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A B S T R A C T

We introduce a sensitivity-based view to the area of learning and optimization of stochastic dynamic

systems. We show that this sensitivity-based view provides a unified framework for many different

disciplines in this area, including perturbation analysis, Markov decision processes, reinforcement

learning, identification and adaptive control, and singular stochastic control; and that this unified

framework applies to both the discrete event dynamic systems and continuous-time continuous-state

systems. Many results in these disciplines can be simply derived and intuitively explained by using two

performance sensitivity formulas. In addition, we show that this sensitivity-based view leads to new

results and opens up new directions for future research. For example, the n th bias optimality of Markov

processes has been established and the event-based optimization may be developed; this approach has

computational and other advantages over the state-based approaches.
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1. Introduction

Performance optimization plays an important role in the design
and operation of modern engineering and economic systems in
many areas, including communications (Internet and wireless
networks), manufacturing, logistics, robotics, bio-informatics, and
finance. Most such systems are too complicated to be analyzed, or
the parameters of the system models cannot be easily obtained.
Therefore, learning techniques have to be applied.

Learning and optimization of stochastic systems is a multi-
disciplinary area that has attracted wide attention from research-
ers in many disciplines, including control systems, operations
research, computer science, and financial engineering. Many
research areas share a common goal: to make the ‘‘best decision’’
to optimize a system’s performance. These areas include perturba-
tion analysis (PA) in discrete event dynamic systems (DEDSs) (Cao,
1994; Cassandras & Lafortune, 1999; Ho & Cao, 1991), Markov
decision processes (MDPs) in operations research (Bertsekas, 1995,
2001, 2007; Puterman, 1994; Veinott, 1969), reinforcement
learning (RL) in computer science (Sutton & Barto, 1998), neuro-
dynamic programming (NDP) (Bertsekas & Tsitsiklis, 1996;
Werbos, 1992), identification, and adaptive control (I&AC) in
control systems (Åström & Wittenmark, 1989), and portfolio
management in financial engineering (Oksendal & Sulem, 2007).
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Different disciplines take different perspectives and have
different formulations for the problems with the same goal. In
this paper, we introduce a sensitivity point of view to the area of
learning and optimization, which provides a unified framework for
the different disciplines, including PA, MDPs, RL, and I&AC. This
sensitivity-based view unifies the optimization theories of both the
discrete event dynamic systems (DEDS) and continuous-time
continuous-state (CTCS) systems. We show that many results in
these disciplines in both DEDS and CTCS systems can be derived
simply and explained clearly and intuitively from two performance
sensitivity (difference and derivative) formulas. In addition, we
show that with this sensitivity-based view, new results and
approaches such as the n th bias optimality of Markov processes
and the event-based optimization can be developed (Cao, 2007).

2. An overview of learning and optimization

The goal of learning and optimization is to make the ‘‘best’’
decisions to optimize, or to improve, the performance of a system
based on the information obtained by observing and analyzing the
system’s behavior. A system’s behavior is usually represented by a
model, or by the sample paths (also called trajectories) of the
system. A sample path is a record of the operation history of a
system.

In this paper, we mainly discuss stochastic dynamic systems. A
dynamic system evolves as time passes by. It is generally easier to
explain the ideas with a discrete time and finite state model, which
is assumed in most part of the paper, except for the part where we
discuss CTCS systems. In addition to its dynamic nature, a
stochastic system is always subject to random influences caused
by noise or other uncertainties.

http://www.sciencedirect.com/science/journal/13675788
http://dx.doi.org/10.1016/j.arcontrol.2009.03.003


Fig. 1. A model of learning and optimization.
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2.1. States, actions, and observations

To study the system behavior, we need to describe precisely the
system’s status. A system’s status at any time l ¼ 0;1; . . . can be
represented by a quantity called the system’s state at time l,
denoted as Xl, l ¼ 0;1; . . . . The state space (i.e., the set of all states) is
denoted as S, and for simplicity, we assume it to be finite and
denote it as S ¼ f1;2; . . . ; Sg. A sample path of a system is a record of
state history denoted as X ¼ fX0;X1; . . . g. In stochastic dynamic
systems, Xl, l ¼ 0;1; . . . ; are random variables (may be multi-
dimensional random vectors). A system’s dynamic behavior is then
represented by its sample paths. We denote a ‘‘finite-length’’
sample path as Xl :¼ fX0;X1; . . . ;Xlg.

