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Abstract

We propose a time aggregation approach for the solution of in3nite horizon average cost Markov decision processes via policy iteration.
In this approach, policy update is only carried out when the process visits a subset of the state space. As in state aggregation, this
approach leads to a reduced state space, which may lead to a substantial reduction in computational and storage requirements, especially
for problems with certain structural properties. However, in contrast to state aggregation, which generally results in an approximate model
due to the loss of Markov property, time aggregation su9ers no loss of accuracy, because the Markov property is preserved. Single sample
path-based estimation algorithms are developed that allow the time aggregation approach to be implemented on-line for practical systems.
Some numerical and simulation examples are presented to illustrate the ideas and potential computational savings. ? 2002 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Various approximation approaches to reduce the com-
putation in Markov decision processes (MDP) have been
proposed. These include approximate policy iteration, ag-
gregation, supervisory control and randomization (Aldha-
heri & Khalil, 1991; Bertsekas & Tsitsiklis, 1996; Forestier
& Varaiya, 1978; Parr, 1998; Rust, 1997; Sutton, Precup, &
Singh, 1999). Approximate policy iteration can be carried
out in a number of ways that involve suitable approxima-
tion techniques in the evaluation and improvement steps of
policy iteration. This approach is called neuro-dynamic pro-
gramming (Bertsekas & Tsitsiklis, 1996). Examples include
Tsitsiklis and Van Roy (1999) and Van Roy, Bertsekas, Lee,
and Tsitsiklis (1996). The main approach to aggregation
has been to reduce the state space by aggregating the
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original state space into a more manageable set. However,
since state aggregation on a Markov chain fails to preserve
the Markov property, exact results based on state aggrega-
tion usually require severely restrictive structural properties,
for example, see Aldhaheri and Khalil (1991). Thus, this ap-
proach is usually implemented as a heuristic approximation.
In this paper, we propose a time aggregation approach

for policy iteration of MDPs. Our approach is motivated by
Zhang and Ho (1991), where time aggregation was applied
to performance sensitivity estimation. Our goal is to reduce
computation when the system possesses certain special fea-
tures, and to propose single sample path-based algorithms
for time aggregation to be implemented on-line for real en-
gineering systems. We consider in3nite horizon average cost
MDP problems. The main idea is as follows. Consider any
subset of the state spaceS, denoted asS1 ⊂ S. Every time
the Markov chain reaches a state in S1, we record the state.
The resulting sequence forms an embedded Markov chain,
and hence the aggregation is in fact not an approximation.
Properly de3ning the performance function for this embed-
ded chain by aggregating the performance of the original
chain on the segment between two consecutive embedded
points, we can convert the problem of policy iteration of the
original Markov chain on the subset S1 into the same prob-
lem for the embedded Markov chain, which has a smaller
state space. For problems in which only a small number of
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states (inS1) are controllable (i.e., a large number of states
for which only a single action is available), the time aggre-
gation approach turns the original problem with a large state
space (with |S| states, where |A| denotes the set cardinality,
the number of states in set A) into a problem with a smaller
state space (with |S1| states). When |S1|�|S|, the compu-
tation reduction can be signi3cant (see the discussion after
Algorithm 1 in Section 4 and Example 1 in Section 7).
For problems in which multiple actions are available at

almost every state, we may partition the state space into
S = S1 ∪ · · · ∪ SN , and apply time aggregation to each
subspace one by one sequentially. Thus, the original MDP is
a problem with |S| states, whereas in the time aggregation
approach, there are N problems of size |S1|; : : : ; |SN |. It is
not clear in this case whether our approach reduces compu-
tation (see the discussion after Algorithm 2 in Section 5).
However, our approach o9ers some Lexibility in carrying
out policy iteration even when all states are controllable. In
cases where we know which states are more important than
others, our techniques can help in obtaining a “good” pol-
icy using less computation, by aggregating states according
to “degrees of importance”. Thus (for instance), our algo-
rithm can be used to update policies only on the more im-
portant states and avoid (altogether) wasting computation
on the relatively less important ones (see the discussion in
Section 5). Our approach is based on a fundamental concept
in MDP, the performance potentials (Xi-Ren Cao, 1999)
(or di9erential cost functions (Gallager, 1996)). The paper
consists of two parts; the 3rst part deals with analytical so-
lution and the second develops single sample path-based
implementation techniques. In the 3rst part, we 3nd that a
straightforward application of time aggregation requires one
to estimate the performance potentials for every policy and
hence is not practically feasible. We introduce an equiv-
alent problem which has the same optimal policy as the
time-aggregated problem for the embedded Markov chain;
the equivalent problem can be solved by comparing actions,
rather than policies. A policy iteration algorithm based on
analytic solutions is presented.
The work of Forestier and Varaiya (1978) is related to

a part of our approach. They proposed a hierarchical con-
trol structure for large Markov chains, in which the higher
level operates at a slower (aggregated) time scale than the
lower level. In their model, control at the higher (“super-
visor”) level requires information accumulated at the lower
level; this corresponds to the concept of time aggregation.
However, their approach requires evaluation of every pol-
icy at each step, and therefore, their approach essentially is
not based on policy iteration (the fundamental advantage of
traditional policy iteration is lost). In addition, for future re-
search they proposed to directly estimate the parameters in-
cluding all the transition probabilities (which, among other,
requires a considerable amount of memory storage), while
in our approach, the policy iteration is directly based on po-
tentials, so in most cases estimation of system parameters is
not needed. This point will become clearer later.

In the second part, we propose an algorithm that imple-
ments the time aggregation approach on a single sample
path. The algorithm is based on importance sampling and
performance potentials. We prove that as the length of the
sample path goes to in3nity, the single sample path-based
time aggregation algorithm terminates in an optimal policy.
The sample path-based implementation allows the approach
to be applied to real systems by observing the system oper-
ation history (Xi-Ren Cao & Wan, 1998; Marbach & Tsit-
siklis, 2001; Watkins & Dayan, 1992).
The basic principle of importance sampling is that the in-

formation about all actions at any state can be extracted from
the current sample path. In our single sample path-based ap-
proach, this generally requires that for any i∈S1 and j∈S
the ratio of the transition probabilities under two actions,
p	

′
(i; j)=p	(i; j), is 3nite and known, where 	 is the action

taken at state i in the current sample path and 	′ is any other
action that is available at i. Two important aspects regarding
this requirement are as follows.

(i) This implies that if p	(i; j) = 0, then p	
′
(i; j) = 0 for

all other 	′ (see Assumption 1 and the weaker version
Assumption 1′ in Section 6). However, in many sys-
tems the decisions are on–o9 type, e.g., 	 may repre-
sent accepting an incoming packet and 	′, rejecting the
packet. In such cases this assumption is violated be-
cause p	(i; i + 1) = 1; p	(i; i) = 0 while p	

′
(i; i) = 1,

p	
′
(i; i + 1) = 0, where i is the number of packets in

the system. One easy way to overcome this diPculty is
to use randomized policies. For example, 
 represents
a policy that accepts the packet with probability �¿ 0
and rejects the packet with probability 1−�. Using 
 as
the current policy satis3es the requirement. Some other
possible approaches for overcoming this diPculty are
discussed in Section 8.

(ii) As the example in Section 2 illustrates, this requirement
does not mean that the transition probabilities have to
be completely known. In many cases, the ratio depends
only on the actions and not on the system behavior.
This point is important since it allows the proposed time
aggregation approach to be implemented on a sample
path that is observed on-line from the operation of a
real system without knowing the actual dynamics of the
system.

