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A Blind Fractionally Spaced Equalizer
Using Higher Order Statistics
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Abstract—In this paper, we introduce a new blind fractionally
spaced equalizer based on the fourth-order statistics of the input
symbol sequence. The input symbol sequence is assumed to come
from an independent identically distributed finite alphabet with
nonzero fourth-order cumulants. We formulate the equalizer as
a column vector and compute it by simultaneously diagonalizing
a set of matrices obtained from the fourth-order cross-cumulants
of the input and output of the equalizer. Simulation results show
that this equalizer works well with a short symbol sequence, even
if the channel time span is not accurately estimated.

I. INTRODUCTION

A HIGH-SPEED digital communication system is always
subject to intersymbol interference (ISI) caused by chan-

nel amplitude and phase distortions. In order to improve the
transmission performance, it is important for the receiver to
remove ISI through equalization technology. Traditionally, the
design of an equalizer is achieved either by sending a known
sequence (training sequence) or by usinga priori knowledge
of the channel. Under most communication environments,
little a priori channel knowledge is available, and the training
sequence therefore plays a key role in channel equalization.
With the received signal as its input, the equalizer adapts its
parameters by comparing its current output with the desired
training sequence. When the channel varies rapidly, the train-
ing sequence has to be applied frequently, which results in loss
of communication efficiency. Furthermore, such equalization
techniques may not work when the receiver has no access
to the training sequence. The goal of blind equalization is to
recover the original sequence from the received signal that
is corrupted by noise and ISI, without the help of a training
sequence anda priori knowledge of the channel.

It has been clear that almost all man-made communication
signals exhibit a statistical property calledcyclostationarity.
Gardner [2] showed that the second-order statistics (SOS) of
a cyclostationary signal contains the phase information of the
channel it goes through, and this phase information can be
used to identify the channel, which is possibly a nonminimum
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phase channel, up to a complex constant. Since Tonget
al. [3], [4] proposed the first blind equalizer by using the
phase information contained in the SOS of the oversampled
output sequence, the blind fractionally spaced equalizer, based
on the cyclostationarity and data structures involved in the
oversampled received sequence, has attracted considerable
research attention [5]–[12]. Although these methods can obtain
an acceptable equalization performance within 100 or more
symbols, they are generally sensitive to the error in channel-
order estimation. In these algorithms, it is generally assumed
that the channel order is either known or can be estimated by
other algorithms. As we know, when the signal-to-noise ratio
(SNR) becomes smaller, to determine a correct channel order
from the channel output is a difficult task. In order to weaken
the dependence on channel-order estimate, Slock [13], [14]
proposed a linear prediction algorithm (LPA), which is still
based on the SOS of channel outputs, and Gesbertet al. [15]
and Abed-Meraimet al. [16], [17] later gave a detail study
of this algorithm. Comparing with the aforementioned algo-
rithms, LPA is more robust to the estimate error of the channel
order. However, LPA requires a large leading coefficient of
the channel transfer function. When the leading coefficient is
small, which is very common due to a limited bandwidth, LPA
performs a poor channel identification. Recently, Ding [18]
extended LPA by using the full outer-product decomposition of
the channel parameter vector. This LPA generalization is also
robust to the over-modeling error of channels and improves
the performance of channel identification. The most popular
shortcoming of SOS-based methods is that they cannot be
applied for the co-channel interference (CCI) cancelation in
multi-user systems.

In comparison with SOS, the higher order statistics (HOS) of
a signal offers an appealing benefit: insensitivity to an additive
Gaussian noise. This benefit is very useful in communication
systems because most noises in communication system can be
described approximately by Gaussian distribution. However,
in order to exploit its HOS, a non-Gaussian symbol sequence
with independent and identically distributed (i.i.d.) functions
is commonly assumed. Although the i.i.d. condition is stricter
than thecyclostationarityused in SOS-based methods, two
facts render it applicable: 1) the real input symbol sequence
tends to be i.i.d. and 2) if the HOS is utilized only up to
the fourth order, then a qualified input symbol sequence is
only required to satisfy i.i.d. condition up to the fourth order
(i.e., not to infinity.) Many blind channel identification and
equalization methods based on HOS have been developed
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[19]–[28]. Most of them can be used for CCI cancelation in
multiuser systems. In these methods, a class of criteria which is
sometimes called theWiggine-Donoho-Shalvi-Weinstainclass
is widely used, and a gradient-based algorithm is usually
adopted to optimize these criteria, so as to estimate the channel
impulse response. However, as we know, the steepest gradient
is very sensitive to modeling errors; when the symbol size is
not large enough, the steepest gradient cannot be estimated
within a reasonable error range. Consequently, these HOS-
based blind identification and equalization techniques suffer
from the weakness that hundreds and typically thousands
of received data are processed before the performance of
the equalizer reaches an acceptable level. In mobile digital
communication, this weakness becomes so severe that such
techniques may not work due to the rapid variation of the
channel.

