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A Blind Fractionally Spaced Equalizer
Using Higher Order Statistics
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Abstract—in this paper, we introduce a new blind fractionally phase channel, up to a complex constant. Since Tenhg
spaced equalizer based on the fourth-order statistics of the input g|. [3], [4] proposed the first blind equalizer by using the

symbol sequence. The input symbol sequence is assumed to com ; ; ; ;
from an independent identically distributed finite alphabet with Bhase information contained in the SOS of the oversampled

nonzero fourth-order cumulants. We formulate the equalizer as ©OUtPUt sequence, the blind fractionally spaced equalizer, based
a column vector and compute it by simultaneously diagonalizing On the cyclostationarity and data structures involved in the
a set of matrices obtained from the fourth-order cross-cumulants oversampled received sequence, has attracted considerable
of the input and output of the equalizer. Simulation results show research attention [5]-[12]. Although these methods can obtain
that this equalizer works well with a short symbol sequence, even 5, 5ccentaple equalization performance within 100 or more
if the channel time span is not accurately estimated. . .
symbols, they are generally sensitive to the error in channel-
order estimation. In these algorithms, it is generally assumed
that the channel order is either known or can be estimated by
HIGH-SPEED digital communication system is alwaysther algorithms. As we know, when the signal-to-noise ratio
subject to intersymbol interference (ISI) caused by chafBNR) becomes smaller, to determine a correct channel order
nel amplitude and phase distortions. In order to improve tf@&m the channel output is a difficult task. In order to weaken
transmission performance, it is important for the receiver {ie dependence on channel-order estimate, Slock [13], [14]
remove ISI through equalization technology. Traditionally, thgroposed a linear prediction algorithm (LPA), which is still
design of an equalizer is achieved either by sending a knoWAsed on the SOS of channel outputs, and Gesextt [15]
sequence (training sequence) or by usingriori knowledge and Abed-Meraimet al. [16], [17] later gave a detail study
of the channel. Under most communication environmenigg this algorithm. Comparing with the aforementioned algo-
little a priori channel knowledge is available, and the trainingthms, LPA is more robust to the estimate error of the channel
sequence therefore plays a key role in channel equalizatigpger, However, LPA requires a large leading coefficient of
With the received signal as its input, the equalizer adapts {iss channel transfer function. When the leading coefficient is
parameters by comparing its current output with the desirggha|| which is very common due to a limited bandwidth, LPA
training sequence. When the channel varies rapidly, the traBb‘rforms a poor channel identification. Recently, Ding [18]
ing sequence has to be applied frequently, which results in 1g8§ended LPA by using the full outer-product decomposition of
of communication efficiency. Furthermore, such equalizatiQfe channel parameter vector. This LPA generalization is also
techniques may not work when the receiver has no acceggst to the over-modeling error of channels and improves
to the training sequence. The goal of blind equalization is {3e performance of channel identification. The most popular
recover the original sequence from the received signal thgfortcoming of SOS-based methods is that they cannot be
is corrupted by noise and ISI, without the help of a trainingyyjieq for the co-channel interference (CCI) cancelation in
sequence and priori knowledge of the channel. multi-user systems.
It has been clear that almost all man-made communication;,, comparison with SOS, the higher order statistics (HOS) of

signals exhibit a statistical property callegclostationarity  gigna) offers an appealing benefit: insensitivity to an additive
Gardner [2] showed that the second-order statistics (Sos)é)iussian noise. This benefit is very useful in communication

a cyclostationary signal contains the phase information of t ?stems because most noises in communication system can be
channel it goes through, and this phase information can

. : L . L scribed approximately by Gaussian distribution. However,
used to identify the channel, which is possibly a nonminimum’ oo exploit its HOS, a non-Gaussian symbol sequence

_ , , ~with independent and identically distributed (i.i.d.) functions
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[19]-[28]. Most of them can be used for CCI cancelation iV > 1. Taking into account that the channel has a finite time
multiuser systems. In these methods, a class of criteria whiclsgan AT, we then have

sometimes called th@/iggine-Donoho-Shalvi-Weinstaolass

is widely used, and a gradient-based algorithm is usually M-1 k

adopted to optimize these criteria, so as to estimate the channel  Yx+nN = Z p—ih < <N + L) T) + Wiy (2)
impulse response. However, as we know, the steepest gradient i=0

is very sensitive to modeling errors; when the symbol size is

not large enough, the steepest gradient cannot be estimd@@rewy is thekth discrete sample of the nois€(¢). Denote
within a reasonable error range. Consequently, these HE®Perscript’ as thetransposeoperator. Let

based blind identification and equalization techniques suffer

from th_e weakness that hundreds and typically thousands o(n) = [ynN,...,yN_lJrnN,...,y(nH)N_l]T
of received data are processed before the performance of _ T