The rest of the paper is organized as follows. We 3rst
give a few examples in Section 2 to illustrate the possi-
ble applications of the proposed approach. Then we intro-
duce time aggregation in Section 3. We show that by “ag-
gregating” performance between two embedded points, we
can de3ne a performance function for the embedded chain
such that its steady-state performance is the same as that of
the original Markov chain. In Section 4, we propose a time
aggregation-based MDP policy iteration algorithm for the
case where control can be exercised only on states in S1.
Because at each state the “aggregated” performance func-
tion de3ned for the embedded chain in Section 3 depends
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on the actions at other states, the standard policy iteration
algorithm cannot be applied directly to the embedded chain
with the aggregated function. Therefore, we de3ne a new
performance function and prove that the policy iteration al-
gorithm for the embedded Markov chain with this perfor-
mance is equivalent to that of the original Markov chain
(Proposition 3). We show that this approach leads to com-
putational savings when |S1| is small. In Section 5, we dis-
cuss the general case where multiple actions are allowed in
all the states. The state space is partitioned into a set of N
subsets S =

⋃N
n=1 Sn. The actions for states in one subset

Si ; i=1; 2; : : : ; N , are updated by applying the time aggre-
gation approach with policy actions in S−Si =

⋃
n�=iSn

being 3xed. We prove that iteratively updating the actions
in this manner eventually leads to an optimal policy for the
original MDP. This approach o9ers some Lexibility in im-
plementing MDP, which may be helpful in 3nding a near
optimal policy. In Section 6, we develop algorithms for esti-
mating the performance potentials and implementing policy
iteration for the aggregated problem based on a single sam-
ple path of the Markov chain. In Section 7, we present a few
numerical and simulation examples to make a comparison
between the standard policy iteration and our time aggrega-
tion approach (both analytical and sample path based). Sec-
tion 8 concludes the paper with a summary and a discussion
about future research directions.

2. Illustrative examples

We give a few examples to show when the proposed ap-
proach can be used. In the 3rst example, we consider a man-
ufacturing system consisting of two machines and N parts,
which are circulating between the two machines, as shown
in Fig. 1. Machine 1 (M1) can perform three operations (1,
2, and 3); their service times are exponentially distributed
with rates �1; �2, and �3, respectively. Some parts need to go
through all three operations in the sequence of 1,2,3; others
only require operations 2 and 3; still others only need oper-
ation 3. The probabilities that a part belongs to these three
types are p1; p2, and p3, respectively. Machine 1 works
on only one part at a time. Machine 2 (M2) has only one
operation; its service time is exponential with rate �4.
The system can be represented by a special closed queue-

ing network shown in Fig. 1, which can be modeled as a
Markov process with states denoted as (n; i), where n is the
number of parts at machine 1 and i=1; 2; 3 denotes the oper-
ation that machine 1 is performing. A part after completion
of service at machine 1 goes to machine 2 with probability
p	(n) (pa(n)∈ [0; 1]; n is the number of parts at machine
1 at the service completion time) or immediately returns to
machine 1 with probability 1− p	(n), with the superscript
“	” representing an action. This is the only point where
control can be exercised in this example. The performance
to be optimized is the weighted sum of the two machines’
throughputs. Some transition probabilities of the Markov

Fig. 1. The queueing network for the manufacturing example.

chain embedded at the operation completion times are
(for 0¡n¡N ):

p[(n; 1); (n+ 1; 1)] =
�4

�1 + �4
;

p[(n; 1); (n; 2)] =
�1

�1 + �4
;

p	[(n; 3); (n− 1; 1)] =
�3

�3 + �4
p1p	(n);

p	[(n; 3); (n; 1)] =
�3

�3 + �4
p1[1− p	(n)]:

Other nonzero transition probabilities have a similar form.
In this example, the state space S = {(n; i)} ∪ {0};

n = 1; : : : ; N; i = 1; 2; 3 (in general, i = 1; 2; : : : ; k, for any
integer k) and the controllable states are in S1 = {(n; 3)};
n= 1; : : : ; N . Therefore, the time aggregation approach can
be applied. As shown in Section 6, the sample path-based
approach requires knowledge of the ratio of the transition
probabilities given a sample path obtained by simulation
or observation; in this example, these rates are

p	
′
[(n; 3); (n− 1; i)]

p	[(n; 3); (n− 1; i)]
=
p	

′
(n)

p	(n)
; i = 1; 2; 3

and

p	
′
[(n; 3); (n; i)]

p	[(n; 3); (n; i)]
=

1− p	
′
(n)

1− p	(n)
; i = 1; 2; 3:

Thus, the exact transition probabilities are not required for
implementing the single sample path-based approach pro-
posed in this paper (see Section 6); rather, the ratio of the
transition probabilities depends only on actions, not on the
underlying system structure. In other words, one does not
need to know �i, i=1; 2; 3; 4, and pj; j=1; 2; 3, as long as
a sample path is observed. Many other MDP problems in-
volving routing optimization in queueing systems are of a
similar nature.
Another example is a multimedia transmission line carry-

ing two types of packets (e.g., data and video) with di9er-
ent service requirements. While the video packets require a
shorter transmission delay, the cost of losing data packets
is much higher than the cost of losing video packets. There



932 X.-R. Cao et al. / Automatica 38 (2002) 929–943

are two bu9ers: B1 for data packets and B2 for video packets.
Each bu9er can hold at most N packets. If a data packet
arrives and 3nds that B1 is full, the packet can be either
dropped, leading to a data packet loss, or put in B2, leading
to a longer delay in video packets. If a video packet arrives
and 3nds that B2 is full, the packet is simply dropped. We
assume that the transmission times of each packet (data or
video) are exponentially distributed. De3ning the state of the
system by (n1; n2), with n1 and n2 representing the number
of packets in B1 and B2, respectively, a decision on whether
or not to drop a data packet is taken only in states (N; n2)
(i.e., the state space of the embedded chain isS1={(N; n2)},
n2 = 0; : : : ; N − 1). Applying the time aggregation approach
reduces the size of the state space from (N + 1)2 to N .

Finally, the proposed approach may be applied to systems
with threshold control policies. Denote the state space as
n∈{0; 1; 2; : : :} and suppose that the control policy is of the
threshold type (e.g., there is an integer B such that if n¿B
then action a is taken, and otherwise action b is taken). If a
priori we know the bounds of B, (say) N1¡B6N2, then
we can 3x the action for n¿N2 and n6N1 and study the
embedded chain for S1 = {N1 + 1; : : : ; N2}. This reduces
the problem from a state space with in3nitely many states
to a 3nite one with N2 − N1 states.

3. Time aggregation

We introduce the notion of time aggregation in this sec-
tion. Let X= {Xt; t=0; 1; 2; : : :} be an ergodic discrete time
Markov chain with a 3nite state space S = {1; 2; : : : ; |S|}
and transition probability matrix P = [p(i; j)]|S|

i; j=1. The un-
derlying probability space is denoted as (�;P; �); a point
!∈� corresponds to a sample path of the Markov chain.
Let �=[�(1); : : : ; �(|S|)] be a row vector of the steady-state
probabilities, f = [f(1); : : : ; f(|S|)]T be a column vector
of performance functions. We use v(i) to denote the ith
element of a vector v. The 3nite horizon average cost is

�T =
1
T

T−1∑
t=0

f(Xt): (1)

By ergodicity, we have for arbitrary initial state

lim
T→∞

�T = �f; w: p: 1:

Let e(n) = (1; 1; : : : ; 1)T be an n-dimensional column vec-
tor whose components are all ones (sometimes we simply
use e if there is no confusion about the dimension), where
the superscript “T” denotes transpose, and I be the identity
matrix. Then we have �P= �; �e=1, and Pe= e. The po-
tential vector g= [g(1); g(2); : : : ; g(|S|)]T is de3ned as the
solution to the Poisson equation (Xi-Ren Cao, 1998):

(I − P + e�)g= f:

Now we consider two complementary subsets S1 and
S2 = S−S1. Without loss of generality, we let S1 =

{1; : : : ; |S1|} and S2 = {|S1| + 1; : : : ; |S|}. Consider
a sample path ! = (X0; X1; X2; : : :) with X0 ∈S1. Let
t0 = 0 and ti = mint{t ¿ ti−1; Xt ∈S1}; i = 1; 2; : : : :
Then, {Xti ; i = 0; 1; 2; : : :} forms an embedded Markov
chain that is also ergodic (Theorem 1 in Forestier and
Varaiya (1978), and Revuz (1984, p. 15). Let Y ,
{Yi = Xti ; i¿ 0}; Yi ∈S1. Let P̃ and �̃ denote the transi-
tion matrix and steady-state probability row vector of the
embedded chain, which satisfy

�̃= �̃P̃: (2)

The sample path of the Markov chain is divided into seg-
ments, calledS1-segments, by the embedded chain. Denote
%i=(Xti ; Xti+1; : : : ; Xti+1−1); %i is called an S1-segment. We
can write !=(%0; %1; %2; : : :); where %i; i=1; 2; : : : ; are ran-
dom sequences de3ned on �.
Let & be the (countable) set of all feasible S1-segments.

