080874794, 0.002080459269,

0.002073270137, 0.001959981413, 0.004531520850,

0.004523197077, 0.004378279617, 0.004378279617,

0.004531520851, 0.004523197078, 0.004378279617,

0.004378279617]t.

We obtain πi j , in which π00 is

π00 = [0.198450152007130232, 0.801549847992869768]

(before normalization),

π00 = [0.018482324985794025, 0.074649675014205970]

(after normalization).

The joint queue length probability mass function is shown

in Figure 1. We also determine the marginal high and low

priority queue length probability mass functions as shown in

Figure 2(a) and Figure 2(b), respectively. We obtain the high
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Fig. 1 Joint queue length probability mass function
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priority mean queue length Qh = 2.5, and the low priority

mean queue length Ql = 6.6. By Little’s law, we have the

high priority queue mean waiting time W h = 3.75, and the

low priority queue mean waiting time W l = 33.5. We obtain

the system idle probability P{idle} = π00e = 0.09313.

5.2. A wireless multimedia example

In this subsection, we consider a more realistic non-

preemptive DBMAP/PH/1 priority example that resembles

wireless multimedia communications. We assume that the

wireless network can transmit a fixed size data block during

one time slot, and each application packet is segmented into

a number of data blocks (depending on the actual size of the

packet) for the purpose of transmission. We consider a mo-

bile terminal that generates three types of traffic, i.e., voice,

video and data. We assume that the voice and video traffic

are handled with a higher priority than the data traffic. We

further assume that for each transmission of the data block,

the average error probability is given by ε. In this example,

we assume that the data traffic is protected by ARQ, with at

most three (re)transmissions. We also assume that the voice

and video traffic is not protected by ARQ due to the real-time

requirement and the fact that they are more tolerant of loss

or error. Therefore, the PH-type service parameters (β1, S1),

(β2, S2) for the high and low priority queue are given by

S1 = [0.0] , S0
1 = [1.0], β1 = [1.0],

S2 =
⎡⎣0.0 ε 0.0

0.0 0.0 ε

0.0 0.0 0.0

⎤⎦ ,

S0
2 = [1 − ε, 1 − ε, 1.0]t,

β2 = [1.0, 0.0, 0.0].

The mean service time for the high priority traffic is t̄h = 1,

and the mean service time for the low priority traffic is t̄l =
β2(I − S2)−1e.

We assume that the voice and video traffic can be modeled
by an ON/OFF source as depicted in Figure 3. In the OFF
state the mobile terminal does not generate any voice or video

traffic; in the Voice ON state, the mobile terminal generates
voice traffic with a fixed batch size of 1; and in the Video
ON state, the mobile terminal generates video traffic with a
batch size ranging from 1 to 8. In this example, we assume
that the transmission block size is 32 bytes. Therefore, the
maximum video packet size is 256 bytes. We assume that the
voice packet size is fixed and equal to the transmission block
size; the video packet size follows a log-normal distribution,
which is a valid assumption for typical video conference
traffic. As an example, we assume that the probability mass
function v[i], i = 1 . . . 8, for the video packet size (in terms
of number of transmission blocks) is given by

[0.002, 0.153, 0.427, 0.286, 0.099, 0.025, 0.006, 0.002].

The above voice and video traffic can be modeled by a

Markov chain with the following transition probability ma-

trix

D =
⎡⎣1 − h1 − h2 h2 h1

g2 1 − g2 0

g1 0 1 − g1

⎤⎦ .

The steady state probability vector for the above voice and
video traffic model is given by

[
g1g2

h1g2 + g1h2 + g1g2

,
g1h2

h1g2 + g1h2 + g1g2

,
h1g2

h1g2 + g1h2 + g1g2

]
.

We further assume that data traffic generated in any state is

independent from the voice and video traffic and that the data

Fig. 3 Voice and video traffic model
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Fig. 4 Data packet batch size distribution

traffic can be modeled by a batch Bernoulli arrival process

with arrival probability of p. The batch size of the data packet

is assumed to be within a range from 1 to 18. Therefore, the

maximum data packet size is 576 bytes, which is a typical

configuration for a mobile data terminal with PPP connection

to the wireless network. The batch size of the data traffic is

assumed to follow a stepwise distribution [4], as shown in

Figure 4. As a matter of fact, we assume that the probability

mass function d[i], i = 1 . . . 18, for the data packet size is

given by

[0.0005, 0.430, 0.099, 0.018, 0.033, 0.043, 0.012,

0.027, 0.014, 0.021, 0.006, 0.006, 0.002, 0.002,

0.002, 0.009, 0.0065, 0.269].