. . .. S(n)—[an—]\4+17"'7an7"'7an+)\]
the equalizer reaches an acceptable level. In mobile digital T
communication, this weakness becomes so severe that such w(n) = [wan'"7wN—l+nNa"'7w(n+>\)N—1]
technigues may not work due to the rapid variation of the
channel. where A is the smallest integer that is not less th@W —

In this paper, we introduce another blind fractionally spacéd/(N — 1). Equation (2) can then be represented in a matrix
equalization scheme that provides an acceptable estimate vidthm as
a short input symbol sequence and is resistant to the noise and
error in the channel-order estimate. We first convert a blind o(n) = As(n) + w(n) (3)
equalization problem to a blind source separation problem by
oversampling the received baseband signal, then proposgifere A is called thechannel convolution matrix_et N/ =
criterion based on the fourth-order cross-cumulants of the iINpUg; A7/ = A7+ A—1. A is anN’ x M’ matrix and is defined by
and output of the equalizer to be designed. We prove that the
maximum of this criterion results in a reliable equalizer. To h, hy --- hy 0 - 0
solve the optimization problem,Jacobialgorithm for a set of 0 h; hy - hy - 0
matrices proposed by Cardoso [33] is applied. The contribution A= ..
of this paper is to propose an HOS-based equalizer which is
robust to the limited received samples and numerical errors.
Throughout this paper, we make the following assumptions on
the channel, the input symbol sequence, and the noise.  Whereh; = [ay;, a;, -+~ ay;]" forj =1,2,---, M anda;;
1) The channel can be approximately modeled as a timg- 9'Ven by
invariant linear FIR filter with finite order. .
2) The input symbols are in a finite alphabet, and are drawn i = h<<z -1 j+ M) T). (4)
from a set of zero-mean unit-variance i.i.d. random N
variables with a nonzero fourth-order cumulant.
3) The noise is white with a Gaussian distribution and is Observe that the vector sequemge) forn = 1,2, - - -, has
independent of the symbols. a particular structure: each of its component sequences is the
The paper is organized as follows. In Section II, we formE2Me as the input symbol sequence except for their time shift.

late the problem by oversampling the received signal; the inr_HJ(Pder the |.|.d.haSSLrJ]mpt|on of the '2?”;[ symbc;! S((ejquence, I
equalization algorithm is developed in Section IIl; severd? eas;l/l to s(,jeet adtt N c?]mp(f)nents;( ) otr)lany |fxe nare
simulation experiments, which illustrate the performance of tffautually independent. Therefore, the problem of recovesing

equalizer, are described in Section IV. Finally, the conclusi&?dhA by o Withofulglgr:jy knowledge about a”gls belongs
is presented in Section V. to the category of blind source separation problems [1], [29],

[30], [31]. Each component of can be viewed as a “source”
and that ofo as an observation. Many approaches exist to
Il. PROBLEM FORMULATION solve this problem wher is a full-column rank matrix. Note
Consider a single-user digital communication system withat for a full-column rank matrixA,, a necessary condition is
baud periodZ. Let {a;,i = 0,1,2,---} be its input sym- N’ > M’'. WhenN > 1, there always exists a positive integer
bol sequence. Denoting the received signal (baseband) as, &0 thatN’ > M'. In what follows, we always assume that