(%0; %1; : : :) de3nes a Markov chain with state space & called
a segmented Markov chain. We use a generic notation
%=[%(1); %(2); : : : ; %(n(%))] to denote anS1-segment, where
n(%) is the length of %. The in3nite segmented chain is irre-
ducible, aperiodic, and positive recurrent, thus ergodic. Its
steady-state probability is denoted by �̂(%). Let E denote the
expectation with respect to P on �. De3ne the quantities

hf(%) =
n(%)∑
j=1

f(%(j)) and Hf(i) = E[hf(%)|%(1) = i];

i = 1; 2; : : : ; |S1|: (3)

Let Hf = [Hf(1); Hf(2); : : : ; Hf(|S1|)]T. We will use the
notation h1 andH1 above for the case f(i)=1;∀i∈S. Thus,
h1(%) = n(%) and H1(i) = E[n(%)|%(1) = i].
From ergodicity, it is clear that |Hf(i)|¡∞ for any 3nite

function f. Applying the strong law of large numbers to
the segmented chain, we have (cf. Eq. (19) in Forestier and
Varaiya, 1978)

�= lim
T→∞

�T = lim
M→∞

1
M

∑M−1
m=0 hf(%m)

1
M

∑M−1
m=0 h1(%m)

=

∑
% �̂(%)hf(%)∑
% �̂(%)n(%)

=
�̃Hf
�̃H1

=
1
Vn
�̃Hf; w: p: 1; (4)

where Vn= �̃H1 is the mean length of the S1-segments.
From (4), if we de3ne a new performance vector for the

embedded Markov chain,

f̃ =
1
Vn
Hf; (5)

then the embedded chain has the same long-term average
performance � = �̃f̃ as the original one. The values of Hf
and Vn depend on theS1-segments, and can be calculated by
using the following two propositions. First, we partition P
and f according to S1 and S2 as follows:

P =
[
PS1S1 PS1S2

PS2S1 PS2S2

]
f =

[
fS1

fS2

]
:
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Eqs. (6) and (7) in Proposition 1 can also be found in
Forestier and Varaiya (1978). Here we provide a straight-
forward proof.

Proposition 1 (cf. Eqs. (12) and (17) in Forestier and
Varaiya (1978)). We have

P̃ = [PS1S1 PS1S2 ]
[

I
(I − PS2S2 )

−1PS2S1

]

= PS1S1 + PS1S2 (I − PS2S2 )
−1PS2S1 ; (6)

Hf = fS1 + PS1S2 (I − PS2S2 )
−1fS2 : (7)

Proof. The transition probability matrix of the embedded
Markov chain is

P̃ = PS1S1 + PS1S2

∞∑
k=0

PkS2S2
PS2S1 = PS1S1

+PS1S2 (I − PS2S2 )
−1PS2S1 ;

which leads to (6). Note that (I −PS2S2 ) is invertible since
P is irreducible (Csenki; 1994).
Let e(n)i be the ith row of the n× n identity matrix and

FS2 = diag{fS2 (1); : : : ; fS2 (|S2|)}:
Then,

Hf(i)− fS1 (i)

=E[hf(%)|%(1) = i]− fS1 (i)

=
∞∑
n=1

n∑
j=1

E[f(%(j))|%(1) = i; n(%) = n]

P[n(%) = n|%(1) = i]− fS1 (i)

=
∞∑
n=1

n+1∑
j=2

E[f(%(j))|%(1) = i; n(%) = n+ 1]

P[n(%) = n+ 1|%(1) = i]

=
∞∑
n=1

n∑
j=1

e(|S1|)
i PS1S2P

j−1
S2S2

FS2P
n−j
S2S2

PS2S1e
(|S1|)

=
∞∑
j=1

∞∑
n=j

e(|S1|)
i PS1S2P

j−1
S2S2

FS2P
n−j
S2S2

(I−PS2S2 )e
(|S2|)

=
∞∑
j=1

e(|S1|)
i PS1S2P

j−1
S2S2

fS2

= e(|S1|)
i PS1S2 (I − PS2S2 )

−1fS2 :

This directly leads to (7).

From (6) and (7), �̃ can be obtained by solving (2), and

Vn= �̃H1 = �̃[e|S1| + PS1 ;S2 (I − PS2 ;S2 )
−1e|S2|]

= 1 + �̃PS1 ;S2 (I − PS2 ;S2 )
−1e|S2|: (8)

Proposition 2. We have

�̃= Vn · [�(1); �(2); : : : ; �(|S1|)]; (9)

Vn=
1

�(1) + �(2) + · · ·+ �(|S1|) : (10)

Proof. Write � in block partitioned form [�S1 ; �S2 ]. We
can verify that (6) and (9) satisfy

�S1 P̃ = �S1 [PS1S1 + PS1S2 (I − PS2S2 )
−1PS2S1 ]

= [�S1 − �S2PS2S1 + �S2 (I − PS2S2 )

×(I − PS2S2 )
−1PS2S1 ]

= �S1 :

Since the embedded chain is ergodic; the steady-state prob-
ability has the unique form given by

�̃=
1

�(1)+�(2)+ · · ·+�(|S1|) · [�(1); �(2); : : : ; �(|S1|)]

=
1

�(1) + �(2) + · · ·+ �(|S1|)�S1 :

Eq. (10) follows directly from (8) and

Vn= �̃H1 =
1

�(1) + �(2) + · · ·+ �(|S1|)�S1H1

=
1

�(1) + �(2) + · · ·+ �(|S1|)
×[�S1e

(|S1|) + �S2 (I − PS2S2 )(I − PS2S2 )
−1e(|S2|)]

=
1

�(1) + �(2) + · · ·+ �(|S1|) (�S1e
(|S1|) + �S2e

(|S2|))

=
1

�(1) + �(2) + · · ·+ �(|S1|) :

Therefore; we have (9) as well; thus completing the
proof.

From the above discussion, if we de3ne the performance
function for the embedded chain as in (5), then the perfor-
mance of the embedded chain is the same as the original
one. The values of the performance function at the states in
S1 are in fact the average on a corresponding S1-segment.
From a sample path point of view, it looks as if the entire
S1-segment is aggregated onto the embedded point; thus
we call this approach “time aggregation”. In the next sec-
tion, we will discuss how this approach can be incorporated
into MDP policy iteration.

4. Time-aggregation based policy iteration

Consider a Markov chain X={Xt; t¿ 0} with state space
S = {1; 2; : : : ; |S|}. At any time t¿ 0; an action is taken
from an action space A and is applied to X . The number
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of actions is 3nite, and we consider only stationary poli-
cies. Let A(i) ⊆ A be the set of actions available in state
i∈S. A stationary policy is a mapping L :S → A, i.e.,
for any state i, L speci3es an action L(i)∈A(i). Let E
be the policy space. If action 	 is taken when the system
is in state i, the transition probabilities from state i are de-
noted by p	(i; j); j = 1; 2; : : : ; |S|. With a policy L, the
Markov chain evolves according to the transition matrix
PL=[pL(i)(i; j)]|S|

i; j=1. We assume that the Markov chain is
ergodic under all policies and the steady-state probabilities
corresponding to the Markov chain running under policy L
are denoted as a row vector �L. LetfL be the column vector
of performance functions corresponding to policy L. The
steady-state performance is �L = �LfL, and our objective
is to minimize �L over the policy space E.
First we assume that actions can only be taken for states

inS1 and the transition probabilities for states inS2 do not
depend on actions. Thus, PS2 ; S1 and PS2 ; S2 are 3xed. We
have