Under the above assumptions, we can determine all the

parameters for the aggregated traffic arrival process including

voice, video and data, which is a DBMAP arrival process with

priorities as defined in Section 3.1. The Di1i2
parameters are

listed as follows:

D00 =
⎡⎣(1 − h1 − h2)(1 − p) 0 0

g2(1 − p) 0 0

g1(1 − p) 0 0

⎤⎦ ,

D0i2
=

⎡⎣(1 − h1 − h2)d[i2]p 0 0

g2d[i2]p 0 0

g1d[i2]p 0 0

⎤⎦ , i2 = 1 . . . 18,

D10 =
⎡⎣0 h2(1 − p) h1(1 − p)v[1]

0 (1 − g2)(1 − p) 0

0 0 (1 − g1)(1 − p)v[1]

⎤⎦ ,

Di10
=

⎡⎢⎢⎣
0 0 h1(1 − p)v[i1]

0 0 0

0 0 (1 − g1)(1 − p)v[i1]

⎤⎥⎥⎦ , i1 = 2 . . . 8,

D1i2
=

⎡⎣0 h2d[i2]p h1v[1]d[i2]p
0 (1 − g2)d[i2]p 0

0 0 (1 − g1)v[1]d[i2]p

⎤⎦ ,

i2 = 1 . . . 18,

Di1i2
=

⎡⎣0 0 h1v[i1]d[i2]p
0 0 0

0 0 (1 − g1)v[i1]d[i2]p

⎤⎦ ,

i1 = 2 . . . 8, i2 = 1 . . . 18.

It can be verified that
∑8

i1=0

∑18
i2=0 Di1i2

= D. In this ex-

ample, we use the following settings for the arrival process

and the service process:

h1 = 0.0145, g1 = 0.9, h2 = 0.048, g2 = 0.9,

p = 0.08, ε = 0.05.

As a result, the steady probability vector for the arrival pro-

cess is given by [0.935, 0.05, 0.015]. We have the high pri-

ority queue mean arrival rate λh = 0.10163 for the voice

and video traffic, and the low priority queue mean arrival

rate λl = 0.60856 for the data traffic. The traffic intensity is

ρ = λh t̄h + λl t̄l = 0.74214. Therefore, the queue is stable.
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Fig. 5 The high priority queue length distribution function

simulation

computation

0.2

0.4

0.6

0.8

1

cu
m

u
la

tiv
e
 p

ro
b
a
b
ili

ty

10 20 30 40 50 60 70 80 90
low priority queue length

Fig. 6 The low priority queue length distribution function
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We apply the computation algorithms developed in Sec-

tion 4 and obtain the marginal queue length distribution

functions as shown in Figure 5 and Figure 6 for the high

and low priority queues, respectively. We also simulate the

queueing system with the above parameters. The simulated

queue length distribution functions are shown together in

the above two figures. We observe that the computation re-

sults and the simulation results are quite close, especially

for the high priority queue. For the low priority queue, dis-

crepancy can arise from truncation on the R measures, as

remarked in [1]. We also display part of the simulated ar-

rival patterns in Figure 7 and Figure 8 for the high and

low priority queues, respectively. We notice that traffic ar-

rivals for both the high and low priority queues are bursty.

In addition, we notice that the high priority arrivals are more

correlated, i.e., on average they experience longer OFF pe-

riods. The low priority arrival instances are more regular

due to the Bernoulli assumption, although the batch size has

large variations because they are from data traffic. Finally,

we obtain the high priority mean queue length Qh = 0.11,

and the low priority mean queue length Ql = 14.6. By Lit-
tle’s law, we have the high priority queue mean waiting time

W h = 1.08, and the low priority queue mean waiting time

W l = 23.99. For this example, the system idle probability

P{idle} = π00e = 0.25977.