In optimization problems, at any time l, we can apply an action,
denoted as Al 2A, l ¼ 0;1; . . . ; to the system, where A is an action
space. In this paper, we assume that A contains a finite number of
actions, but in general it may contain infinitely many actions, or
may even be a continuous space. The actions A0;A1; . . . may affect
the evolution of the system. Because the actions affect the system
behavior, the operation history of a system should include the
actions. Let Al�1 :¼ fA0;A1; . . . ;Al�1g denote an action history with
a finite length and A :¼ fA0;A1; . . . g denote an infinitely long action
history. Taking the actions into consideration, we denote a sample
path as H :¼ ðX;AÞ, or Hl :¼ ðXl;Al�1Þ.

In many cases, the system’s state cannot be exactly observed,
and we can only observe a random variable Yl at time l that is
related to Xl, l ¼ 0;1; . . . : The observation history is denoted as
Y :¼ fY0;Y1; . . . g, or Y l :¼ fY0;Y1; . . . ;Ylg. In such cases, we say
that the system is partially observable. The information history up
to time l is Hl :¼ ðY l;Al�1Þ. When Yl ¼ Xl, for all l ¼ 0;1; . . . ; we say
that the system is completely observable. In such cases, we have
Hl ¼ ðXl;Al�1Þ. Note that even for partially observable systems, we
reserve the word ‘‘sample path’’ for Hl ¼ ðXl;Al�1Þ, or H ¼ ðX;AÞ,
and we call Hl :¼ ðY l;Al�1Þ and H ¼ ðY ;AÞ information histories.

2.2. Rewards and performance measures

Associated with each sample path HL ¼ ðXL;AL�1Þ, there is a
reward denoted as hLðHLÞ. Because the states XL and the actions
AL�1 are generally random, hLðHLÞ is usually a random variable. For
finite-length problems, hLðHLÞ represents the reward (total,
discounted, or average, etc.) received when the system is going
through the sample path HL. The performance measure h (or simply
called the performance) is defined as the mean of the sample-path-
based rewards

h ¼ E½hLðHLÞ�; (1)

where ‘‘E’’ denotes the expectation. For sample paths with
infinitely long lengths, the performance measure h is defined as
the limit of the mean rewards

h ¼ lim
L!1

E½hLðHLÞ�; (2)

in which we assume that both the expectation and the limit exist.
In many cases, hLðHLÞ represents the average reward per step
received by the system during the operation, and h is called the
long-run average performance.

2.3. The learning and optimization problem

A general description of the learning and optimization problem
is illustrated by Fig. 1. In the figure, the shaded area represents a
stochastic dynamic system. The system is essentially a black box
and it can only interact with the outside through its inputs and
outputs. The inputs provide a vehicle to intervene or to control the
operation of the system, and/or to affect the reward of the
operation. The inputs are usually the actions taken that will affect
the future evolution of the system. In some cases, an input may
simply control the system operation modes, or tune the values of
system parameters, etc. In this terminology, setting different
values for system parameters is viewed as taking different actions.
It is usually assumed that the available actions are known to us
(e.g., we know that we can accept or reject a packet in a
communication system, or we can tune the rate of a transmission
line to u megabit/second). The outputs provide a window for
observing the system. That is, the outputs are the observations Yl,
l ¼ 0;1; . . . . Associated with every system, there is a performance
measure h, which depends on the inputs.

