
Basic Ideas for Event-Based Optimization of
Markov Systems

XI-REN CAO* eecao@ee.ust.hk

Department of Electrical and Electronic Engineering, Hong Kong University of Science and Technology, Clear

Water Bay, Kowloon, Hong Kong

Abstract. The goal of this paper is two-fold: First, we present a sensitivity point of view on the optimization

of Markov systems. We show that Markov decision processes (MDPs) and the policy-gradient approach, or

perturbation analysis (PA), can be derived easily from two fundamental sensitivity formulas, and such formulas

can be flexibly constructed, by first principles, with performance potentials as building blocks. Second, with

this sensitivity view we propose an event-based optimization approach, including the event-based sensitivity

analysis and event-based policy iteration. This approach utilizes the special feature of a system characterized by

events and illustrates how the potentials can be aggregated using the special feature and how the aggregated

potential can be used in policy iteration. Compared with the traditional MDP approach, the event-based

approach has its advantages: the number of aggregated potentials may scale to the system size despite that the

number of states grows exponentially in the system size, this reduces the policy space and saves computation;

the approach does not require actions at different states to be independent; and it utilizes the special feature

of a system and does not need to know the exact transition probability matrix. The main ideas of the

approach are illustrated by an admission control problem.

Keywords: perturbation analysis, Markov decision processes (MDPs), POMDPs, performance potentials,

policy iteration, policy gradients, aggregation

1. Introduction

The research of this paper is a continuation of the recent research on performance

optimization of discrete event dynamic systems with a sensitivity point of view (Cao,

1998; Cao and Chen, 1997; Cao, 2000, 2004a; Cao and Guo, in press; Cao and Wan,

1998). We present the results in a self-contained manner. The research is motivated by a

number of previously established results: First, performance optimization of Markov

systems are based on two fundamental sensitivity formulas, one for performance

difference and the other for performance derivatives. Policy iteration in Markov decision

processes (MDPs) can be developed easily from the performance difference formula

(Cao, 1998, 2000; Cao and Guo, in press), and gradient-based optimization (perturbation

analysis (PA) or policy gradient) is based on the performance derivative formula (Cao,

1998, 2000; Cao and Chen, 1997; Cao and Guo, in press; Cao and Wan, 1998). Second,

both sensitivity formulas can be constructed, by first principles, using performance

potentials as building blocks (Cao, 2004a); such construction is intuitive, flexible, and

therefore can utilize the special feature of the system. Third, sample-path-based

algorithms can be developed for estimating potentials or performance derivatives, and

Discrete Event Dynamic Systems: Theory and Applications, 15, 169–197, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

* Supported in part by a grant from Hong Kong UGC.

for implementing policy iteration and policy-gradient based optimization (Baxter and

Bartlett, 2001; Baxter et al., 2001; Cao, 1999; Cao and Wan, 1998; Chong and Ramadge,

1994; Cooper et al., 2003; Fang and Cao, 2004; Marbach and Tsitsiklis, 2001).

However, the standard Markov model-based formulation suffers from a number of

drawbacks. First and foremost, the state space is usually too large for practical problems.

That is, the number of potentials to be calculated or estimated is too large for most

problems. Second, the generally applicable Markov model does not reflect any special

structure of a particular problem. Thus, it is not clear whether and how potentials can be

aggregated to save computation by exploring the special structure of the system. The

third issue is related to policy iteration: it requires the actions at different states be chosen

independently (we will call it the independent-action assumption). In many practical

problems, however, these actions may have to be correlated; the standard policy iteration

cannot handle such problems properly.

The sensitivity point of view and the flexible construction of the sensitivity formulas

provide us a new perspective to explore alternative approaches for performance opti-

mization of systems with some special features. In this paper, we propose to formulate

the optimization problem based on Bevents^ rather than on states. The approach is called

event-based optimization. In a real world system, a physical event that happens at a

particular time instant can be characterized by the state transition at that instant; e.g., if a

customer arrives to a network at a particular instant, then the population of the network

increases by one at that instant. Therefore, an event is defined as a set of state transitions.

Furthermore, in many systems actions can be taken only when some events occur; e.g., in

the admission control problem, actions can be taken only when a customer arrives. Thus,

policies are defined on events rather than on states. The performance sensitivity formulas

are constructed for event-based policies and optimization can be implemented based on

these sensitivity formulas, in a way similar to the standard MDPs. This approach utilizes

the special features of a system captured by the logical relations among different types of

events. The potentials associated with an event can be aggregated, and computation is

reduced. The independent-action assumption is not required because the same action can

be chosen at many different states corresponding to the same event. In aggregating the

potentials, we may use the special system structure (e.g., the queueing structure), and

the explicit form of the transition probabilities of the underlying Markov system may

not be needed.

The main concept can be clearly explained by the admission control problem in

communication. Logically, the process of accepting or rejecting an arrival customer

consists of three phases, which can be formulated as three types of events: First, a new

customer arrives; this corresponds to a set of state transitions on the sample paths; this set

of transitions forms an event which is observable and is called an observable event. After

the customer arrives, an action (accept or reject) is taken, which partially determines the

state transitions. The set of transitions determined by the action is called a controllable

event because we may control the probabilities of the actions. Finally, the customer

chooses its own destination in the network (when accepted) or leaves it (when rejected).

The set of state transitions corresponding to this phase forms an event called the natural

transition event, because the transitions are purely determined by the nature. These three

phases have a logic order in timing but they happen simultaneously in the Markov model.

170 CAO

Associated with the observable event is some information about the network; a policy

determines an action based on the information contained in the observable event, or in a

history of the observable events. The optimization problem becomes to choose an event-

based policy that maximizes the performance. As in the standard MDPs, the solution is

based on the performance sensitivity formulas derived for any two policies in the event-

based policy space, using the construction method with potentials as building blocks.

In Section 2, we briefly review the performance potentials, the two performance

sensitivity (derivative and difference) formulas, and the construction method; with

construction, we can derive the sensitivity formulas for many problems flexibly using the

potentials as building blocks. In Section 3, we provide an overview for learning and

optimization from a sensitivity point of view. We emphasize a fundamental fact: By

observing and analyzing a system’s behavior under a policy, one can in general obtain

only the local information around that policy in the policy space, including the

performance gradients. Policy iteration, on the other hand, depends heavily on the form

of the performance difference formulas. Therefore, learning and optimization follow

directly from the two basic performance sensitivity formulas: performance derivatives

and performance differences. These two sections serve as the base for the event-based

optimization proposed in Section 4. We use the admission control problem to present the

main ideas. In Section 4.1, we define an event in a Markov system as a set of state

transitions that satisfy some common properties. In Section 4.2, we classify events into

three types: the observable, controllable, and natural transition events. A policy chooses

an action based on the information contained in the observable events, and the action

controls the probabilities of the controllable events, and the nature finalizes the state

transition. In Section 4.3, we derive the performance sensitivity formulas for the

admission control problem using the construction method; the event structure is utilized

in potential aggregation. In Section 4.4, we show how the aggregated potentials can be

estimated on a sample path without estimating potentials for every state. In Section 4.5,

we show that with the sensitivity formulas derived in Section 4.3, the gradient-based

optimization and event-based policy iteration can be developed for this admission control

problem. In Section 5, we discuss the possible extensions of the approach.

There are a number of advantages of the event-based optimization. First, potentials can

be aggregated by exploiting the event-based system structure, and sample-path-based

estimation algorithms can be developed for the aggregated potentials. Furthermore, as

shown in Section 4.4, estimating an aggregated potential on a sample path requires the

same computation and achieves the same accuracy as estimating the potential of a state.

This may significantly save computation and reduce the number of potentials to be

estimated in the learning process. Despite the fact that the number of states usually grows

exponentially with respect to the system size, the number of aggregated potentials

depends on the number of observable events, which may scale to the system size. Thus,

the event-based optimization saves considerably computations in performance optimiza-

tion. Second, the approach applies to many practical problems where actions depend on

events, not states; such problems do not fit well the standard MDP formulation, because

the same action may be taken when the same event is observed, which may correspond to

many different states. This violates the independent-action assumption. Third, the

construction of the sensitivity formulas can be carried out by using the special structure

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 171

of the system (e.g., the queueing structure), and the performance sensitivity formulas thus

obtained can be expressed in terms of the structural parameters rather than in the

transition probabilities of the underlying Markov process. This provides structural in-

sights and avoids the tedious effort associated with large state spaces. Fourth, for systems

where the events requiring actions happen rarely, the approach is easy to implement on a

sample path and is efficient. Finally, this approach may be applied to a number of

subjects such as multilevel (hierarchical) control, state and time aggregation (Cao et al.,

2002), options (Barto and Mahadevan, 2003), singular perturbation, and partially

observed MDPs, etc, by formulating different events to capture the different features of

these problems. Thus, it provides a unified framework to these different areas and opens

up new research topics.

