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Abstract

We propose a uni�ed framework to Markov decision problems and performance sensitivity analysis for multichain Markov processes
with both discounted and average-cost performance criteria. With the fundamental concept of performance potentials, we derive both
performance-gradient and performance-di1erence formulas, which play the central role in performance optimization. The standard policy
iteration algorithms for both discounted- and average-reward MDPs can be established using the performance-di1erence formulas in a
simple and intuitive way; and the performance-gradient formulas together with stochastic approximation may lead to new optimization
schemes. This sensitivity-based point of view of performance optimization provides some insights that link perturbation analysis, Markov
decision processes, and reinforcement learning together. The research is an extension of the previous work on ergodic Markov chains
(Cao, Automatica 36 (2000) 771).
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, it was discovered that in the area of learning
and optimization of Markov systems, performance sensi-
tivity analysis (PSA), Markov decision problems (MDPs),
and reinforcement learning (RL) are closely related (Cao,
1998a, 2000, 2003). At the center of the subjects are the
two performance sensitivity formulas, one for performance
gradients in continuous parameter spaces, and the other for
performance di1erences in discrete “policy” spaces. Both
of them depend on the fundamental concept of perfor-
mance potentials (or equivalently, perturbation realization
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(Cao, 1994; Cao & Chen, 1997), in the terminology of
perturbation analysis (PA) (Cao, 1994; Ho & Cao, 1991).
These two sensitivity formulas can be explained and de-
rived in a simple and intuitively clear way by applying
the PA principles (Cao, accepted). The standard policy it-
eration algorithms are the natural consequence of the per-
formance di1erence formulas (Cao, 1998a, 2000), and the
performance-gradient formulas together with stochastic ap-
proximation may lead to new optimization schemes (Baxter
& Bartlett, 2001; Cao, 1999; Cooper, Henderson, & Lewis,
2003; Marbach & Tsitsiklis, 2001).
This sensitivity view of optimization provides a uni�ed

framework for PSA and MDPs with both in�nite horizon
discounted and average-reward performance criteria (Cao,
1998a, 2000, 2003). In particular, both the discounted- and
average-reward performance cases are treated in the same
way with the average case corresponding to the discount
factor � being one.
All the existing results stated above are for ergodic chains.

The goal of this paper is to extend the results in Cao (1998a,
2000, 2003) to multichain Markov processes. That is, we
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propose a uni�ed formulation for PSA andMDPs for both in-
�nite horizon discounted- and average-reward performance
criteria for Markov processes with multichain structures, and
we show that the above statements on ergodic chains also
hold for the multichain case.
In Section 2, we brieKy review the results for ergodic

chains developed in Cao (2000), which will become spe-
cial cases of the results presented in this paper. This sec-
tion serves as a load map for the rest of the paper. In
Section 3, we de�ne performance potentials and derive
performance-di1erence formulas for problems with dis-
counted and average performance criteria for multichain
Markov processes. In Section 4, we show that the standard
policy iteration algorithms for the both problems can be de-
rived using the performance-di1erence formulas in a clear
and intuitive way. In Section 5, we discuss the performance
gradients for Markov chains whose transition probability
matrices depend on continuous parameters. Performance
optimization can be implemented using these gradient for-
mulas together with stochastic approximation algorithms.
Both the performance-gradient and performance-di1erence
formulas are based on the performance potentials of one
of the Markov chains. Section 6 concludes the paper with
some discussions.
It is straightforward to extend the derivation of policy it-

eration to the discounted performance problems with multi-
chains using the performance di1erence formula, but this is
not true for the average-reward problems. The crucial point
in the derivation for the average-reward case is an obser-
vation based on the canonical form of the transition prob-
ability matrix that the e1ect of the transient and recurrent
states on the performance di1erence can be “decoupled”.
With this observation, we can easily establish the optimal-
ity equations for multichain MDPs with the average-reward
criterion, construct the policy iteration algorithm, and prove
its convergence to the optimal policy in a �nite number of
iterations.
It was brought to the authors’ attention in the reviewing

process of an earlier version of this paper that the algebraic
derivation in our proof of convergence of the policy itera-
tion algorithm for the average-reward case follows the same
ideas of the early work of Veinott (1966) about the canonical
structure of the transition probability matrix (see also Sec-
tion 9.2.4 of Puterman, 1994). However, our presentation
with the performance di1erence framework is more intuitive
and clearer than Veinott’s paper (Veinott, 1966). We also
emphasize the uniform applicability of our approach to the
discounted- and average-reward problems and performance
sensitivity analysis.

2. Results for ergodic chains

We�rst brieKy review the basic concepts and results about
the sensitivity-based approach to performance optimization
with an ergodic model (Cao, 2000).

