
1076 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008

is given as

∂ry u (τ, θ)
∂θi

= cT
1

(
∂eA (θ)τ

∂θi

P(θ) + eA (θ)τ ∂P(θ)
∂θi

)
c2 (19)

where θi is the ith element of θ. To find ∂eA (θ)τ /∂θi , it is noted that
the matrix exponential eA (θ)τ has the spectral representation

eA (θ)τ =
η∑

j=1

φj ξ
H
j eλj τ (20)

where φj and ξj are the right and left eigenvectors of A(θ), respec-
tively, normalized such that φH

j ξj = 1, and where λj are the eigenval-
ues of A(θ). Then, [9]

∂eA (θ)τ

∂θi

=
η∑

j=1

η∑
�=1

φj ξ
H
j

∂A(θ)
∂θi

φ� ξ
H
� gj � (τ) (21)

where

∂A(θ)
∂θi

=

{−ei (η)eT
1 (η), i = 1, . . . , n

ei−n (η)eT
n +1 (η), i = n + 1, . . . , 2n

(22)

where ek (j) is the kth column of the identity matrix of dimension j,
and where

gj � (τ) =

 τeλj τ , λj = λ�

eλ� τ − eλj τ

λ� − λj

, λj �= λ� .
(23)

Moreover, ∂P(θ)/∂θi is given as the solution to the Lyapunov equation

A(θ)
∂P(θ)

∂θi

+
∂P(θ)

∂θi

AT (θ) +
∂A(θ)

∂θi

P(θ)

+P(θ)
∂AT (θ)

∂θi

= 0. (24)

REFERENCES

[1] T. Söderström, H. Fan, B. Carlsson, and S. Bigi, “Least squares parame-
ter estimation of continuous-time ARX models from discrete-time data,”
IEEE Trans. Automat. Control, vol. 42, no. 5, pp. 659–673, May 1997.

[2] E. K. Larsson, M. Mossberg, and T. Söderström, “Identification of
continuous-time ARX models from irregularly sampled data,” IEEE
Trans. Automat. Control, vol. 52, no. 3, pp. 417–427, Mar. 2007.

[3] M. Mossberg, “Identification of continuous-time ARX models using sam-
ple cross-covariances,” in Proc. Amer. Control Conf., Portland, OR, Jun.
8–10, 2005, pp. 4766–4771.

[4] E. K. Larsson, M. Mossberg, and T. Söderström, “Estimation of
continuous-time stochastic system parameters,” in Continuous-Time from
Sampled Data, H. Garnier and L. Wang, Eds. New York: Springer-
Verlag, 2008.

[5] K. J. Åström, Introduction to Stochastic Control Theory. Mineola, NY:
Dover, 2006, (Republication of the edition published by Academic Press,
New York, 1970).

[6] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
properties of the Nelder–Mead simplex method in low dimensions,” SIAM
J. Optim., vol. 9, no. 1, pp. 112–147, 1998.

[7] L. Ljung, System Identification, 2nd ed. Upper Saddle River, NJ:
Prentice-Hall, 1999.

[8] E. K. Larsson and E. G. Larsson, “The CRB for parameter estimation
in irregularly sampled continuous-time ARMA systems,” IEEE Signal
Process. Lett., vol. 11, no. 2, pp. 197–200, Feb. 2004.

[9] J. W. Brewer, “The derivative of the exponential matrix with respect to a
matrix,” IEEE Trans. Automat. Control, vol. 22, no. 4, pp. 656–657, Aug.
1977.

Event-Based Optimization of Markov Systems

Xi-Ren Cao and Junyu Zhang

Abstract—Recent research indicates that Markov decision processes
(MDPs) and perturbation analysis (PA) based optimization can be derived
easily from two fundamental performance sensitivity formulas. With this
sensitivity point of view, an event-based optimization approach, including
event-based sensitivity analysis and event-based policy iteration, was pro-
posed via an example by X. R. Cao (Discrete Event Dyn. Syst.: Theory Appl.,
vol. 15, pp. 169–197, 2005). This approach utilizes the special feature of a
system and illustrates how the potentials can be aggregated using the spe-
cial feature. The approach applies to many practical problems that do not
fit well the standard MDP formulation. This note provides a mathematical
formulation and proves the main results for this approach.

Index Terms—Markov decision processes (MDPs), performance poten-
tials, perturbation analysis (PA), policy gradients, policy iteration.

I. INTRODUCTION

It is shown in [3] and [5] that performance optimization of Markov
systems is based on two fundamental sensitivity formulas: one for per-
formance difference and the other for performance derivative. Policy
iteration in Markov decision processes (MDPs), in which the poli-
cies are updated between discrete points in the policy space, can be
developed easily from the performance difference formula [5], and
gradient-based optimization with perturbation analysis (PA), in which
system parameters are updated by a small amount in each step, is
based on the performance derivative formula [4]. Sample-path-based
algorithms have been developed for estimating potentials or perfor-
mance derivatives. With these potential estimates, sample-path-based
policy iteration algorithms and policy gradient algorithms have been
developed [2], [7]–[9]. The sensitivity point of view provides a new
perspective that allows us to explore alternative approaches for per-
formance optimization of Markov systems with some special features.
With this perspective, we can develop an event-based optimization ap-
proach; the basic idea is illustrated by an example in [3]; and in this
note, we provide a mathematical formulation and a formal study for
this event-based optimization approach.

