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Abstract

An algebraic principle for blind source separation is presented in this paper. This separation principle identi"es
a (smaller) set of equations whose solutions can blindly extract non-Gaussian signals. The concept of `Mth-order
uncorrelatednessa is introduced and it is proven that for Mth-order uncorrelated source signals, signals with nonzero
kth-order cumulant (2(k)M) can always be extracted by setting a small set of kth-order cross-cumulants of output
signals to zero. The set of kth-order cross-cumulants speci"ed here is a sub-set of those used by other existing methods.
The relationship between the algebraic principle and several existing algorithms is presented. The contributions of this
principle are the reduction of the number of cross-cumulants used and the #exibility it a!ords in designing algorithms for
blind source separation. ( 1999 Published by Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel wird ein algebraisches Prinzip zur blinden Separation von Quellen vorgestellt. Dieses Prinzip
identi"ziert eine (kleinere) Menge von Gleichungen, deren LoK sungen Signale blind extrahieren koK nnen, die nicht
normalverteilt sind. Das Konzept der `Unkorreliertheit M-ter Ordnunga wird eingefuK hrt und es wird gezeigt, dass fuK r
Quellensignale, die bis zur Ordnung M unkorreliert sind, Signale mit von Null verschiedenen Kumulanten k-ter
Ordnung (2(k(M) immer extrahiert werden koK nnen, falls eine kleine Menge der den Ausgabesignale abgeleiteten
Kreuzkumulanten k-ter Ordnung zu Null gesetzt wird. Die Menge der hier spezi"zierten Kreuzkumulanten k-ter
Ordnung ist eine Untermenge der Menge von Kreuzkumulanten, die von anderen existierenden Methoden verwendet
wird. Die BeitraK ge dieses Prinzips sind die geringe Anzahl der zu verwendenden Kreuzkumulanten und die FlexibilitaK t,
welche zum Design von Algorithmen fuK r die blinde Separation von Quellen bereitgestellt wird. ( 1999 Published by
Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous preH sentons dans cet article un principe algeH brique pour la seH paration aveugle de sources. Ce principe de
seH paration identi"e un ensemble (plus petit) d'eH quations dont les solutions peuvent extraire en aveugle des signaux
non-gaussiens. Le concept de `deH correH lation d'ordre Ma est introduit et il est prouveH que pour des signaux deH correH leH s

0165-1684/99/$ - see front matter ( 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 5 - 1 6 8 4 ( 9 9 ) 0 0 0 0 2 - X



d'ordre M les signaux ayant des cumulants d'ordre k non nuls (2(k)M) peuvent toujours e( tre extraits en mettant un
petit ensemble de cumulants croiseH s d'ordre k des signals de sortie à zeH ro. L'ensemble des cumulants croiseH s
d'ordre k speH ci"eH ici est un sous-ensemble de ceux utiliseH s par d'autres meH thodes existantes. La relation entre le principe
algeH brique et plusieurs algorithmes existants est preH senteH e. Les contributions de ce principe sont la reH duction du nombre
de cumulants croiseH s utiliseH s et la #exibiliteH qu'il apporte dans la conception d'algorithmes pour la seH paration de sources
aveugle. ( 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In the past decade, many research e!orts have
been devoted to the blind source separation (BSS)
[3,8,9,15,18,21,27,30] or equivalently, independent
component analysis (ICA) [13,17,20,24] The BSS
problem can be described as follows. Denote the
number of sources as n, which is assumed to be
known. Let s(t)"[s

1
(t), s

2
(t),2, s

n
(t)]@ be the vector

of unknown signals or `sourcea signals, where the
superscript @ represents transpose. Then a known
mixture of the source signals is modeled by

o(t)"As(t), (1)

where o(t)"[o
1
(t), o

2
(t),2, o

m
(t)]@ and A"[a

i,j
]3

RmCn is the unknown mixing matrix representing the
unknown physical environment in which signals
are transmitted and mixed. In order to be solvable,
the BSS problem requires that the mixing matrix
A must be of non-singular or full column rank when
m"n or m'n, respectively. Without loss of gener-
ality, we assume that A is an n]n square matrix
with non-singularity hereafter.

