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ABSTRACT

In this paper, two single sample path-based recursive approaches for
Markov decision problems are proposed.  One is based on the simultaneous
perturbation approach and can be applied to the general state problem, but its
convergence rate is low.  In this algorithm, the small perturbation on current
parameters is necessary to get another sample path for comparison, but it may
worsen the system.  Hence, we introduce another approach, which directly
estimates the gradient of the performance for optimization by “potential”
theory.  This algorithm, however, is limited to finite state space systems, but
its convergence speed is higher than the first one.  The estimate for gradient can
be obtained by using the sample path with current parameters without any
perturbation.  This approach is more acceptable for practical applications.
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INTRODUCTION

The Markov decision processes (MDP) and the asso-
ciated dynamic programming (DP) ([1,10]) methodology
provide a general framework for posing and analyzing
problems of sequential decision making under uncertainty.
But there are two main difficulties associated with the
standard DP approach:

1. “Curse of dimensionality”.  For the case that the state
space is very large (or infinite), the computational
requirements are overwhelming, if not impossible.

2. It requires the exact knowledge of the transition matrix,
which may not be available for practical systems.

To solve the problems above, the single sample path
based optimization techniques are good way for real
systems.  Many single sample path-based optimization

approaches proposed in literature (e.g. [3,7] and [9]),
including those based on perturbation analysis(PA) of
discrete event systems, apply mainly to performance opti-
mization with respect to continuous parameters.  In this
paper, we also concentrate on methods based on policy
parameterization and gradient improvement.

Two recursive algorithms in this paper are proposed
based on classical stochastic approximation methods: KW
algorithm and RM algorithm.  Since the dimension of the
parameter is always very high, the one-sided randomized
differences [12] are used for the KW algorithm.  This algo-
rithm can be applied to the general state problem, and the
required conditions for its convergence are relatively
weak.  In this method the difference is applied to estimate
differential.  But this is not a good estimation and leads
to a significant loss in convergence rate (from O(n–1/2) to
O(n–1/3)) in comparison with the case where a better esti-
mate for differential is applied.  For the denumber Markov
chain, the gradient can be estimated directly by using
“potential” given in [2].  This method is used and referred
as the second algorithm in this paper.

The similar idea can be found in [7], where, however
the estimate for the gradient of the performance is given by
important sampling, so the transition probability of the
Markov chain pij(θ) for all θ in decision space must be
uniformly bounded away from 0, if it is not 0.  This con-
dition seems too restrict for many applications.

We state our main results in Section 2, and their
proofs are given in Section 3.  Section 4 gives some con-
clusions and remarks.
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II. MAIN RESULTS

We consider a controlled Markov chain {xn
θ, n = 0, 1,

…}, evolving on state space S, with Borel σ– algebra    B(S).
The state space S is taken to be general, locally compact
and separable metric space.  The transition probabilities
of the Markov chain {xn

θ} depend on a parameter vector
θ ∈  RRRRRd, and denoted by

   P(θ, x, A) =P{xn
θ ∈ A xn – 1

θ =x,θ}

for any A ∈     B(S) and x ∈  S.
Whenever the state is equal to x, we receive a on-

stage reward that also depends on θ, and is denoted by
 f(x, θ).

For any θ ∈  RRRRRd, we assume that

C1) {xn
θ} is irreducible.

C2) {xn
θ} is Harris positive recurrent, i.e., there exists a

positive, finite, invariant measure µθ such that for any
A with µθ(A) > 0 and for all x ∈  S

   P x 1A(xn
θ ) = ∞Σ

n =1

∞
=1.

C3) µθ is a probability measure, i.e., µθ(S) = 1 and f(x, θ)
∈   L +

1(µθ).
C4) There exists a state α ∈  S such that for any θ ∈  RRRRRd

and x ∈  S, Px{Tα(θ) < ∞} = 1, where Tα(θ) = inf{t >
0, xt

θ = α}.

Remark 1. If S is of finite state and {xn
θ} is irreducible,

then any state of S can be taken as α in C4) and C1)-C4)
hold.

We have that the average reward of the sample path
is

   1
T

f(xn,θ)Σ
n =0

T – 1

→
T →∞

E µθ f(xn,θ) ∆ η(θ), P ν – a.s.

for any probability measure ν., i.e., it is the same for almost
all paths.  Thus we can use η(θ) as the performance
measure to compare different policies.

The single sample path based optimization is to find
the optimal θ, i.e. θ 

0 = arg minθ ∈  RRRRRd η(θ), by using {xn} and
{f(xn, θn)}, where θn is the parameter of the policy used at
time n.  To solve this problem, we use the stochastic
approximation method.