0 0 --- h; hy --- hy

continuous functiony(¢) of time ¢, we have N> M’ and A = [a; ;] is an N' x M’ full-column rank
matrix.
+oo
y(t) = Z o h(t —iT) + w(t) 1)
=00 [ll. THE ALGORITHM
where i(t) is the channel transfer function and(¢) the In Section II, we formulated the blind equalization as a blind

additive noise. The received signal is then sampled assaurce separation problem. Principally, if the symbol sequence
discrete sequencfyy }. Let the sampling frequency b®¥/7, is not Gaussian distributed, we can employ any suitable blind
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source separation algorithm to extract the “source signals,” i.e,, ¢ = 1,2,---, M’ with the maximum absolute value, then
the vector sequencgn). We note, however, that all the sourcehe solution to
sequences in this blind equalization problem are identical to

the input symbol sequence except for a different time delay. {
This special feature may simplify the algorithm. In fact, we

only need to separate out one of the source signals. In tlEsa unit vectord, whose components are all zeros except
section, we will develop a procedure that extracts such a soutike one whose index is equal to that of the maximjam|.
sequence. For notational convenience, we drop the index Consequently, the estimate efin (6) is the input symbol
(3), and thereby have sequence. Since

maximize: |Fx(d)] ©)
subject to: dfd =1

o=As+w. (5) d'd = b"AA™H

Denote superscript as the Hermitian transposeoperator. PY (8), (9) is equivalent to

Suppose there exists a column vedwoe= [b;, b, - -+, by/]7, maximize: |Fy(b)|
by which we have an estimate {subject to: bIAATD = 1. (10)
c=blo=bl(As+w) =d's+biw (6) Its solutionb is the desired filter. Now, the problem becomes

to determine the optimum solution to (10) with an unknown

whered’ = bYA = [dy,dy,---,dy]. If b is orthogonal to A. By substitutinge = b'o into (7), we have
all columns of matrixA but one, i.e.d has only one nonzero o
component, then the estimated sequence ©f an unbiased i vk
estimate of the input symbol sequence regardless of the scale. Fi(b) = Z Z b7 b;pi;
Such a vectob indeed exists and is not unique based on the
assumption thaf is a full-column rank matrix. where

In order to determiné, the algorithm in [22] by maximizing . . .
the fourth-order cumulant of the estimated outputan be Pi; = E{oiojoror} — E{0i0} } E{oroy}
applied. However, experiments show that this algorithm needs —E{o;o; } E{ofor} — E{ojox } E{0}o} }. (11)
a large number of received symbols before it provides a
reliable solution. To obtain an equalizer which works weltet P = [p¥]Y/_,, we then have
with a short symbol sequence, in the following we propose a

i=1 j=1

— phf
similar but different algorithm; the equalizer can be determined Fi(b) = b'Pb. (12)
by simultaneously diagonalising a set of matrices. Sincepk, = p¥* foranyi,j =1,2,---,N’, Py, is an N’ x N/
“ ji Pab] bl J
Hermitian matrix and therebyF; (b ) is a quadratic form of
A. A Criterion Based on Fourth-Order Cumulant b. By assumptionA2, the covariance matrix of the received
Recall that a fourth-order cross-cumulant of two rando¥ECtor sequence Is
variablesz, y is defined as Z, = E{oo'} = AAT + 6%y (13)
Coy = E{zz*yy"} — E{zz" L E{yy"} which is equivalent to
—E{zy*}F{z"y} — E{zy} E{z*y*
{zy" }E{e y} — E{lay} E{a"y"} AAT = Z, — oL, (14)

where superscript is the complex conjugateperator and
E{«} stands for the expectation ef We employ the fourth-
order cross-cumulant of the input and output of the equalizer as
a criterion to design the equalizer. Lt be thekth component
of o in (6). We define

wherel - is an N’ x N’ identity matrix ando? is the variance

of the noise. Here we assume that each component of
has the same variance. This is reasonable because all the
noise components come from the same samples:(@j at

the receiver. By (12) and (14), the problem (10) becomes

Iy (b) = E{ec”orop} — E{ec”  E{oror} maximize: [biP.b|
—F{eoj Y F{e o} — F{eop} E{c"o}} (7) subject to: bf(Z, — o*In/)b = 1.

for any k, k = 1,2,---, N’. Substituting (5) and (6) into (7) Let Z, = IT'AT'Y be the singular value decomposition (SVD)
gives of Z,, then

(15)