The limitation of the approach is that the aggregated potentials in the performance

difference formula may depend on both policies under comparison; this may prevent the

aggregated potentials from being used in policy iteration. It is shown in Section 4.3 that

under some special conditions (including the admission control example studied in this

paper), the aggregated potentials depend only on the original policy and can be estimated

on a single sample path. In such cases, event-based policy iteration algorithms can be

developed. In this regards, the approach clearly indicates whether in policy iteration the

aggregated potentials can be estimated on the original sample path; and if not, why. It is

clear, however, in performance derivative analysis, the aggregated potentials always

depend only on the original policy. Therefore, in general, performance gradient-based

optimization (with events) is more applicable than the event-based policy iteration.

2. Performance potentials and performance sensitivities

In this and the next sections, we briefly summarize the relevant results in sensitivity

analysis with the standard MDP formulation that are scattered in a number of previous

papers. We first review the main concepts in performance optimization, the performance

potentials and the perturbation realization factors, in Section 2.1, and then review the two

sensitivity formulas in Section 2.2, which is followed by a brief introduction to the

construction method in Section 2.3.

Consider an ergodic (irreducible and aperiodic) finite Markov chain X on a state space

S ¼ 1; 2; . . .; Sf g with transition probability matrix P = [p(i, j)] 2 [0, 1]S � S. Denote its

sample path as X = {Xl : l Q 0}. Let � = (�(1), . . . �(S)) be the (row) vector representing

its steady-state probabilities, and f = (f (1), f (2),: : :, f (S))T be the (column) reward (cost)

vector, where BT^ represents transpose. We have Pe = e and �e = 1 where e = (1, 1,: : :,
1)T is an S-dimensional vector whose components are all equal to 1. The steady-state

probability flow balance equation is � = �P. The performance measure is the long-run

average defined as

� ¼ �f ¼
XS
i¼ 1

� ið Þf ið Þ ¼ lim
L!1

1

L

XL� 1

l¼ 0

f Xlð Þ; w:p:1: ð1Þ

The last equation holds because of the ergodicity.

172 CAO

2.1. Performance potentials

The main concept in performance optimization is the performance potential, or simply

the potential. Roughly speaking, the performance potential at state i, denoted as g (i),

i 2 S, measures the Bpotential^ contribution of state i to the long-run average per-

formance �. Intuitively, from (1), we can use something like E{S l = 0
Lj1 f (Xl)ªX0 = i} to

measure the average Bpotential^ contribution of the current state i to the performance �.

However, for ergodic chains, this sum goes to infinity as L Y V. As we will see, just like

the potential energy in physics, the performance potentials are relative and we can

subtract a constant from every components. Therefore, we define

g ið Þ ¼ lim
L!1

E
XL�1

l¼ 0

f Xlð Þ � �½
 X0 ¼ ij
()

: ð2Þ

It is well known that (2) is finite for ergodic chain. From (2), via a standard dynamic

programming argument, it is easy to see that

g ið Þ ¼ contribution at the current state i

þ expected long term Bpotential[contribution of the next state

¼ f ið Þ � �ð Þ þ
P
j2 S

p i; jð Þg jð Þ: ð3Þ

Writing (3) in a matrix, we obtain the Poisson equation:

I � Pð Þg þ e� ¼ f ; ð4Þ

where g = (g (1),: : :, g(M))T is the potential vector (for more details, see (Cao, 1998; Cao

and Chen, 1997; Cao and Wan, 1998; Cao et al., 1996)). The solution to (4) is only up to

an additive constant; i.e., if g is a solution to (4), then so is g + ce. (2) is the solution to

(4) that satisfies �g = 0. For simplicity, we will refer to any solution to (4) as a potential

(vector).

From (2), we can choose a large integer L and obtain the approximation

g ið Þ � E
XL�1

l¼ 0

f Xlð Þ � �½
 X0 ¼ ij
()

:

Moreover, since potentials are relative, we can remove the constant term L� in the above

expression and simply use the approximation

g ið Þ � E
XL�1

l¼ 0

f Xlð Þ½
 X0j ¼ i

()
: ð5Þ

That is, we can average the sum of the reward function f in L transitions after visiting

state i to obtain an approximate of g(i). Thus, the potentials can be estimated on sample

paths.

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 173

Since potentials are relative, sometimes it is easier to consider the differences of the

potentials at two different states. Thus, we define

d i; jð Þ ¼ g jð Þ � g ið Þ; i; j 2 S; ð6Þ

which is called the perturbation realization factor in PA (Cao and Chen, 1997; Cao et al.,

1996). From the meaning of potentials, it is clear that d(i, j) measures the effect of a

perturbation from state i to state j on the long-run performance �. Let D = [d(i, j)] be the

performance realization matrix. We have DT = jD and D = egT
j geT. By the same

reasoning as (3), or from (3) directly, we can obtain

d i; jð Þ ¼ f jð Þ � f ið Þ þ
X
i02 S

X
j02 S

p i; i0ð Þp j; j0ð Þd i0; j0ð Þ: ð7Þ

In a matrix form, this is the Lyapunov equation

D � PDPT ¼ F;

with F = ef T
j feT. (This discrete-time version of Lyapunov equation was first derived in

(Cao et al., 1996); for Lyapunov equation for continuous-time Markov processes, see

(Cao and Chen, 1997). It is to be emphasized that despite the non-intuitive but elegant

forms, the Poisson and the Lyapunov equations (3) and (7) flow from first principles of a

Markov system.

With the realization factors, we can obtain many finite versions of the potentials. For

example, following the same idea as for the potential energy in physics, we can choose

any state i* 2 S and define g(i*) = 0. Then we have

g ið Þ ¼ d i*; ið Þ þ g i*ð Þ ¼ d i*; ið Þ; i 2 S:

To estimate d(i,j), we consider two sample paths of the Markov chain, denoted as X =

{Xl, l Q 0} and X0 = {Xl
0, l Q 0}; they follow the same transition probability matrix P but

start with two different initial states X0 = i and X0
0 = j. Define Li,j = min{k : k Q 0, Xk =

Xk
0}. At Li, j, the two sample paths Bmerge^ together for the first time (see Figure 1). From

Li, j on, the two sample paths behave statistically similar because both of them follow the

same transition probability matrix. More precisely, By the strong Markov property, we

have

lim
L!1

E
XL�1

Li; j

�
f ðX 0

l Þ � f Xlð Þ
���XLi; j

¼ X 0
Li; j

8<
:

9=
; ¼ 0:

Then from (2) we have

d i; jð Þ ¼ lim
L!1

E
XL�1

l ¼ 0

�
f X 0

lð Þ � f Xlð Þ
���X0 ¼ i;X 0

0 ¼ j

()
ð8Þ

¼ E
XLi; j

l ¼ 0

�
f X 0

lð Þ � f Xlð Þ
���X0 ¼ i;X 0

0 ¼ j

()
: ð9Þ

174 CAO

With (9), sample-path-based algorithms for estimating d(i,j) can be developed.

Compared with (5), the mean length of the sample paths in (9) is finite. Equation (8)

helps us to understand the construction approach for the performance difference formula

presented in Section 2.3. Other algorithms also exist (see, e.g., (Cao and Wan, 1998)).

2.2. Performance sensitivity formulas

Performance sensitivity formulas can be easily derived from the Poisson equation (4).

Let P 0 be another irreducible transition probability matrix on the same state space, and �0,
f 0 and �0 be the steady-state probability, the performance function, and the long-run

average performance measure for the system associated with P 0. Then �0 = �0 f 0. Set Q =

P 0
j P = [q(i, j)] and h = f 0 j f. We have Qe = 0. Multiplying both sides of (4) on the left

with �0, we obtain the performance difference equation (Cao and Chen, 1997; Cao et al.,

1996).

�0 � � ¼ �0 Qg þ hð Þ: ð10Þ

Now, suppose that P changes to P(�) = P + �Q = �P 0 + (1 j �)P, and f changes to

f (�) = f + �h, with � 2 (0,1). This corresponds to a randomized policy which applies

policy P0 with probability � and policy P with probability 1 j �. The performance

measure will change to �(�). The derivative of � in the direction of Q is denoted as
d� �ð Þ

d� .

Taking P(�) as the P0 in (10), we have �(�) j � = � (�) (�Qg + �h). Letting � Y 0, we

get the performance derivative equation

d�

d�
¼ � Qg þ hð Þ: ð11Þ

Since Qe = 0, both (11) and (10) hold for g 0 = g + ce for any constant c. This verifies

again that potentials are determined only up to an additive constant.