The objective of BSS is to recover source signal
s(t) by using the observed signal o(t) and the as-
sumption of mutual independence among source
signals. It exploits only the information carried by
the observed signals themselves. For implementa-
tion, the source signals are assumed to be ergodic,
or equivalently the observed signals are ergodic. It
is worth emphasizing that the BSS problem in this
strict sense only relies on the assumption of mutual
independence among source signals. Other tech-
niques, such as Cyclostationary Signal Separation
[2] and AMUSE-type algorithms [5,28] where
either cyclostationary source signals or colored
source signals with di!erent spectral shapes are
required, are less general and beyond the scope of

our consideration. When the matrix A is non-singu-
lar (more general cases are in [8]), there exists
a non-singular n]n matrix B such that B extracts
all source signals via

e(t)"Bo(t)"BAs(t). (2)

We refer to B as separating matrix. Because the
relative amplitudes of source signals in s(t) and
columns of matrix A are unknown, the separating
matrix has a scaling freedom on each of its rows. In
addition, the rows of B or the output signals can be
permutated after separation. Hence, if B is a separ-
ating matrix then PKB is also a separating matrix
where K is any invertible diagonal matrix and P is
a permutation matrix. The scaling and permutation
properties are therefore two inherent indetermin-
acies of the underlying BSS problem.

Many approaches of the BSS problem have been
proposed in the literature since the "rst heuristic
but e!ective algorithm proposed by Jutten and
Herault [21]. These approaches can be classi"ed as
adaptive (neural network) methods [4,7,11,14,19,
22,23] and algebraic methods [12,17,26,29]. Adap-
tive methods typically rely on a suitable cost func-
tion in terms of higher-order statistics of the output
signals for minimization. It updates the separating
matrix B with each arrival of mixed signal samples.
The algebraic method, on the other hand, "rst
computes the separating matrix B from an en-
semble of mixed samples and recovers the source
signals by (2). In this paper we are interested in the
algebraic method and determine the separating
matrix B by solving a set of equations involving the
statistics of the output signals.

The "rst algebraic method for BSS is the Fourth-
Order Blind Identixcation (FOBI) algorithm pro-
posed by Cardoso [9] and later extended by Tong
et al. [27] to noisy systems. This method is in fact

106 J. Zhu et al. / Signal Processing 76 (1999) 105}115



Fig. 1. Block diagram of the algebraic method.

based on the decomposition of a special matrix
about the fourth-order cumulants of the estimated
signal e(t). When each source signal has a unique
normalized kurtosis (i.e. the ratio of fourth-order
cumulant to the square of signal energy), the matrix
decomposition is unique in the sense of BSS, which
means that the source signals can be separated. To
eliminate additional conditions on the source kur-
tosis, Cardoso [12] later developed another algo-
rithm named JADE. JADE is designed on the Joint
Approximate Diagonalisation of all 4th order cumu-
lant matrices of the estimated signals and thereby is
more robust than FOBI. Comon [17] proposed
a cost function to determine the pairwise indepen-
dence among the estimated signals. The algorithm
is based on only fourth-order statistics and is hence
similar in spirit to JADE. An overview of the alge-
braic methods was recently presented in [10]. In
contrast to adaptive methods, algebraic methods
have no convergent concerns and can be simpli"ed
by using eigen-decomposition of higher-order
cumulant matrices and other algebraic techniques.
However, the computation of higher-order cumu-
lant matrices in the algebraic method can be com-
plex, especially for those non-Gaussian signals with
zero cumulant up to some large order.

In this paper, we propose an algebraic principle
for blind source separation. The principle estab-
lishes that a set of source signal can be separated by
forcing some higher-order cross-cumulants to be
zero even if the source signals are not mutually
independent. We "rst introduce the concept of
`Mth-order uncorrelatednessa to describe a statist-
ical relationship among a set of source signals.
Then we prove that if the source signals are mu-
tually Mth-order uncorrelated (M'2), a source
signal with nonzero kth-order cumulant can always
be separated out by setting a small set of kth-order
cross-cumulants of the estimated signals to zero
(k)M). The number of the cross-cumulants is
n(n!1) for an odd number k and (n#1)(n!1) for
an even number k. Finally, we present the relation-
ship between this algebraic principle and some
other existing algorithms.