M AAT =T(A - 2 Iy)T (16)
Fi(b) = Fi(d) = ¢, »_ |di]*|aril® (8)
=1

where T’ is a unitary matrix andA a diagonal matrix with
its entries on the main diagonal in a descending order. Define
where ¢, is the fourth-order cumulant of the input symbolA’ = A — o2Iy.. Since A is an N’ x M’ full-column rank
sequence, and, # 0 by assumptionA2. Obviously, for a matrix, the lastV' — M’ entries on the main diagonal &f are

fixed k, k = 1,2,---, N’, if there is only one component in all zeros. By removing the lag{’ — M’ rows and columns of
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A’ and the lastV’ — M’ columns ofI', we have am/’ x M’  The proof of the lemma is presented in the Appendix. With the

matrix A and anN’ x M’ matrix I". Let lemma, it is easy to see that for any’ x M’ unitary matrixX
S 12 N M
L=TA a7) G(X) < |CS|QZZ|GU|4'
i=1 j=1

then (15) becomes , ) )
Now supposeV = [vij]%zl is such a unitary matrix that

D = VL 'A is a permutation matrix, then any component
(18) of e = VLo can be viewed as an equalized result. In this

{maximize: [ufRyul
case, denoting; as thejth column ofV, we have

subject to: ufu=1

whereu = L'b and Ry, = L~ 'P,L 7. HereL~! is any N M N M

pseudoinverse of matribl.. BecauseP; is an N’ x N’ GV)=> > WRiv; =D |Fi(d))P
Hermitian matrix, Ry is an M’ x M’ Hermitian matrix. i=1 j=1 i=1 j=1

Suppose that the eigenvector associated with the maximum N M

absolute eigenvalue dR; is u,,. According to Rayleigh’s = |c5|222|aij|4 (21)
Principle [34, p. 420], the solution to (18) is the eigenvector i=1j=1

i i =L
. The desired vectdn_ is then computed bis ._L Um. In which claims thatG(V) is the maximum ofG(X). The
summary, when there is only one element with the maxmugpoblem now becomes that (V) is the maximum, is
absolute value on the selectéth row of A, b can be found D = VLA still a permutation matrix? In order to answer

by the foIIow.lng procedure. ) this problem, we need a definition: two vectors with the same
1) For a givenk, computeP;, andZ, with (11) and (13), gimension are said to be symmetric if all their corresponding

respectively_, and estimate the noise_\_/arian%e components have the same absolute value.
2) Make the singular value decompositid@ = FAI",  Theorem: Let X be anM’ x M’ unitary matrix andD =
then generatd” and A, and computdl, = I'Az. XL!A whereL is defined in (17) andA is the channel

o Al BRI . . . .
3) Construct the matrid®; = L~'PL~" and find the conyolution matrix. If there do not exist two column vectors
eigenvectoru,,, associated with its maximum absolutgy; A being symmetric, ther(X) reaches its maximum if,

eigenvalue. _ and only if, D is a permutation matrix.
4) Compute the desired vectbr= L~ u,,. Proof: The sufficient condition has been proved in the
above discussion. Now we prove that it is also necessary.
B. Joint Criterion for Estimate Improvement By the above Iemmaqu; =0fore#j k=12.--,N.
In the above development, we assume that there is only ofeerefore, the expansion DA D' = [¢f]}_, gives
element with the maximum absolute value on #hle row of M

A. If this assumption does not hold, thénobtained by the * — Zdudfzcslasz —0, fori,j=1,2,---, M, i#;
above procedure may not give an acceptable estimate of t?lé =1 !

input symbol sequence. Unfortunately, in practice we cannot (22)
verify this assumption due to the lack of information about

A. In order to have a reliable solution, in this subsectiohered; is the (i,/)th entry of D. On the other hand, by
we propose an algorithm based on a joint criterion for thd A" = LL" we haveDD' = I,.. Therefore

computation ofb. The criterion is composed of all functions M’
in (7) for k = 1,2, N', _ _ _ > dadyy =0, fori#j (23)
Let X be anM’ x M’ unitary matrix. We defined a function 1=1
of X as and
N’ M’
G(X) = [[diag(XR,; X")||? (19) Do ldul* =1, fori=1,2,-- M (24)
i=1 =1

. _ _ . Note thatA and L have rankM’, and X is an M’ x M’
where R; is the same in (18) anddiag(XR;X")|| is the unitary matrix.D is therefore a full rank matrix. Without loss