Consider an irreducible and aperiodic (hence ergodic)
Markov chain on a �nite state space S = {1; 2; : : : ; M}
with a transition probability matrix P = [p(j | i)]. Let

 = (
(1); : : : ; 
(M)) be the (row) vector representing its
steady-state probabilities, and r = (r(1); : : : ; r(M))T be
a (column) reward vector, where “T” denotes transpose.
Then Pe = e, where e = (1; : : : ; 1)T is an M-dimensional
vector whose components are all equal to 1, and 
e = 1.
The steady-state probability Kow balance equation is

 = 
P. Let �, 0¡�6 1, be a discount factor. Let
{X0; X1; : : : ; Xn; : : :} denote a sample path of the Markov
chain. The discounted-reward performance criterion is de-
�ned as a column vector �� = (��(1); ��(2); : : : ; ��(M))T

with:

��(i) = (1 − �)E

{ ∞∑
n=0

�nr(Xn) |X0 = i

}
∀i∈ S:

The average reward performance is �= 
r. We have
lim�→1− �� = �e (Blackwell, 1962; Cao, 2000). The
�-potential is de�ned by the discounted Poisson equation
(Cao, 2000):

(I − �P + �e
)g� = r: (1)

When � = 1, (1) is the Poisson equation, and g := g1 is
simply called the potential.
Let P̃ and 
̃ be another ergodic transition probability ma-

trix and its steady-state probability de�ned on the same state
space S, respectively. Let r̃, �̃, and �̃� be the reward vec-
tor, the average, and discounted performance criteria for the
system with P̃, respectively. Then we have

�̃� − �� = (1 − �)(I − �P̃)−1{[r̃ + �P̃g�]

−[r + �Pg�]}; 0¡�¡ 1; (2)

�̃− �= 
̃{[r̃ + P̃g] − [r + Pg]}: (3)

Now, suppose that P changes to P(�) = P + �Q = �P̃ +
(1− �)P, and r changes to r(�) = r + �h, with Q= P̃ − P,
h = r̃ − r, and �∈ [0; 1]. Then the performance measure
changes to �(�)=�+R�(�). From (2) and(3), we can easily
get
d��
d�

= (1 − �)(I − �P)−1[�Qg� + h]; 0¡�¡ 1; (4)

d�
d�

= 
(Qg+ h): (5)

Formulas (2)–(5) are two sets of performance sensitivity
formulas: (2) and (3) for performance di1erences and (4)
and (5) for performance gradients. These two sets of sensi-
tivity formulas are fundamental for performance optimiza-
tion. Many optimization schemes originate from them. For
example, the policy iteration algorithm (for the ergodic case
with average reward) of MDPs can be easily derived from
(3) (Cao, 1998a). Roughly speaking, since 
̃¿ 0 compo-
nent wisely, if Qg+ h=(P̃−P)g+(r̃− r)¿ 0 component
wisely, then we have �̃¿ �. Policy iteration essentially uses
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this fact to �nd a policy that has a better performance than
the current one.
The sensitivity point of view of performance optimization

provides a simple and intuitive way to prove the results for
policy iteration algorithms. It links policy iteration naturally
with the gradient-based optimization approaches. A direct
comparison of (2) and (4), (3) and (5) shows that in policy
iteration one simply chooses the direction with the steep-
est gradients as the improved policy in the next iteration
(Cao, 1998a). This approach brings in some new insights
and new research topics (see, e.g., Baxter & Bartlett, 2001;
Cao, 1999; Cooper et al., 2003). In a recent paper (Cao,
accepted), it is shown that both performance-gradient and
performance-di1erence formulas can be constructed by us-
ing perturbation realization (Cao, 1994; Cao & Chen, 1997),
or equivalently, performance potentials, as building blocks.
With this view, we can derive performance gradient and
di1erence formulas for many optimization problems that
cannot be formulated as the standard MDPs. With these
sensitivity formulas, we can further develop policy iteration
algorithms and gradient-based optimization schemes, using
the structural properties of the sensitivity formulas. In this
paper, we extend the above results with the sensitivity-based
approach to the multichain case.

3. Performance di�erences

3.1. Performance criteria

We study the in�nite horizon performance with
discounted- and average-reward criteria for discrete-time
Markov chains. Let S= {1; 2; : : : ; M} be the state space and
P = [p(j | i)], i; j∈ S, be the transition probability matrix.
Denote a sample path as {X0; X1; : : : ; Xn; : : :} ∈� := (S)∞,
with Xn ∈ S being the system state at time n¿ 0. For any
initial state i∈ S and a given transition matrix P, by the Kol-
mogoro1 theorem there exists a unique probability space
{�;F; Pi} such that, for any sequence ij ∈ S, j=1; 2; : : : ; n,
we have

Pi(X0 = i; X1 = i1; : : : ; Xn = in)

=p(i1 | i)p(i2 | i1) : : : p(in | in−1):

We denote by Ei the corresponding expectation operator.
We assume that all operators, such as limit on matrices or
vectors, etc., are component-wise; and we denote by “0” the
matrix and the vector with zero as all of their components.
Let r(i) (i∈ S) be a reward function, and �∈ (0; 1) be a

discount factor. Then, the discounted- and average-perfor-
mance criteria are de�ned as column vectors �� and �, re-
spectively. Their ith components ��(i) and �(i) are given as

��(i) := (1 − �)Ei

{ ∞∑
n=0

�nr(Xn)

}
; 0¡�¡ 1; and (6)

�(i) := lim
N→∞

Ei[
∑N−1

n=0 r(Xn)]
N

; (7)

respectively. The weighting factor (1 − �) in (6) is added
for maintaining the continuity of �� at �=1, see (11) below.
For any given transition matrix P, let P∗ be the

Cesaro-limit de�ned as

P∗ := lim
N→∞

∑N−1
n=0 Pn

N
: (8)

Lemma 1. Let I be the identity matrix, 0¡�¡ 1. Then

(a) PP∗ = P∗P = P∗P∗ = P∗, P∗e = e, and �= P∗r.
(b) The matrices (I−P+P∗), (I−�P), and (I−�P+�P∗)

are all nonsingular.
(c) (I − �P)−1 = (I − �P + �P∗)−1 + (�=(1 − �))P∗.