The paper is organized as follows. Section 2
reviews the basic statistic information useful for
algebraic BSS methods. In Section 3, Mth-order
uncorrelated source signals are de"ned and the set

of higher-order cross-cumulants for source signal
separation are established. Section 4 describes the
relationship between our algebraic principle and
other existing methods.

2. Statistics in blind source separation

The task of BSS is to "nd the separating matrix
B. From the algebraic point of view, it involves to
build and solve a set of equations about B. B is an
n]n matrix thus has n2 unknown entries. Because
of the inherent indeterminacy of the scale on each
row of B, there are totally n2!n unknowns in B.
Thus, the algebraic equation set used to determine
B must contains at least n2!n independent equa-
tions. If e(t) is a copy of s(t) up to their scales and
order permutation, then the components of e(t)
must be uncorrelated signals upon successful separ-
ation. Hence, by

EMe(t)e(t)sN"I
n
,

we can generate n(n!1)/2 independent equations,
where the superscript - stands for complex conju-
gate transpose and I

n
is an n]n identity matrix. To

determine B fully, a straightforward idea is to col-
lect additional n(n!1)/2 equations from higher-
order statistics of the output signals. With this basic
idea in mind, almost all of the algebraic algorithms
can be divided into two stages: `whiteninga and
`rotatinga.

The whitening stage is to "nd a matrix W by
which the components of z(t)"Wo(t) are uncor-
related. This is a typical principle component analy-
sis (PCA) problem and can be solved by many
well-designed algorithms. The rotation stage is to
"nd an orthogonal matrix U to "nally separate out
the source signals: e(t)"Uz(t). This algebraic pro-
cedure can be illustrated in Fig. 1.

The "nal separating matrix is given by B"UW.
Obviously, the key point in this procedure is to
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build at least n(n!1)/2 linear independent equa-
tions based on the higher-order statistics so that the
whitened signal z(t) can be rotated to a suitable
point in the signal space.

One may notice that whitening the observed
signals can always be achieved by PCA. However,
rotating the whitened signals requires su$cient
message from their higher-order statistics. As the
higher-order cumulants of a Gaussian source are
always zero, it is apparent that Gaussian sources
cannot be separated. For non-Gaussian source sig-
nals, Tong et al. [26] proved that the BSS can
always be realized. Tong et al. concluded that if
a source signal s

i
(t) has nonzero kth-order cumu-

lant, then the ith column of the mixing matrix A can
be identi"ed by solving a set of equations related to
the kth-order statistics of source signals. The set of
equations was named as the kth-order identixcation
equations. However, the size of the kth identi"ca-
tion equations increases exponentially with the or-
der of cumulants and the number of sources. When
the order k gets large, it becomes a formidable to
deal with all the kth-order identi"cation equations.
This motivates us in this paper to investigate
whether or not all the kth-order identi"cation
equations need to be involved.

Note that in the BSS model the source signals are
often assumed to be mutually independent. This
assumption implies that any cross-cumulant of
source signals must be zero and is quite strong.
Because signals in practical systems can be com-
plex, source signals cannot and need not be tested
for `completea mutual independence. In fact, most
existing algebraic algorithms, such as the one de-
veloped in [26], were developed for sources with
nonzero cumulants of order k. Thus, they can be
applied to separation of source signals mutually
uncorrelated up to order k, no matter whether the
sources are mutually independent or not.

In the next section, we will "rst introduce a con-
cept to represent a set of source signals that are
uncorrelated but not mutually independent. Their
separability does not require the testing of their
mutual independence. We then study the identi"ca-
tion equations to determine the rotation U and
prove that instead of solving all identi"cation equa-
tions, a small part of identi"cation equations are
su$cient for determining U.

3. Mth-order uncorrelated sources and
their separations

For notational simplicity, we may drop the time
index t from signals when there is no possibility of
confusion, i.e. s(t),s, o(t),o, e(t),e.

3.1. Mth-order uncorrelated sources

Resorting to the cumulant concept, we will de"ne
a class of signals as Mth-order uncorrelated sources.
M is a positive integer. The constraints for Mth-
order uncorrelated sources are stronger than that
for (second order) uncorrelated sources, but weaker
than for mutually independent sources.