Euclidean norm of the main diagonal &R, X". of generality, consider the first row &. Suppose that;, # 0
Lemma:Let D = XL™'A and denoteQi(D) = and its cofactor is not zero. By (22), we have
DADT = [gf]Yj=, for k = 1,2,--- N" where A, is a o
diagonal matrixA; = ¢, x diag{|ax1|?, |ar2|?, - -, |arns|?}, . . .
the?] * gﬂ kl| | k2| | oM | } ;dlldﬂ|akl|2 = _dlsdjs|aks|27 for] :2737"'7M/'
N’ M’ M M’ ) (25)
_ 2 4 k .
G(X)_Z Z|cs| |ail _ZZ|%| - (20) f for some k € {1,2,---,N'}, axs = 0, then (25) is a

k=1 \i=1 =1 homogeneous equation system; therehy|aw|*> = 0 for
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[ # s because of the nonzero cofactor &f;. Since there From the theorem, wheiX is the solution to (28), all the

is at least onesy; # 0 for eachl, we haved;; = 0 for off-diagonal entries ofQy (D) for £ = 1,2,---,N’ are
1=1,2,---,M'" andl # s. On the other hand, ifi;s # 0 for zeros. Thus, from (29)X simultaneously diagonalizes the
all k=1,2,---,N’, then (25) can be rewritten as set of matricesR; for £ = 1,2,---,N’. By (20) and

(22), this is also sufficient for the maximum solution. In
for j=2,---,M'. (26) order to diagonalize _these matric_es, an algorithm in [3_,3]
can be employed. This algorithm is designed by extending
the Jacobi technique for diagonalising a single Hermitian
matrix to a set of Hermitian matrices. The key point in this

axl

Z ldll

l#£s
However, by (23) we have

= _dlsd

JS?

M’ algorithm lies on the computation of the Givens rotation. Its
Z djdy = —dy.di,, forj=2,... M 27) computation. c.omplexlity is the same as that of Jacobi algorithm
Is for diagonalizing a single matrix.

A comparison of (26) with (27) yields

) C. Practical Implementation

Akl

dy = dyy , fori=1,2,--- M 1#s. In practice, because of the noise and the short length of
the received samples, we need to solve several problems.
If dy; # 0, then|ay| = |axs|- This means that thih andsth  First, in order to compute matrik, it is required to estimate
column vectors are symmetric. Consequently, is the unique the covariance matrixZ, and the noise variance?. Z,
nonzero entry on the first row dD. By applying the above is approximately equal to the ensemble-averaged covariance
derivation to another row db, we have the conclusion.d matrix of the received sequence. When the length of received
With this theorem, the equalization problem becomes findequence is long enougld, can be precisely determined.
ing the solution to By (16), the noise variance is the smallest eigenvalue of
S Z,. However, for a short received sequence, it is almost
maximize: G(X) ; : . : : i
{subject t0: XX' = Iy, (28) impossible to have a reaso.nable estimate of the noise variance;
the reason is that the noise contribution in the estimate of
If, in the channel convolution matriA, there do not exist Z, is comparable to the error caused by the limited received
any two-column vectors being symmetric, any column cfamples. Therefore, it is meaningless to determine the noise
the solutionX can be used to compute the desired vecteariance and remove it froif,. Instead of the use of (17) for
b = L~ Tx;, wherex; is the kth column ofX. Note that the a short received sequence, mattixcan be simply computed
solution X is a unitary matrix rather than a column vectorby I'Az, i.e., we simply ignore the noise contribution in our
Although computingX may require more computation thanalgorithm.
computing one column vector, there are some benefits behindSecond, we choos@/’ as the dimension of matrid in
As any column ofX can provide a qualified equalizérand (17). However, because we ignore the noise in (16) (i.e., we
the performances of these equalizers are dramatically differset o2 = 0), we haveA = A, therebyM’ is always chosen
when there is an additive noise, it is the maiXixhat provides asN’. This provides an over-estimatéd’ generally. One of
a possibility to select a suitable equalizer. We shall discuss e main advantages of our method based on (28) is that it is
selection of the column &X in the next subsection. Because oétill applicable whenevel{’ is over-estimated. This point can
the special structure ck, the “symmetric columns” condition be seen as follows. Suppose thdt is over-estimated ad’’,
on A never occurs by carefully constructioy. For example, then X in (28) is anN’ x N’ matrix andD = XL A an
if N =2 (i.e., the oversampling factor is 2) and’ > M’ N’ x M’ matrix. AlthoughD is no longer a square matrix, it
(i.e., the dimension of vectas is N’), then there will be no is easy to verify that the Lemma still holds, i.e.,
symmetric columns inA.