PL =

[
PL
S1S1

PL
S1S2

PS2S1 PS2S2

]
and fL =

[
fL
S1

fS2

]
;

i.e., PS2S1 , PS2S2 , and fS2 are independent of L.
We use the same notation as in Section 3 except that

symbols indicating actions and policies are added when
needed, e.g., p̃	(i; ·) and Hf(i; 	) for action 	, and HL

f with
HL
f (i) =Hf(i;L(i)) for policy L. In a standard policy it-

eration for the embedded Markov chain, at the kth iteration
we 3rst solve the Poisson equation

(I − P̃
Lk + e�̃Lk )g̃Lk = f̃

Lk

for the potential vector g̃Lk , where Lk is the policy at the
kth iteration. The policy improvement step is carried out by

setting Lk+1 = argL∈E{min[P̃
L
g̃Lk + f̃

L
]} as the policy

for the (k + 1)th iteration.
However, there is one major obstacle here: According to

(5), the performance function f̃
L

depends on the average

length VnL. In other words, f̃
L
(i) depends on actions taken

in states other than i. Therefore, standard policy iteration
cannot be implemented on the embedded Markov chain us-

ing f̃
L
(i). The solution based on this aggregated perfor-

mance requires calculating VnL for every policy, which is
not feasible practically. To overcome this obstacle, in the
following, we introduce a new performance function; the
policy iteration algorithm based on this performance func-
tion reaches the same optimal policy without encountering
the aforementioned problem.
Recall that the embedded Markov chain is Y = {Ym =

Xtm ; m¿ 0}, Ym ∈S1. An action 	∈A(i) determines tran-
sition probabilities p̃	(i; j); j=1; 2; : : : ; |S1|. De3ne a per-
formance function

r.(i; 	) = Hf(i; 	)− .H1(i; 	) (11)

at state i of Y , where . is a real parameter. A pol-
icy L∈E determines a transition probability matrix
P̃
L
= [p̃L(i)(i; j)]|S1|

i; j=1 and a performance function vector

rL. = HL
f − .HL

1 (12)

for the Markov chain Y . The steady-state probability row
vector is �̃L, and using (4), the steady-state performance is
given by

�L. = �̃LrL. = �̃LHL
1 (�L − .): (13)

The next proposition shows that using performance func-
tion rL. with . = �L we can implement standard policy it-
eration on Y to obtain the optimal policy for the original
problem.

Proposition 3. (i) If L′ is a policy better than L for the
embedded Markov chain with .=�L in performance func-
tion (11); then L′ is also better than L for the original
Markov chain.
(ii) Policy L∗ is optimal for the original Markov chain

if and only if L∗ is optimal for the embedded chain with
.= �L

∗
in performance function (11).

Proof. 1. Because �̃LHL
1 ¿ 0; from (13); �L

′
¡.=�L if

and only if �L
′

. ¡ 0 = �L. .
2. Also, ∀L∈E; �L¿ . = �L

∗
if and only if �L. ¿

0 = �L
∗

. .

With this proposition, we present the following algorithm
for policy iteration on the embedded Markov chain (with
performance function (11)), which leads to an optimal pol-
icy for the original Markov chain.

Algorithm 1 (time-aggregated policy iteration). (i) Choose
an initial policy L0; set k := 0.
(ii) At the kth iteration

(a) Calculate �Lk from (4) by using (2); (6); (7),
and (8); set .= �Lk .

(b) Solve

(I − P̃
Lk +e�̃Lk )g̃Lk = rLk

. = HLk
f −�LkHLk

1

(14)

for the potential vector g̃Lk .
(c) Determine the policy for the next iteration Lk+1

by minimizing (over all L∈E)

P̃
L
g̃Lk + rL�Lk

=[PL
S1S1

+ PL
S1S2

(I − PS2S2 )
−1PS2S1 ]g̃

Lk

+PL
S1S2

(I − PS2S2 )
−1[fS2 − �Lk e(|S2|)]

+ [fL
S1

− �Lk e(|S1|)]:
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In case there are multiple minimizing actions,
if Lk(i) is among them, we choose Lk+1(i) =
Lk(i); otherwise, let Lk+1(i) be any one of the
candidates.

(iii) If Lk+1 = Lk , then exit; otherwise set k := k + 1
and go to step 2.

When there are multiple actions that minimize the quantity
in step ii(c), in principle any such action can be chosen for
the next step. However, if the current action reaches the
minimum, it is retained to avoid possible oscillation between
policies.

Proposition 4. Algorithm 1 terminates at an optimal pol-
icy for the original Markov chain in a 5nite number of
iterations.

Proof. The 3rst part of Proposition 3 guarantees perfor-
mance improvement for the original Markov chain after each
iteration. Since the policy space is 3nite; the algorithm must
terminate in a 3nite number of iterations. The second part
of Proposition 3 shows that the 3nal policy must be optimal
for the original chain.

This algorithm saves considerable computation if |S1| is
small. The major computation involved in the algorithm con-
sists of three parts: (i) Calculating (I − PS2 ;S2 )

−1 (i.e., the

inverse of a |S2|×|S2|matrix) once; (ii) Solving �̃P̃
Lk=�̃

for the embedded chain (for |S1| unknowns) at each itera-
tion; and (iii) Solving the Poisson equation (14) (again for
|S1| unknowns) at each iteration. The total computation is
roughly of the order (|S2|3 + 2L1|S1|3), where L1 denotes
the number of iterations required for convergence. On the
other hand, the complexity for routine policy iteration is of
the order (2L2:(|S|)3), where L2 is the number of iterations
required in 3nding an optimal policy. If |S1| is small, then
Algorithm 1 would require a computation of order |S2|3
(inverting the matrix (I −PS2 ;S2 ) only once), while routine
policy iteration would require 2L2|S|3 (solving the Poisson
equation at every iteration).

5. The general case

In the previous section, we assumed that theMarkov chain
is not controllable on some subset (S2) of the state space.
Now, we consider the general case in which the Markov
chain is controllable in every state. We 3rst partition the state
space asS=

⋃N
n=1 Sn; N¿ 1, withSi∩Sj=∅; i �= j; i; j=

1; : : : ; N . It is clear that for any n∈{1; 2; : : : ; N}, we can
3x actions for states in S − Sn and apply Algorithm
1 to update actions for states in Sn. Each such update
improves the performance. More precisely, we propose
the following algorithm for policy iteration in the general
case.

Algorithm 2 (policy iteration). (i) Choose an initial policy
L0 and set policy L=L0; set k := 0; n := 1; and w := 0.

(ii) Fix the actions for states inS−Sn, apply Algorithm
1 to Sn and S − Sn to obtain the best policy (called a
partial optimal policy), denoted by Lk .
(iii)

(a) If �Lk ¡ �Lk−1 , then set k := k+1; n := (n+1)
modN; w := 0 and go to step 2.

(b) If �Lk = �Lk−1 , then
if w = N , then exit.
if w¡N , then set w :=w + 1; n = (n + 1)
modN , and go to step (ii).

In Algorithm 2, nmodN = n, if n6N , and (N + 1)
modN =1; k records the number of partial optimal policies
that have been reached (two or more consecutive partial
optimal policies may be equal); and w records the number
of consecutive partial optimal policies that have the same
value. The algorithm terminates when w = N .

Proposition 5. Algorithm 2 terminates at a global optimal
policy in a 5nite number of iterations.

Proof. In step (ii); we apply the time-aggregated policy
iteration algorithm (Algorithm 1) to the problem with the
actions in N − 1 subsets of states 3xed. This leads to a
partial optimal policy. Since the performance of the next
partial optimal policy is always no worse than the last one
and there are only a 3nite number of policies; the algorithm
must stop in a 3nite number of iterations.
Let L be the 3nal policy obtained by the algorithm and

gL be the potential vector of the Markov chain under L.
By the stopping criteria of Algorithm 2, when the algorithm
terminates at L, there are already N consecutive partial op-
timal policies with the same performance value. Since in
step (ii)(c) in Algorithm 1 we select the same policy when
there is no performance improvement, all the N consecu-
tive partial optimal policies turn out to be the same as L.
Therefore,

PLgL + fL6PL′
gL + fL′

for allL′ ∈E, componentwise; that is,L is a global optimal
policy.