A system is modeled as a Markov chain; for simplicity, we only
consider the discrete-time model. A physical event that occurs at a
particular time instant can be characterized by the state transition at
that instant, e.g., if a customer enters a network at a particular instant,
then the population of the network increases by one at that instant.
Thus, the event corresponding to a customer arrival corresponds to the
set of state transitions with the population increasing by one. In general,
an event is defined as a set of state transitions that share some common
properties.

Events can be classified into three types: the observable events,
the controllable events, and the natural transition events. The physi-
cal meaning of these events can be explained clearly in real systems.
These three events occur simultaneously in the Markov model; there
is, however, a logical order in timing among them. Associated with the

Manuscript received August 29, 2006; revised September 10, 2007. Recom-
mended by Associate Editor Y. Paschalidis. This work was supported by the
Hong Kong University Grant Committee (UGC).

X.-R. Cao is with the Department of Electronic and Computer Engineer-
ing, Hong Kong University of Science and Technology, Kowloon, Hong Kong
(e-mail: eecao@ust.edu.hk).

J. Zhang is with the School of Mathematics and Computational Science,
Sun Yat-sen University, Guangzhou 510275, China (e-mail: mcszhjy@mail.
sysu.edu.cn).

Digital Object Identifier 10.1109/TAC.2008.919557

0018-9286/$25.00 © 2008 IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008 1077

observable event (in the first phase) is some information about the sys-
tem; an action is chosen based on the information observed to control
the probabilities of the controllable events that follow.

In many practical problems, control actions can be taken only when
an event occurs. The actions depend on the information contained in
the observable events. A mapping from the observable event space
to the action space is called an event-based policy. The goal is to
find an event-based policy that attains the best performance in some
sense. The main ideas for the solutions to this problem are motivated
by the sensitivity view of optimization: first, we derive/construct the
performance difference and derivative formulas based on performance
potentials; then we derive policy iteration (under some conditions) and
gradient-based optimization in the event-based policy space with these
sensitivity formulas.

There are a number of advantages of the event-based optimization.
First, the approach applies to many practical problems where actions
depend on events, not states. With an event-based policy, the same
action may be taken when the same event is observed, which may
correspond to many different states. Such problems do not fit the stan-
dard MDP, or partially observable MDP (POMDP), formulation well.
Second, performance potentials can be aggregated by exploiting the
event-based system structure, and sample-path-based estimation algo-
rithms can be developed for the aggregated potentials. This may reduce
the number of potentials to be estimated in the learning process and sig-
nificantly save computation. Despite the fact that the number of states
usually grows exponentially with respect to the system size, the number
of aggregated potentials depends on the number of controllable events,
which may scale to the system size. Third, the performance sensitivity
formulas can be expressed in terms of structural parameters rather than
transition probabilities of the underlying Markov chain. This provides
structural insights and overcomes the difficulties associated with deter-
mining the transition probability matrix in a large state space. Finally,
this approach may be applied to a number of subjects such as multilevel
(hierarchical) control, state and time aggregations, options [1], singu-
lar perturbation, and POMDPs, etc., by formulating different events to
capture the different features of these problems.

In Section III, we introduce the concepts of event and event space.
In Section IV, we classify three types of events. In Sections V-B and
Section V-D, we derive two fundamental sensitivity formulas. They
have a similar structure as those with the standard MDP formulation,
except: 1) steady-state probabilities of observable events (instead of
states) are used, 2) actions depend on observable events (instead of
states), and 3) potentials are generally aggregated. With these two
formulas, the event-based optimization (gradient-based in general and
policy iteration in some special cases) is developed in Section V-E. The
introductory background material is given in Section II. Conclusions
are drawn in Section VI.

II. BACKGROUND AND MOTIVATION

We now review the results in MDPs with a sensitivity point of view;
they motivate the study of this note. Consider a discrete-time MDP with
a finite state space S = {1, 2, . . . , S}. Let A be the finite action space
consisting of all available actions and Ai ⊆ A be the set of all actions
that are available in state i. If the system is in state i and action α ∈ Ai

is taken, the transition probability is pα (i, j), and a finite reward f (i, α)
is received.

Denote the set of all stationary deterministic Markovian policies
as D and we use d to denote such a policy. If policy d is adopted, the
state transition probability matrix is denoted as Pd = [pd (i) (i, j)]Si,j=1 .
Let πd = (πd (1), . . . , πd (S)) be the (row) vector representing its
steady-state probabilities. We have πd = πdPd , Pde = e, and πde = 1,

with e = (1, . . . , 1)T being an S-dimensional column vector whose
components are all equal to 1, where the superscript “T ” denotes
transpose. The reward function becomes f (i, d(i)), i ∈ S. Let fd =
(f (1, d(1)), f (2, d(2)), . . . , f(S, d(S)))T be the (column) reward (or
performance) vector.