The extension of (11) to the case where P and f depend arbitrarily on any parameter q
(denoted as P(q) and f (q) with P(0) = P, f (0) = f) is straightforward. Replacing Q in (11)

with dP
d�

� ���
�¼0

and h with df

d�

� ���
�¼0

, we have

d�

d�
�¼0j ¼ �

dP

d�

� �
g þ df

d�

� �� �
�¼0

: ð12Þ

Figure 1. Estimating d(i, j).

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 175

Therefore, without loss of generality, we shall mainly discuss the case with a linear

function P(�) = P + �Q as in (11).

For simplicity, we assume h = f 0j f = 0. Thus, (10) and (11) become

�0 � � ¼ �0Qg; ð13Þ

and

d�

d�
¼ �Qg: ð14Þ

We will see that the above two simple formulas (13) and (14) are the most fundamental

equations in learning and optimization, and many results can be explained clearly and

derived concisely from these two equations.

2.3. Constructing the sensitivity formulas with potentials as building blocks

Although (13) and (14) can be easily derived analytically, the analytical derivation has

two weaknesses: first, it does not provide a clear intuitive meaning of these two equations

and the potentials; second, this approach may not apply to many systems that do not fit

the standard MDP formulation, because the corresponding Poisson equation may not

exist. In this section, we will show that various performance sensitivity formulas,

including (13) and (14), can be constructed by first principle using performance potentials

as building blocks. This construction approach provides the intuition behind the formulas,

and with this method we may derive sensitivity formulas for systems that do not fit the

standard formulation. As we will see later, new optimization approaches can be developed

based on these sensitivity formulas thus constructed.

The construction approach was discussed in detail in (Cao, 2004a), and we will review

the main concepts here. With the PA terminology, We start with a Bperturbed^ sample

path with transition probability matrix P0 (Path AYC in Figure 2). At every time instant

on the perturbed path, we determine whether the state transition would be different if it

followed transition probability matrix P, instead of P0; the transitions with P and P0 are

assumed to be independent. The figure illustrates that the transitions in segments AYD,

KYE, MYG, and NYC happen to be the same for both P and P0. In other words, these

segments can be viewed as a part of either an original path (with P) or a perturbed one

(with P0). However, at Points D, E, and G, the transitions following P and P 0 are

different. For example, at Point D, the perturbed system (with P0) transits to state j0, while

the original system (with P) transits to state j. We say that a Bjump^ from j to j0 occurs

at l = 2. There is a jump from v to v0 at l = 5 and a jump from j to j0 again at l = 8 in

Figure 2. Following the idea in (Cao, 2004), after each jump, we add an auxiliary path

(DYRYB, EYF, and GYH) that follows the original transition probability matrix P. Based

176 CAO

on the construction, Paths AYRYB, KYEYF, MYGYH, and NYC can be viewed as original

sample paths (following P). Let

FL ¼
XL�1

l ¼ 0

f Xlð Þ; F 0
L ¼

XL�1

l ¼ 0

f X 0
lð Þ;

where Xl and Xl

0
are the states at time l on the original path AYRYB and the perturbed

path AYC, respectively. We also denote, for example,

FK�F ¼
XL�1

l¼ 0

f X K�F
l

� �
;

with Xl
KYF being the state on Path KYF at time l. Similar notations are used for other

paths. We have

�FL :¼ F 0
L � FL ¼ FA�C � FA�R�B

¼ FA�C � FA�Hf g þ FA�H � FA�E�Ff g þ FA�E�F � FA�R�Bf g
¼ FN�C � FT�Hg þ FM�H � FS�Ff g þ FK�F � FR�Bf g:f

All the paths NYC, TYH, MYH, SYF, KYF, and RYB on the most-right side of the above

equation follow the original transition probability matrix P. From (8), as L Y V, the

average of FKYF j FRYB goes to d(j, j0), the average of FMYH j FSYF goes to d(v, v0), etc.

In other words, each jump from j to j0 contributes on the average d(j, j0) to the difference

DFL.

Next, after the system visits state i, i 2 S, the probability of such a jump from j to j0 is

p(i, j)p0(i, j0). Therefore, the number of such jumps on the L transitions is roughly

L�0 ið Þp i; jð Þp i; j0ð Þ:

Thus, on the average for a very large L the effect of all these jumps is

E �FLð Þ ¼ E F 0
Lð Þ � E FLð Þ �

X
i2S

X
j2S

X
j0 2 S

L�0 ið Þp i; jð Þp0 i; j0ð Þd j; j0ð Þf g: ð15Þ

Figure 2. The performance difference of two policies.

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 177

Note that � ¼ limL!1E FLð Þ=L and d(j, j0) = g(j0) j g(j). When LYV, the above

approximation becomes accurate. We have

�� ¼
P
i2S

P
j2S

P
j02 S
f� 0 ið Þp i; jð Þp0 i; j0ð Þ g j0ð Þ � g jð Þ½
g

¼
P
i2S

� 0 ið Þ
P
j2S

P
j02 S

p i; jð Þp0 i; j0ð Þg j0ð Þ �
P
j2S

P
j02 S

p i; jð Þp0 i; j0ð Þg jð Þ
()

¼
P
i2S

� 0 ið Þ
P

j02 S
p0 i; j0ð Þg j0ð Þ �

P
j2S

p i; jð Þg jð Þ
()

¼
P
i2S

� 0 ið Þ
P
j2S

p0 i; jð Þ � p i; jð Þ½
g ið Þ
()

¼
P
i2S

� 0 ið Þ
P
j2S

q i; jð Þ½
g jð Þ
()

:

This leads to (13).

Figure 2 shows that a sample path of any policy P0 (AYC in Figure 2) can be

decomposed into the sum of a sample path of any other policy P (AYRYB) and the

segments representing the performance potentials of P (KYEYF, MYGYH, etc). This

property holds for other systems with non-standard formulations. In (Cao, 2004a), we

also obtained the sensitivity formulas for two Markov chains with different state spaces

using this construction method.

3. A sensitivity point of view for performance optimization

In this section, we provide a sensitivity point of view to the area of learning and op-

timization with the standard MDP formulation; we show that the two sensitivity formulas

(10) and (11) (or (13) and (14)) form the basis for performance optimization. The event-

based optimization approach introduced later in this paper follows with this sensitivity

view and is in parallel to those results for the standard MDP formulation.

3.1. Markov decision processes and policy iteration

Equations (13) and (14) can be applied to any two Markov chains defined in the same

state space with no additional requirements. A popular formulation of optimization prob-

lem is the Markov decision process (MDP). The main approach to MDPs, policy iteration,

follows directly from (13).

In an MDP (Bertsekas, 1995; Puterman, 1994), there is an action space A consisting of

all (finite) available actions. If the system is at state i, i 2 S, an action � 2 Ai can be

taken and applied to the system, where Ai � A is the set of actions that are available at

state i 2 S. The action determines the state transition probabilities. When action � is

taken at state i, the state transition probabilities are denoted as p� i; jð Þ, j 2 S. The reward

that the system receives when it is at state i with action � is f (i, �). A deterministic and

stationary policy is a mapping from S to A, denoted as L : � ¼ L ið Þ, that determines the

action taken at state i. Therefore, if policy L is adopted, the transition probability matrix

178 CAO

is PL ¼ pL ið Þ i; jð Þ
� �S

i; j¼1
. We assume that the system is ergodic under all policies. The

long-run average system performance under policy L is defined as

�L ¼ lim
L!1

1

L

XL�1

l¼ 0

f Xl;L Xlð Þð Þ
()

; w:p:1: ð16Þ

The goal of the MDP is to find a policy L* such that its performance is the maximum

among all policies. Since a policy corresponds to a transition matrix, we sometimes refer

to a transition matrix as a policy.

In the standard MDP formulation, actions can be chosen independently at each state.

Thus, there are
Q

i2S Aij j (Aij j: number of policies in Ai) policies in the policy space.

This structural condition on the policy space is crucial for the policy iteration approach:

it enables us to find a Bbetter^ policy in the policy space, if such a policy exists, by only

analyzing the current policy. This updating procedure is based on the performance

difference equation (13). Indeed, because � 0 9 0 component-wisely for any P0, if we can

find a P0 such that Qg = (P0 j P)g Q 0, component-wisely, with at least one positive

component, then we have �0 9 �; i.e., P0 is a better policy. It is always possible to find

such a P0 (if it exists) in the policy space of an MDP because we can choose actions

independently at any state (see (Cao, 1998) for details, the results were extended to the

multi-chain case in (Cao and Guo, in press)). This Bindependent-action^ assumption is

crucial for policy iteration. In this procedure, we do not need to solve for �0 for any

transition probability matrix P0.