When N =1, Algorithm 2 is the standard policy iteration
algorithm. When N= |S|, i.e., all the subsets are singletons,
the actions are updated one state at a time. In this case, every
state just takes the action that minimizes the performance
with the actions of other states 3xed. Such a state-by-state
procedure thus eventually terminates at a globally optimal
policy.
The computational complexity of Algorithm 2 is of the

order
∑N

n=1 (|S−Sn|3 +2L1(n):|Sn|3)L(n), where L(n) is
the number of times one needs to compute partial optimal
policies for state groups Sn. The complexity for regular
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policy iteration in this case is of the order 2L2(|S1| +
|S2|+ · · ·+ |SN |)3.
In general, it is not clear whether Algorithm 2 can

o9er signi3cant computational savings. However, this algo-
rithm does o9er some additional Lexibility in implementing
policy iteration. For example, suppose that we know a
priori that the actions in some states are more important
than those in others (for example, these states are visited
more often), then we can partition S into |S1|; : : : ; |SN |
such that actions taken in states in Si are more important
than those in Si+1. Applying our approach, we can stop
policy iteration when we 3nd that the performance reaches
an acceptable level, whereas in routine policy iteration,
the actions in all the states are updated simultaneously.
Moreover, our approach may have the potential of perform-
ing better than the routine policy iteration for problems
with pre-speci3ed computational budget constraints (e.g.,
3nding a good policy within 10 s). This requires further
investigation.

6. Single sample path-based results

In Xi-Ren Cao (1998), it is shown that the potentials can
be estimated based on a single sample path of a Markov
chain; thus one can implement policy iteration without
solving the Poisson equation. In this section, we extend
the potential based single sample path approach to the
time aggregation problem. The task is more complicated
because the e9ect of action 	 on p̃	(i; j) is not explicitly
known.
We will concentrate on step (ii) of Algorithm 1. Note

that
∑|S1|

j=1 p̃	(i; j)g̃Lk (j) + r.(i; 	); .= �Lk is needed for
every 	∈A(i); i = 1; 2; : : : ; |S1|, in step (ii)(c) in Algo-
rithm 1. We propose to use importance sampling combined
with potential estimation to estimate these quantities along
a single sample path of the Markov chain running under
policy Lk .

Assumption 1. For all i∈S1 and j∈S; if there exists
	′ ∈A(i) such that p	

′
(i; j)¿ 0; then for all 	∈A(i);

p	(i; j)¿ 0.

This is a standard assumption needed for importance sam-
pling; it assures that the information for action 	′ is con-
tained in the current sample path with action 	 at state i. This
is the main drawback of the importance sampling approach.
However, this assumption can be replaced by a weaker one
stated as Assumption 1′ later, which can be satis3ed by us-
ing randomized policies.
To get g̃Lk , we need to estimate rLk

. = HLk
f − .HLk

1 .

The estimates of HLk
f (i); HLk

1 (i); ∀i∈S1 (see be-
low) are based on regenerative segments. Recall that
tl = min{t ¿ tl−1; Xt ∈S1}, with t0 = 0. At state Ym,

we have

HLk
f;m(i) =




1∑m−1
l=0 1i(%l)

m−1∑
l=0

[
1i(%l)

tl+1−1∑
t=tl

fLk (Xt)

]

if
m−1∑
l=0

1i(%l) �=0;

0

otherwise;

HLk
1;m(i) =




1∑m−1
l=0 1i(%l)

m−1∑
l=0

[1i(%l)h1(%l)]

if
m−1∑
l=0

1i(%l) �=0;

0

otherwise;

�Lk
m =

1∑m−1
l=0 hLk

1 (%l)

m−1∑
l=0

hLk
f (%l); (15)

rLk
.;m(i) = HLk

f;m(i)− �Lk
m HLk

1;m(i); (16)

where 1i(%)=1, if %(1)=i; otherwise 1i(%)=0. Since the 3rst
moment of hLk (i)

f and h1 are 3nite because of the ergodicity
of the original chain, from the strong law of large numbers,
we have

lim
m→∞ �Lk

m = �Lk ; w: p: 1 (17)

and

lim
m→∞ rLk

.;m(i) = rLk
. (i); w: p: 1: (18)

Let g̃Lk be a potential vector given by (14). Then for .=�Lk

(cf. Xi-Ren Cao, 1999),

g̃Lk (i)− g̃Lk (j) = E


2̃ ji −1∑
n=0

[rLk
. (Yn)− �Lk

. ] |Y0 = i




= E


2̃ ji −1∑
n=0

rLk
. (Yn) |Y0 = i


 ; (19)

where the stopping time 2̃ ji =min{n¿ 0; Yn = j; Y0 = i} is
for the Markov chain Y under policyLk . Note that �

Lk
. =0

with .= �Lk . Only the di9erences between the components
of g̃Lk are important Xi-Ren Cao (1999). The potential that
we use is obtained by 3xing j and varying i in (19).
For simplicity, let Y0 = j. De3ne regenerative points:

u0 = 0, and ul+1 = min{n : n¿ul; Yn = j}, l¿ 0.
For i �= j, de3ne vl(i) as follows: Consider the set
{n : ul+1¿n¿ul; Yn = i}. If this set is nonempty, de3ne
vl(i) to be the least element in this set (or the 3rst instant
n after ul and before ul+1 at which Yn = i); else, if this
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set is empty, de3ne vl(i) = ul+1 − 1. Also, let 4l(i) = 1,
if {n: ul+1¿n¿ul; Yn = i} �= ∅; and 4l(i) = 0, otherwise.
By the results shown in Xi-Ren Cao (1999), we have the
following estimate of g̃Lk (i) at state Ym:

g̃Lk
m (i) =




1∑Km−1
l=0 4l(i)

Km−1∑
l=0


4l(i) ul+1−1∑

q=vl(i)

rLk
.;q (Yq)


 ;

if
Km−1∑
l=0

4l(i) �=0;

0

otherwise;

(20)

where Km+1 is the number of regenerative points obtained
upto Ym, and r

Lk
.;q is given by (16). It is proved in Proposition

6 that this estimate converges to g̃Lk (i) w. p. 1, as m→ ∞.
For i∈S1 and 	∈A(i), let

ck(i; 	) =
|S1|∑
j=1

p̃	(i; j)g̃Lk (j) + r.(i; 	);

which is the expected value of g̃Lk (Xtl+1)+h
	
f(%l)−.h1(%l),

given Xtl= i and the action taken at tl is 	. Recall & is the set
of all feasible S1-segments. Let &i = {i; Xtl+1; : : : ; Xtl+1−1}
be the subset of & that contains all theS1-segments starting
from Xtl=i. Note that the probability of {Xtl ; Xtl+1; : : : ; Xtl+1}
given that Xtl = i is

p	(i; Xtl+1)pLk (Xtl+1)(Xtl+1; Xtl+2) · · ·
pLk (Xtl+1−1)(Xtl+1−1; Xtl+1):

Thus, we have

ck(i; 	) =
∑

%l∈&i; Xtl+1

[g̃Lk (Xtl+1) + h	f(%l)− .h1(%l)]

×[p	(i; Xtl+1)pLk (Xtl+1)(Xtl+1; Xtl+2) · · ·
pLk (Xtl+1−1)(Xtl+1−1; Xtl+1)]

=
∑

%l∈&i;Xtl+1

[
p	(Xtl ; Xtl+1)

pLk (Xtl )(Xtl ; Xtl+1)
Wh
	;k
(%l; Xtl+1)

]

×[pLk (Xtl )(i; Xtl+1)pLk (Xtl+1)(Xtl+1; Xtl+2) · · ·
pLk (Xtl+1−1)(Xtl+1−1; Xtl+1)]

= E
[

p	(Xtl ; Xtl+1)
pLk (Xtl )(Xtl ; Xtl+1)

Wh
	;k
(%l; Xtl+1) |Xtl = i

]
;

where Wh
	;k
(%; x) = h	f(%) − .h1(%) + g̃Lk (x) and the un-

derlying probability measure of the expectation is for the
Markov chain under policy Lk . Note that hf given by (3)
is related to the action taken in state i; therefore, the sym-
bol 	 is added. The estimate of ck(i; 	) is actually based on
the technique of changing measures, which is the basic idea
in importance sampling. Assumption 1 makes it feasible to
estimate ck(i; 	);∀i∈S1;∀	∈A(i), along the sample path

of the Markov chain running under policy Lk . After m
regenerative periods, we have the following estimator:

ckm(i; 	) =
1∑m−1

l=0 1i(%l)

m−1∑
l=0

[
1i(%l) Wh

	;k
l (%l; Xtl+1)

× p	(Xtl ; Xtl+1)
pLk (Xtl )(Xtl ; Xtl+1)

]
;

if
m−1∑
l=0

1i(%l) �=0; 0 otherwise; (21)

where Wh
	;k
l (%; x)= h	f(%)− �Lk

l h1(%)+ g̃
Lk
l (x), g̃Lk

l is given

by (20) and �Lk
l is given by (15). Now we can prove con-

vergence of the estimates.