It is easy to see that, under a (stationary) policy d ∈ D, a discrete-
time Markov decision process is a Markov chain. In this note, we
assume that the Markov chain under any policy d ∈ D is ergodic.
Let Xd = {Xd

l , l = 0, 1, . . .} denote the Markov chain under policy
d ∈ D, with Xd

l denoting its state at time l. The long-run average
performance is defined as

ηd =
S∑

i=1

πd (i)f (i, d(i)) = πdfd

= lim
L→∞

1
L

L−1∑
l=0

f (Xd
l , d(Xd

l)), with probability 1.

We start with the Poisson equation [4]

(I − Pd)gd + eηd = fd . (1)

Its solution gd = (gd (1), . . . , gd (S))T is called a performance poten-
tial vector, and gd (i) is the potential of state i under policy d. The
solution to (1) is only up to an additive constant, i.e., if gd is a solution
to (1), then so is gd + ce, where c is any constant.

Let policy h ∈ D be another policy on the same state space with the
transition probability matrix Ph , and πh , fh , and ηh be the steady-state
probability, the reward function, and the long-run average performance
for the system under policy h, respectively. Then, ηh = πh fh . Premul-
tiplying both sides of (1) by πh , and using πh = πh Ph and πh e = 1,
we can verify

ηh − ηd = πh [(Ph − Pd)gd + fh − fd]. (2)

Now, suppose that Pd changes to Pd,h (δ) := Pd + δ(Ph − Pd) =
δPh + (1 − δ)Pd and fd changes to fd,h (δ) := fd + δ(fh − fd) =
δfh + (1 − δ)fd , with δ ∈ [0, 1]. Then, the average performance
changes to ηd,h (δ). The derivative of ηd,h (δ) in the direction of
(Ph − Pd) is denoted as dηd,h (δ)/dδ|δ=0 . Taking Pd,h (δ) as Ph in
(2) and letting δ → 0, we get [4]

dηd,h (δ)
dδ

∣∣∣
δ=0

= πd [(Ph − Pd)gd + fh − fd]. (3)

Policy iteration algorithms can be developed from (2) and gradient-
based approaches are based on (3).

III. EVENTS ASSOCIATED WITH MARKOV SYSTEMS

In many problems, the special features related to the changes in
system parameters and structures can be characterized by “events.” In
a real-world system, the system behavior is modeled as a Markov chain,
and an event is defined as a set of state transitions that satisfy some
common properties. We first formally define the events.

Definition 1: A single event, denoted as 〈i, j〉, is a state transition
from i to j, i, j ∈ S. The space of all the single events is denoted as
E = {∅, 〈i, j〉 : i, j ∈ S}, with ∅ being a null event. A set of single
events is called an event.

By convention, we say that a Markov chain X = {Xl , l ≥ 0}makes
a transition at time l from Xl−1 to Xl , l ≥ 1. Thus, a single event 〈i, j〉
occurs at time l if Xl−1 = i and Xl = j. The null event ∅ is defined
purely for logical purpose and is different from any real event. An event

1078 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008

a is a subset of E : a ⊆ E . Thus, all the set operations apply to events.
The single-event space is S × S. There are 2S×S possible events.

Definition 2: The input set of event a is I(a) := {all i ∈ S : 〈i, j〉 ∈
a for some j}. The output set of event a is O(a) = {all j ∈ S :
〈i, j〉 ∈ a for some i}. The input set of state j in event a is Ij (a) =
{all i ∈ S : 〈i, j〉 ∈ a}. The output set of state i in event a is Oi (a) =
{all j ∈ S : 〈i, j〉 ∈ a}.

IV. CLASSIFICATION OF THREE TYPES OF EVENTS

Consider an ergodic Markov chain [6], which can be viewed as a
model of a real-world system under a given (stationary) policy, either
state dependent or event dependent, as described in Section V.

We first study the logical relation among different events. In many
problems, actions are taken only after some events occur. These events
are observable and contain some information about the system. They
are called the observable events. Based on the information contained in
the observable events, we may take actions that control the probabilities
of the subevents that the state transitions belong to. These subevents
are called the controllable events. Finally, the nature completes the
transition. These are called the natural transition events. The three
types of events, the observable, controllable, and natural transition
events, occur at the same time in the Markov model, and they together
determine a state transition in the Markov model, but they have a logical
timing order. See [3] for an example.

We provide a general formulation of this structure in the event space
E . In the approach, we mainly deal with events; the system state is only
a hidden concept that helps the analysis.