De"ne Ps and P
si
as the probability density func-

tions of s and s
i
, respectively. Let /s(t) be the joint

second characteristic function (SCF) of the source
signal s where t"[t

1
, t

2
,2, t

n
]@, and /

si
(t
i
) be the

marginal SCF of the ith source signal

/s(t)"logAP
`=

~=

exp(!jt@s)Ps dsB,
/
si
(t
i
)"logAP

`=

~=

exp(!jt
i
s
i
)P

si
ds

iB.
It is well known that the source signals are mu-
tually independent if and only if the following
equality holds:

/s(t)"
n
+
i/1

/
si
(t
i
). (3)

Denote the Mth-order cumulant of s as

Cs(p1
,p

2
,2,p

n
)"(!j)MK

LM/s(t)
Ltp1

1
2Ltpn

n
Kt/0

,

M"p
1
#2#p

n
, (4)

where p
i

are non-negative integers. Then from
Taylor expansion, (3) is equivalent to

Cs(p1
, p

2
,2, p

n
)"0, (5)

for all p
i
, i"1,2,2,n, and at least two of p

i
's are

nonzero. The equation set of (5) completely de-
scribes the mutual independence of a set of source
signals in terms of the higher-order statistics. It
indicates that the sources are mutually independent
if and only if their cross-cumulants are all zeroes.
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Similarly, we de"ne the concept of Mth-order un-
correlated sources using the cumulant approach.

Consider a set of random variables which are not
mutually independent. These random variables
must have some nonzero cross-cumulants. How-
ever, if they are uncorrelated, i.e. their second
cross-cumulants are all zeros, then these random
variables can be seen as being `morea mutually
independent than correlated random variables.
Similarly, we consider random variables with more
zero cross-cumulants as `morea mutually indepen-
dent. Consequently, we can use the following def-
inition to characterize the level of independence for
uncorrelated signals.

De5nition. Let p
i
, for i"1,2,2,n, be nonnegative

integers, p
1
#p

2
#2#p

n
)M and at least two

of these integers are nonzero. A set of sources,
s
i
, i"1,2,2,n, is said to be mutually Mth-order

uncorrelated if Cs(p1
, p

2
,2, p

n
)"0.

Obviously, the fact that a set of sources are
mutually independent is equivalent to that they are
mutually Mth-order uncorrelated for any positive
integer M. If a set of sources is mutually Mth-order
uncorrelated, then its components are mutually
mth-order uncorrelated for any 0(m)M. We
can now prove the following theorem.

Theorem 1. Let e"Ds and D"[d
ij
]
i,j/1,2,n

. If all
s
k
, k"1,2,2,n, are mutually Mth-order uncor-

related and their cumulants up to Mth-order exist,
then

C
eiej

(p,q)"
n
+
k/1

dp
i,k

dq
j,k

Cp`q
sk

,

where p and q are any non-negative integers satisfy-
ing p#q)M, and Cp`q

sk
is the (p#q)th-order

cumulant of the kth source signal.

By using the property of cumulants [6] and the
de"nition given in the above, the proof of this
theorem is not di$cult and for convenience is pre-
sented in Appendix A. Theorem 1 states that the
mth-order (cross) cumulant of a sum of mutually
Mth-order uncorrelated source signals is equal to
the sum of the individual mth-order (cross) cumu-

lants of their source signals, m)M. This con-
clusion is similar to that obtained when the source
signals are mutually independent. In fact, if a set of
source signals are mutually Mth-order uncor-
related, then the statistical exhibition of the set of
source signals is equal to that of mutually indepen-
dent sources up to Mth-order statistics.

3.2. Separation of sub-Gaussian and super-Gaussian
sources

Note that in Theorem 1 the cumulants of source
signals can be any nonzero numbers. However, in
some applications, the cumulants of a certain order
of all source signals may be either negative or
positive. For example, speech signals typically have
positive fourth-order cumulants. Source signals
that have negative fourth-order cumulants are of-
ten called `sub-Gaussiana signals and those source
signals with positive fourth-order cumulants are
called `super-Gaussiana signals. In these environ-
ments, the BSS might be simpli"ed by the following
corollary.

Corollary 1. Let k, p be two even integers and
2)p(k, and e"Bo where B is non-singular. If
source signals are mutually kth-order uncorrelated
and all their kth-order cumulants are positive (nega-
tive), then source signals can be separated in e by
minimizing (maximizing)

f (B)"
n
+
i/1

n
+
jEi

C
eiej

(k!p,p), (6)

where n is the number of sources.