Since ∇ η(θk) can not be observed directly from the
sample path, it is important to obtain an estimate which can
be observed on-line for a recursive algorithm.  Let yk be the
kth estimate of hk(θk) ∆  βk∇ η(θk) and

    yk =– η k(θk) +n k +1,

where βk is positive, and nk + 1 is the observation noise.
Then we can update the estimate of θ 0 recursively based on
yk as follows

   θk +1 =(θk +a kyk +1)1[ ||θk +a ky k +1|| ≤M σk
]

   +θ*1[ ||θk +a ky k +1|| >M σk
], (1)

   σk = 1[ ||θ i +a iy i +1|| >M σ i
]Σ

i =0

k – 1

, σ0 =0, (2)

where θ* is a point in RRRRRd given later and {Mk} is a sequence
of positive increasing numbers diverging to infinity.

The following conditions are used:

H1) ∇ η(θ) is locally Lipschitz continuous;

H2) There exist h0 and θ* such that    inf||θ ||=h 0
 η(θ) > η(θ*)

and η(J) is nowhere dense, where J = {θ ∈  RRRRRd, ∇ η(θ)
= 0}.

2.1 Simultaneous perturbation approach

For a Markov chain in general state space with ac-
cessible state ([8]), we use a simultaneous perturbation
gradient approximation method ([12,5]) to estimate hk(θk).

We assume the sample path starts with x0 = α .
Otherwise, we simply discard the initial period from x0 to
the first state xk = α.  Let {xn} be a sample path of the
corresponding Markov chain.  Let tk be the time of the kth
visit to the accessible state α.  We refer to the sequence xtk,
xtk + 1

, …, xtk + 1
 as the kth renewal cycle.

Let{  ∆k
i , i = 1, …, d, k ∈  NNNNN} be i.i.d. r.v. sequences

with   ∆k
i  < a, E(1/  ∆k

i ) = 0 and    1 /∆k
i  < b, where a, b > 0.

Denote by ∆k =    [∆k
1 … ∆k

d]
τ
,

   
g k = 1

∆k
1

1
∆k

d

τ

. (3)

Driving the Markov chain from t2k to t2k + 1 under the
parameter θk, and from t2k + 1 to t2k + 2 under the parameter
θk + ck∆k, we obtain the following two observations

   
F k

0(θk) =u 2k +2 f(xi,θk)Σ
i = t 2k +1

t 2k +1

, (4)

   
F k

+(θk) =u 2k +1 f(xi,θk+ck∆k)Σ
i = t 2k +1 +1

t 2k +2

,

  u k +1 = t k +1 – t k. (5)

Let

   
yk +1 =

F k
0(θk) – F k

+(θk)
2ck

g k. (6)
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Then, we have the following result:

Theorem 1. If C1)-C4), H1)-H2) hold, and ak > 0, ck > 0,

ck → 0, Σkak = ∞ and Σk

  a k
2

ck
2

 < +∞, then

   d(θk, J) →0,

where θk is defined by (1)(2) with yk + 1 given in (6).

2.2 Potential based recursive method

In the algorithms given in section 2.1, the differences
are used to approximate differentials, and this will influ-
ence the convergence rate of the algorithms as mentioned
before.  By potential theory ([2]), when the Markov chain
X = {x0, x1, …} is in a finite state space S = {1, 2, …, M},
we can on-line construct an observation of the gradient of
the performance.  Let i* be the initial state, i.e. assume
x0 = i*.  The sample path is then divided into “basic periods”
by the successive occurrence of i*’s on the path.  We denote
the sample path as xt0, …, xt1, …, xtk, …, xtk + 1

, …, where
t0 = 0, x0 = i*, tk + 1 = min{n : n > tk, xn = i*}, k ≥ 0.  The kth
basic period is xtk, …, xtk + 1 – 1.

Define the estimate yk + 1 for hk(θk) to be used in the
algorithms (1) (2) as

   
yk +1 =– ∇ p x njΣ

j =1

M

Σ
n = t k

t k +1 – 1

(θk)d k(j), (7)

where

   

d k(j) =

d k(j), if t k(j) < t k,

d k – 1(j), if σk – 1 ≠σk, t k(j) ≥ t k,

0, otherwise,

(8)

   
d k(j) = [u k f(xl,θk – 1) – η k]Σ

l = t k
j

t k

(9)

   η k +1 = f(xl,θk – 1)Σ
l = t k – 1

t k – 1

, (10)

  t k(j) =inf {n > t k – 1, xn = j}. (11)

Theorem 2. If H1), H2) hold, and ak > 0, Σkak = ∞, ak + 1 –
ak = o(ak) and Σk  a k

2 < +∞, then

   d(θk, J) →
k →∞

0,

where J is given in H2) and θk is given by Algorithms(1)
(2) with yk + 1 given in (7).