Proposition 6. For every i∈S1 and every 	∈A(i);

lim
m→∞ g̃Lk

m (i) = g̃Lk (i); w:p: 1; (22)

lim
m→∞ ckm(i; 	) = ck(i; 	); w:p: 1: (23)

Proof. Rewrite (20) as

g̃Lk
m (i) =

1∑Km−1
l=0 4l(i)

Km−1∑
l=0


4l(i) ul+1−1∑

q=vl(i)

rLk
. (Yq)




+
1

1
Km

∑Km−1
l=0 4l(i)

1
Km

×
Km−1∑
l=0


4l(i)

ul+1−1∑
q=vl(i)

[rLk
.;q (Yq)− rLk

. (Yq)]


 : (24)

Noting that Km → ∞ w.p. 1 as m → ∞; the 3rst term on
the right-hand side of (24) will converge to gLk (i) w.p. 1 as
m→ ∞ (Xi-Ren Cao; 1999). The 3rst fraction in the second
term on the right-side of (24); 1=(1=Km

∑Km−1
l=0 4l(i)); will

converge to 1=P(2̃ij ¡ 2̃jj) w.p. 1 as m→ ∞. Let 9m denote
the second part of the same:

9m =
1
Km

Km−1∑
l=0


4l(i)

ul+1−1∑
q=vl(i)

[rLk
.;q (Yq)− rLk

. (Yq)]


 :

Noting that the estimate of rLk
. is based on the strong law

of large numbers; we rearrange the sum in 9m as follows:

9m =
∑

s∈S1 ; s �=j

Ns
Km

1
Ns

∑
p∈;s

[rLk
.;p(s)− rLk

. (s)]; (25)

where Ns is the number of visits to state s before the
(Km + 1)th regenerative point along the sample path;
and ∀s �= j; ;s= {p : Yp= s and ∃l; vl(i)6p6 ul+1− 1}.
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We have Ns=Km → �̃Lk (s)E[2̃jj] as m→ ∞ w.p. 1; and

lim
Ns→∞

1
Ns

∑
p∈;s

[rLk
.;p(s)− rLk

. (s)] = 0; w:p: 1 (26)

follows directly from

lim sup
Ns→∞

∣∣∣∣∣∣
1
Ns

∑
p∈;s

[rLk
.;p(s)− rLk

. (s)]

∣∣∣∣∣∣
6 lim sup

Ns→∞

1
Ns

Ns−1∑
l=0

|rLk
.; l (s)− rLk

. (s)|

= lim
l→∞

|rLk
.; l (s)− rLk

. (s)|= 0; w:p: 1;

the last two equalities following from (18). Since Ns → ∞
w.p. 1 as m→ ∞; (22) follows directly from (24)–(26).
Finally, by (22) and (17), we have

lim
l→∞

Wh
	;k
l (%; x) = Wh

	;k
(%; x); w:p: 1

and (23) follows easily from (21).

With the above estimates, the policy iteration in
Algorithm 1 can be implemented on a single sample path.

Algorithm 3 (A single sample path-based implementation
of step (ii) in Algorithm 1). (i) Choose an integer M .
(ii) From the sample path of Markov chain running under

Lk , estimate g̃Lk
M (i) and ckM (i; 	) for all i and 	 based on

(20) and (21).
(iii) For every i = 1; 2; : : : ; |S1|, let

Lk+1(i) = arg min
	∈A(i)

ckM (i; 	): (27)

In case there are multiple minimizing actions in (27), if
Lk(i) is among them, we choose Lk+1(i) = Lk(i); oth-
erwise, Lk+1(i) is chosen to be any one of the candidate
minimizers.

Because of estimation errors, policy iteration in
Algorithm 1may not terminate at an optimal policy. Suppose
a sample path containing M S1-segments is used for esti-
mation in Algorithm 3, and let L̂M be the optimal policy ob-
tained by Algorithm 1. Let c(i; 	)=

∑|S1|
j=1 p̃

	(i; j)gL̂M (j)+

r.(i; 	);∀i∈S1;∀	∈A(i) for .= �L̂M , and let cM (i; 	) be
the estimate of c(i; 	) at the end of M S1-segments along
the sample path of Markov chain under policy L̂M (de3ned
as in (21)). Let XL be the next improved policy obtained
if true values were used. Denote the optimal performance
value as �∗. Now we prove that L̂M will converge to the
optimal policy w.p. 1 as M → ∞.

Proposition 7. limM→∞ �L̂M = �∗ w:p: 1.

Proof. Since the algorithm terminates at L̂M ; we have

cM (i; L̂M (i))6 cM (i; XL(i)) ∀i∈S1:

Therefore;

�L̂M
. − � XL

. =
|S1|∑
i=1

�̃
XL(i)

[
c(i; L̂M (i))− c(i; XL(i))

]

6
|S1|∑
i=1

�̃
XL(i)

{[
c(i; L̂M (i))− cM (i; L̂M (i))

]

− [
c(i; XL(i))− cM (i; XL(i))

]}
: (28)

Note that by (23); the right-hand side of (28) goes to 0
w.p. 1 as M → ∞. From (28); the fact that � XL6 �L̂M and
�L̂M
. = 0; one obtains

0¿ lim sup
M→∞

(� XL − �L̂M )¿lim inf
M→∞

(� XL − �L̂M )

= lim inf
M→∞

1

�̃
XLH XL

1

� XL
. ¿0; w:p: 1:

The proposition now follows directly from the fact
that the following two events are equal: {�L̂M = � XL} =
{�L̂M = �∗}:

From Proposition 7, for any given <¿ 0, there always ex-
ists an integer M ¿ 0 (depending on the particular sample
path used) such that for all n¿M , |�L̂n − �∗|¡<. More-
over, since there are only a 3nite number of policies, if we
choose < to be smaller than all the di9erences between the
performance measures of any two policies, the above state-
ment further implies that for all n¿M , we have �L̂n = �∗.
Thus, there exists a sample path-dependent integer M such
that if one uses that particular value ofM (or any other num-
ber greater than it) in Algorithm 3 (for that sample path),
one is guaranteed an optimal policy.
In practice, it is not clear as to how such a value of M for

individual sample paths can a priori be determined. Aweaker
statement valid over all sample paths makes more practical
sense. Since convergence with probability one implies con-
vergence in probability, Proposition 7 thus indicates that for
any <¿ 0, .¿ 0, there exists anM (large enough) such that
for all n¿M , Prob{|�L̂n − �∗|¿<}¡.. Again, because
there are only a 3nite number of policies, this further implies
that for any .¿ 0, for all n¿M ,Prob{�L̂n �= �∗}¡.. Note
that this is only an existential result and does not in any way
lay out any speci3c guidelines on how to select such an M .
We observed in our experiments that a large enough value
of M (chosen arbitrarily as Algorithm 3 prescribes) results
in a policy that is close to an optimal policy, or the optimal
policy itself (since as described earlier, there are only a 3-
nite number of policies to choose from). A similar result as
Proposition 7 can be obtained easily for Algorithm 2.
When the state space for the MDP model is large,

storage requirements for the algorithm become an issue.
Direct application of the algorithms given in Xi-Ren Cao
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(1999) to the original model requires storage of a poten-
tial vector of |S| components. By using the estimator (21)
in Algorithm 3, the on-line implementation requires stor-
age of size