Proof. Part (a) follows directly from (7) and (8). Theorems
A.7 and C.2 in Puterman (1994) gives part (b). Next, by
parts (a) and (b), a straightforward calculation gives

I − �P + �P∗ = I − �P + �(I − �I + �P∗)P∗:

Thus,

I = (I − �P + �P∗)−1(I − �P) + �P∗

= (I − �P + �P∗)−1(I − �P) +
�

1 − �
P∗(I − �P);

which, together with part (b), yields part (c).

From Lemma 1(b) and (c), we have

lim
�→1−

(1 − �)(I − �P)−1 = P∗: (9)

From (6), we have

�� = (1 − �)
∞∑
n=0

�nPnr = (1 − �)(1 − �P)−1r: (10)

From (10), (9), and Lemma 1(a), we have

lim
�→1−

�� = �: (11)

Thus, a discount factor � = 1 corresponds to the case of
average performance criteria.

3.2. Performance potentials

Similar to the ergodic case (Cao, 2000), the �-potential
is de�ned as

g� := (I − �P + �P∗)−1r; 0¡�6 1: (12)

By Lemma 1(b), the inverse exists and g� is well de�ned on
�∈ (0; 1]. In addition, g := g1 is simply called the potential.
By Lemma 1(b) we can easily prove

lim
�→1−

g� = g:
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Lemma 2.

(a) P�= �, i.e.,
∑

j∈S p(j | i)�(j) = �(i) for each i∈ S.
(b) � and g are a unique solution to the following two

equations

�+ g= r + Pg; (13)

�= P∗g: (14)

(c) �� = (1 − �)g� + ��.

Proof. Lemma 1(a) gives part (a). Next, by Lemma 1(a)
and (b), we have

(I − P) = (I − P∗)(I − P + P∗);

P∗ = P∗(I − P + P∗); and

(I − P)(I − P + P∗)−1 = I − P∗:

From these equations and Lemma 1(a) and (12) with �=1,
we obtain (13) and (14). On the other hand, suppose that x
and y satisfy (13) and(14). Then by Lemma 1(b) and (12),
we get

y = (I − P + P∗)−1r = g;

which gives P∗y=P∗r. Moreover, by (14) and Lemma 1(a)
we have x = P∗y = P∗r = �. This shows the uniqueness of
the solution to (13) and (14). Finally, by (10) and Lemma
1, part (c) holds.

Eq. (13) is the Poisson equation. Its solution is unique up
to an additive constant; i.e., if g satis�es (13), so does g+ce
for any constant c. In this sense, (14) is used to normalize
the potential g.

3.3. Performance di:erences

Suppose that the transition matrix P and the performance
function r change to P̃ and r̃, de�ned on the same state space
S, respectively. Let �̃� and �̃ be the discounted and average
performance criteria associated with P̃ and r̃, respectively.

Theorem 1.

(a) For the discounted performance criterion (0¡�¡ 1),
we have

�̃� − �� = (I − �P̃)−1[(1 − �)(r̃ − r) + �(P̃ − P)��]
(15)

=(1 − �)(I − �P̃)−1[(r̃ + �P̃g�)

−(r + �Pg�)] + �2(I − �P̃)−1

×(P̃ − I)�: (16)

(b) For the average criterion, we have

�̃− �= P̃∗[(r̃ + P̃g) − (r + Pg)] + (P̃∗ − I)�; (17)

(I − P̃)(g̃− g) = (r̃ + P̃g) − (r + Pg)

−(�̃− �): (18)

Proof. (a) By (10), we have

(I − �P)�� = (1 − �)r;

which gives

�̃� − �� = (1 − �)(r̃ − r) + �(P̃�̃� − P��)

= (1 − �)(r̃ − r) + �(P̃ − P)�� + �P̃(�̃� − ��):

This is

(I − �P̃)(�̃� − ��) = (1 − �)(r̃ − r) + �(P̃ − P)�� (19)

and so (15) follows. Multiplying both sides of (19) by
(I − �P̃)−1 leads to

�̃� − �� = (1 − �)(I − �P̃)−1(r̃ − r)

+�(I − �P̃)−1(P̃ − P)��;

which together with Lemma 2(c) and (a) yields (16).
(b) By Lemma 1(a) and (13), we have

�̃− �= P̃∗r̃ − �

= P̃∗r̃ + P̃∗g− P̃∗g− P̃∗�+ P̃∗�− �

= P̃∗[r̃ + P̃g− g− �] + (P̃∗ − I)�

= P̃∗[(r̃ + P̃g) − (r + Pg)] + (P̃∗ − I)�:

This is (17). Next, by (13), we have g̃ = P̃g̃ + r̃ − �̃ and
g= Pg+ r − �. Thus,

g̃− g= P̃g̃− P̃g+ P̃g+ r̃ − �̃− Pg− r + �

= P̃(g̃− g) + (r̃ + P̃g) − (Pg+ r) − (�̃− �);

which gives (18).