The first type of event is the observable event. An observable event
has two features: 1) we can tell whether the event occurs at any time
instant from the system behavior and 2) the event contains some infor-
mation about the system, which can be used to determine the control
actions. Because the information carried in different observable events
is different, the event space E can be decomposed into exclusive ob-
servable events:

E = ∪k o
k=1eo (k), eo (k) ∩ eo (k′) = ∅

k �= k′, k, k′ ∈ {1, 2, . . . , ko}

where eo (k), k = 1, 2, . . . , ko , are the observable events and ko is the
number of observable events. Denote Eo = {eo (1), eo (2), . . . , eo (ko)}
as the set of all observable events.

The second type of event is the controllable event. A controllable
event is an event in which we can control the probability of its oc-
currence by taking actions based on the information obtained from an
observable event that has just occurred. More precisely, we have

E = ∪k c
k=1ec (k), ec (k) ∩ ec (k′) = ∅

k �= k′, k, k′ ∈ {1, 2, . . . , kc}

where ec (k), k = 1, 2, . . . , kc , are the controllable events and kc is
the number of the controllable events. Suppose eo (k1) is the event
we observed (i.e., the observable event); then we have eo (k1) =
∪k c

k 2 =1{eo (k1) ∩ ec (k2)}. With this form, we can take actions to
assign probabilities to those controllable events ec (k2) for which
eo (k1) ∩ ec (k2) �= ∅, k2 = 1, 2, . . . , kc .

In particular, if, for an observable event eo (k1), there is only one
controllable event ec (k2) such that eo (k1) ∩ ec (k2) is nonnull, then at
eo (k1), there is only one choice of controllable events, ec (k2). That
is, at such an observable event eo (k1), we can take only one action.
In most cases, this unique action corresponds to “do nothing,” and
therefore, at such an observable event, the system is customarily said
to be not controllable.

The third type of event is the natural transition event. A natural tran-
sition event is an event whose corresponding transitions are governed
by nature; thus, the probability of the occurrence of a natural transition
event cannot be controlled. Generally, we have

E = ∪k t
k=1et (k), et (k) ∩ et (k′) = ∅

k �= k′, k, k′ ∈ {1, 2, . . . , kt}

where et (k), k = 1, . . . , kt , are the natural transition events and kt is
the number of such events.

As explained before, there is a logical timing order (causality) among
the different types of events: at any instant, an observable event occurs
first, and when it occurs, the exact state transition is not determined.
One needs to take an action that determines the probabilities of the
controllable events that is followed by a natural transition event. These
three types of events occur in a logical sequence simultaneously; to-
gether they determine the exact transition from a state. Sometimes the
nature may have only one choice, i.e., a controllable event will be
followed by a unique natural transition event. In this special case, the
observable and controllable events together may determine the exact
state transition.

We assume that the classification of three types of events described
in this section does not depend on any policy. In other words, the classi-
fication of events is determined only by the system. Many real systems
possess such a property. This logical and structural property represented
by events, however, is lost in the standard MDP formulation.

Because the decompositions are mutually exclusive, for any single
event (a state transition) 〈i, j〉 ∈ E , there is a unique set of integers k1 ,
k2 , and k3 such that

〈i, j〉 ∈ eo (k1) ∩ ec (k2) ∩ et (k3) =: e(k1 , k2 , k3) (4)

with k1 ∈ {1, . . . , ko}, k2 ∈ {1, . . . , kc}, k3 ∈ {1, . . . , kt}.
The three events eo (k1), ec (k2), and et (k3) in (4) may not specify

the single event, i.e., eo (k1) ∩ ec (k2) ∩ et (k3) may not be a singleton.
However, we hope that starting from any state i, if a single event 〈i, j〉 ∈
eo (k1) ∩ ec (k2) ∩ et (k3), then j is uniquely determined. Therefore,
we give the following definition.

Definition 3: An event a is said to be deterministic if, for every
i ∈ I(a), the output set Oi (a) contains only one state.

Therefore, if a is deterministic and i ∈ I(a), 〈i, j〉 ∈ a, then j is
determined uniquely. In other words, in a deterministic event a, a state
cannot move to more than one state. We write j = Oi (a) for conve-
nience. Before the event-based optimization, we need the following
assumption.

Assumption 1: Every nonnull eo (k1) ∩ ec (k2) ∩ et (k3) is determin-
istic, k1 = 1, 2, . . . , ko , k2 = 1, 2, . . . , kc , and k3 = 1, 2, . . . , kt .

This assumption does not impose any restriction to the system,
because we can always make the natural transition event decom-
position “fine” enough to make sure that the final transition is
uniquely determined (assuming we know the natural transition prob-
abilities). That is, e(k1 , k2 , k3) in (4) is deterministic and we can
denote

j = Oi [eo (k1) ∩ ec (k2) ∩ et (k3)].

V. EVENT-BASED OPTIMIZATION

In this section, we give a mathematical model of the event-based
optimization and describe the system evolution with this model. For
the event-based optimization discussed in this note, we only consider
the stationary policies that depend on the current observable events.
Such a policy is a mapping from the set of observable events Eo to
the action setA = ∪k o

k 1 =1Ak 1 , denoted as d : Eo → A, which specifies
the action d[eo (k1)] ∈ Ak 1 taken when the observable event eo (k1)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008 1079

is observed, where Ak 1 is the set of actions that are applicable when
eo (k1) is observed. Denote the set of all the stationary policies that
depend only on the current observable events as De .