The goal of an optimization problem is to answer the following
question: Based on the information we know about the system at any

particular time, i.e., the output history learned from observation and

the input (action) history, what action should we take at that time so

that we can obtain the best possible system performance?

2.4. Policies

The information history Hl ¼ fY l;Al�1g, with Y l ¼
fY0;Y1; . . . ;Ylg being the observation history and Al�1 ¼
fA0;A1; . . . ;Al�1g being the action history (with A�1 :¼ ?), repre-
sents all the information available at time l before an action is
taken at l, l ¼ 0;1; . . . . Based on this information, an action can be
chosen by following some rules, called a policy, denoted as
dl : Al ¼ dlðHlÞ;Al 2A. (This is called a deterministic policy.) The set
of all policies is called a policy space and is denoted as D.

The optimization problem now becomes to find a policy that
achieves the maximum of the system performance. Such a policy is
called an optimal policy. When the number of policies is finite, such
optimal policies always exist and may not be unique.

If we have a mathematical model for the system in Fig. 1, the
optimal policies might be found analytically; in many cases,
however, a mathematical model may not exist, and we need to
observe and analyze the sample paths of the system to determine
the performance and/or to make improvement decisions. This is
called ‘‘learning’’. In engineering applications, at the design stage,
sample paths can only be obtained by simulation following a
system model; and while a system is operating, its sample paths
can also be obtained by direct observation. If learning and
optimization is implemented by simulation, the approach is called
a simulation-based approach. With simulation, we may even let the
system operate under policies that are not feasible in a real system.
For real systems, performance optimization (or improvement)
decisions can be made through learning the system behavior by
observing and analyzing its sample paths while the system is
operating without interruption; we call such an approach an on-

line approach.

2.5. The Markov model

The optimization problem formulated with the black-box
system (its structure is completely unknown) shown in Fig. 1 is
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too difficult to solve (see discussions in the next section). To
develop specific optimization approaches, we need to introduce
some structures into the system model. Perhaps the most widely
used model for stochastic dynamic systems is the Markov model.

The word ‘‘state’’ is used in a strict sense in the Markov model
(úinlar, 1975). This means that given the current state Xl, the

system’s future behavior fXlþ1;Xlþ2; . . . g is independent of its past

history fX0;X1; . . . ;Xl�1g, for all l ¼ 1;2; . . . . This is called the
Markov property, and a stochastic process X ¼ fX0;X1; . . . g
satisfying Markov property is called a Markov chain. Intuitively,
a state in a Markov chain completely captures the system’s current
status in regard to its future evolution.

The evolution of a Markov chain is determined by its transition

probability matrix P ¼ ½pð jjiÞ�Si; j¼1, where pð jjiÞ ¼ PðXlþ1 ¼ jjXl ¼ iÞ
is the transition probability that the system moves to state j at time
lþ 1 when it is in state i at time l. We assume that the system is
homogenous so pð jjiÞ, i; j2S, do not depend on l. A (homogenous)
Markov chain is called irreducible, if starting from any state i, the
system can reach any other state j2S in a finite number of steps. A
Markov chain with a finite number of states is called ergodic, if it is
irreducible and aperiodic (úinlar, 1975). For an ergodic Markov
chain, the steady-state probabilities

pðiÞ ¼ lim
l!1
PðXl ¼ ijX0 ¼ jÞ; i; j2S;

exist, which do not depend on the initial state j2S. Let p :¼
ðpð1Þ; . . . ;pðSÞÞ denote the (row) vector of the steady-state
probabilities. Then we have

p ¼ pP; pe ¼ 1; (3)

where e ¼ ð1;1; . . . ;1ÞT is a vector with all components being 1,
and the superscript ‘‘T’’ denotes the transpose.