III. PROOFS

Proof of Theorem 1. Note that

   E(F k +1
+ (θ) θk = θ ) =Ck(θ)η(θ +ck∆k),

   E(F k +1
0 (θ) θk = θ ) =Ck(θ)η(θ),

where Ck(θ) = Eθ(u2k + 1)Eθ + ck∆k
(u2k + 2).

Denote

   ξ k +1
+ (θ,ω) =F k +1

+ (θ) – E(F k +1
+ (θk) θk =θ),

   ξ k +1
0 =F k +1

0 (θ) – E(F k +1
0 (θk) θk =θ),

By (6) it follows that

   
yk +1 =– Ck(θk)

η(θk +ck∆k) – η(θk)
ck

g k +
ξ k +1

+ – ξ k +1
0

ck
g k.

By the Taylor expansion and the way similar to that used
in [5] and [4], we can show that

   yk +1 =– Ck(θk)∇ η(θk) +εk +1,

and that

   
limsup

k →∞
a iε i +1Σ

i =n k

m(n k , t)

1{ ||θk|| <N} =o(T)

for any N > 0 and t ∈  [0, T], where m(n, T) = inf{k > n,    Σi =n
k

> T}.
Using Theorem 1 in [4], we complete the proof of the

theorem. ■

To prove Theorem 2, we prove the following lemma
first.

Lemma 1. For any compact set K, there exist constants CK

and ρK such that

   P θ{u m = l} ≤CKρK
l .

In particular, Eθ(um) and Eθ(   u m
2 ) are bounded functions in

bounded domain of θ.

Proof. Let    xn(ω)
t k

t k +1 – 1
 be a path of the Markov Chain in

finite state from tk to tk + 1 – 1.  Then, by the cycle
decomposition [11], the Markov chain can uniquely be
decomposed into several cycles.  In each cycle, no state is
repeated.  We separate all cycles with finite number of
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states into two groups A and B such that each cycle in A
includes state i* while no cycle in B includes state i*,
Clearly, for any compact set K

   max
θ ∈ K

P θ{cycle C ∈ B}<1.

Since if it were not true, then there would exist a θ ∈  K such
that Pθ{cycle C ∈  B} = 0.  This implies that i* is a transit
state, which is impossible by assumption.  Thus,

    n K ∆ max
θ ∈ K

P θ{cycle C ∈ B}<1,

and we have

Pθ{T = l} ≤ Pθ{There exist at least  l
N

 +1 cycles and no

cycle belongs to A}

    

< n K
kΣ

k = l
N

+1

∞
=

n K

l
N

+1

1 – n K

<CKρK
l

by taking ρK =  n K
N. ■

Define

   λ(θ) =E θ{1{t(j) < t(i* )} x0 = i *},

where t(j) = inf{n > 0, xn = j}.

Lemma 2. λ(θ) is locally Lipschitz continuous.

Proof. Note that

   λ(θ) =P θ(t(j) < t(i *) x0 = i *},

is a taboo transition probability [6].  By the properties of
taboo transition probability, λ(θ) can be expressed by

   λ(θ) =
mi *i *(θ)

mji *(θ) +mi *j(θ)
, (12)

where mi*i*(θ) = Eθt(i*), mji*(θ) = Eθ{t(j)   x0  = i*} and mi*j(θ)
= Eθ{t(i*)   x0  = j}.  Define h(j) = [1, …, 1, 0, 1, …, 1]τ.

Then for fixed j, 
   mji *(θ)

πj(θ)
 is the solution to (I – Pθ + eπθ)g

= h(j), where e = (1, 1, …, 1)τ  is an M-dimensional column
vector with all components being 1.  Thus mji*(θ) is locally
Lipschitz continuous, since πj(θ) is locally Lipschitz
continuous.  Similarly, mi*j(θ) is also locally Lipschitz
continuous.  Since mi*j(θ) > 0, mji*(θ) > 0 if i* ≠ j, and πi*(θ)
> 0 for any θ, then by (12) it follows that λ(θ) is locally
Lipschitz continuous. ■

Let Fk = σ{xl, 1 = 0, 1, …, k}.

Lemma 3.

    E(d k +1(j) F t k
) =u kg

θk(j)(1 – λ(θk))+ λ(θk)d k(j)1{σk =σk – 1}

   +(u kηθk – η k)C
θk(j),

where

   
g θ(j) =E

θ
{ (f(X n,θ)Σ

n =0

t(i *) – 1

– η(θ)) x0 = j},

   C
θ
(j) =E

θ
{t(j)1{t(j) < t(i *)}}.