3.2. Learning and optimization

In a performance optimization problem, we have a Markov system which may run under

many transition probability matrices, called policies. Therefore, we have a policy space

consisting of discrete points as policies (illustrated as starts in an oval in Figure 3). The

performance (16) depends on the policy. Our goal is to find a policy which attains the

best performance (say the largest reward) in the policy space.

Figure 3. Two types of learning and optimization approaches.

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 179

In general, we may not require the actions at different states be chosen independently,

which is the case in the MDP formulation. In this general form, actions at different states

may be co-related; this is the case for many practical problems, in which the transition

probability matrices in the policy space can be parameterized with a number of

parameters.

There are two basic approaches for performance optimization of Markov systems:

1. In the general setting and for parameterized systems, performance gradients can be

obtained by (11) (or equivalently (14), � is a parameter representing randomized

policies). Gradient-type optimization algorithms can be developed using the

performance derivative formula (11).

2. With the independent-action assumption in the MDP formulation, policy iteration

algorithms can be developed using the performance difference equation (13), as

explained in Section 3.1.

The performance potential g plays a crucial role in both performance derivative-and

difference formulas, which, as shown above, are the basis for the gradient-based and

policy iteration-based optimization approaches. If we know the exact form and values of

the transition probability matrices, it is possible to solve the Poisson equation (4) to

obtain g and then apply the above optimization schemes. However, in many practical

problems, the size of the Poisson equation may be too large for it to be solved

analytically, or we may only have a partial information of the transition probability

matrices; for example, in some cases we may know only the structure of the system but

do not know the values of the system parameters, or in some other cases, we know the

values of parameters but the system structure is too complicated and it is difficult to

construct the transition probability matrices. In all such cases, we need to Blearn^ from

the system behavior to determine which policy performs better. Thus, learning and

optimization are closely related.

By Blearning,^ we usually mean to observe a system’s behavior and to analyze the

information obtained through observation. Typically, while learning, a system is run

under one (may be a randomized) policy in the policy space, and all information is

contained in a sample path of the Markov system. Therefore, learning is sometimes

called a sample-path-based approach. For both the gradient-based and polity iteration-

based approaches, learning is essentially estimating the potentials g. In many gradient-

based algorithms, the derivatives d�
d� in (14) are estimated directly without estimating

every component of g (Baxter and Bartlett, 2001; Baxter et al., 2001; Cao, 2004b; Cao

and Wan, 1998). (A general principle for sample-path-based gradient algorithms for

Markov systems is summarized in (Cao, 2004b), algorithms for performance gradients

and optimization for special problems are proposed in (Baxter and Bartlett, 2001; Baxter

et al., 2001; Cao and Wan, 1998; Chong and Ramadge, 1994; Ho and Cao, 1983;

Marbach and Tsitsiklis, 2001; Suri and Leung, 1989); for sample-path-based policy

iteration algorithms, see (Cao, 1999; Cooper et al., 2003; Fang and Cao, 2004). With g or
d�
d� estimated, an improvement decision can be made; note that such a decision is made by

purely observing and analyzing a system’s behavior under the current policy without

intervening its operation. Thus, it is also called on-line optimization.

180 CAO

It should be noted that there is a slight difference between the on-line approach and

the simulation-based approaches. In simulation, one may simulate a sample path that

contains all the possible state-action pairs. Such an approach cannot be implemented

on real systems because perturbing the system to deviate from the current policy for

learning is usually not allowed. The approaches we discuss in this paper are of on-line

nature.

One simple but fundamental fact about learning and optimization is that, by learning

and/or analyzing a system behavior under a policy, we can only obtain the Blocal^
information around that policy in the policy space. Indeed, by learning from the behavior

of a system under a policy, in general we can not expect to obtain the performance of the

system under other policies. This simple philosophical point puts fundamental limits on

learning and optimization. A similar fact is the BNo Free Lunch Theorem^ (Ho et al.,

2003), which assets that if there is no additional structural information, any optimization

scheme is no better than blind searching.

As shown in Section 2.3, the performance derivative formula (14) can be interpreted

by perturbation analysis (PA). PA focused on queueing-type of systems in its early days

(Cao, 1994; Ho and Cao, 1983, 1991) and was extended to Markov system in (Cao and

Chen, 1997; Cao et al., 1996). In PA, the perturbation realization factor d(i, j) in (9)

measures the effect of a perturbation on a sample path (an artificial Bjump^) from state

i to j on the long-run average performance �, and the effect of any small (infinitesimal)

change in the transition probabilities, represented by Q�, can be decomposed into the

sum of the effects of a series of such jumps on a sample path. Therefore, by applying the

PA principles to a sample path of a Markov system under a policy, we can obtain both

the performance for that policy and the performance derivative along any given direction

in the policy space specified by Q. (This is equivalent to obtaining the performance of

the policies in an infinitesimal neighborhood of the policy in the policy space). These are

the Blocal^ information learned on a sample path, which leads to the first type of

optimization approach, the gradient-based optimization approach shown in Figure 3A.

We start from a policy with parameter q and determine the performance gradient with

PA, then change q along the direction of the gradient, and learn again until the optimal

value q* is reached. This approach can be used together with stochastic approximation

techniques when the gradient estimates contain random noise (Marbach and Tsitsiklis,

2001).

The second type of optimization approaches, i.e., policy iteration, applies to the policy

spaces satisfying the independent-action assumption. As shown in Figure 3B, we start

from any policy L0, analyze its behavior and find a better policy L1, then learn from L1

and find a better policy L2, and so on until the best policy L* is reached. As discussed in

Section 3.1, policy iteration is based on the performance difference formula (13). In fact,

as pointed out above, by learning and/or analyzing a system’s behavior under one policy,

it is not possible to know the exact value of the difference of the performance of two

policies. In this sense, (13) is no better than the simplest formula �0 j � = (�0 j �) f,

since in (13) we need to obtain both � 0 and g, which are associated with the two policies

P0 and P, respectively. The only merit of (13) lies in its particular form: because � 0 9 0

component-wisely, thus if (P 0 j P)g Q 0 then we know � 0 Q � without the need to know

the exact value of � 0. This allows us to find better policies P0 if the actions at different

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 181

states can be chosen independently. Therefore, the second (policy-iteration-based)

approach relies on the particular form of the performance difference formula and applies

to the policy spaces satisfying the independent-action assumption. On-line optimization

algorithms are developed in (Fang and Cao, 2004).

In summary, by learning from the behavior of a system under one policy, we can only

get the local information in an infinitesimal neighborhood of the policy in the policy

space. The performance derivative obtained by PA can be used in gradient-based

optimization. Policy iteration relies on the particular form of the performance difference

formula (13) (see Cao and Guo, in press) for the multi-chain case) and works only when

the actions at different states can be chosen independently. These two approaches are

based on the two fundamental sensitivity formulas: performance derivative (14) and

performance difference (13).

4. Event-based optimization: The main concepts

In many problems, the special feature related to performance changes can be charac-

terized by Bevents.^ Such special features can be utilized in constructing the performance

sensitivity formulas to carry out potential aggregation. Based on these formulas, similar

approaches like the gradient-based optimization and policy iteration may be developed.

In the remains of this paper, we will use an example in communication to illustrate the

main ideas and results.

Consider the admission control problem in a communication system modelled as a

variant of an open Jackson network (Dijk, 1993). The network consists of M servers; the

service time of Server i is exponentially distributed with mean 1/mi, i = 1, 2,: : :, M. After

being served at Server i, a customer will join the queue at Server j with probability qij,

and will leave the network with probability qi0,
PM

j¼ 0 qi j ¼ 1, i, j = 1, 2,: : :, M. Let ni be

the number of customers at Server i, and n ¼PM
i¼ 1ni be the number of all customers in

(or the population of) the system. The customers arrive to the network in a Poisson

process with rate 	. If an arriving customer finds n customers in the network, the

customer will be admitted to the system with probability b(n) and will be rejected with

probability 1jb(n). The system has a capacity of N; i.e., b(N) = 0; thus, an arriving

customer finding N customers in the system will be dropped. An admitted customer will

join queue i with probability q0i,
PM

i¼1 q0i ¼ 1. For simplicity, we assume qii = 0 for all i.

As explained later, this assumption is not restrictive.

We model the system with the discrete-time Markov chain embedded at the tran-

sition epoches. The system state is n = (n1, n2,: : :, nM) , and the state space is

S :¼fall n :
PM

i¼1 ni � N g. Set Sn :¼ fall n :
PM

i¼1 ni ¼ ng, n = 0, 1,: : :, N. We have

S ¼ [N
n¼0Sn. In the embedded chain at each epoch there is only one customer transition,

because with the continuous time queueing model two transitions occur at the same

instant with probability zero.

Note that in this problem we assume that the admission probability depends only on

the population n not on the state n. This corresponds to the partially observable Markov

decision processes (POMDPs) in which only a partial information about the state is

observable.