Proof. From Eq. (1), e"Bo"BAs. Let D"BA.
Without loss of generality, let all kth-order cumu-
lants be positive. According to Theorem 1, for all
i, j"1,2,2,n,

C
eiej

(k!p, p)*0, iOj. (7)

The minimum of C
eiej

(k!p,p) leads to either
d
i,k
"0 or d

j,k
"0 or d

i,k
"d

j,k
"0 where d

i, j
is the

(i, j)th component of D. Since minimizing f (B) is
equivalent to minimizing C

eiej
(k!p,p) respectively

for all iOj, the minimum of f (B) will result in no
more than one nonzero d

i,k
for any k. As B is
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nonsingular and D"BA, D is nonsingular as well.
Consequently, D does not have any zero column
thereby D is a permutation matrix. h

For those applications where all cumulants of
sources have the same sign, Corollary 1 suggests
a simple way to separate the source signals. Very
often, source signals emitted by some similar phys-
ical procedures, such as the baseband signals from
the same constellation in wireless communication
systems, generally have quite similar statistical
properties. This corollary becomes very useful in
these environments.

However, if the sources have di!erent probability
distribution, then some of their kth-order cumu-
lants might be positive and the others negative.
Such cases are investigated next.

3.3. Separations of sources with nonzero odd-order
cumulants

When the distribution of a source signal is not
symmetric, the source signal perhaps has a nonzero
cumulant of odd order. For such source signals, we
have the following theorem.

Theorem 2. Let k be an odd integer and k'2. If the
source signals are mutually Mth-order uncorrelated
where k)M, and e"Bo so that

C
eiej

(1,1)"0,

C
eiej

(k!1,1)"0,
for i, j"1,2,2,n, iOj, (8)

then all source signals with nonzero kth-order cumu-
lant are separated in e.

Theorem 2 asserts that if the source signals are
mutually Mth-order uncorrelated , then by making
the estimated signals white and some kth-order
cross-cumulants equal to zero simultaneously
where k is an odd integer and 2(k)M, those
source signals with nonzero kth-order cumulants
can be separated. To prove Theorem 2, we need to
present a lemma.

Lemma 1. Let k be an odd integer and k'2. Sup-
pose that an n]n nonsingular matrix D"[d

i, j
]n
i,j/1

is the solution to

n
+
l/1

d
i,l
d
j,l
"0,

n
+
l/1

dk~1
i,l

d
j,l

b
l
"0,

i, j"1,2,2,n, iOj. (9)

If b
m
O0, 1)m)n, then the mth column of D has

only one nonzero entry and this nonzero entry is in
a row in which all the other entries are zeros. Parti-
cularly, if there is at most one of b

l
, l"1,2,2,n,

being zero, then D is a permutation matrix.

The proof of Lemma 1 is presented in Appendix
A. Recall that in Eq. (1) if BA is a permutation
matrix then the estimated signals are the source
signals without considering their ordering and scal-
ing. Lemma 1 explains the conditions under which
a non-singular matrix must be a permutation
matrix. Letting D"BA, Theorem 1 allows the
cross cumulants of e be written in the equation
form of (9). Thus, Theorem 2 is immediate from
Lemma 1.

3.4. Separations of sources with nonzero even-order
cumulants

In most applications, the probability distribu-
tions of source signals are symmetric or nearly
symmetric. The odd-order cumulants of sources
will approach to zero. The separation of these
source signals is therefore built on their even-order
statistics. For a source signal with nonzero even-
order cumulant, we have the theorem below.

Theorem 3. Let k and p be two even integers and
2)p(k. If the source signals are mutually Mth-
order uncorrelated where k)M, and e"Bo so that

C
eiej

(1,1)"0,

C
eiej

(k!1,1)"0,

C
erej

(k!p,p)"0,

for i, j"1,2,2,n, iOj, jOr, (10)

where 1)r)n, then a source signal with nonzero
kth-order cumulant is separated in e.
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Similar to Theorem 2, Theorem 3 provides a set
of equations for "nding the separating matrix
B where the source signals have nonzero even-
order cumulants. The number of equations is now
(3n#2)(n!1)/2. Theorem 3 can be proven by re-
sorting to the following lemma.