These equations lead to the fundamental results in MDPs
and PSA, which will be discussed in the following sections.
Results for ergodic chains (Cao, 2000, 2003) become special
cases.

4. Markov decision problems

In Markov decision problems, there is an action space
denoted by A, which we assume to be �nite. At any state
i∈ S at time n¿ 0; an action ai is taken from an available
action set A(i) ⊂ A. The transition probability from state i to
state j∈ S depends on ai and is denoted by p(j | i; ai). Also,
the reward function is denoted by r(i; ai). Let F be the set
of all decision rules f with f(i)∈A(i) for all i∈ S. Then
F is called the (stationary) policy space. Thus, for a given
policy f∈F , the Markov chain Xf := {Xf

n ; n¿ 0} evolves
according to the transition matrix Pf := [p(j | i; f(i))], and
the corresponding reward function is de�ned as rf with
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rf(i) := r(i; f(i)) for all i∈ S. We will use the index f
to indicate the quantities associated with policy f; such as
�f� ; �f and gf� , etc.
For two vectors u and v, we de�ne u= v if u(i)= v(i) for

all i∈ S; u¿ v if u(i)¿ v(i) for all i∈ S; u ¡ v if u¿ v
and u(i)¿v(i) for at least one i∈ S:
A policy f∗ ∈F is called �-discounted optimal if

�f
∗

� (i)¿ �f� (i) for all f∈F and all i∈ S; f∗ is called
average-optimal if �f

∗
(i)¿ �f(i) for all f∈F and all

i∈ S.
Most of the results in this section have appeared

in literature (see, e.g., Blackwell, 1962; Federgruen &
Shweitzer, 1984; Guo & Shi, 2001; Guo, Yu, & Li, 2002;
Hastings, 1969; Howard, 1960; Kallenberg, 2002; Ng, 1999;
Puterman, 1994; Shweitzer & Brower, 1987; Shweitzer &
Federgruen, 1978; Spreen, 1985; Veinott, 1966). We show
that these results can be obtained from the performance
di1erence equations in a simple and direct way.

4.1. MDPs with discounted performance criterion

We show that the standard policy iteration algorithm for
MDPs with discounted performance criterion follows easily
from the performance di1erence formula (15) (or (16)).
To this end, for each f∈F; i∈ S, a∈A(i), and 0¡�¡ 1,
we let

Gf
� (i; a) := (1 − �)r(i; a) + �

∑
j∈S

p(j | i; a)�f� (j) (20)

and de�ne an action set Bf� (i) as

Bf� (i) := {a∈A(i) |Gf
� (i; a)¿Gf

� (i; f(i))}: (21)

Then we de�ne a policy h∈F (depending on f) as
follows:

h(i)∈Bf� (i) when Bf� (i) 	= ∅;

and h(i) = f(i) when Bf� (i) = ∅: (22)

Theorem 2. For any given f∈F , let h be de=ned as in
(22). If h 	= f, then �h� ¡ �f� .

Proof. Let the ith components of vectors Gf
� (h) and G

f
� (f)

be Gf
� (i; h(i)) and G

f
� (i; f(i)) for all i∈ S, respectively. Let

S1� := {i∈ S |Bf� (i) 	= ∅}, S2� := {i∈ S |Bf� (i) = ∅} =
{i∈ S − S1�}. Then, by (22), we have h(i) = f(i) for all
i∈ S2� . Therefore, by (21) and (22) we get

Gf
� (i; h(i))¿Gf

� (i; f(i)) ∀i∈ S1� ; (23)

Gf
� (i; h(i)) = Gf

� (i; f(i)) ∀i∈ S2� ; (24)

which imply (S1� is not empty since h 	= f)

Gf
� (h)¡ Gf

� (f) when h 	= f: (25)

Next, by (15) and (20), we have

�h� − �f� = (I − �Ph)−1[Gf
� (h) − Gf

� (f)]: (26)

Since (I − �Ph)−1 = I +
∑∞

n=1 �
n(Ph)

n
¿ I , by (25) and

(26), we have �h� ¡ �f� .

Following the same argument as for the ergodic case (Cao,
2000), from Theorem 2, we can obtain the standard policy
iteration algorithm:

1. Set n= 0 and select an arbitrary decision rule f0 ∈F .
2. (Policy evaluation) Obtain �fn� by using (10).
3. (Policy improvement) Set f=fn in (21) and obtain fn+1

as the policy h in (22).
4. If Bfn� (i) = ∅ for all i∈ S, then stop and fn is op-

timal. Otherwise, increment n by 1 and return to
step 2.