Aks

To solve the above optimization problem, let us consider the . _ Yoo, XX L.

set of matriceXR, X' for k = 1,2,---, N’. By substituting (X)= Z Z sl lai] " ~ ZZ |a:3]

(5) into (11), we have k=L \i=1 =1 j#
M’ When X is a solution to (28), we can conclude that each

pj‘j = ¢, Za”amam? column of D has no more than one nonzero entry. The proof

=1 can be simply done by applyinpD? = diag{I,; ,0} to the

by which proof of the above theorem, whefeis a zero vector with

dimension N’ — M".

P = AAAT Third, because of the overestimate &f’, D is a “tall”
whereA is the channel convolution matrix any, is defined rbnatrlx, and some of its rows are zero vectors. Consequently,
in the Lemma. Therefore, fat = 1,2,---, N’ y

XR; X = XL 1P, L X e=XL 'o=Ds+ XL 'w (30)
= (XL A)AL(XLTA)T a component ofe is either an unbiased estimate of the

= DAD" = Qi(D). (29) symbol sequence or consists only of noise. Notice that the
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noise is assumed to be Gaussian distributed, its higher order
cumulants are all zeros. If thigh component ofe contains
noise only, then its fourth-order cumulant is null. This means
that Fy(d;) ~ 0 for all k = 1,2,---, N, i.e., |x[Ryx;| = 0
forall £ = 1,2,---,N'. In fact, x}kaj is the eigenvalue

of R, associated with eigenvectar;. It is a byproduct after

X is obtained. For each matriR;, there is an eigenvalue
associated withx;. Hence, if there exists at least one nonzero
eigenvalue associated with;, then thejth component ofe

can be considered as a symbol sequence. Obviously, the eigen-
vector corresponding to the maximal absolute eigenvalue is
always a candidate in the estimation of the symbol sequence; it
will be used in our algorithm described in the next subsectio

D. The Algorithm

We now design a blind equalizer based on the above the-
orem. Although the equalizer requires an additional condition
that the channel matriXA must have no symmetric columns,
this condition is very mild or can be avoided in practice. Th
algorithm is stated as follows.

1) Collect an oversampled sequengg.i = 0,1,2,---}
and construct the vector samplés(n) n = 1,2,---}
based onV and an over-estimated channel ordér

2) Compute the covariance matrix of Z, = E{oo'}.

3) Decompose the matrig, into TAI'f, and compute
L = I'Az.

4) Fork =1,2,---, N’ compute the matri®;. = [p};] by
using (11) andR; = L~ 'P, L.

TABLE |

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO

CHANNEL |IMPULSE RESPONSES

. 6, JUNE 1999

Channel #1

Channel #2

Channel #3

-0.5232 - 0.4893i

-0.1761 - 0.1970i

0.1456 + 0.07861

-0.2066 - 0.57001

-0.6166 - 0.75801

-0.7522 - 0.7205i1

0.5075 4 0.08901

0.5943 + 0.00641

0.2615 - 0.2932i

-0.1803 - 0.0469i

-0.1080 - 0.0193i

0.2322 + 0.0644i

0.0911 + 0.0246i

0.0505 + 0.01101

-0.1040 - 0.0315i

SNR = 10log;,(02/52).

ISI =

M 5 3
Zi:l |di|2 —d

2
max

2
max

plroposed above. The symbols were drawn from the QPSK
signal constellation with a uniform distribution. One may

check that the fourth-order cumulant of the symbol sequence
is nonzero. We define

(31)

Bere a2 denotes the variance of the noise-free part of the
received signal, and? that of the additive Gaussian noise.

The received sequence is generated by (3). The intersymbol
interference (ISI) is employed as a performance measure of
the estimated sequence which is defined by

(32)

5) FindX (e.g., using the algorithm in [33]), a solution towhered;, i = 1,2,---, M’ are the combined impulse response

maximize: 2V ||diag(XR,X 1|2
subject to: XXt =1Ip.

of the cascade of the channel and the equalizer which are
defined by[d;,d>,---,dy] = xI,L~*A in a Monte Carlo
run, andd,,.» is their maximum absolute value. We denote

For eachR;, i = 1,2,---, N there areN’ eigenvalues the number of the input symbols used in eadbnte Carlo

associated witX. Denote® as the set of all thesgV’)?
eigenvalues.

run asiN,.