182 CAO

4.1. The events

1An important feature in this problem is that control is applied to the system only

when a customer arrives at the network. A customer arrival is described by an

event in a Markov model. This feature is very common in many problems: actions can

only be applied to a system when certain events occur. Such a problem is not a standard

MDP, because when an event occurs (a customer arrives), the system can be in many

different states, and therefore an action may affect the transition probabilities of many

states.

We first formally define an event with a Markov model. The system status is represented

by the system state. An event is defined as a set of state transitions that satisfy some

common properties. We denote a state transition from i to j, i; j 2 S, as bi, jÀ and denote

the space of all transitions as E ¼ �; i; jh i : i; j 2 Sf g, with � being a null element,

defined only for logical reasons.

An event is a subset of E : e � E. All the set operations apply to events. For any

a; b; c � E, we can write c = a 7 b, c = a ? b, and c ¼ �aa ¼ E � a. Also, we may have

a � b � c, which indicates that if event a happens, then so does b, and so on. A state

transition itself is an event, and is sometimes called a single event.

In the admission control problem, a state transition is denoted as bn, n0
À, n; n0 2 S.

With the convention qii = 0 for all i = 1, 2,: : :, M, a transition bn, nÀ clearly indicates an

arriving customer is rejected by the system. For any state n, denote the state after a

customer joins Server i as n+i = (n1,: : :, nij1, ni + 1, ni + 1,: : :, nM}. Let an,+, n G N, be

the event representing that an arrival customer is accepted AND there are a total of n

customers in the network before the arrival. We have

an;þ :¼ n; nþih i : n 2 Sn; i ¼ 1; � � � ;Mf g:

Let an,j, n e N, be the event representing that an arrival customer is rejected AND there

are a total of n customers before the arrival,

an;� :¼ n; nh i : n 2 Snf g:

The event representing a customer arrival when there are a total of n customers before

the arrival is

an :¼ an;þ [an;�; n � N ;

with aN,+ = �. The event of customer arrivals is

a :¼ [N
n¼ 0an:

The event of no customer arriving (including internal transitions and customer departures)

is

b :¼ E � a: ð17Þ

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 183

The event that a customer is accepted is

aþ ¼ [N�1
n¼ 0an;þ:

The event of that a customer is rejected is

a� ¼ [N
n¼ 0an;�:

Furthermore, the event representing an arrival customer joining Server i when there are n

customers before the arrival is

an;þi :¼ n; nþih i; n 2 Snf g;

and the event representing an arrival customer joining Server i is

aþi ¼ [N�1
n¼0 an;þi ¼ n;nþih i; n 2 S and n < Nf g:

From the above definitions, if a state transition e 2 an 7 a+ 7 a+i (equivalently e 2 an

7 an+ 7 an,+i), then e = bn, n+iÀ with
PM

k¼1 nk ¼ n, i.e., a customer arrives when the

system population is n, is accepted, and joins Server i.

Example: Figure 4 illustrates all the events for a system with M = 3 for n = 1. There are

three states corresponding to n = 1: (0, 0, 1), (0, 1, 0), and (1, 0, 0). The top graph in the

figure illustrates the events that may happen when the system is in state (0, 0, 1). The

three (black) dashed arrows represent event b which contains internal transitions to states

(0, 1, 0) and (1, 0, 0) and the customer-departure transition to state (0, 0, 0). The (red)

block line represents the arrival event a1, which contains both a1,+ (accept), denoted as

the (blue) dot-dashed line, and a1,j (rejection), denoted as the (pink) doted line. Event

a1,+ contains three events: a1,+1, a1,+2, and a1,+3, denoted as the three (green) thin lines in

the figure. Event a1,+i represents that the accepted customer joins Server i, i = 1,2,3. The

middle and bottom graphes correspond to the events that may happen at states (0, 1, 0)

and (1, 0, 0), respectively, in a similar way. The situation for other values of n is similar.

Overall, we have aþ ¼ [N�1
n¼0 an;þ and a� ¼ [N

n¼0an;�, etc. Í
When an event (other than a single event, i.e., a state transition) happens, we may not

know the exact state, but we know that the state belongs to a particular subset of the state

space. In addition to this partial information about the current state, we also have some

knowledge about the state transition at this moment. In the Example, if we know that

event a1 happens, we do not know whether the state is (0, 0), (0, 1, 0), or (0, 0, 1).

However, in addition to the partial information about the state (the population is 1), we

do know some partial information about the transition: after the event, the number of

customers in the system either increases (accept), or remains the same (reject); it cannot

decrease. That is, the next state cannot be (0, 0, 0). If we know that a1,+ happens, then the

next state cannot be (0, 0, 0) and (0, 0), (0, 1, 0), or (0, 0, 1). Therefore, an observation of

an event may contain more information than a partial observation of the system state.

We have assumed qii = 0 for convenience. This is not restrictive. If qii m 0, then a

transition bn, nÀ corresponds to two situations: a new customer arrives and gets rejected,

or a customer returns back to the same server (with probability qii m 0). In a real system,

184 CAO

one can observe the difference between these two situations; however, the Markov chain

X does not reflect this difference since the state transition is the same for both situations.

From the learning point of view, we need to introduce an additional index to distinguish

the two situations. This will make the notations more complicated but does not change

the concepts and the results.

Next, let us find out the probability of each event. We first start with the general

Markov model. For convention, we say that a single event (a state transition) e = bi, jÀ

happens at time l if Xlj1 = i and Xl = j; we denote it as el = bi, jÀ. Let �l be the state

probability vector at any time instant l = 0, 1,: : :, then �l = �0Pl. The probability

distribution �lj1 and the transition probability matrix P induce a probability measure on

E, denoted as

P el ¼ i; jh ið Þ ¼ �l�1 ið Þp i; jð Þ: ð18Þ

The steady-state probability of event bi, jÀ is

� i; jh ið Þ :¼ � ið Þp i; jð Þ; ð19Þ

While the event probability (18) or (19) depends on �lj1 or �, the conditional prob-

abilities may only depend on the control parameters. For instance, in the admission control

problem, we have

P an;þ anj
� �

¼ b nð Þ;

Figure 4. The events in the example with M = 3, n = 1.

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 185

and

P an;� anj
� �

¼ 1 � b nð Þ:

4.2. Classification of events

Let us study the logical relation among the events in the admission control problem. In

the system, we first observe whether a customer arrives at an instant. If not, we do

nothing. Suppose a1 is observed at an instant, we know that a customer arrives and the

system population is 1. We can either accept the arriving customer, or reject it. That is,

we can control the probabilities b(1) and 1 j b(1) of the state transition belonging to a+

or aj (a1,+ or a1,j). We call an, n = 0, 1,: : :, N, the observable events and a+ and aj the

controllable events. Finally, after a customer is accepted, the Bnature^ determines which

server it joins. That is, nature randomly chooses which sub-event a+i or a1,+i, i = 1,2,3,

the transition at this instant belongs to. These events are called natural transition events.

In summary, the state transition at a customer arrival belongs to three types of events,

observable, controllable, and natural transition events, the probabilities of the control-

lable events can be controlled by actions. The three types of events and the action have a

logical order in timing, as shown in Figure 5.

A state transition representing an arriving customer being accepted and joining Server

i when the system state is n can be expressed as

n; nþih i 2 an \ aþ\ aþ i;

We can also write

n; nþih i 2 an \ an;þ \ an;þ i; ð20Þ

Figure 5. The logic relation among three types of events.

186 CAO

in which an,+ = an 7 a+ is a subset of an, and an,+i = an,+ 7 a+i is a subset of an,+.

Although (20) looks mathematically redundant, it helps understanding the logic in terms

of observation, control, and natural transition. For example, in Figure 4, we have

0; 0; 1ð Þ; 0; 0; 2ð Þh i ¼ a1 \ a1;þ \ a1;þ3;

An arriving customer being rejected when the system is in state n can be expressed as

n; nh i 2 an \ a� ¼ an \ an;�; an;� ¼ an \ a�;PM
i¼1 ni ¼ n. No natural transition event appears in this expression; or the nature has only

one choice in this case. In Figure 4, we have

0; 0; 1ð Þ; 0; 0; 1ð Þh i ¼ a1 \ a1;�:

Now, let us decompose the event space E. Note that the event b defined in (17),

consisting of all internal customer transitions and departures from the network, is also an

observable event. Thus, E can be decomposed into a set of mutually exclusive observable

events:

E ¼ [N
n¼0an

� �
[b;

with ai 7 aj = �, i m j, ai 7 b = �. Figure 4 shows that all the transitions from states with

n = 1 belong to either a1 or b.