5.3. A preemptive DBMAP/PH/1 priority queue

example

In this example, we consider a preemptive DBMAP/PH/1 pri-

ority queue. The purpose is to examine how large discrepancy

could be caused on the resulting queue length distribution

when the exact resumption phase is replaced by the limiting

resumption phase β∗
2 , as introduced in Section 3.2. We use

the following parameters for the preemptive DBMAP/PH/1
priority queue:

S1 =

⎡⎢⎢⎢⎣
0.0 0.05 0.0 0.0

0.0 0.0 0.05 0.0

0.0 0.0 0.0 0.05

0.0 0.0 0.0 0.0

⎤⎥⎥⎥⎦ ,

β1 = [1.0, 0.0, 0.0, 0.0],

S2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.121 0.071 0.124 0.097 0.168 0.038 0.145 0.132

0.160 0.093 0.140 0.081 0.123 0.103 0.078 0.018

0.150 0.010 0.040 0.167 0.038 0.126 0.121 0.044

0.126 0.029 0.000 0.154 0.145 0.010 0.013 0.120

0.166 0.042 0.065 0.030 0.147 0.007 0.015 0.023

0.029 0.084 0.164 0.073 0.015 0.009 0.022 0.001

0.040 0.014 0.054 0.035 0.013 0.057 0.034 0.050

0.007 0.023 0.041 0.036 0.049 0.005 0.001 0.034

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

β2 = [1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8],

D =
[

0.1 0.9

0.2 0.8

]
,

D00 = (1 − r1 − r2)D, D10 = D20 = D30 = D40 = r1/4D,

D01 = D02 = r2/2D and all other Di1i2
= 0, α = [2/11,

9/11].

Here, the two parameters r1 and r2 are utilized to adjust

the traffic intensity for the high and low priority queues,

respectively. The mean service time t̄h for the high prior-

ity jobs is given by t̄h = β1(I − S1)−1e = 1.052625. The

mean service time t̄l for the low priority jobs is given by

t̄l = β2(I − S2)−1e = 2.33. The limiting probability vector
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Fig. 8 Arrival patterns for the
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for the phase preemption is given by

β∗
2 = [0.15971, 0.09903, 0.12966, 0.14091, 0.14925,

0.09734, 0.11118, 0.11291].

The average arrival rate for the high and low priority queues

are given by λh = 2.5r1 and λl = 1.5r2, respectively. We

assume that λh t̄h + λl t̄l < 1, or equivalently 2.6315625r1 +
3.495r2 < 1 such that the queue is stable.

We simulate the behavior of the above preemptive

DBMAP/PH/1 priority queue and observe the cumulative

queue length distribution functions (cdfs) for the following

two settings of traffic intensity:

{r1 = 0.20, r2 = 0.05, λh = 0.5, λl = 0.075,

ρh = 0.5263125, ρl = 0.17475},
{r1 = 0.05, r2 = 0.20, λh = 0.125, λl = 0.30,

ρh = 0.131578125, ρl = 0.699}.

For each setting, we compare the results for the case with

the exact preemption phase and for the case with limiting pre-

emption phase β∗
2 . The simulation results demonstrate that

for the above two preemption rules, the differences in the

high priority queue length cdfs are extremely small. This is

expected because for a preemptive DBMAP/PH/1 priority

queue, the preemption rule only affects the behavior of the

low priority queue and has no impact on the high priority

queue. Therefore, we do not report the simulation results for

the high priority queue in this section. For the low priority

queue, we observe that for different preemption rules, the

differences in the queue length cdfs are very small. The re-

sults are shown in Table 2 for {r1 = 0.20, r2 = 0.05}, and

in Table 3 for {r1 = 0.05, r2 = 0.20}. The simulation re-

sults, however, do not give a clear indication on whether the

traffic intensity of the low priority queue has any impact on

the degree of the performance discrepancy. Further study is

necessary to investigate this issue in the future.