A. Problem Formulation

The mechanism of the event-based optimization is as follows. The
system is in state i. However, i is not observed and instead we ob-
serve an observable event eo (k1) ⊆ E , with a probability distribution
µ(eo (k1)|i), k1 = 1, 2, . . . , ko . In addition to some knowledge about
the current state, the observable event also contains some information
about the next state after the transition; it, however, does not completely
specify the transition. Based on the information contained in the observ-
able event eo (k1), we take an action α ∈ Ak 1 . Once this action is taken,
a controllable event ec (k2) follows with probability pα [ec (k2)|eo (k1)],
k2 = 1, 2, . . . , kc . After the controllable event ec (k2) occurs, the na-
ture chooses a natural transition event et (k3), k3 = 1, 2, . . . , kt , which,
together with eo (k1) and ec (k2), finally determines the state transition
at this time instant. The reward function f (i, α), where α = d[eo (k1)],
depends on both i and α, i ∈ S, α ∈ Ak 1 .

More precisely, let us denote the transition at some time as 〈i, j〉. Be-
cause we observe the event eo (k1), k1 = 1, 2, . . . , ko , we have 〈i, j〉 ∈
eo (k1), but both i and j may not be known. If action α ∈ Ak 1 is taken,
then the conditional probability of 〈i, j〉 ∈ ec (k2), k2 = 1, 2, . . . , kc ,
given that 〈i, j〉 ∈ eo (k1) is controlled by α and can be denoted as

pα [〈i, j〉 ∈ ec (k2)|〈i, j〉 ∈ eo (k1)]

k1 = 1, 2, . . . , ko , k2 = 1, 2, . . . , kc . (5)

By convention, if ec (k2) ∩ eo (k1) = ∅, we have pα [〈i, j〉 ∈
ec (k2)|〈i, j〉 ∈ eo (k1)] = 0 for all α ∈ Ak 1 . We make the following
assumption.

Assumption 2: The conditional probability in (5) depends only on
eo (k1) and ec (k2), i.e., it is the same for all i ∈ I [eo (k1)].

Assumption 2 is a restriction on the effect of control actions, and not
on the system structure. It is reasonable because we may not be able to
observe i. Under Assumption 2, we may denote (5) as

pα [ec (k2)|eo (k1)] := pα [〈i, j〉 ∈ ec (k2)|〈i, j〉 ∈ eo (k1)].

The natural transition probability given a pair of eo (k1) and ec (k2) is
denoted as

p[et (k3)|ec (k2), eo (k1)] :=

p[〈i, j〉 ∈ et (k3)|〈i, j〉 ∈ ec (k2) ∩ eo (k1)]

k1 = 1, 2, . . . , ko , k2 = 1, 2, . . . , kc , k3 = 1, 2, . . . , kt .

They are determined by the nature (do not depend on actions). As
shown later, for our analysis, we do not require this probability to be
independent of i. The three events eo (k1), ec (k2), and et (k3) uniquely
determine an output state j = Oi [eo (k1) ∩ ec (k2) ∩ et (k3)] according
to Assumption 1.

From Section IV and Assumption 1, for any transition 〈i, j〉, i, j ∈ S,
there exists a unique set of integers, k1 , k2 , and k3 , k1 ∈ {1, . . . , ko},
k2 ∈ {1, . . . , kc}, and k3 ∈ {1, . . . , kt}, such that

〈i, j〉 ∈ eo (k1) ∩ ec (k2) ∩ et (k3) (6)

and j = Oi [eo (k1) ∩ ec (k2) ∩ et (k3)]. From (6) and the mathematical
model of the event-based optimization, the state transition probabilities
from state i under event-based policy d is

pd (i, j)=µ(eo (k1)|i)pd [eo (k 1)] [ec (k2)|eo (k1)]

p[et (k3)|ec (k2), eo (k1)] (7)

where j = Oi [eo (k1) ∩ ec (k2) ∩ et (k3)]. We denote the state tran-
sition probability matrix under event-based policy d as Pd =
[pd (i, j)]i ,j∈S . As assumed, the probability distribution µ(eo (k1)|i)
is independent of policy d. From (7), the process {Xl , l = 0, 1, . . .}
under event-based policy d is indeed a time-homogenous Markov chain.

From (7), in event-based optimization, we decompose the state tran-
sition probability into the controllable part pd [eo (k 1)] [ec (k2)|eo (k1)])
and two uncontrollable parts µ(eo (k1)|i) and p[et (k3)|ec (k2), eo (k1)];
each of them has a clear physical meaning. The decomposition utilizes
the special features of a problem. With this formulation, actions depend
on observable events, and therefore, the same action can be taken for
different states. Furthermore, only the controllable part in the transition
probability contains important parameters, and as we shall see later, the
other parts may be “aggregated.”