Next, when b is observed, there is only one choice for control: do nothing. Thus, b can

also be viewed as a special controllable event representing only one action corresponding

to Bdo nothing^. We have the mutually exclusive decomposition of E with the control-

lable events:

E ¼ aþ [a� [b;

with a+ 7 aj = �, a+ 7 b = aj 7 b = �. Lastly, when aj happens, the nature also has

only one choice. Thus, aj is a special natural transition event. When b happens, the

nature has a few choices; however, we will not elaborate these natural transition events

under b since they are not related to the main topic of performance optimization. We

have

E ¼ [M
i¼1aþi [a�

� �
[b;

with a+i 7 a+j = �, i m j, a+i 7 aj = �, and a+i 7 b = aj 7 b = �. Thus, every transition

belongs to one of the exclusive observable (or, controllable, or natural transition) events.

In summary, the event-based approach applies to systems in which the event space can

be decomposed into mutually exclusive subsets of observable events, mutually exclusive

subsets of controllable events, and mutually exclusive subsets of natural transition

events. Every state transition belongs to one event in each type. In addition, there is a

logical order in timing among the three types of events: at any time instant, an observable

event happens first, followed by a controllable event whose probability is determined by

the action, then followed by a natural transition event. As a special case, which happens

often, for some observable events only one action (usually Bdo nothing^) is available;

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 187

(e.g., when aN or b is observed, we have only one action: aj for aN, and Bdo nothing^ for

b) and after some control actions, there is a unique natural transition event (e.g., after aj
happens, the nature does nothing).

4.3. Performance sensitivity formulas

Now we derive the performance sensitivity formulas using the construction method

illustrated in Section 2.3. To this end, we consider two admission policies b(n) and b0(n)

for n = 0, 1,: : :, N. From the event structure depicted above, the change in policy affects

the performance only when events an, n = 0, 1,: : :, N, occur. Let �(n) denote the steady-

state probability of event an, i.e., the probability that a customer arrives and finds n

customers in the system. From the construction approach, the performance difference

will depend on the steady-state probabilities of events an for policy b0(n), denoted as

�0(n), n = 0, 1,: : :, N (instead of the steady-state probability �0(n) as shown in (13)). Let

�(nªn) be the conditional steady-state probability that the system is in state n when

event an happens. Then

� n; nð Þ ¼ � nð Þ� n njð Þ

is the probability of an with state n, n1 + : : : + nM = n.

Following the construction method discussed in Section 2.3, we start with a perturbed

sample path with admission policy b0(n), n = 0, 1,: : :, N. (cf. Path AYC in Figure 2). At

every time instant on the perturbed path at which events an occur, n = 0, 1,: : :, N, we

determine whether the transition would be different if policy b(n) (instead of b0(n)) were

followed. If so, we add an auxiliary path following policy b(n) (cf. Paths DYB, EYF, and

GYH).

On a perturbed sample path for policy b0(n) with L >> 1 transitions, there are L�0(n)

transitions at which event an occurs. Among them, L�0 (n) �0 (nªn) transitions are from

state n, with n1 + : : : + nM = n. At these points, the probabilities that the system transits

from state n to n+i := (n1,: : :, ni + 1,: : :, nM) are b(n) q0i and b0(n) q0i, i = 1,: : :, M,

respectively, for the two policies; and the probabilities that the system transit from state n

to n itself are 1jb(n), and 1jb0(n), respectively, for the two policies; where b nð Þ ¼
P an;þ anj
� �

and b0 nð Þ ¼ P0 an;þ anj
� �

are determined by the control actions, and q0i, i =

1,: : :, M, are the natural transition probabilities.

First, let i be a fixed integer. On the perturbed sample path (under policy b0(n)), after

an arrival customer finds the system state being n, the system transits to state n+i with

probability b0(n) q0i. However, it would transit to any state n+j, j = 1,: : :, M, with

probability b(n) q0j, and to state n with probability 1 j b(n), if policy b(n) were used.

Therefore, after an arrival customer finds the system state being n,

the probability of a jump from nþj to nþi is b0 nð Þq0ib nð Þq0j; j ¼ 1; � � � ;M ; ð21Þ

and

the probability of a jump from n to nþi is b0 nð Þq0i 1 � b nð Þ½
: ð22Þ

188 CAO

Similarly, On the perturbed sample path (under policy b0(n)), after an arrival customer

finds the system state being n, the system transits to state n with probability 1 j b
0
(n).

However, it would transit to any state n+j, j = 1,: : :, M, with probability b(n)q0j, and to

state n with probability 1 j b(n), if policy b(n) were used. Therefore, we have

the probability of a jump from nþj to n is 1 � b0 nð Þ
�
b nð Þq0j; j ¼ 1; � � � ;M ;

�
ð23Þ

and

the probability of a jump from n to n is
�
1 � b0 nð Þ

��
1 � b nð Þ

�
: ð24Þ

Note that a jump from state n to the same state is a fictitious jump; its effect on

performance is d(n, n) = 0. (24) and (21) with i = j are fictitious jumps.

Each jump from state n to n0 contributes to the performance difference DFL an amount

of d(n, n0) = g(n0) j g(n). Finally, we add up such effects due to all the jumps in (21) to

(24) together and obtain (cf. (15)):

E �FLð Þ ¼ E F 0
Lð Þ � E FLð Þ

�
PN
n¼0

P
all n2Sn

L� 0 nð Þ� 0 n njð Þ

PM
i¼1

PM
j¼1

b0�n
�
q0ib

�
n
�
q0jd nþj; nþi

� �
þ

PM
i¼1

b0�n
�
q0i

�
1 � b

�
n
��

d
�
n; nþi

�(

þ
PM
j¼1

�
1 � b0

�
n
��

b
�
n
�
q0jd

�
nþj; n

�
þ
�
1 � b0�n

���
1 � b

�
n
��

d
�
n; n

�)
:

ð25Þ

The first and last terms in (25) are zero. Indeed, for the first term we have

PM
i¼1

PM
j¼1

b0�n
�
q0ib

�
n
�
q0jd nþj; nþi

� �
¼ b0�n

�
b
�
n
�PM

i¼ 1

PM
j¼ 1

q0iq0j g
�
nþi

�
� g nþj

� �� �

¼ b0�n
�
b
�
n
� �PM

i¼1

q0ig
�
nþi

��
�
�PM

j¼1

q0jg nþj

� ��()
¼ 0:

Therefore, (25) becomes (noting b(N)=b0(N) = 0)

E �FLð Þ �
PN�1

n¼ 0 all

P
n2Sn

L� 0 nð Þ� 0 n njð Þ

PM
i¼1

b0 nð Þq0i 1 � b nð Þ½
d n; nþið Þ þ
PM
j¼1

1 � b0 nð Þ½
b nð Þq0jd nþj; n
� �()

¼
PN�1

n¼0 all

P
n2Sn

L� 0 nð Þ� 0 n njð Þ b0 nð Þ � b nð Þ½

PM
i¼ 1

q0i g nþið Þ � g nð Þ½

� �

:

Dividing both sides with L and letting L Y V, we get

�0 � � ¼
XN�1

n¼0

f�0 nð Þ b0 nð Þ � b nð Þ½
d nð Þg; ð26Þ

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 189

where d(n) is defined as

d nð Þ ¼
X
n2Sn

�0 n njð Þ
XM

i¼1

q0i g nþið Þ � g nð Þ½

()

; n ¼ 0; 1; � � � ;N � 1: ð27Þ

The construction approach is intuitively clear and directly leads to the desired format.

Moreover, both the construction and the form of the difference formulas (26) and (27)

depend only on the system parameters q0i, i = 1,: : :, M, and do not depend on the explicit

form of the transition probability matrix. Thus, this approach maintains the structure

property of the system and avoids the tedious effort in finding and storing the large

matrix.

The quantity d(n) in (27) is an aggregation of the performance potentials. The weighting

factor is the conditional probability of the perturbed system �0 (nªn). However, from the

product-form solution of queueing networks (Dijk, 1993), we can prove

�0 n njð Þ ¼ � n njð Þ: ð28Þ

Thus,

d nð Þ ¼
P

n2Sn

� n njð Þ
PM
i¼1

q0i g nþið Þ � g nð Þ½

� �

¼ ~ggþ nð Þ � ~gg nð Þ:
ð29Þ

in which

~ggþ nð Þ ¼
X
n2Sn

� n njð Þ
�XM

i¼1

q0ig nþið Þ
�()

; ð30Þ

~gg nð Þ ¼
X
n2Sn

� n njð Þg nð Þ: ð31Þ

Both ~ggþ and ~gg have a clear physical meaning. ~gg nð Þ is the aggregated potential for the set

of states with the same network population n; and ~ggþ nð Þ is the aggregated potential after

a customer is accepted to a network with population n.