The above policy iteration algorithm is based on the per-
formance di1erence formula (15). It is easy to see that the
performance di1erence formula (16) also leads naturally to a
policy iteration algorithm that uses g� and �. This algorithm
is essentially the same as the standard one; it, however, may
provide some insights that may link to the policy iteration
procedure of the average performance MDPs discussed in
Section 4.3. We will not get into more details.

4.2. The canonical forms

We �rst review some results related to the canonical forms
of P and P∗. Let Ck ⊂ S, k = 1; 2; : : : ; m, denote all the
disjoint closed irreducible sets of the recurrent states of a
Markov chain X with the transition probability matrix P,
with m being the number of such sets; and let Cm+1 be
the set of transient states. First, it is well known (see, e.g.,
Puterman, 1994) that by reordering the states, P takes the
canonical form

P =




P1 0 0 · · 0

0 P2 0 · · 0

· · · · · ·

· · · · · ·

0 · · · Pm 0

Q1 Q2 · · Qm Qm+1




; (27)
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in which Pk corresponds to the transitions among states in
Ck , k=1; 2; : : : ; m; Qk , k=1; 2; : : : ; m, to the transitions from
the transient states in Cm+1 to the recurrent states in Ck ,
k=1; : : : ; m; and Qm+1 to the transitions among the transient
states in Cm+1. Next, P∗ takes the following form Puterman
(1994):

P∗ =




P∗
1 0 0 · · 0

0 P∗
2 0 · · 0

· · · · · ·

· · · · · ·

0 · · · P∗
m 0

Q∗
1 Q∗

2 · · Q∗
m 0




; (28)

in which P∗
k = ek
k ; where 
k is the steady-state prob-

ability (row) vector of Pk obtained by 
kPk = 
k sub-
ject to 
kek = 1, ek is a column vector of ones (with
the same dimension as 
k), and Q∗

k := (I − Qm+1)−1

QkP∗
k :

By (27) and (28), we have the following simple
observations which will be used to prove the exis-
tence of optimal policies for MDPs with the average
criterion.

Lemma 3. Let P be a transition probability matrix of a
Markov chain X on S, and u be a vector on S.

(a) If (P∗u)(i)¿ 0 (or (P∗u)(i)¡ 0) for some state
i∈ S, then there exists a recurrent state of X,
denoted as j∈ S, such that u(j)¿ 0 (or
u(j)¡ 0).

(b) Suppose P∗u = 0 and u6 0 (or u¿ 0). If u(i)¡ 0
(or u(i)¿ 0) for some i∈ S, then i is a transient state
of X.

(c) Suppose P∗u = 0 and u6 0 (or u¿ 0), then u(i) = 0
for all recurrent states i of X.

Proof. From the canonical form (28), the columns in P∗

corresponding to transient states in Cm+1 are all zeros; thus,
all u(j)s with j∈Cm+1 contribute nothing to P∗u. More-
over, since all the entries in P∗

k , k=1; 2; : : : ; m, are positive,
parts (a) and (b) follow. (c) is simply another statement
of (b).

Next, for given r; r̃; P and P̃, de�ne

w := (r̃ + P̃g) − (r + Pg); Rg := g̃− g: (29)

We further write P̃ in the canonical form (27) and partition
w and Rg according to it, i.e., denote

P̃ =




P̃1 0 0 · · 0

0 P̃2 0 · · 0

· · · · · ·
· · · · · ·
0 · · · P̃m̃ 0

Q̃1 Q̃2 · · Q̃m̃ Q̃m̃+1



; w =




w1

w2

·
·
·

wm̃+1



;

Rg=




Rg1

Rg2

·
·
·

Rgm̃+1



; (30)

where m̃ is the number of ergodic classes under P̃. Note that
P and P̃ may have di1erent closed-subset structures (e.g., it
is possible that m 	= m̃). We have the following lemma.

Lemma 4. If �̃= �, then

Rgm̃+1 = (I − Q̃m̃+1)−1

{
wm̃+1 +

m̃∑
k=1

Q̃kRgk

}
: (31)

Proof. By (18) and (29) we have

Rg= w + P̃Rg: (32)

Noting that (I − Q̃m̃+1)−1 exists (by Proposition A.3 in
Puterman, 1994). By (30) we can solve (32) for Rgm̃+1 and
get (31).

This lemma will be used later to prove the anti-cycling
rule for the policy iteration procedure in MDPs.

4.3. MDPs with the average performance criterion

In the ergodic case, with the formula for the performance
di1erence (3), because 
̃¿ 0, we know that if Qg + h ¡
0 or equivalently P̃g + r̃ ¡ Pg + r, then �̃¿�. That is,
although we don’t know 
̃, but by comparing P̃g + r̃ with
Pg+ r, we may know �̃ is indeed larger than �. This is the
basis for policy iteration.
To extend the above simple observation to the multichain

case, we use the performance di1erence formula in Theorem
1(b). However, there are two terms on the right-hand side.
This causes a major problem in extending the above results.
Fortunately, as the following example indicates, these two
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terms can be “de-coupled”. First, we set u∗ =(P̃∗ − I)� and
rewrite (17) as

�̃− �= P̃∗w + u∗: (33)

Example 1. Let S := {1; 2; 3; 4; 5}, r= : (5; 2; 1; 3; 1)T, r̃ :=
(4; 1; 1; 2; 0)T, and