6) Letx,, be the column ofX, which is associated with A. Experiment 1: Varying the Number of Symbols

the eigenvalue i that has the maximal absolute value. In this example, we investigated the performance improve-
The input symbol sequence then can be approximated fgnt by the increase of the number of received vector samples

— xf -1
e=x] L 0.

7) End.

This algorithm is developed for a short received sequen
The noise variance? is not removed fron¥%, in the compu-
tation of L. In comparison with most SOS-based algorithms;,
this algorithm seems to be time-consuming, since a set
matricesR; is computed and a joint diagonalization of thes@
matrices has to be achieved. However, it is worthwhile t\é/e
mention that the dimension of the matrices in this algorithr%
is generally smaller. The computation complexity of thi
algorithm is therefore comparable to the existing algorithm
The simulation examples in the next section show that thi
algorithm works well when the SNR is not too small.

N,. The simulation channel was a three-ray multipath channel

being truncated up to five symbol periods. Let the gain and

time delay of thekth ray in this multipath channel bey

Laepd Ayg, respectively. We choosé\; = 0, A, = 037

and Az = 17; andg; = 1, go = —0.7149 — 0.2375¢,

g3 = —0.5138—0.6779¢. The transmitter waveform is a raised-

coqsine pulse with roll-off factor 11%. The received signal is

ampled three times as fast as the symbol rate, Ne= 3.

then have three virtual channels whose impulse responses

re listed in Table I. The SNR is fixed at 25 dB. Fig. 1 shows

ghe sample constellations of these three virtual channel outputs
nd that of the equalized result wifj, = 200. By M = 5 and

@ =3, A=2o0r M’ = N’ = 6. The equalizer performance is
etermined by increasinyy, from 30 to 300 with a step size of

10. For eachV, 50 Monte Carloruns were achieved. The input
symbol sequence and the noise in each run are different. Fig. 2

IV. SIMULATION EXAMPLES

exhibits the improvement of ISI behavior when the number of

In this section, severaWlonte Carlo simulation examples received samples increase. The curve tends to be flat when
are presented to illustrate the performance of the algorithiv), > 150.
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Fig. 1. The received sequences and equalized result with 200 symbols un(a(eer we simply leto= = 0 and it causes an inadmissible
SNR = 25 dB. error.

C. Experiment 3: Varying the Time Span of Channels

As previously mentioned, the main difficulty in the existing
methods, that can reach an acceptable result with a small set of
symbols, lies in the estimation of the channel order. In real im-
plementation, the channel impulse response becomes smaller
and smaller with the increase of its time span. Therefore, it is
very hard to compute an accurate order of the channel based
on a noisy and short received sample sequence. In order to
demonstrate the insensitivity of our equalizer to the estimate
error of channel order, in this experiment we fix the order
of the simulation channel as 5 and change the estimate of the
channel order from 2 to 12. As a result, when the oversampling
frequency is threefold baud rat¥ = 3, the factorX in (3)

. ; , . ‘ ‘ shOL_JId bel < A <6,ie,3< N <18 and5 < M’ < 10.
0 L si?gples 250 300 Agaln, the channel was composed of three rays, but we choose
time delays agd; = 0, Ay = 0.57, and Az = 1.57, and the
gains agy; = 1, go, and gz from a complex Gaussian random
generator. Let SNR= 25 dB. For each particular value of
the estimate of the channel order, Il@@nte Carloruns were
B. Experiment 2: Varying the SNR implemented. The results are shown in Fig. 4, where the solid

This experiment tests the performance of our algorithft'™V€ is obtainﬁd by lettingv, = 200 a?ld thi dasr:\ed curve
subject to various levels of SNR. The channel is the sarmé N, = 400. These curves tend to be flat when the estimated

as that in the first experiment and the oversampling frequen%gjer IS not _Iess than the channe_l order 5. This means that
is still three times as fast as the symbol rate, id., = 5 our method indeed does not require an accurate estimate of

N =3 M = N =6 Let N, = 150 and the SNR '€ channel order.

varies from 0 to 40 dB with a step size of 2 dB. Again,

for each noise level, 2Monte Carloruns were implemented.