∑|S1|
i=1 |A(i)|6maxi |A(i)||S1|, and at most

maxi |A(i)|maxi |Si| for Algorithm 2. Thus, with these al-
gorithms, appropriate partitioning can always be applied to
circumvent memory storage problems in solving large-scale
MDPs. (The storage discussed here is not the storage re-
quired for storing the policy itself, it is the additional storage
required in the process of determining the policy. This has
signi3cant meaning only when the policies can be stored ef-
3ciently, e.g., for threshold-type policies only the thresholds
have to be stored.)
We now address the issue of selecting an appropriate

partition of the state space. Suppose that the state space is
evenly partitioned into N subsets. For N = 1, Algorithm 2
is exactly the same as the algorithm given in Xi-Ren Cao
(1999). When N=|S|, i.e.,Si, i=1; 2; : : : ; N; are all single-
tons, only one iteration is needed to obtain the optimal pol-
icy in Algorithm 1. This is the case that leads to the greatest
storage reduction; however, the |S| steps in each iteration
of Algorithm 2 are obviously infeasible when the system is
large. A good partition should thus bring about satisfactory
storage reduction at an a9ordable computational cost.
Finally, Assumption 1 can be further weakened to the

following assumption.

Assumption 1′. There exists a policy L such that if
p	(i; j)¿ 0 for some i∈S1; j∈S and 	∈A(i); then
pL(i)(i; j)¿ 0.

Note that Assumption 1′ can usually be satis3ed by an
MDPmodel with randomized policies. We only need a small
change in our on-line results in the last section for this new
assumption: all the estimation results based on the sample
path of the chain underLk are obtained based on the sample
path under L instead, i.e., the system is always running
under policy L during the optimization.

7. Numerical and simulation examples

In this section we give some numerical and simulation ex-
amples to illustrate the ideas. The 3rst example shows that
when the number of controllable states is small, our analyti-
cal time aggregation approach (Algorithm 1) saves compu-
tation compared with the standard policy iteration approach.
The second example illustrates the sample path-based im-
plementation. The third example shows that in some cases
the time aggregation sample path-based approach may save
transitions compared with standard implementation, even
when all the states are controllable.

Example 1. We consider the multimedia example intro-
duced in Section 2. Two types of packets; data and video;
share the same transmission line. Both the data and video

packets arrive in Poisson processes with rates �d and �v;
respectively. The service times are assumed to be exponen-
tial with rates >d and >v; respectively (the service rates are
guaranteed by; e.g.; Intserv or Di9serv technology; Kurose
& Ross; 2001). Each type of traPc has a bu9er; with ca-
pacity Nd and Nv (this capacity includes the packet being
transmitted); respectively.
The system state is [n1; n2], with ni being the total num-

ber of packets in queue i and server i for i = 1; 2 (i = 1
for data and i = 2 for video). The state space is ordered
as {[Nd; 0]; [Nd; 1]; : : : ; [Nd; Nv]; [0; 0]; [0; 1]; : : : ; [0; Nv]; : : : ;
[Nd−1; 0]; [Nd−1; 1]; : : : ; [Nd−1; Nv]}. If a data packet ar-
rives when the system state is [Nd; n2]; n2 =0; 1; : : : ; Nv−1,
we have to decide whether to put it into queue 2 or drop
it, considering the tradeo9 between the loss probability of
data packets and waiting time of video packets.
At each controllable state [Nd; n2], n2 = 0; 1; : : : ; Nv − 1,

we have two actions {0; 1} available, where action 0 means
“rejecting” the packet and action 1 means “accepting” the
packet and putting it into the video bu9er. The cost in
state [n1; n2] for n1 �=Nd is f([n1; n2]) = kdn2 (reLecting
the delay of video packets); the cost in state [Nd; n2] for
n2=0; 1; : : : ; Nv−1, after action 	 is taken, is f([Nd; n2]; 	)=
kp|	−1|+kdn2; 	∈{0; 1} (reLecting packet loss); the cost
in state [Nd; Nv] is f([Nd; Nv]) = kp + kdNv, where kp; kd
are assigned weights. We consider the case with a high-rate
data traPc and a relatively slow video traPc, when admis-
sion control can make a signi3cant di9erence. Thus, in our
numerical example, we choose �v=1; >v= 1

0:9 (packets=time
unit), �d = 10�v >d = 10>v, Nd = Nv = 30; kp = 900, and
kd = 1:
We applied our time aggregation approach (Algorithm 1

with S1 = {[Nd; 0]; [Nd; 1]; : : : ; [Nd; Nv]}) and the standard
policy iteration to the example. Both Algorithm 1 and the
standard policy iteration algorithm lead to the same iterations
shown in Table 1. Here, we represent a policy as a sequence
of 30 Boolean numbers in which the number in the ith place
speci3es the control action at state [Nd; i], for i=0; 1; : : : ; 29.
Table 1 shows that, with more “accept” actions taken, the
DLP (data loss probability) drops; VLP (video loss proba-
bility) and VWT (video waiting time) increase, and � (long
run average cost) decreases, as expected.
We performed the numerical calculation on a 400 MHz

machine with 192 Mb RAM by using Matlab v5.3 in the
Microsoft Windows 2000 operating system. The traditional
policy iteration algorithm takes 633 s to get the results in
Table 1 while Algorithm 1 only needs 37 s. The computa-
tional savings, as analyzed before, are due to the fact that
inversion of 961× 961 matrices at each iteration in the rou-
tine policy iteration is reduced to inversion of 31× 31 ma-
trices at each iteration in the time aggregation-based policy
iteration.
With the optimal policy, the overLowed data packets are

accepted to the video queue when it is either near empty
or near full. The overLowed data packets are rejected only
when the video queue is 3lled to medium capacity. The
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Table 1
Policy iterations (Algorithm 1 and traditional policy iteration algorithm)

Iteration # Policy DLP VLP VWT (time units) �

0 000000000000000000000000000000 0.0044 0.0044 6.8743 11.7369
1 111111111111110000000001111111 0.0019 0.0075 8.0824 10.9489
2 111111111110000000001111111111 0.0022 0.0076 7.8241 10.9091
3 111111111111000000111111111111 0.0019 0.0088 8.0789 10.8976
4 111111111111000001111111111111 0.0018 0.0093 8.1653 10.8950
5 111111111111000011111111111111 0.0016 0.0099 8.2721 10.8941

fundamental reason for this type of behavior is that the loss
of video packets is not so important for the QoS (quality
of service) in video applications, and thus video packet loss
probability is not counted in our performance criterion. The
e9ect of accepting a data packet into the video queue is small
when the video queue is near empty or near full.

Example 2. Here we consider the manufacturing system
shown in Fig. 1 to demonstrate our sample path-based re-
sults. For simplicity; let �1=�2=�3=�4=1. The state space is
ordered as {(1; 3); : : : ; (N; 3); (0; 0); (1; 1); : : : ; (N; 1); (1; 2);
: : : ; (N; 2)}. We further assume that the manufacturing pro-
cedure requires that 100p0 percent of parts (0¡p0¡ 1)
will de3nitely go back to machine 1 after leaving it; and
100p1 percent will enter machine 2 after completing ser-
vice at machine 1. The remaining 100(1−p0−p1) percent
can go to either machine 1 or 2; depending on the actions.
Therefore; when state is (i; 3); i= 1; 2; : : : ; N ; there are two
control actions {0; 1} available. When action 0 (or 1) is
taken; the remaining parts go to machine 2 (or machine 1).
Thus; the transition probabilities associated with these two
actions (see Table 1) are p0(1)=p0(2)=p0(3)=1−p0; and
p1(1)=p1(2)=p1(3)=p1. The cost (control-action unre-
lated) at state (n; i) isf((n; i))=−k1f1((n; i))−k2f2((n; i));

where f1((n; i)) = 1 if n = 0; 0 otherwise; f2((n; i)) = 1
if n = N ; 0 otherwise; and k1; k2 are assigned weights (to
minimize the weighted machine idle time). In the simulation;
we choose N = 3; p1 = 0:2; p2 = 0:2; p3 = 0:6; p0(1) =
p0(2)=p0(3)=1−p0=0:8; p1(1)=p1(2)=p1(3)=p1=0:2;
and k1 = 0:9; k2 = 0:1.