P =




0:5 0:5 0 0 0

0:4 0:6 0 0 0

0 0 0:2 0:8 0

0 0 0:7 0:3 0

0:1 0:2 0:2 0:3 0:2



;

P̃ =




0:9 0:1 0 0 0

0:8 0:2 0 0 0

0:2 0:4 0:1 0:2 0:1

0:2 0:1 0:2 0:3 0:2

0:3 0:1 0:2 0:1 0:3



:

After some calculation, we can write the performance
di1erence (33) as

�̃− �= P̃∗w + u∗

=




0:8889 0:1111 0:0000 0:0000 0:0000

0:8889 0:1111 0:0000 0:0000 0:0000

0:8889 0:1111 0:0000 0:0000 0:0000

0:8889 0:1111 0:0000 0:0000 0:0000

0:8889 0:1111 0:0000 0:0000 0:0000




×




0:3333

0:3333

−0:2650

−0:5534

−7:7077



+




0:0000

0:0000

2:0832

2:0832

1:3019



:

Observe the following structure: the components in the sec-
ond term, u∗(i), for recurrent states of P̃ (i = 1 and 2) are
zeros; the components in w(i) in the �rst term for recurrent
states of P̃ are all positive, and the columns of P̃∗ for tran-
sient states are all zeros. This “decouples” the e1ect of the
two terms: the components of �̃− � for the recurrent states
are determined by the �rst term in the performance di1er-
ence formula; and the components of �̃− � for the transient
states take additional contribution from the second terms in
the performance di1erence formula. The negative values in
the components of w for the transient states do not play a
role.

The above example gives us an idea that we may compare
the performance di1erence between two policies by using
their structures; this simple observation leads to the optimal-
ity equation and the policy iteration algorithm. We formally
state the results below. (The rest of this section is similar to
Veinott, 1966.)

Lemma 5. Suppose that P̃, r̃ and P, r correspond to two
Markov chains with the average performance measure �̃
and �, and satisfy the following two conditions:

(a) P̃�¿ �, and
(b) r̃(i)+ (P̃g)(i)¿ r(i)+ (Pg)(i) when (P̃�)(i)=�(i) for

some i∈ S.

Then �̃¿ �. This lemma also holds if we change all of the
symbols “¿” to “6”.

Proof. Let u = P̃� − �¿ 0 and w = (r̃ + P̃g) − (r + Pg).
By Lemma 1(a), we have P̃∗u= 0. Then, By Lemma 3(b),
we have u(i) = 0 for all recurrent states i under P̃, and so
it follows from condition (b) that w(i)¿ 0 for all recurrent
states under P̃. Thus, from the canonical form (30) for P̃,
we have P̃∗w¿ 0. On the other hand, since P̃�¿ �, and so
P̃k�¿ � for all k¿ 1. Therefore, by (8) we get P̃∗�¿ �.
Finally, by (33), we have �̃ − � = P̃∗w + (P̃∗ − I)�¿ 0.
This proves the lemma.

From Lemma 5, we can easily derive the optimality
conditions:

Theorem 3. Let �̂ and ĝ be the average performance mea-
sure and the potential with respect to policy f̂∈F (i.e.
�̂ := �f̂; ĝ := gf̂). Suppose the following “optimality con-
ditions” hold:

�̂(i) = max
a∈A(i)




∑
j∈S

p(j | i; a)�̂(j)

 ∀i∈ S; (34)

�̂(i) + ĝ(i) = max
a∈B(i)


r(i; a)

+
∑
j∈S

p(j | i; a)ĝ(j)

 ∀i∈ S; (35)

where B(i) := {a∈A(i) | ∑
j∈S p(j | i; a)�̂(j)=�̂(i)}.Then

�̂¿ �f for all f∈F ; that is, policy f̂ is average optimal.

Proof. This is a direct consequence of Lemma 5. Let P̂,
r̂, �̂ and ĝ be the P, r, � and g in Lemma 5, respectively;
and for any f∈F we let Pf, rf, �f and gf be the P̃, r̃,
�̃ and g̃ in Lemma 5, respectively. Then (34) means that
Pf�̂6 �̂; and (35) together with (13) means that rf(i) +
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(Pfĝ)(i)6 r̂(i)+ (P̂ĝ)(i), whenever (Pf�̂)(i)= �̂(i). Then
Lemma 5 (with relation 6) implies �f6�̂.

The goal of MDPs is to �nd a policy that satis�es the
above optimality conditions. This can be achieved in policy
iteration by improving performance at each iteration. We
will show that for any non-optimal policy we can always
construct a “better” policy according to Lemma 5. For a
given f∈F , i∈ S and a∈A(i), let
Hf(i; a) := r(i; a) +

∑
j∈S

p(j | i; a)gf(j) (36)

and

Af(i):=



a∈A(i) :

∑
j∈S

p(j | i; a)�f(j)¿�f(i); or

Hf(i; a)¿Hf(i; f(i))

when
∑
j∈S

p(j | i; a)�f(j) = �f(i)



:

(37)

We then de�ne an improvement policy h∈F (depending on
f) as follows:

h(i)∈Af(i) when Af(i) 	= ∅; and
h(i) = f(i) if Af(i) = ∅: (38)

Note that such a policy may not be unique, since there may
be more than one action in Af(i) for some state i∈ S. Let
uhf := Ph�f − �f; vhf := rh + Phgf − rf − Pfgf: (39)

Theorem 4. For any given f∈F , let h be de=ned as in
(38). Then

(a) �h¿ �f, and vhf(i)¿ 0 for all recurrent states i under
Ph.