In this paper, we introduce another blind fractionally spaced
equalization scheme that provides an acceptable estimate with
a short input symbol sequence and is resistant to the noise and
error in the channel-order estimate. We first convert a blind
equalization problem to a blind source separation problem by
oversampling the received baseband signal, then propose a
criterion based on the fourth-order cross-cumulants of the input
and output of the equalizer to be designed. We prove that the
maximum of this criterion results in a reliable equalizer. To
solve the optimization problem, aJacobialgorithm for a set of
matrices proposed by Cardoso [33] is applied. The contribution
of this paper is to propose an HOS-based equalizer which is
robust to the limited received samples and numerical errors.
Throughout this paper, we make the following assumptions on
the channel, the input symbol sequence, and the noise.

1) The channel can be approximately modeled as a time-
invariant linear FIR filter with finite order.

2) The input symbols are in a finite alphabet, and are drawn
from a set of zero-mean unit-variance i.i.d. random
variables with a nonzero fourth-order cumulant.

3) The noise is white with a Gaussian distribution and is
independent of the symbols.

The paper is organized as follows. In Section II, we formu-
late the problem by oversampling the received signal; the blind
equalization algorithm is developed in Section III; several
simulation experiments, which illustrate the performance of the
equalizer, are described in Section IV. Finally, the conclusion
is presented in Section V.

II. PROBLEM FORMULATION

Consider a single-user digital communication system with
baud period . Let be its input sym-
bol sequence. Denoting the received signal (baseband) as a
continuous function of time we have

(1)

where is the channel transfer function and the
additive noise. The received signal is then sampled as a
discrete sequence . Let the sampling frequency be

. Taking into account that the channel has a finite time
span we then have

(2)

where is the th discrete sample of the noise . Denote
superscript as thetransposeoperator. Let

where is the smallest integer that is not less than
. Equation (2) can then be represented in a matrix

form as

(3)

where is called thechannel convolution matrix. Let
. is an matrix and is defined by

...
...

...
. . .

. . .
. . .

...

where for and
is given by

(4)

Observe that the vector sequence for has
a particular structure: each of its component sequences is the
same as the input symbol sequence except for their time shift.
Under the i.i.d. assumption of the input symbol sequence, it
is easy to see that the components of for any fixed are
mutually independent. Therefore, the problem of recovering
and by without any knowledge about and belongs
to the category of blind source separation problems [1], [29],
[30], [31]. Each component of can be viewed as a “source”
and that of as an observation. Many approaches exist to
solve this problem when is a full-column rank matrix. Note
that for a full-column rank matrix a necessary condition is

. When there always exists a positive integer
so that . In what follows, we always assume that

and is an full-column rank
matrix.

III. T HE ALGORITHM

In Section II, we formulated the blind equalization as a blind
source separation problem. Principally, if the symbol sequence
is not Gaussian distributed, we can employ any suitable blind
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source separation algorithm to extract the “source signals,” i.e.,
the vector sequence . We note, however, that all the source
sequences in this blind equalization problem are identical to
the input symbol sequence except for a different time delay.
This special feature may simplify the algorithm. In fact, we
only need to separate out one of the source signals. In this
section, we will develop a procedure that extracts such a source
sequence. For notational convenience, we drop the indexin
(3), and thereby have

(5)

Denote superscript as the Hermitian transposeoperator.
Suppose there exists a column vector
by which we have an estimate

(6)

where . If is orthogonal to
all columns of matrix but one, i.e., has only one nonzero
component, then the estimated sequence ofis an unbiased
estimate of the input symbol sequence regardless of the scale.
Such a vector indeed exists and is not unique based on the
assumption that is a full-column rank matrix.