Both the traditional (Xi-Ren Cao, 1999) and the
time-aggregated sample path-based policy iterations yield
the same iteration sequence as shown in Table 2 (the num-
ber at nth place in the second column is the control action
for state [n; 3]; n=1; 2; 3). However, with the time aggrega-
tion approach each iteration only requires 5000 transitions
to reach the right decision; while with the standard approach
proposed in Xi-Ren Cao (1999) each iteration requires 7000
transitions. Another advantage of the time aggregation ap-
proach is that one does not require knowledge of the values
of p1; p2, and p3; while the standard approach requires the
exact knowledge of these parameters. (This point can be ver-
i3ed by checking the optimality equation for both cases; for
the time aggregation case, all the parameters except p	(n)
are cancelled out; while for the standard case, pi; i=1; 2; 3,
remain.)

Example 3. This is an example with all states controllable
in which the time aggregation approach saves on the number
of transitions. We consider a Markov system in which S=
{1; 2; : : : ; 26}; A = {−1; 0; 1}; A(1) = {0; 1}; A(26) =
{−1; 0}; A(i) = {−1; 0; 1}; i = 2; 3; : : : ; 25; the transition
matrix under policy L is




1
4 − |.1| 1

4 + .+1
1
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;

where .i=−0:1; 0; 0:1; ifL(i)=−1; 0; 1; respectively; .−i =
−max{ 1

3 ; 1=(i − 1)}min{0; .i}; and .+i = max{ 1
3 ; 1=(26 −

i)}max{0; .i}: The cost function is f(i)=1+ 99
25 (i−1). The

optimal policyL∗ should be {0;−1; : : : ;−1}; i.e.;L∗(1)=0
and L∗(i) = −1; i = 2; 3; : : : ; 26; because the state with a
lower index has a lower cost.
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First, we set N = 1. Applying the original algorithm in
Xi-Ren Cao (1999) gives the policies shown in Table 3.
Next, we set N = 13, Si = {2i − 1; 2i}; i = 1; 2; : : : ; 13.
The results of Algorithm 2 are given in Table 4. We ob-
serve that with the single sample path-based implementation,
Algorithm 2 reaches the optimal policy after one full iter-
ation, requiring about 6.5 million transitions of the chain,
whereas the standard policy iteration algorithm proposed in
Xi-Ren Cao (1999) did not converge to the optimal policy
(but was close to it) after about 80 million transitions. The
reduction in number of transitions (using our on-line algo-
rithm) has an important practical signi3cance: if the above
algorithm is applied on-line to a communication system,
then it would require about 6.5 million events to reach the
optimal policy (and in a fast communication system, this

Table 2
Policy iteration for both the traditional and the TA-based iteration
algorithms

Iteration # Policy �

0 000 −0:89
1 111 −0:91
2 110 −0:93

�: −1× weighted combined machine throughput

Table 3
Policy iterations for traditional algorithms in Example 3

Iteration # Policy Estimated performance

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50.06
1 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 0-1-1-1-1-1-1 32.89
2 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 0 0 32.68
3 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 0-1 32.60

Stopped after 80,000,000 total transitions

Table 4
Policy iterations for TA-based algorithms in Example 3

Iteration Step Policy Estimated performance

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50.1
2 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.9
3 0-1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.5
4 0-1-1-1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48.4
5 0-1-1-1-1-1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46.7
6 0-1-1-1-1-1-1-1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44.6
7 0-1-1-1-1-1-1-1-1-1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42.3
8 0-1-1-1-1-1-1-1-1-1-1-1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 39.8
9 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 0 0 0 0 0 0 0 0 0 0 37.4
10 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 0 0 0 0 0 0 0 0 35.0
11 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 0 0 0 0 0 0 33.8
12 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 0 0 0 0 33.2
13 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 0 0 32.7
14 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 32.5

1 1–13 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 32.5
Terminated by stopping rule after 6,521,704 transitions

may happen in a few minutes), but standard policy iteration
on the other hand would be at least ten times slower.
An intuitive explanation of the reduction in the number

of transitions is as follows. Recall that the potential g(i) is
estimated using the averages of the sums of the performance
functions over a sample period starting from state i to the
3rst entry to a particular state in a Markov chain. Compared
with the original chain, the embedded chain has fewer
states, thus such a period is shorter and hence the variance
in estimating the potentials is smaller. The performance
function for the embedded chain can be estimated accurately
using the average de3ned in (16). However, with the time
aggregation approach there is an additional variance due to
importance sampling; this variance is small (large) when the
di9erence among the sample paths for di9erent actions
is small (large). Therefore, the time aggregation sample
path-based approach may reduce the number of transitions
when such di9erences are small. In Example 2, we observe
that when p0 = p1¡ 0:1 (the sample paths for the two ac-
tions are considerably di9erent) both the time aggregation
and the standard approaches require about the same number
of transitions in each iteration. This is another constraint of
the importance sampling technique. Further work is needed
to make the above argument rigorous.
This example also shows the Lexibility of the time ag-

gregation approach: if a performance of 40 is good enough,
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we can stop at step 8; if a performance of 35 is satisfactory,
we can stop at step 10. In both cases, only actions at some
states are updated; thus, further transition reduction can be
achieved at the cost of performance. With the standard ap-
proach, actions at all states are updated at the same time
when all the potentials are estimated. In addition, Algorithm
2 requires only a storage of six potentials, compared with a
storage of 26 for the original algorithm. Thus, for this ex-
ample, the proposed algorithm results in both computational
and storage savings.
Finally, since the transition probabilities are known, the

problem can be solved by an analytical method (which takes
0:12 s) which is faster than simulation with 6.5 million
transitions (which takes 1:2 s). This example simply demon-
strates that for real systems with unknown parameters, sam-
ple paths can be observed without simulation, and the time
aggregation approach may have some advantages over the
standard approach.

8. Conclusions

We proposed a time aggregation approach to solving
MDPs, by which policy iteration of a large-scale MDP
can be replaced by a series of policy iterations on smaller
subsets of the original state space. The main results are
obtained by using an equivalent performance function for
the embedded Markov chain. Single sample path-based al-
gorithms are presented; these algorithms are based on the
estimation of performance potentials.
With the computation-based time aggregation approach,

computational and storage savings can be achieved if spe-
cial structural features can be employed (e.g., when a large
number of states are uncontrollable). The approach also pro-
vides Lexibility in 3nding a near-optimal solution using less
computation if a priori knowledge about the importance of
states is available. In addition, the time aggregation sam-
ple path-based approach may require less knowledge of sys-
tem parameters compared with the standard one proposed
in Xi-Ren Cao (1999).
As shown in two examples, the sample path-based time

aggregation approach may save transitions, which is impor-
tant for real-time applications. In general, such savings can
be achieved when the sample paths for di9erent actions are
close to each other. Further study is needed to determine
why and when this is the case and how to apply it in real
applications.
The proposed sample path-based approach is based on im-

portance sampling, which requires that the information per-
taining to other actions at a state is contained in the current
sample path. This requires that if p	(i; j) = 0 for the cur-
rent action 	, then p	

′
(i; j)=0 for any other 	′. However, if

p	
′
(i; j)¿ 0 and is known, the information about the e9ect

of action 	′ via state j can also be obtained from the cur-
rent sample path if it ever visits state j. This indicates that
more complicated algorithms can be developed for systems

where the assumption in this paper may be violated. This is
a topic for further research. Another problem for future re-
search is the extension of this approach to other cases such
as discounted or episodic MDPs. To do so we 3rst have to
extend the performance potential approach to these cases.
In a recent work (Xi-Ren Cao, 2000), a uni3ed framework
based on performance potentials is presented for both aver-
age cost and discounted MDPs.
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