(b) If vhf(i)¿ 0 for some recurrent state i under Ph, then
�h ¡ �f.

(c) If Ph�f 	= �f, then �h ¡ �f.
(d) If �h = �f and h 	= f, then gh ¡ gf.

With Theorem 4 (see Appendix A for its proof), we can
state the (standard) Policy Iteration Algorithm as follows:

1. Set n= 0 and select an arbitrary decision rule f0 ∈F .
2. (Policy evaluation) Obtain (by Lemma 2) gfn and �fn .
3. (Policy improvement) Obtain policy fn+1 as the policy

h in (37) and (38).
4. If fn+1=fn, then stop and fn+1 is optimal (by Theorem 5

below). Otherwise, increment n by 1 and return to step 2.

Theorem 4 can be used to compare the performance of
two policies and to prove the anti-cycling property in the
policy iteration procedure. The existence of the solution to

the optimality equations can be proved by construction as
shown in Theorem 5.

Theorem 5. The Policy Iteration Algorithm stops at an
average optimal policy in a =nite number of iterations.

Proof. By Theorem 4(a), we have �fn+1 ¿ �fn . That is, as
n increases, �fn either increases or stays the same. Fur-
thermore, by Theorem 4(d), when �fn stays the same, gfn

increases. Thus, any two policies in the sequence of fn,
n = 0; 1; : : : ; either have di1erent performance measures or
have di1erent potentials. Thus, every policy in the iteration
sequence is di1erent. Since the number of policies is �nite,
the iteration must stop after a �nite number of iterations.
Suppose it stops at a policy denoted as f̂. Then f̂ must sat-
isfy the optimality conditions (34) and (35), because oth-
erwise for some i the set Af̂(i) in (37) is non-empty and
we can �nd the next improved policy in the policy iteration.
Thus, by Theorem 3, policy f̂ is average optimal.

5. Performance sensitivity analysis

Nowwe turn to performance derivatives. Consider a (mul-
tichain) transition probability matrix P(�) and a reward
function r(�) that depend on a parameter �∈ [0; 1]. We as-
sume that all the components of both P(�) and r(�) are
(right) di1erentiable at � = 0, and denote these derivatives
as P′(0) and r′(0), respectively. All quantities associated
with P(�) and r(�) are obviously functions of the parameter
�∈ [0; 1]. Therefore, for example, the discounted and aver-
age criteria and the potentials are denoted as ��(�), �(�),
and g(�), respectively. The derivatives of these functions at
�= 0 are viewed as right derivatives (i.e., � → 0+).

Theorem 6.

(a) For 0¡�¡ 1, we have

d��(�)
d�

= (I − �P(0))−1[(1 − �)r′(0) + �P′(0)��(0)]

= (1 − �)(I − �P(0))−1[�P′(0)g�(0) + r′(0)]

+�2(I − �P(0))−1P′(0)�(0):

(b) If P(0) is unichain, then

d�(�)
d�

= P∗(0)[P′(0)g(0) + r′(0)]:

Proof. (a) Set P(�) = P̃; r(�) = r̃; P(0) = P and r(0) = r:
By Theorem 1(a) we get

��(�) − ��(0) = (I − �P(�))−1[(1 − �)(r(�) − r(0))

+�(P(�) − P(0))��(0)]
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= (1 − �)(I − �P(�)−1)[(r(�) + �P(�)g�(0))

−(r(0) + �P(0)g�(0))] + �2(I − �P(�))−1

×(P(�) − P(0))�(0);

Dividing both sides with � and letting � → 0+ yield part
(a).
(b) If P(0) is unichain, then all components of �(0) is

a constant number and so (P(�)∗ − I)�(0) = 0. Thus, by
Theorem 1(b) we get

�(�) − �(0) = P∗(�)[(P(�) − P(0))g(0)

+r(�) − r(0)]: (40)

On the other hand, we have lim�→0+P∗(�)=P∗(0). To prove
this fact, we choose any arbitrary sequence {P∗(�k)} with
a limit point G. This is, P∗(�k) → G as �k → 0: Since
P∗(�k)P(�k) = P∗(�k), letting �k → 0; we have GP(0) =
G. This implies that all rows of G are the same and are
equal to the unique stationary distribution of P(0). Since the
sequence {P∗(�k)} is chosen arbitrarily, we conclude that
lim�→0+P∗(�) = P∗(0). Thus, by (40), part (b) holds.

Note that lim�→0+P∗(�)=P∗(0) may not hold when P(0)
is a multichain (see Cao, 1998b). In that case, the perfor-
mance derivative for average criterion does not exist.