Generally, the long-run average performance of event-based policy
d is defined as

ηd (i, α) := lim sup
L→∞

1
L

L−1∑
l=0

E{f (Xl , Al)|X0 = i, A0 = α} (8)

where Al is the action taken at time l according to policy d, l =
0, 1, The goal is to find an event-based policy d ∈ De that maxi-
mizes this performance or other performance criteria (e.g., discounted
performance).

In this note, we study the case in which the Markov chain with the
state transition probability matrix Pd is ergodic. In this case, for any
policy d ∈ De , there always exists a steady-state probability, denoted
as πd = (πd (1), πd (2), . . . , πd (S)).

If we set Yl = (Xl , Xl+1), l = 0, 1, . . . , then the augmented chain
{Yl , l = 0, 1 . . .} is also a Markov chain. In addition, we define a reward
function h(Yl) = f (Xl , d[eo (k1)]), with 〈Xl , Xl+1 〉 ∈ eo (k1). Then,
the long-run average performance of {Yl , l = 0, 1, . . .} with reward
function h(Yl) is the same as (8). By the ergodic property, the sample-
path average converges with probability 1 and is independent of the
initial condition; therefore, (8) becomes

ηd = Ed [f (Xl , Al)] = Ed{Ed [f (Xl , Al)|Xl]} = Ed [f̄d (Xl)]

where Ed denotes the steady-state mean and

f̄d (i)= Ed [f (i, α)|Xl = i]=
k o∑

k 1 =1

µ(eo (k1)|i)f (i, d[eo (k1)])

i ∈ S.

(9)

Let f̄d := (f̄d (1), . . . , f̄d (S))T be the vector of the equivalent reward.
Then, the average performance ηd = πd f̄d . The performance potential
ḡd is given by the Poisson equation (1), in which the performance
vector fd is replaced by f̄d . That is,

(I − Pd)ḡd + eηd = f̄d .

B. Performance Difference Formulas for Event-Based Policies

Let πd (eo (k1)) be the steady-state probability of observable event
eo (k1) under policy d ∈ De . We have

πd (eo (k1)) =
∑

i∈I [eo (k 1)]

πd (i)µ(eo (k1)|i), k1 ∈ {1, . . . , ko}.

In addition, we can write

πd (i) =
k o∑

k 1 =1

πd (eo (k1))πd (i|eo (k1)), i ∈ S

1080 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008

where the steady-state conditional probability

πd (i|eo (k1)) =
πd (i)µ(eo (k1)|i)

πd (eo (k1))

=
πd (i)µ(eo (k1)|i)∑

j∈I [eo (k 1)] πd (j)µ(eo (k1)|j)
(10)

and
∑

i∈I [eo (k 1)] πd (i|eo (k1)) = 1.
By the MDP performance difference formula, for two event-based

policies d and h, we have

ηh − ηd = πh [(Ph − Pd)ḡd + f̄h − f̄d]. (11)

Then by (10), (9), and (11), we have

ηh − ηd = πh [(Ph − Pd)ḡd + f̄h − f̄d]

=
S∑

i=1

πh (i)
S∑

j=1

[ph (i, j)− pd (i, j)]ḡd (j)

+
S∑

i=1

πh (i)[f̄h (i)−f̄d (i)]

=
k o∑

k 1 =1

k c∑
k 2 =1

k t∑
k 3 =1

S∑
i=1

πh (i)µ(eo (k1)|i)

{
ph [eo (k 1)] [ec (k2)|eo (k1)]− pd [eo (k 1)] [ec (k2)|eo (k1)]

}
p[et (k3)|ec (k2), eo (k1)]ḡd (Oi [eo (k1) ∩ ec (k2) ∩ et (k3)])

+
S∑

i=1

πh (i)
k o∑

k 1 =1

µ(eo (k1)|i){f (i, h[eo (k1)])

− f (i, d[eo (k1)])}

=
k o∑

k 1 =1

πh (eo (k1))

{
k c∑

k 2 =1

{
ph [eo (k 1)] [ec (k2)|eo (k1)]

−pd [eo (k 1)] [ec (k2)|eo (k1)]
}

ḡd ,h (k1 , k2) + Bd,h (k1)

}
(12)

where

Bd,h (k1) :=
∑

i∈I [eo (k 1)]

πh (i|eo (k1))

{f (i, h[eo (k1)])− f (i, d[eo (k1)])} (13)

ḡd ,h (k1 , k2) =
∑

i∈I [eo (k 1)]

k t∑
k 3 =1

{πh (i|eo (k1))p[et (k3)|ec (k2), eo (k1)]ḡd (j)}

(14)

with j = Oi [eo (k1) ∩ ec (k2) ∩ et (k3)], is the aggregated potential de-
pending on both policies d and h. Equation (12) is the average perfor-
mance difference formula for the event-based policies.

Furthermore, in (14), we may allow the natural transition probabili-
ties to depend on state i, which is denoted as pi [et (k3)|ec (k2), eo (k1)].