Table 2 Low priority queue length cdfs for {r1 = 0.20, r2 = 0.05}
Queue Exact Limiting Queue Exact Limiting

length phase phase length phase phase

0 0.676025 0.678363 9 0.999053 0.998664

1 0.814243 0.816150 10 0.999487 0.999250

2 0.906806 0.907062 11 0.999717 0.999526

3 0.949605 0.948945 12 0.999883 0.999701

4 0.973487 0.973033 13 0.999927 0.999799

5 0.985953 0.985604 14 0.999981 0.999887

6 0.992629 0.992410 15 1.0 0.999942

7 0.996146 0.995758 16 0.999979

8 0.998046 0.997733 17 1.0

Table 3 Low priority queue length cdfs for {r1 = 0.05, r2 = 0.20}
Queue Exact Limiting Queue Exact Limiting

length phase phase length phase phase

0 0.330552 0.331740 19 0.992934 0.993506

1 0.470330 0.471671 20 0.994493 0.995081

2 0.577846 0.578842 21 0.995753 0.996284

3 0.664455 0.665371 22 0.996749 0.997118

4 0.733085 0.734002 23 0.997571 0.997806

5 0.787594 0.789151 24 0.998193 0.998372

6 0.831071 0.832922 25 0.998691 0.998846

7 0.865749 0.867868 26 0.999154 0.999195

8 0.893406 0.895800 27 0.999417 0.999491

9 0.914858 0.918094 28 0.999568 0.999671

10 0.932261 0.935583 29 0.999694 0.999816

11 0.946142 0.949702 30 0.999791 0.999899

12 0.957208 0.960935 31 0.999848 0.999942

13 0.966171 0.969558 32 0.999877 0.999959

14 0.973626 0.976357 33 0.999894 0.999971

15 0.979539 0.981681 34 0.999906 0.999979

16 0.984232 0.985759 35 0.999915 0.999987

17 0.987936 0.989082 36 0.999925 0.999998

18 0.990819 0.991518 37 0.999936 1.0

6. Conclusion

In this paper, we defined a discrete-time batch Markovian

arrival process (DBMAP) with more than one type of arrival.
We studied the DBMAP/PH/1 priority queue, which is a natu-

ral extension of the single arrival DMAP/PH/1 priority queue-

ing model in [1]. We derived the transition probability matrix

for the underlying Markov chain, which is no longer quasi-

birth-death (QBD) and does not have a matrix-geometric

form solution. Instead, the solution to the DBMAP/PH/1 pri-

ority queue is related to an M/G/1-type Markov chain with

an infinite number of levels and an infinite number of phases.

For such a Markov chain there is no general solution. We

developed computational algorithms for the DBMAP/PH/1

priority queue and obtained the stationary queue length dis-

tributions for both the high and low priority queues. The

algorithms are based on matrix-analytic methods and the

R measures play a key role in the computation. The struc-

tures of Rk and R0k were shown to take upper-triangular

and upper-Hessenberg forms, respectively. It is interesting to

note that the relationship R = A0 + R A1 + R2 A2, or equiva-

lently, R(I − A1 − R A2) = A0 for the DMAP/PH/1 priority

queue in [1], can be considered as a special case of the rela-

tionship of all Rk as expressed in (6). Thus, the solution to the

DMAP/PH/1 priority queue can be regarded as a simplified

version of the solution to the DBMAP/PH/1 priority queue,

when b1 = 1.

The DBMAP with a priority arrival process can be par-

ticularly useful in modeling multimedia data traffic, espe-

cially for compressed video with layered encoding [15]. We
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are currently working on modeling MPEG-4 video data en-

coded in multiple layers by the DBMAP process with prior-

ities [17], in which case one layer of the video data traffic

is mapped to one priority level. The DBMAP/PH/1 priority

queue has found application in modeling video transmis-

sion over wireless networks [18], where the service time of a

link layer data burst was shown to follow PH-type distribu-

tion. The DBMAP/PH/1 priority queue can also find appli-

cation in modeling priority scheduling of traffic in ATM or

TDMA networks, since the service time for a single ATM

cell or a TDMA time slot is usually assumed to be de-

terministic, which is a special case of the PH-type distri-

bution. Several traditional discrete time queueing systems,

such as the DMAP/PH/1 priority queue, the single priority

DBMAP/PH/1 queue, the DBMAP/D/1 priority queue, the

discrete time M/M/1 priority queue, are all special cases of

the DBMAP/PH/1 priority queue studied in this paper. Future

research on calculation of other performance measures such

as the waiting time distribution for the DBMAP/PH/1 priority

queue, as well as on applications of the DBMAP/PH/1 prior-

ity queueing model in performance evaluation of computer

networks, is needed.
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