Lemma 2. Let k and p be two even integers and
2)p(k. Suppose that an n]n nonsingular matrix
D"[d

i, j
]n
i, j/1

is the solution to

n
+
l/1

d
i,l
d
j,l
"0,

n
+
l/1

dk~1
i,l

d
j,l

b
l
"0,

n
+
l/1

dk~p
j,l

dp
r,l

b
l
"0,

i, j"1,2,2,n, iOj, jOr, (11)

where r is a positive integer satisfying 1)r)n. If
b
m
O0, 1)m)n, then the mth column of D has

only one nonzero entry and this entry is the only
nonzero entry in its row. In particular, if there is at
most one zero b

l
, l"1,2,2,n, D is a permutation

matrix.

Proof. See Appendix A. h

From Lemma 2 and Theorem 1, Theorem 3 is
straightforward.

4. Relationship to other algebraic methods

In the last section, we have presented two the-
orems for blind separation of non-Gaussian source
signals. For signals with nonzero odd-order cumu-
lants, Theorem 2 suggests that n(n!1) cross-
cumulants of the outputs can be forced to zero in
the rotation stage, whereas for signals with nonzero
even-order cumulants, Theorem 3 suggests that
(n#1)(n!1) cross-cumulants be force to zero. In
comparison with algorithms such as the one in
[26], the number of equations involving kth-order
cross-cumulants has been signi"cantly reduced.
When computational cost is crucial, the reduced
number of equations makes BSS implementation
e$cient.

It is worth mentioning that Theorems 2 and
3 provide a general separation principle for non-
Gaussian source signals. They are not limited to
source signals with nonzero cumulants of a particu-
lar order. To develop a practical and robust algo-
rithm, one can either directly solve the equation set
in Theorem 2 or in Theorem 3 (which may not be
a good choice), or apply some nonlinear optimiza-
tion algorithms to exploit the eigen structure of
matrices consisting of cross cumulants in Theorems
2 and 3. From this standpoint, Theorems 2 and
3 establish an algebraic principle for BSS. We will
show later that some well-known algorithms for
BSS, such as JADE proposed by Cardoso [12], can
be seen as an implementation of the separation
principle for the separation of source signals with
nonzero fourth-order cumulants.

In order to illustrate that our equation sets are
essential, we consider some well-known BSS
methods and show that they are special implemen-
tations of our separation principle. The methods to
be considered include Comon's method [17], Car-
doso's JADE [12], and recent results by Nadal
[24]. As the "rst two methods are based on the
fourth-order statistics of source signals extended to
complex signal applications, for the sake of clarity
we denote eH

i
as the complex conjugate of e

i
and

restate Theorem 3 for k"4 in complex signal ap-
plications as follows.

Corollary 2. Let e"Bo. If the source signals are
mutually fourth-order uncorrelated and

C
eie

H
j
(1,1)"0,

C
eie

H
i eie

H
j
(1,1,1,1)"0,

C
ere

H
j
(2,2)"0,

for i, j"1,2,2,n, iOj, jOr, (12)

where r is a positive integer and 1)r)n, then
a source signal with nonzero fourth-order cumulant is
separated in e.

4.1. Relationship to Comon's algorithm

In [17], Comon introduced Edgeworth expan-
sion to approximate both joint and marginal PDFs
of sources and proposed an ICA-based algorithm.
Under the assumption that the source signals have
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nonzero fourth-order cumulants, this algorithm is
capable of separating all source signals.

After whitening the observed signals, Comon de-
veloped a scheme for rotating the whitened signals
by maximizing the criterion

f (U)"
n
+
i/1

DDC
eie

H
i
(2,2)DD2

subject to the condition that U must be a unitary
matrix. Denote the whitened signal by z. Since the
sum of all squared fourth-order (cross) cumulants
of e"Uz is a constant as long as U is kept unitary,
the above criterion is in fact equivalent to minimize
all of squared fourth-order cross cumulants, i.e.

C
eie

H
j
(1,1)"0,

C
eie

H
j eke

H
l
(1,1,1,1)"0

(13)

for all i, j,k,l"1,2,2,n, excluding i"j"k"l. It
is easy to see that the equation set (12) is a sub-set of
(13) by letting j"k"l and i"j"r, k"lOr.
Therefore, the solution to (13) must satisfy (12).