In this case, (12) remains the same and (14) becomes

ḡd ,h (k1 , k2) =
∑

i∈I [eo (k 1)]

k t∑
k 3 =1

{πh (i|eo (k1))pi [et (k3)|ec (k2), eo (k1)]ḡd (j)} (15)

with j = Oi [eo (k1) ∩ ec (k2) ∩ et (k3)].

C. Aggregated Potentials

The aggregated potential (14) [or (15)] and (13) depend on both
policies d and h. The difference formulas with aggregated potentials
in such a form are generally not useful in performance optimization
because one cannot explore every pair of policies d and h. To develop
policy-iteration-based algorithms, we need to find the conditions under
which the aggregated potential and (13) depend only on policy d.

For some systems, the following equation holds for the conditional
probability of i:

πh (i|eo (k1)) ≡ π(i|eo (k1))

∀i ∈ I [eo (k1)], ∀k1 ∈ {1, 2, . . . , ko}, and ∀h ∈ De . (16)

In such cases, the aggregated potential (15) becomes

ḡd ,h (k1 , k2) =
∑

i∈I [eo (k 1)]

k t∑
k 3 =1

{π(i|eo (k1))pi [et (k3)|ec (k2), eo (k1)]ḡd (j)} =: ḡd (k1 , k2) (17)

which depends only on policy d. It is the expected potential under policy
d given that events ec (k2) and eo (k1) occur. Also, (13) becomes

Bd,h (k1) =
∑

i∈I [eo (k 1)]

π(i|eo (k1))

{f (i, h[eo (k1)]) − f (i, d[eo (k1)])} =: Bd (k1).

The aggregated potential ḡd (k1 , k2) and Bd (k1) depend only on pol-
icy d. Consequently, they can be directly estimated from a sample path
of the system under policy d without explicitly knowing π(i|eo (k1)),
pi [et (k3)|ec (k2), eo (k1)], and ḡd (j); see [3] for an example. Further-
more, under condition (16), the average performance difference for-
mula (12) becomes

ηh − ηd

=
k o∑

k 1 =1

πh (eo (k1))

{
k c∑

k 2 =1

{
ph [eo (k 1)] [ec (k2)|eo (k1)]

− pd [eo (k 1)] [ec (k2)|eo (k1)]
}

ḡd (k1 , k2) + Bd (k1)

}
.

The second condition is

both pi [et (k3)|ec (k2), eo (k1)] and

j = Oi [eo (k1) ∩ ec (k2) ∩ et (k3)] do not depend on i;

and f (i, α) = f (i) for all α ∈ A.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008 1081

In this case, from (15) and
∑

i∈I [eo (k 1)] πh (i|eo (k1)) = 1, the perfor-
mance difference formula (12) becomes

ηh − ηd =
k o∑

k 1 =1

πh (eo (k1))

k c∑
k 2 =1

{ph [ec (k2)|eo (k1)]− pd [ec (k2)|eo (k1)]}ḡd (k1 , k2)

where

ḡd (k1 , k2) =
k t∑

k 3 =1

{p[et (k3)|ec (k2), eo (k1)]ḡd (j)} (18)

which depends only on policy d and can be estimated on a sample path
under d.

Under the two conditions mentioned before, we can develop event-
based policy iteration algorithms to get the optimal event-based
policies.

D. Performance Derivative Formulas for Event-Based Policies

To study the average performance gradients, we assume that the con-
ditional transition probabilities (i.e., the policy) depend on a continuous
parameter θ ∈ Θ ⊆ R and are denoted as pθ [ec (k2)|eo (k1)]. Taking
pθ2 [ec (k2)|eo (k1)] as ph [ec (k2)|eo (k1)] and pθ1 [ec (k2)|eo (k1)] as
pd [ec (k2)|eo (k1)] in (12), where θ1 , θ2 ∈ Θ, and letting θ2 → θ1 and
assuming the derivatives exist, we obtain

dη(θ)
dθ

∣∣∣
θ= θ1

=
k o∑

k 1 =1

{
πθ1 (eo (k1))

[
k c∑

k 2 =1

d

dθ
pθ [ec (k2)|eo (k1]

∣∣∣
θ= θ1

ḡθ1 (k1 , k2)

]

+
∑

i∈I [eo (k 1)]

πθ1 (i|eo (k1))
d

dθ
f (i, θ)

∣∣∣
θ= θ1

 (19)

and

ḡθ1 (k1 , k2) =
∑

i∈I [eo (k 1)]

k t∑
k 3 =1

{πθ1 (i|eo (k1))pi [et (k3)|ec (k2), eo (k1)]ḡθ1 (j)}. (20)

All the terms in (19) and (20) depend only on θ1 . With (19), gradient-
based optimization algorithms can be developed.

E. Event-Based Optimization

Both the performance difference and derivative formulas (12) and
(19) have a similar form as the ones for the standard MDPs (2) and (3).
Therefore, gradient-based and policy-iteration optimization approaches
may be developed based on these two formulas. In this section, we
provide a brief discussion.