6. Discussions

We have proposed a uni�ed framework to Markov de-
cision problems and performance sensitivity analysis for
multichain Markov processes with both discounted- and
average-reward performance criteria. With the fundamen-
tal concept of performance potentials, we derived both
performance-gradient and performance-di1erence formulas,
which play the central role in performance optimization.
In particular, using the performance di1erence formula, we
established policy iteration algorithms for both discounted-
and average-reward MDPs. The performance-gradient for-
mulas can be used with stochastic approximation to carry out
performance optimization. This leads to the subject of “pol-
icy gradients” in the reinforcement learning literature. Pre-
vious work on ergodic Markov chains become special cases.
A distinguished feature of our approach is its simplicity,

clarity, and uniformity. All the results are based on the two
sets of sensitivity formulas. This approach to performance
optimization is intuitively clear; it treats the average-reward
case in the same way as the discounted performance case.
Sample-path-based estimates for performance potentials

g can be derived and can be used in policy iteration and gra-
dient based-optimization; for the ergodic case, see (Baxter
& Bartlett, 2001; Cao, 1999; Cao & Wan, 1998; Cooper
et al., 2003), among others. The sample-path-based approach
is also called learning in literature, because the decision
making is based on the information learned from the system

behavior. Further research is needed for sample-path-based
estimates of potentials for the multichain case.

Appendix A

The Proof of Theorem 4. (a) We take Pf, rf, Ph and rh as
P, r, P̃ and r̃ in Lemma 5, respectively. Then by the con-
struction in (37)–(39), conditions (a) and (b) in Lemma 5
hold. Thus, it follows from Lemma 5 that �h¿ �f. More-
over, as in the proof of Lemma 5, we have vhf(i)¿ 0 for all
recurrent states i under Ph; thus, part (a) follows.

(b) Since we have Ph�f¿ �f, so Ph∗�f¿ �f. Thus, under
the condition in (b), by part (a) we have Ph∗vhf ¡ 0;
and so �h − �f = Ph∗vhf + (Ph∗ − I)�f ¡ 0. Then part
(b) follows.

(c) By (a), it suVces to prove that �h 	= �f. Suppose that
�h = �f. Then by Lemma 1(a) we have

Ph�f = Ph�h = �h = �f; (A.1)

which contradicts to the given conditions. Therefore,
part (c) is proved.

(d) We �rst prove that gh¿ gf. In fact, since �h = �f,
(A.1) holds. Then, by Theorem 1(b) and (37)–(39),
we have (I − Ph)(gh − gf) = vhf¿ 0. By Lemma 1(a),
Ph∗(I − Ph)(gh − gf) = 0. Therefore, by Lemma 3(c)
we have (I −Ph)(gh−gf)(i)=0 for all recurrent states
i under Ph. Let

P̃ := Ph and P := Pf

and partition P̃ and any vector such as �h, �f, gh, gf and
Rg := gh−gf as (30). Then, we have (I− P̃k)Rgk=0,
and so Rgk = P̃∗

kRgk , for all k = 1; 2; : : : ; m̃. Since P̃k
are all closed and irreducible, Rgk is a constant vector
denoted by +kek ; for all k=1; 2; : : : ; m̃. By parts (a) and
(b) we have vhf(i) = 0 for all recurrent states i under
Ph. By (38) and (A.1) we have h(i) =f(i) for all such
recurrent states i, and so

p(j | i; h(i)) = p(j | i; f(i)) for all j∈ S
and recurrent states i under Ph;

which implies that P̃k is also closed and irreducible
under Pf. Therefore, P = Pf has the following form:

P =




P̃1 0 0 · · 0 0

0 P̃2 0 · · 0 0

· · · · · · 0

0 · · · P̃m̃ 0 0

· · · · · · 0

0 0 · · · Pm 0

Q1 Q2 · · · Qm Qm+1




;
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where, m¿ m̃, m is the number of disjoint closed irre-
ducible sets under P = Pf. By (14) and the fact that
�h = �f (so, �hk = �fk ), we have

P̃∗
k g

h
k = P̃∗

k (g
f
k +Rgk) = P̃∗

k (g
f
k + +kek)

= �hk = �fk = P̃∗
k g

f
k ∀k = 1; : : : ; m̃;

which gives +k = 0, and so Rgk = +kek = 0 for all
k = 1; 2; : : : ; m̃. By Lemma 4, we have

Rgm̃+1 = (I − Q̃m̃+1)−1vhf;m̃+1:

Noting that (I−Q̃m̃+1)−1=
∑∞

k=0 Q̃
k
m̃+1¿ I (see Propo-

sition A.3 in Puterman, 1994) and vhf¿ 0, we have
Rgm̃+1¿ vhf;m̃+1¿ 0. In summary, we have Rg¿ 0,
and so gh¿ gf.

The rest is to prove gh 	= gf. Suppose that gh = gf. By
Lemma 2(b), we have

rh + Phgf = rh + Phgh = �h + gh = �f + gf = rf + Pfgf:
(A.2)

On the other hand, since h 	= f, from (A.1), (37) and (38),
we have

rh + Phgf ¡ rf + Pfgf;

which leads to a contradiction with (A.2), and so we must
have gh ¡ gf.
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