4.2. Relation to JADE algorithm

Cardoso proposed a strategy for rotating the
whitened signals with nonzero fourth-order cumu-
lants in JADE [12]. The rotation is achieved by
maximizing the criterion

f (U)"
n
+
i/1

n
+
k/1

n
+
l/1

DDC
eie

H
i eke

H
l
(1,1,1,1)DD2 (14)

subject to the unitary constraint. This criterion is
equivalent to forcing

C
eie

H
j
(1,1)"0,

C
eie

H
j eke

H
l
(1,1,1,1)"0,

for i, j,k,l"1,2,2,n, iOj, (15)

By letting i"k"l and i"k, j"l"r, the cri-
terion gives the equation set (12). Again, (12) is
a sub-set of (15). A solution of (15) must be the
solution of (12).

4.3. Relation to Nadal's results

Recently, Nadal and Parga [24] proved some
general results on BSS. For source signals with

nonzero odd-order cumulants, Theorem 1 in [24] is
equivalent to our Theorem 2. However, for the
source signals with nonzero even-order cumulants,
the authors suggested the following equation set:

C
eiej

(1,1)"0,

C
eiejel

(k!m,m!1,1)"0,

for i, j,l"1,2,2,n, but i"j"l, (16)

where k and m are two positive integers, 2)m(k.
If a source signal has nonzero kth-order cumulant,
then the source signal is separated in e. Although
this equation set is #exible on m, it is indeed a huge
equation set. The maximum number of equations is
n(n!1)/2#(n3!n)"n(n#1.5)(n!1) for k!
mOm!1O1. However, the minimum number
of equations is n(n!1)/2#(n3!n)/2"n(n2#

n!2)/2 when either k!m or m!2 is equal to 1.
In fact, the equation set of Theorem 3 is also a sub-
set of (16). To show this point, let us consider the
cases of an odd m and an even m, respectively. If
m is an odd integer, then m!1 is an even integer
equivalent to p in Theorem 3. The equation set (10)
therefore can be obtained from (16) by letting i"j
or i"k and j"r. On the other hand, if m is an even
integer, the equation set in Theorem 3 consists of
those equations of (16) with i"j or j"k"r.

In summary, we have established a set of cross-
cumulant equations for BSS. The number of cross-
cumulants of outputs is "xed at n(n!1) for the
separation of source signals with nonzero odd-or-
der cumulants, and is equal to the result in [24]. On
the other hand, the number of cross-cumulants for
the separation of source signals with nonzero
even-order cumulant is (n#1)(n!1). This number
is a little larger than that for nonzero odd-order
cumulant sources but much smaller than those in
the literature. For clarity, we list the number of
higher even-order equations used in each method
in Table 1. Here, k is an even integer and Comon's
method and JADE are limited to the fourth order.
Table 1 clearly indicates that the equation set sug-
gested by our principle is indeed the smallest. Note
that the number of their second-order equations is
not included and is always n(n!1)/2. For odd-
order HOS, both Nadal's results and our results
lead to the same equation set whose number is
n(n!1).
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Table 1
The number of even-order equations

Comon's
approach

JADE
algorithm

Nadal's
approach

Our
approach

n4!n n3 n(n!1)(n#1)/2 (n#1)(n!1)

It should be emphasized that although a smaller
set of su$cient equations were proposed for blind
source separation, it is not recommended that only
the set of equations be directly solved. In fact, any
algorithm, such as those mentioned in this section, is
capable of source separation as long as its solution
satis"es these equations. In practical implementa-
tion of BSS algorithms, the nonlinearity of the equa-
tion set should be taken into account. Since the
order of the equation set is larger than 2, cost func-
tions involving only this set of equation may not be
convex or unimodal. On the other hand, additional
equations may be included to form optimization
algorithms that are unimodal. Thus, it is computa-
tionally more e$cient for a unimodal BSS algorithm
to include additional equations in its solution.
Moreover, BSS algorithms that satisfy more statist-
ical equations may also be numerically more robust.
One such an example is the JADE algorithm. There-
fore, our contribution in this paper is an algebraic
principle, instead of algorithms, for blind separation
of non-Gaussian source signals. One can utilize this
principle to design speci"c BSS algorithms.