For performance derivatives, we assume that the policy changes from b(n) to b(n) + �n

for a fixed n. From (26), we have

@�

@b nð Þ ¼ � nð Þd nð Þ; n ¼ 0; 1; � � � ;N ; ð32Þ

where d(n) is the aggregated potential in (29). This is the derivative with respect to the

admission probability at one population. In general, suppose the policy b(n) depends on a

parameter q and is denoted as bq (n). Then, from (26), we have

d� �ð Þ
d�

¼
XN�1

n¼ 0

� nð Þ db� nð Þ
d�

d nð Þ; ð33Þ

in which both d(n) and �(n), n = 0, 1,: : :, N, depend only on the original policy b(n).

190 CAO

4.4. Sample-path-based estimation

Both ~ggþ and ~gg in (29) can be estimated on a sample path of the original system. In this

section, we first give an intuitive explanation about how an event-based aggregated

potential can be estimated on a sample path with the same amount of computation and

the same accuracy as estimating the potential of a single state. To this end, we work with

the general Markov model. Let us first review how a potential at state i, g(i), is

estimated. The simplest way is shown in Figure 6A. After each visit at state i, we sum up

the reward function for N >> 1 consecutive transitions to obtain g1, g2, . . . For example,

in the figure g1 ¼
P

1þN
l¼1 f Xlð Þ, g2 ¼

P
7þN
l¼7 f Xlð Þ etc. From (5), we have,

g ið Þ � 1

K

XK

k¼1

gk ; ð34Þ

where K is the number of visits to state i in the sample path {X0,: : :, XL}. Furthermore, if

we make a slight change in the above expression, we can obtain an estimate of the

weighted potential. In fact, for a large integer L, we have

1

L

XK

k¼1

gk ¼ K

L

1

K

XK

k¼1

gk � � ið Þg ið Þ;

where K
L
� � ið Þ is the steady-state probability of i.

With the same principle, we can estimate the aggregated potential. This is shown in

Figure 6B. Instead of collecting the sums of the reward functions, gk’s, starting from a

particular state i, we collect these gk’s starting from any particular event a. Let us

consider

1

K

XK

k¼1

gk ; ð35Þ

Figure 6. The sample-path based estimation of aggregated potentials.

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 191

where K is the number of transitions at which the event a occur. When a occurs, the

system may be in different state i 2 S. Let Ki be the number of transitions at which the

event a occurs and meanwhile the state is i. Then
P

i2S Ki ¼ K. To distinguish the states,

we denote the sums gk when the state is i as gk (i). Then (35) becomes

1

K

XK

k ¼ 1

gk ¼
X
i2S

1

K

X
k:with state i

gk ið Þ
()

¼
X
i2S

Ki

K

1

Ki

X
k:with state i

gk ið Þ
" #()

:

Clearly we have 1
Ki

P
k:with state i gk ið Þ � g ið Þ, and Ki

K
� � i ajð Þ being the steady-state

conditional probability of i given that event a occurs. Thus,

1

K

XK

k ¼ 1

gk �
X
i2S

� i ajð Þg ið Þ: ð36Þ

In the same spirit, we have

1

L

XK

k ¼ 1

gk � � að Þ
X
i2S

� i ajð Þg ið Þ ¼
X
i2S

� i; að Þg ið Þ; ð37Þ

where �(a) is the steady-state probability of event a, and �(i, a) is the steady-state joint

probability of event a and state i.

Many event-based aggregated potentials have either form (36) or (37). For example,

the ~gg nð Þ in (31) is in the form of (36), with a being the event denoting that the system

population is n. ~ggþ nð Þ in (30) takes a similar form, except that it also distinguishes which

server the accepted customer joins.

As an example, we now develop the details for the sample-path-based estimation of

~ggþ nð Þ in the admission control problem. Consider a sample path {X0, X1,: : :, XL}, with

L >> 1. Denote the sequence of the time instants at which event an,+ happens (i.e., an

arriving customer finding n customers in the system is accepted) on the sample path as

l1,: : :, lLn,+. Then at lk, k = 1, 2,: : :, Ln,+, there are n + 1 customers in the system. Choose a

large integer N. Set

gk ¼
Xk þN

l¼ k

f Xlð Þ½
:

Next, we group the set T n;þ :¼ lk ; k ¼ 1; 2; � � � ; Ln;þ
� �

into sub-groups T n;þ ¼
[n2Sn

T n;þ, such that before the customer arriving at l 2 T n;þ is accepted the system

state is n with population n. Let Ln,+ be the number of instants in T n;þ. We have

Ln;þ ¼
P

n2Sn
Ln;þ. We further group the subset T n;þ into T n;þ ¼ [M

i¼1T nþi
; in T nþi

, the

accepted customer joins Server i, i = 1,: : :, M. Let Lnþi
be the number of instants in T nþi

.

We have

Ln;þ ¼
XM

i¼1

Lnþi
; Ln;þ ¼

X
n2Sn

XM

i¼1

Lnþi
:

192 CAO

From the above definitions, we have

1
Ln;þ

PLn;þ

k¼1

glk ¼ 1
Ln;þ

P
n2Sn

P
lk2Tn;þ

glk

¼ 1
Ln;þ

P
n2Sn

PM
i¼1

P
lk2T nþi

glk

¼
P

n2Sn

Ln;þ
Ln;þ

PM
i¼1

Lnþi

Ln;þ
1

Lnþi

P
lk2T nþi

glk

�")
:

(ð38Þ

By definitions, we have

lim
N!1

lim
Lnþi

!1

1

Lnþi

X
lk2T nþi

glk ¼ g nþið Þ;

and

lim
Ln;þ!1

Lnþi

Ln;þ
¼ q0i; lim

Ln;þ!1

Ln;þ
Ln;þ

¼ � n njð Þ:

With these equations and taking limLn;þ!1 on both sides of (38), we obtain

lim
Ln;þ!1

1

Ln;þ

XLn;þ

k ¼ 1

glk ¼ ~ggþ nð Þ; ð39Þ

in (30). Sample-path-based algorithms can be developed with (39).

We have demonstrated that the event-based aggregated potentials can be estimated on

a sample path, as shown in (36) and (37). It is important to note that (36) and (37) have

the same form as the estimation for the potential of a single state (34); thus estimating an

aggregated potential requires the same computation and has the same accuracy as

estimating the potential of a state. Because the number of aggregated potentials is usually

much less than that of the states, the event-based optimization saves considerably

computations.

4.5. Performance optimization

Both the performance difference and derivative formulas (26) and (33) take a similar

form as these for the standard MDPs (13) and (14). Therefore, gradient-based and policy

iteration type of optimization approaches may be developed based on these two formulas.

Policy iteration can be derived from performance difference formula (26). Following

the same reasoning as the standard MDPs, because �0(n) 9 0 for any policy b0(n), we have

�0 9 � if [b0(n) j b(n)] d(n) Q 0 for all n with [b0(n) j b(n)] d(n) 9 0 for at least one n, 0 e

n G N. From this, as for the standard MDPs, we can always find a better policy, if such

better policies exist, by analyzing the current system, or by estimating d(n) on a sample

path. In addition, from the form of (26), we can conclude that the optimal policy b*(n)

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 193

must be at the corner of the feasible policy space: if d*(n) 9 0 (or G0) then b*(n) is the

largest (or the smallest) among all possible b(n)0s. From the physical meaning of ~gg and

~ggþ, d nð Þ ¼ ~ggþ nð Þ � ~gg nð Þ > 0 implies that the aggregated potential after accepting a

customer is larger than the original aggregated potential at population n; in this case,

accepting the arriving customer makes the performance better.

However, the policy iteration with aggregated potentials depends heavily on the

condition (28). In general, it says that the conditional probability of a system state given

that an observable event occurs is the same for different policies. This condition is

satisfied for the admission control problem and some other queueing-type systems. It is,

however, restrictive in general. This may explain why policy iteration algorithms do not

generally exist for non-standard MDP problems and aggregation is not widely applicable

for policy iteration. This also explains that the gradient-based approach may have more

advantages since in the form of performance derivative (32) and (33), the aggregated

potentials d(n)’s depend always only on the original policy. There are other conditions

under which policy iteration algorithms can be developed with the event-based

performance difference formulas. These are the topics in the next research paper (Cao,

2004c).

As explained, the admission control problem cannot be solved by the standard MDP

method, because the same action b(n) has to be chosen for many different states n with

the same population n. The event-based approach with the performance difference for-

mula provides a neat solution in a way similar to the standard policy iteration; the

potentials are aggregated; the aggregated potentials can be obtained analytically or can

be estimated on sample paths; the number of potentials to be estimated is reduced

significantly.