In order to determine the algorithm in [22] by maximizing
the fourth-order cumulant of the estimated outputcan be
applied. However, experiments show that this algorithm needs
a large number of received symbols before it provides a
reliable solution. To obtain an equalizer which works well
with a short symbol sequence, in the following we propose a
similar but different algorithm; the equalizer can be determined
by simultaneously diagonalising a set of matrices.

A. A Criterion Based on Fourth-Order Cumulant

Recall that a fourth-order cross-cumulant of two random
variables is defined as

where superscript is the complex conjugateoperator and
stands for the expectation of. We employ the fourth-

order cross-cumulant of the input and output of the equalizer as
a criterion to design the equalizer. Let be the th component
of in (6). We define

(7)

for any . Substituting (5) and (6) into (7)
gives

(8)

where is the fourth-order cumulant of the input symbol
sequence, and by assumptionA2. Obviously, for a
fixed if there is only one component in

with the maximum absolute value, then
the solution to

maximize:
subject to:

(9)

is a unit vector whose components are all zeros except
the one whose index is equal to that of the maximum .
Consequently, the estimate of in (6) is the input symbol
sequence. Since

by (8), (9) is equivalent to

maximize:
subject to:

(10)

Its solution is the desired filter. Now, the problem becomes
to determine the optimum solution to (10) with an unknown

. By substituting into (7), we have

where

(11)

Let , we then have

(12)

Since for any is an
Hermitian matrix and thereby is a quadratic form of

. By assumptionA2, the covariance matrix of the received
vector sequence is

(13)

which is equivalent to

(14)

where is an identity matrix and is the variance
of the noise. Here we assume that each component of
has the same variance. This is reasonable because all the
noise components come from the same samples of at
the receiver. By (12) and (14), the problem (10) becomes

maximize:
subject to:

(15)

Let be the singular value decomposition (SVD)
of , then

(16)

where is a unitary matrix and a diagonal matrix with
its entries on the main diagonal in a descending order. Define

. Since is an full-column rank
matrix, the last entries on the main diagonal of are
all zeros. By removing the last rows and columns of
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and the last columns of , we have an
matrix and an matrix . Let

(17)

then (15) becomes

maximize:
subject to:

(18)

where and . Here is any
pseudoinverse of matrix . Because is an
Hermitian matrix, is an Hermitian matrix.
Suppose that the eigenvector associated with the maximum
absolute eigenvalue of is . According to Rayleigh’s
Principle [34, p. 420], the solution to (18) is the eigenvector

. The desired vector is then computed by . In
summary, when there is only one element with the maximum
absolute value on the selectedth row of can be found
by the following procedure.

1) For a given compute and with (11) and (13),
respectively, and estimate the noise variance.

2) Make the singular value decomposition
then generate and and compute .

3) Construct the matrix and find the
eigenvector associated with its maximum absolute
eigenvalue.

4) Compute the desired vector .

B. Joint Criterion for Estimate Improvement

In the above development, we assume that there is only one
element with the maximum absolute value on theth row of

. If this assumption does not hold, thenobtained by the
above procedure may not give an acceptable estimate of the
input symbol sequence. Unfortunately, in practice we cannot
verify this assumption due to the lack of information about

. In order to have a reliable solution, in this subsection
we propose an algorithm based on a joint criterion for the
computation of . The criterion is composed of all functions
in (7) for .

Let be an unitary matrix. We defined a function
of as

(19)

where is the same in (18) and is the
Euclidean norm of the main diagonal of .

Lemma: Let and denote
for where is a

diagonal matrix
then

(20)

The proof of the lemma is presented in the Appendix. With the
lemma, it is easy to see that for any unitary matrix

Now suppose is such a unitary matrix that
is a permutation matrix, then any component

of can be viewed as an equalized result. In this
case, denoting as the th column of , we have

(21)

which claims that is the maximum of . The
problem now becomes that if is the maximum, is

still a permutation matrix? In order to answer
this problem, we need a definition: two vectors with the same
dimension are said to be symmetric if all their corresponding
components have the same absolute value.