5. Conclusions

In this paper we established an algebraic prin-
ciple for blind separation of non-Gaussian source
signals. The source signals can be either white or
color. The principle suggested two cross-cumulant
sets: one is for the separation of those source signals
with nonzero odd-order cumulants, and the other is
for with nonzero even-order cumulants. The source
signals may not be mutually independent but
should be mutually Mth-order uncorrelated. We
illustrated that these two cross cumulant equation
sets are the sub-set of those used in some existing
algebraic methods. Any method involving these
two equation sets is always able to separate the

source signals with nonzero corresponding order
cumulants.

For further reading see [1,16,25].

Appendix A

Proof of Theorem 1. Let e
i
"+n

k/1
d
i,k

s
k

and
e
j
"+n

k/1
d
j,k

s
k
. Then by the algebraic property of

cumulants ([6, pp. 174}175]), we have

C
eiej

(p,q)"
n
+

i1/1

2

n
+

ip/1

n
+

j1/1

2

n
+

jq/1

d
i,i1

2

d
i,ip

d
j,j1

2d
j,jq

Cs(m1
,m

2
,2,m

n
),

where m
k
for k"1,2,2,n is the number of i

1
,2,i

p
,

j
1
,2, j

q
whose values are all equal to k. Since the

components of s are mutually Mth-order uncor-
related , their Mth-order cross-cumulants are all
zeros. We then obtain

C
eiej

(p,q)"Cs(p#q,0,2,0)dp
i,1

dq
j,1

#Cs(0,p#q,2,0)dp
i,2

dq
j,2

#Cs(0,0,2,p#q)dp
i,n

dq
j,n

,

which is the conclusion. h

Proof of Lemmas 1 and 2. Since D is non-singular,
in each column of D there is at least one entry
whose cofactor and itself are both nonzero. Con-
sider the mth column of D. Without loss of general-
ity, we assume that d

1,m
"1 and its cofactor is

nonzero. Let i"1 and j"2,3,2,n. The "rst equa-
tion of (9) yields

C
d
2,1

2 d
2,m~1

d
2,m`1

2 d
2,n

d
3,1

2 d
3,m~1

d
3,m`1

2 d
3,n

F 2 F F F F

d
n,1

2 d
n,m~1

d
n,m`1

2 d
n,n
D

]C
d
1,1
F

d
1,m~1

d
1,m`1

F

d
1,n

D"!C
d
2,m

d
3,m
F

d
n,m
D. (17)
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From the second equation of (9), we have

C
d
2,1

2 d
2,m~1

d
2,m`1

2 d
2,n

d
3,1

2 d
3,m~1

d
3,m`1

2 d
3,n

F 2 F F F F

d
n,1

2 d
n,m~1

d
n,m`1

2 d
n,n
D

]C
dk~1
1,1

b@
1

F

dk~1
1,m~1

b@
m~1

dk~1
1,m`1

b@
m`1

F

dk~1
1,n

b@
n

D"!C
d
2,m

d
3,m
F

d
n,m
D, (18)

where b@
l
"b

l
/b

m
, 1)l)n, lOm. Comparing (17)

with (18), we obtain dk~1
1,l

b@
l
"d

1,l
. Thus,

either d
1,l
"0, or dk~2

1,l
b@
l
"1

for all 1)l)n, lOm. (19)

From (19), we can prove in the following that all
d
1,l

, 1)l)n, lOm, must be zero. Under the con-
ditions of Lemma 1, if for some l, dk~2

1,l
b@
l
"1, then

applying the second equation of (9) gives

n
+
l/1

dk~1
j,l

/dk~3
1,l

"0.

Because k is an odd integer, d
j,l
"0 for all

j,l"1,2,2,n. Under the conditions of Lemma 2,
k'3 is an even integer, by the third equation we
have

n
+
l/1

dp
r,l

/dp~2
1,k

"0, rO1,

n
+
l/1

dk~p
i,l

/dk~p~2
r,l

"0, r"1

which results in a singular D. Therefore, d
1,l
"0 for

l"1,2,2,n, lOm.
To prove d

l,m
"0 for l"2,3,2,n, we let d

1,l
"0

in (17). It is straightforward to see that D is a gener-
alized permutation matrix when there exists at
most one b

l
being zero. h
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