Proof. From (8)-(11) we have

    E(d k +1(j) Ft k
) – (u k +1ηθk – η k)C

θk(j)

    =u kE{d k +1(j)1{t k(j) < t k +1} Ft k
}+ λ(θk)d k(j)1{σk =σk – 1}

   =u kg
θk(j)(1 – λ(θk))+λ(θk)d k(j)1{σk =σk – 1}.

The last equality is from that

   E{d k +1(j)1{t k(j) < t k +1
Ft k

}=E{E[d k +1(j) Ft kj ]1{t k(j) < t k +1} Ft k
}

   =g θk(j)(1 – λ(θk)). ■

Proof of Theorem 2. Note that

   h k(θ) ∆ Eu k +1Eu k πiΣ
i, j

(θ)∇ p ij(θ)d
θ
(j)

   =Eu k +1Eu k∇ η(θ).

By Theorem 1 of [4], we need check that for any conver-
gent subsequence of {θk} and any N > 0 t ∈  [0, T]

   
limsup

k →∞
a kΣ

l =n k

m(n k , t)

(yk +1 +h k(θk))1{||θk||<N} =o(T). (13)

Let Fk(j) =    – Σn = t k

t k +1 – 1 ∇ pxn j(θk). Note that

    yk +1 +h k(θk) = (F k(j)Σ
j =1

M

– E{F k(j) Fk }) d k(j)

    + EΣ
j =1

M

{F k(j) Fk }d k(j) +h k(θk) (14)

By Lemma 1, we have

   Ed k

2
(j)1{||θk||<N} ≤ sup

||θk|| ≤N
Ed k

2(j) <∞.
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This yields

   a k
2Σ

k =1

∞
d k

2
(j)1{||θk||<N} <+∞, a.e.

since

   E a k
2Σ

k
d k

2
(j)1{||θk||<N} = a k

2Σ
k

Ed k

2
(j)1{||θk||<N} <+ ∞.

Then, by the martingale convergence theorem we have

   
limsup

k →∞
a lΣ

l =n k

m(n k , t)

ξ l(j)d l(j)1{||θk||<N} =0,

where ξl(j) = Fl(j) – E{Fl(j)   Ft l
}.

Note that

    E{F k(j) Ft k
}=Eu k +1 πθkΣ

j
(j)∇ p ij(θk).

Thus, to prove (13), we only need to show that for any t ∈
[0, T]

   
lim
k →∞

a lΣ
l =n k

m(n k , t) – 1

d l(j) – Eu lg
θ l(j) =o(T),

Note that

   
a lΣ

l =n k

m(n k , t) – 1

d l(j) – Eu lg
θ l(j)

   
≤ a lΣ

l =n k

m(n k , t) – 1

d l(j) – Eu lg
θ l – 1(j)

   
+ a lΣ

l =n k

m(n k , t) – 1

(g θ l(j) – g θ l – 1(j))Eu l

   
+ a lΣ

l =n k

m(n k , t) – 1

g θ l(j)(Eu l –Eu l – 1) , (15)

where the last two terms are of o(T), since akyk + 1   →
k →∞

 0.
Therefore, it suffices to show that the first term on the right
hand side of (15) is of o(T).

In what follows, let λk = λ(θk).  Then

    d l(j) – Eu lg
θ l – 1(j) = 1

1 – λ l – 1

(d l(j) – E(d l(j) Ft l
))– Eu lg

θ l – 1(j)

    + 1
1 – λ l – 1

E(d l(j) Ft l
) +

λ l – 1

1 – λ l – 1

d l(j)

By Lemma 3, we have

    1
1 – λ l – 1

E(d l(j) Ft l
) – u lg

θ l – 1(j)

   =–
λ l – 1

1 – λ l – 1

d l – 1(j) +(u lηθ l – η l)C
θ l(j).

So, the first term on the right hand side of (15) is

   
a lΣ

l =n k

m(n k , t) – 1 λl – 1

1 – λl – 1

–
λl

1 – λl

d l(j)

   
+ a lΣ

l =n k

m(n k , t)

(t lηθ l – η l)C
θ l(j) +o(T),

which is of o(T) by Lemma 2.  The assertion of the theorem
is proved. ■

IV. CONCLUDING REMARKS

In this paper, two stochastic approximation methods
solving the Markov decision problem are presented, and
the system parameters are optimized based on the observa-
tions of the sample path of the system.  These methods are
useful when a complex system should be improved on-
line.

There are two directions which one can work with
further: one is to extend “potential” to some general state
problems so that the gradient of the performance can be
estimated directly from the sample path; another one is to
optimize the system when only the partial information of
the system is known.  This situation occurs in the Semi-
Markov decision problems and in the “state aggregation’’
problems as well.
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