1) Gradient-Based Optimization: The aggregated potential
ḡθ1 (k1 , k2) in (20) can be estimated on a sample path of the system
under parameter (policy) θ1 . Efficient sample-path-based algorithms to
estimate ḡθ1 (k1 , k2)’s are to be developed (see [3] for an algorithm for
similar items). There are ko × kc aggregated potentials ḡθ1 (k1 , k2) in
(20) (compared with S potentials in the standard MDPs). The number
of aggregated potentials is usually smaller than the number of states.

Once these aggregated potentials are estimated, the performance
gradients with respect to any parameter can be obtained by (19).

Developing efficient algorithms for performance derivatives with
event-based policies is a future research topic.

2) Policy Iteration: The aggregated potential (14) [or (15)] contains
items for both policies: πh (i|eo (k1)) for policy h and ḡd (j) for policy d.
Such a quantity cannot be used in policy iteration. When the aggregated
potentials depend only on policy d, as shown in (17) and (18), they can
be either calculated analytically by studying the system under policy
d, or estimated from a sample path of the system under policy d.
Event-based policy iteration algorithms can be developed from the
performance difference formula (12) following the same idea as the
standard MDPs. In essence, at each iteration, one chooses the action α∗

among Ak 1 [the available action set for the observable event eo (k1)]
that leads to the largest value of the average aggregated potential given
the observable event eo (k1), i.e., one chooses

α∗ = arg max
α∈Ak 1

{ k c∑
k 2 =1

{pα [ec (k2)|eo (k1)]− pd [eo (k 1)] [ec (k2)|eo (k1)]}ḡd (k1 , k2)

}
where pd [eo (k 1)] [ec (k2)|eo (k1)], k2 = 1, . . . , kc , are the transition
probabilities under the current event-based policy d. By the same prin-
ciple as policy iteration in the standard MDPs, we know that the policy
iteration procedure eventually leads to the optimal policy among the
event-based policy space De .

VI. CONCLUSION

In this note, we presented a mathematical formulation for the event-
based optimization approach proposed in [3] and provided rigorous
proofs for its main results. This approach utilizes the special feature of
a system and illustrates how the potentials can be aggregated based on
the special feature. The aggregated potentials can be used to build per-
formance sensitivity formulas that lead to gradient-based optimization,
and with some conditions, event-based policy iteration. The approach
applies to many practical problems that do not fit well the standard MDP
formulation. Many subjects, including the multilevel control problem,
time aggregation and options, state aggregation, singular perturbation,
queueing applications, and POMDPs, fit the event-based framework
if the corresponding events are defined properly. This opens up many
research problems.

The limitation of the approach is that the aggregated potentials in
the performance difference formula may depend on two policies under
comparison. This prevents the aggregated potentials from being used
in policy iteration. It is shown in Section V-E that, under some special
conditions, the aggregated potentials depend only on one policy and
can be estimated on a sample path. In such cases, event-based pol-
icy iteration algorithms can be developed. In this regard, the approach
clearly indicates whether the potentials can be aggregated in perfor-
mance difference formulas, and if not, why. It is clear, however, in per-
formance derivative analysis, that potentials can always be aggregated
with the event-based structure. Therefore, performance-gradient-based
optimization (based on events) is more applicable than the event-based
policy iteration.

REFERENCES

[1] A. Barto and S. Mahadevan, “Recent advances in hierarchical reinforce-
ment learning, special issue on reinforcement learning,” Discrete Event
Dyn. Syst.: Theory Appl., vol. 13, pp. 41–77, 2003.

1082 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008

[2] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,”
J. Artif. Intell. Res., vol. 15, pp. 319–350, 2001.

[3] X. R. Cao, “Basic ideas for event-based optimization of Markov systems,”
Discrete Event Dyn. Syst.: Theory Appl., vol. 15, pp. 169–197, 2005.

[4] X. R. Cao and H. F. Chen, “Perturbation realization, potentials and sensi-
tivity analysis of Markov processes,” IEEE Trans. Autom. Control, vol. 42,
no. 10, pp. 1382–1393, Oct. 1997.

[5] X. R. Cao and J. Y. Zhang, “The nth-order bias optimality for multi-chain
Markov decision processes,” IEEE Trans. Autom. Control, vol. 53, no. 2,
pp. 496–508, Mar. 2008.

[6] E. Çinlar, Introduction to Stochastic Processes. Upper Saddle River,
NJ: Prentice-Hall, 1995.

[7] W. L. Cooper, S. G. Henderson, and M. E. Lewis, “Convergence of
simulation-based policy iteration,” Probab. Eng. Inf. Sci., vol. 17, pp. 213–
234, 2003.

[8] H. T. Fang and X. R. Cao, “Potential-based on-line policy iteration al-
gorithms for Markov decision processes,” IEEE Trans. Autom. Control,
vol. 49, no. 4, pp. 493–505, Apr. 2004.

[9] P. Marbach and T. N. Tsitsiklis, “Simulation-based optimization of Markov
reward processes,” IEEE Trans. Autom. Control, vol. 46, no. 2, pp. 191–
209, Feb. 2001.