Theorem: Let be an unitary matrix and
where is defined in (17) and is the channel

convolution matrix. If there do not exist two column vectors
of being symmetric, then reaches its maximum if,
and only if, is a permutation matrix.

Proof: The sufficient condition has been proved in the
above discussion. Now we prove that it is also necessary.
By the above lemma, for .
Therefore, the expansion of gives

for

(22)

where is the th entry of . On the other hand, by
we have . Therefore

for (23)

and

for (24)

Note that and have rank and is an
unitary matrix. is therefore a full rank matrix. Without loss
of generality, consider the first row of. Suppose that
and its cofactor is not zero. By (22), we have

for

(25)

If for some then (25) is a
homogeneous equation system; thereby for
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because of the nonzero cofactor of . Since there
is at least one for each we have for

and . On the other hand, if for
all then (25) can be rewritten as

for (26)

However, by (23) we have

for (27)

A comparison of (26) with (27) yields

for

If then . This means that theth and th
column vectors are symmetric. Consequently,is the unique
nonzero entry on the first row of . By applying the above
derivation to another row of we have the conclusion.

With this theorem, the equalization problem becomes find-
ing the solution to

maximize:
subject to:

(28)

If, in the channel convolution matrix there do not exist
any two-column vectors being symmetric, any column of
the solution can be used to compute the desired vector

where is the th column of . Note that the
solution is a unitary matrix rather than a column vector.
Although computing may require more computation than
computing one column vector, there are some benefits behind.
As any column of can provide a qualified equalizer and
the performances of these equalizers are dramatically different
when there is an additive noise, it is the matrixthat provides
a possibility to select a suitable equalizer. We shall discuss the
selection of the column of in the next subsection. Because of
the special structure of the “symmetric columns” condition
on never occurs by carefully constructing. For example,
if (i.e., the oversampling factor is 2) and
(i.e., the dimension of vector is ), then there will be no
symmetric columns in .

To solve the above optimization problem, let us consider the
set of matrices for . By substituting
(5) into (11), we have

by which

where is the channel convolution matrix and is defined
in the Lemma. Therefore, for

(29)

From the theorem, when is the solution to (28), all the
off-diagonal entries of for are
zeros. Thus, from (29), simultaneously diagonalizes the
set of matrices for . By (20) and
(22), this is also sufficient for the maximum solution. In
order to diagonalize these matrices, an algorithm in [33]
can be employed. This algorithm is designed by extending
the Jacobi technique for diagonalising a single Hermitian
matrix to a set of Hermitian matrices. The key point in this
algorithm lies on the computation of the Givens rotation. Its
computation complexity is the same as that of Jacobi algorithm
for diagonalizing a single matrix.

C. Practical Implementation

In practice, because of the noise and the short length of
the received samples, we need to solve several problems.
First, in order to compute matrix it is required to estimate
the covariance matrix and the noise variance .
is approximately equal to the ensemble-averaged covariance
matrix of the received sequence. When the length of received
sequence is long enough, can be precisely determined.
By (16), the noise variance is the smallest eigenvalue of

. However, for a short received sequence, it is almost
impossible to have a reasonable estimate of the noise variance;
the reason is that the noise contribution in the estimate of

is comparable to the error caused by the limited received
samples. Therefore, it is meaningless to determine the noise
variance and remove it from . Instead of the use of (17) for
a short received sequence, matrixcan be simply computed
by , i.e., we simply ignore the noise contribution in our
algorithm.

Second, we choose as the dimension of matrix in
(17). However, because we ignore the noise in (16) (i.e., we
set ), we have , thereby is always chosen
as . This provides an over-estimated generally. One of
the main advantages of our method based on (28) is that it is
still applicable whenever is over-estimated. This point can
be seen as follows. Suppose that is over-estimated as
then in (28) is an matrix and an

matrix. Although is no longer a square matrix, it
is easy to verify that the Lemma still holds, i.e.,

When is a solution to (28), we can conclude that each
column of has no more than one nonzero entry. The proof
can be simply done by applying diag to the
proof of the above theorem, whereis a zero vector with
dimension .