The aggregated potentials d(n) in the performance gradient formula (29) depends only

on the policy b(n). As shown in Section 4.4, d(n) can be estimated on a sample-path-

based under policy b(n). This is in consistent with the observation that we can obtain

local information including the gradient by observing and analyzing a sample path of the

original policy. The advantage of the approach presented above is that with aggregation,

the number of potentials to be estimated is reduced to N, which is much less than the

number of states. With the N estimates for d(n), n = 0,1,: : :, N j 1, we can obtain all the

N partial derivatives in (32). Thus, the event-based approach scales to the system

size N, while the number of potentials g(n), n 2 S, is
PN

n¼0
NþM�1ð Þ!
N ! M�1ð Þ! , which grows

exponentially in N. In addition, in this approach, the potential aggregation is carried out

by directly using the structure property of a system, and it does not require to know the

transition probability matrix.

5. Discussions and conclusions

In this paper, we first presented a sensitivity point of view for learning and performance

optimization of Markov systems. By observing and analyzing a system’s behavior under

a policy, one can in general obtain only the local information around that policy in the

policy space, including the performance gradients. Gradient-based optimization, in which

system parameters change by a small amount in each step, is based on the performance

194 CAO

derivative formula. Policy iteration, in which the policy changes between discrete points

in the policy space, depends heavily on the particular form of the performance difference

formulas. Thus, the two performance sensitivity formulas, the derivative and the dif-

ference, form the basis for learning and optimization. We also reviewed the construction

method; with this method, we can derive performance sensitivity formulas for many

different problems flexibly, by first principles, with performance potentials as building

blocks.

With the sensitivity point of view of optimization and the flexible construction of

sensitivity formulas, we proposed an event-based optimization approach, which is

illustrated by an example (a rigorous mathematical framework is provided in (Cao,

2004c). This approach utilizes the special feature of a system and illustrates how the

potentials can be aggregated based on the special feature. The aggregated potentials can

be used to build performance sensitivity formulas which lead to gradient-based

optimization and, with some conditions, event-based policy iteration. An aggregated

potential can be estimated on a sample path with the same computation and same

accuracy as estimating a potential of a state. This approach reduces the policy space and

hence saves computation. As the admission control problem indicates, the approach may

scale to the system size, while the number of system states grows exponentially. The

approach applies to practical problems that do not fit well the standard MDP formulation.

The event-based framework can be applied to many problems. For example, in the

two-level hierarchical control problem, we may denote the high-level (with a slow time

scale) state as x and the lower-level (with a fast time scale) as y. The overall system state

is (x, y). Any transition out from a high-level state x can be viewed as an observable

event.

The rest can be formulated according to the specifics of the problem. In singular

perturbed systems, the system stays in the same mode for a long period before it moves

to other modes. We can define the observable events to represent the transitions among

different modes. Finally, in partially observable MDPs (POMDPs), the state x is not

observable, but a random variable y with distribution fx (y) can be observed. We may use

y, or the Bbelief state,^ or the Binternal state^ (Meuleau et al., 1999; Theocharous and

Kaelbling, 2004), to define observable events and then apply the event-based approach

proposed in this paper.

Performance difference and derivative formulas can be developed for these problems

with the event-based approach. With these formulas, potentials are aggregated in

gradient-based optimization algorithms, and we can find the conditions under which the

aggregated potentials can be used to implement policy iteration. All those topics require

further research.

Acknowledgment

The author would like to express his sincere thanks to Prof. Y. C. Ho of Harvard

University for his carefully reading of a few earlier drafts of this paper; his insightful

comments and suggestions have helped greatly in improving the presentation of the

paper. Of course, all remaining errors are solely the responsibility of the author.

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 195

Note

1. For readers whose primary interest is in Sections 4.3 and 4.4, the first two Sections 4.1 and 4.2 can be

skimmed on a first reading since not all the notations which are introduced for completeness will be needed

for understanding of Sections 4.3 and 4.4.

References

Barto, A., and Mahadevan, S. 2003. Recent advances in hierarchical reinforcement learning, special issue on

reinforcement learning. Discret. Event Dyn. Syst. Theory Appl. 13: 41Y77.

Baxter, J., and Bartlett, P. L. 2001. Infinite-horizon policy-gradient estimation. J. Artif. Intell. Res. 15:

319Y350.

Baxter, J., Bartlett, P. L., and Weaver, L. 2001. Experiments with infinite-horizon policy-gradient estimation.

J. Artif. Intell. Res. 15: 351Y381.

Bertsekas, D. P. 1995. Dynamic Programming and Optimal Control, Volume I and II. Belmont, MA: Athena

Scientific.

Cao, X. R. 1994. Realization Probabilities: The Dynamics of Queueing Systems. New York: Springer-Verlag.

Cao, X. R. 1998. The relation among potentials, perturbation analysis, Markov decision processes, and other

topics. J. Discret. Event Dyn. Syst. 8: 71Y87.

Cao, X. R. 1999. Single sample path based optimization of Markov chains. J. Optim. Theory Appl. 100(3):

527Y548.

Cao, X. R. 2000. A unified approach to Markov decision problems and performance sensitivity analysis.

Automatica 36: 771Y774.

Cao, X. R. 2004a. The potential structure of sample paths and performance sensitivities of Markov systems.

IEEE Trans. Automat. Contr. 49: 2129Y2142.

Cao, X. R. 2004b. A basic formula for on-line policy gradient algorithms. IEEE Trans. Automat. Contr. to

appear.

Cao, X. R. 2004c. Event-based optimization of Markov systems. Manuscript to be submitted.

Cao, X. R., and Chen, H. F. 1997. Perturbation realization, potentials and sensitivity analysis of Markov

processes. IEEE Trans. Automat. Contr. 42: 1382Y1393.

Cao, X. R., and Guo, X. 2004. A unified approach to Markov decision problems and performance sensitivity

analysis with discounted and average criteria: Multichain cases. Automatica 40: 1749Y1759.

Cao, X. R., and Wan, Y. W. 1998. Algorithms for sensitivity analysis of Markov systems through potentials and

perturbation realization. IEEE Trans. Control Syst. Technol. 6: 482Y494.

Cao, X. R., Yuan, X. M., and Qiu, L. 1996. A single sample path-based performance sensitivity formula for

Markov chains. IEEE Trans. Automat. Contr. 41: 1814Y1817.

Cao, X. R., Ren, Z. Y., Bhatnagar, S., Fu, M., and Marcus, S. 2002. A time aggregation approach to Markov

decision processes. Automatica 38: 929Y943.

Chong, E. K. P., and Ramadge, P. J. 1994. Stochastic optimization of regenerative systems using infinitesimal

perturbation analysis. IEEE Trans. Automat. Contr. 39: 1400Y1410.

Cooper, W. L., Henderson, S. G., and Lewis, M. E. 2003. Convergence of simulation-based policy iteration.

Probab. Eng. Inf. Sci. 17: 213Y234.

Dijk, N. V. 1993. Queueing Networks and Product Forms: A Systems Approach. Chichester: John Willey and

Sons.

Fang, H. T., and Cao, X. R. 2004. Potential-based on-line policy iteration algorithms for Markov decision

processes. IEEE Trans. Automat. Contr. 49: 493Y505.

Ho, Y. C., and Cao, X. R. 1983. Perturbation analysis and optimization of queueing networks. J. Optim. Theory

Appl. 40(4): 559Y582.

Ho, Y. C., and Cao, X. R. 1991. Perturbation Analysis of Discrete-Event Dynamic Systems. Boston: Kluwer

Academic Publisher.

196 CAO

Ho, Y. C., Zhao, Q. C., and Pepyne, D. L. 2003. The no free lunch theorem, complexity and computer security.

IEEE Trans. Automat. Contr. 48: 783Y793.

Marbach, P., and Tsitsiklis, T. N. 2001. Simulation-based optimization of Markov reward processes. IEEE

Trans. Automat. Contr. 46: 191Y209.

Meuleau, N., Peshkin, L., Kim, K.- E., and Kaelbling, P. L. 1999. Learning finite-state controllers for partially

observable environments. Proceedings of the Fifteenth International Conference on Uncertainty in Artificial

Intelligence.

Puterman, M. L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York:

Wiley.

Suri, R., and Leung, Y. T. 1989. Single run optimization of discrete event simulationsVAn empirical study

using the M/M/1 queue. IIE Trans. 21: 35Y49.

Theocharous, G., and Kaelbling, P. L. 2004. Approximate planning in POMDPS with macro-actions. Advances

in Neural Information Processing Systems 16 (NIPS-03). Cambridge, MA: MIT Press. 775Y782.

Watkins, C., and Dayan, P. 1992. Q-learning. Mach. Learn. 8: 279Y292.

BASIC IDEAS FOR EVENT-BASED OPTIMIZATION OF MARKOV SYSTEMS 197