The result of the simulations is illustrated in Fig. 3. It i$>- Experiment 4: Fading Environments

not surprising to see that the ISI is generally not affected The behavior of the equalizer in a fading environment
by the noise when the SNR is not too small. The reasonvims simulated. The channel was still a three-ray multipath
that the noise is Gaussian distributed, and thereby its fourttrannel, but we employed thlakesModel [35] to simulate
order cumulant is zero and contributes nothing to the criterien fading environment. Suppose that the arrival angles of
used by our approach. However, when the SNR is smalhe received signal are uniformly distributed. Lgb be the
the ISI becomes bad. This is because in the computatiDopplerfrequency, then the resultant complex fading envelope

Fig. 2. 1Sl versusN, under SNR= 25 dB.
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Fig. 4. ISl versus the mismatch of channel time span when the real chanhigl. 5. The histogram of error bursts under SHR0 dB in 10 000Monte
time span is37T’, under SNR= 25 dB. Carlo runs.

TABLE 1

Hz. Fig. 5 is the histogram of these error bursts. The first bar
PERFORMANCE IN A FADING ENVIRONMENT

depicts the number of bursts containing one error symbol only,
Doppler Freq. | Burst error || Symbol error the second bar depiCtS the number of bursts Containing two

£—50Hy 2.88% 0.0826% error symbols only, and so on. The last bar is an exception;
it presents the total number of error bursts, each of which has
more than six error symbols. Fig. 5 implies that among these
error bursts, most of them include a very small number of
error symbols.

fp=5Hz 1.77% 0.0495%

of the signal from thenth path can be approximated by

7wk ok
Z cos <27rth Cos< 17) g(2n + 1)k> s V. CONCLUSION
k=1 In this paper, we developed a blind fractionally spaced
wherej = /—1 andn = 1,2,3. A received signal from a equalizer in digital communications. The equalizer is designed
fading channel can be exp7re7ssed by on the fourth-order statistics of input symbol sequence and is
resistant to the noise and errors in computation and modeling.
y(t) = g1(t)2(t) + g2(t — D2)z(t — A) Simulation results show that it works well with a short symbol
+g5(t — Az)z(t — As) + w(t) (33) sequence, even when the channel time span is not exactly
known.
wherew(t) is Gaussian noise and¢t) is a single-path signal,

defined by
APPENDIX

()= Y aP(t—il). PROO-F OF THEITEMMA
i=—00 Proof: For any unitary matrixX

Here, P(¢) is the raised-cosine function. Each 150-symbol N M N M

sequence is said to be a burst. In our experiments, 100007(X ZZ xIRyx;|? = ZZ|Fk(dJ) 2

bursts were transmitted continuously through a fading channel, k=1 j=1 k=1 j=1

thereby a long received sequence could be obtained with (33). N N

The channel was equalized once after each burst was received. - Z |diag(DA,D")||? = Z ||diag(Qx(D))]|?
When the roll-off factor of P(¢) was 0.9, the baud rate of el

the input symbol sequence was 270 kHz (i.e., used in GSM

system), andV = 2, SNR = 20 dB, A; = 0, A, = 0.37, wherex; andd; are thejth column ofX andD?, respectively.
Az = 0.97, the equalizer was tested by lettidd = 7 (i.e., By XX = I,,,, we haveDD = I,,.. Therefore

M’ = N' = 12) for both fp = 50 Hz and f, = 5 Hz. After

10000 bursts transmitted, 9712 bursts or 1498 761 symbols Q. (D)Qi(D)" = DAkALDT. (34)
were recovered correctly fofp = 50 Hz and 9823 bursts or

1499258 symbols fofp = 5 Hz. The simulation results are Since anyA; is a diagonal matrix, an Dt =T, (if M’ is
listed in Table Il. There are, in total, 288 bursts containingver-estimated ag/, DD = diag{I,, 0} whereQ is a zero
error symbol(s) forf, = 50 Hz, and 177 bursts fof, = 5 vector with dimensiomZ — A’), the trace of the left in (34)
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is equal to that ofA, Al

[17]

M M ) M’
> 2l = X lesl ol 35)
=1 j=1 =1
. [19]
L.e.,
M’ ) M’ M M’ ) [20]
DNl =D lesPlanl® =33 lali|. (36)
i=1 i=1 i=1 j#i 21
By
e [22]
|[diag(Qx(D))||* = Z Fels (37)
[23]
we have
[24]
N’ M’ M M
GX) =37 | DlesPlanil* = 323Nl |- @38 g
k=1 \ =1 =1 j#i
|
[26]
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