Third, because of the overestimate of is a “tall”
matrix, and some of its rows are zero vectors. Consequently,
by

(30)

a component of is either an unbiased estimate of the
symbol sequence or consists only of noise. Notice that the
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noise is assumed to be Gaussian distributed, its higher order
cumulants are all zeros. If theth component of contains
noise only, then its fourth-order cumulant is null. This means
that for all i.e.,

for all . In fact, is the eigenvalue
of associated with eigenvector . It is a byproduct after

is obtained. For each matrix there is an eigenvalue
associated with . Hence, if there exists at least one nonzero
eigenvalue associated with then the th component of
can be considered as a symbol sequence. Obviously, the eigen-
vector corresponding to the maximal absolute eigenvalue is
always a candidate in the estimation of the symbol sequence; it
will be used in our algorithm described in the next subsection.

D. The Algorithm

We now design a blind equalizer based on the above the-
orem. Although the equalizer requires an additional condition
that the channel matrix must have no symmetric columns,
this condition is very mild or can be avoided in practice. The
algorithm is stated as follows.

1) Collect an oversampled sequence
and construct the vector samples
based on and an over-estimated channel order.

2) Compute the covariance matrix of: .
3) Decompose the matrix into , and compute

.
4) For compute the matrix by

using (11) and .
5) Find (e.g., using the algorithm in [33]), a solution to

maximize:
subject to:

For each there are eigenvalues
associated with . Denote as the set of all these
eigenvalues.

6) Let be the column of which is associated with
the eigenvalue in that has the maximal absolute value.
The input symbol sequence then can be approximated by

7) End.

This algorithm is developed for a short received sequence.
The noise variance is not removed from in the compu-
tation of . In comparison with most SOS-based algorithms,
this algorithm seems to be time-consuming, since a set of
matrices is computed and a joint diagonalization of these
matrices has to be achieved. However, it is worthwhile to
mention that the dimension of the matrices in this algorithm
is generally smaller. The computation complexity of this
algorithm is therefore comparable to the existing algorithms.
The simulation examples in the next section show that this
algorithm works well when the SNR is not too small.

IV. SIMULATION EXAMPLES

In this section, severalMonte Carlo simulation examples
are presented to illustrate the performance of the algorithm

TABLE I
CHANNEL IMPULSE RESPONSES

proposed above. The symbols were drawn from the QPSK
signal constellation with a uniform distribution. One may
check that the fourth-order cumulant of the symbol sequence
is nonzero. We define

(31)

Here denotes the variance of the noise-free part of the
received signal, and that of the additive Gaussian noise.
The received sequence is generated by (3). The intersymbol
interference (ISI) is employed as a performance measure of
the estimated sequence which is defined by

(32)

where are the combined impulse response
of the cascade of the channel and the equalizer which are
defined by in a Monte Carlo
run, and is their maximum absolute value. We denote
the number of the input symbols used in eachMonte Carlo
run as .

A. Experiment 1: Varying the Number of Symbols

In this example, we investigated the performance improve-
ment by the increase of the number of received vector samples

. The simulation channel was a three-ray multipath channel
being truncated up to five symbol periods. Let the gain and
time delay of the th ray in this multipath channel be
and respectively. We choose
and ; and

. The transmitter waveform is a raised-
cosine pulse with roll-off factor 11%. The received signal is
sampled three times as fast as the symbol rate, i.e., .
We then have three virtual channels whose impulse responses
are listed in Table I. The SNR is fixed at 25 dB. Fig. 1 shows
the sample constellations of these three virtual channel outputs
and that of the equalized result with . By and

or . The equalizer performance is
determined by increasing from 30 to 300 with a step size of
10. For each 50Monte Carloruns were achieved. The input
symbol sequence and the noise in each run are different. Fig. 2
exhibits the improvement of ISI behavior when the number of
received samples increase. The curve tends to be flat when

.
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(a) (b)

(c) (d)

Fig. 1. The received sequences and equalized result with 200 symbols under
SNR = 25 dB.

Fig. 2. ISI versusNo under SNR= 25 dB.

B. Experiment 2: Varying the SNR

This experiment tests the performance of our algorithm
subject to various levels of SNR. The channel is the same
as that in the first experiment and the oversampling frequency
is still three times as fast as the symbol rate, i.e.,

. Let and the SNR
varies from 0 to 40 dB with a step size of 2 dB. Again,
for each noise level, 20Monte Carloruns were implemented.
The result of the simulations is illustrated in Fig. 3. It is
not surprising to see that the ISI is generally not affected
by the noise when the SNR is not too small. The reason is
that the noise is Gaussian distributed, and thereby its fourth-
order cumulant is zero and contributes nothing to the criterion
used by our approach. However, when the SNR is small,
the ISI becomes bad. This is because in the computation

Fig. 3. ISI versus SNR withNo = 150.

of we simply let and it causes an inadmissible
error.

C. Experiment 3: Varying the Time Span of Channels

As previously mentioned, the main difficulty in the existing
methods, that can reach an acceptable result with a small set of
symbols, lies in the estimation of the channel order. In real im-
plementation, the channel impulse response becomes smaller
and smaller with the increase of its time span. Therefore, it is
very hard to compute an accurate order of the channel based
on a noisy and short received sample sequence. In order to
demonstrate the insensitivity of our equalizer to the estimate
error of channel order, in this experiment we fix the order
of the simulation channel as 5 and change the estimate of the
channel order from 2 to 12. As a result, when the oversampling
frequency is threefold baud rate , the factor in (3)
should be , i.e., and .
Again, the channel was composed of three rays, but we choose
time delays as and and the
gains as and from a complex Gaussian random
generator. Let SNR dB. For each particular value of
the estimate of the channel order, 100Monte Carloruns were
implemented. The results are shown in Fig. 4, where the solid
curve is obtained by letting and the dashed curve
by . These curves tend to be flat when the estimated
order is not less than the channel order 5. This means that
our method indeed does not require an accurate estimate of
the channel order.

D. Experiment 4: Fading Environments

The behavior of the equalizer in a fading environment
was simulated. The channel was still a three-ray multipath
channel, but we employed theJakesModel [35] to simulate
a fading environment. Suppose that the arrival angles of
the received signal are uniformly distributed. Let be the
Dopplerfrequency, then the resultant complex fading envelope
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Fig. 4. ISI versus the mismatch of channel time span when the real channel
time span is5T , under SNR= 25 dB.

TABLE II
PERFORMANCE IN A FADING ENVIRONMENT

of the signal from the th path can be approximated by

where and . A received signal from a
fading channel can be expressed by

(33)

where is Gaussian noise and is a single-path signal,
defined by

Here, is the raised-cosine function. Each 150-symbol
sequence is said to be a burst. In our experiments, 10 000
bursts were transmitted continuously through a fading channel;
thereby a long received sequence could be obtained with (33).
The channel was equalized once after each burst was received.
When the roll-off factor of was 0.9, the baud rate of
the input symbol sequence was 270 kHz (i.e., used in GSM
system), and dB,

the equalizer was tested by letting (i.e.,
) for both Hz and Hz. After

10 000 bursts transmitted, 9712 bursts or 1 498 761 symbols
were recovered correctly for Hz and 9823 bursts or
1 499 258 symbols for Hz. The simulation results are
listed in Table II. There are, in total, 288 bursts containing
error symbol(s) for Hz, and 177 bursts for

Fig. 5. The histogram of error bursts under SNR= 20 dB in 10 000Monte
Carlo runs.

Hz. Fig. 5 is the histogram of these error bursts. The first bar
depicts the number of bursts containing one error symbol only,
the second bar depicts the number of bursts containing two
error symbols only, and so on. The last bar is an exception;
it presents the total number of error bursts, each of which has
more than six error symbols. Fig. 5 implies that among these
error bursts, most of them include a very small number of
error symbols.

V. CONCLUSION

In this paper, we developed a blind fractionally spaced
equalizer in digital communications. The equalizer is designed
on the fourth-order statistics of input symbol sequence and is
resistant to the noise and errors in computation and modeling.
Simulation results show that it works well with a short symbol
sequence, even when the channel time span is not exactly
known.

APPENDIX

PROOF OF THE LEMMA

Proof: For any unitary matrix

where and are the th column of and respectively.
By we have . Therefore

(34)

Since any is a diagonal matrix, and (if is
over-estimated as where is a zero
vector with dimension ), the trace of the left in (34)
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is equal to that of

(35)

i.e.,

(36)

By

(37)

we have

(38)
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