With the Markov model, the actions control the transition
probabilities of the state process. If action a2A is taken at time l

(i.e., Al ¼ a), then the transition probabilities at time l are denoted
as paðXlþ1jXlÞ, Xl;Xlþ1 2S, l ¼ 0;1; . . . : With the Markov model, we
further assume that there is a reward function denoted as f ði;aÞ,
i2S, a2A. At time l, if the system is in state i, i.e., Xl ¼ i, and action
Al ¼ a2A is taken, then the system receives a reward of f ði;aÞ.
With the reward function, many performance measure can be
defined, including the discounted reward, total reward, etc. We
mainly discuss the long-run average reward defined as

h ¼ lim
L!1

1

L
E
XL�1

l¼0

f ðXl;AlÞ
�����X0 ¼ i

( )
: (4)

If the state process is an ergodic Markov chain (depending on Al

and paðXlþ1jXlÞ), the long-run average reward does not depend on
the initial state and we have

h :¼ lim
L!1

1

L

XL�1

l¼0

f ðXl;AlÞ; w: p:1:

In this paper, for simplicity, if not mentioned otherwise, we assume
that the state Xl, l ¼ 0;1; . . ., can be observed exactly. The
information history becomes Hl ¼ ðXl;Al�1Þ, and a policy becomes
Al ¼ dlðXl;Al�1Þ, Al 2A. Because of the Markov property, if a state
process is Markov, the current state Xl contains all the information
in the system’s history in regard to its future behavior. We may
expect that in many cases a policy depending on only Xl may do as
well as a policy depending on the entire history Hl ¼ ðXl;Al�1Þ for
controlling the system’s future behavior. Therefore, we may only
consider the policies Al ¼ dlðXlÞ, l ¼ 0;1; . . . .
2.6. Stationary and randomized policies

A policy Al ¼ dlðXlÞ, Xl 2S, Al 2A, l ¼ 0;1; . . . , is called a
stationary policy if it does not depend on time l; such a policy is
denoted as A ¼ dðXÞ, X 2S, which is a mapping from the state space
S to the action spaceA. The action dðiÞ, i2S, controls the transition
probabilities of state i. With a stationary policy d, the transition
probabilities when the state is i2S are denoted as pdðiÞð jjiÞ, j2S.
The system under policy dðXÞ is Markov, and the corresponding
transition matrix is denoted as Pd :¼ ½ pdðiÞð jjiÞ�. The reward
function can be expressed as a column vector
f d ¼ ð f ð1; dð1ÞÞ; . . . ; f ðS; dðSÞÞÞT . The effect of a policy d to the

system can be completely described by ðPd; f dÞ; therefore, we may
refer to a policy as d :¼ ðPd; f dÞ. In addition, we will simply use
d ¼ ðP; f Þ as a generic notation for a policy. It is known (Puterman,
1994) that there exists a stationary policy that is optimal.

A (stationary) randomized policy n ¼ dðXÞ assigns a distribution
n over the action space A for every state X ¼ i2S; it is a mapping
from the state space S to the space of the distribution functions
over the action space. For example, suppose that
A ¼ fa1;a2; . . . ;aMg. For any state i2S, a randomized policy
assigns a distribution n ¼ ð p1ðiÞ; p2ðiÞ; . . . ; pMðiÞÞ on A, withPM

k¼1 pkðiÞ ¼ 1. When the system state is i, we take action ak

with probability pkðiÞ, k ¼ 1;2; . . . ;M, i2S. A deterministic policy
is a special case of a randomized policy n where pkðiÞ ¼ 1 for some
k2f1;2; . . . ;Mg, with k depending on i, i2S.

3. Fundamental limitations and search methods

An optimization problem is to find an optimal policy in a given
policy space D. First, we observe that even for a small problem, the
policy space is too large for us to handle. For example, for a (small)
system with S ¼ 100 states and M ¼ 2 actions available in each
state, the number of stationary policies is MS ¼ 2100�1030! With
the fastest PC (10 GHz) currently available to count the policies at
a speed of 1 policy/Hz (i.e., 10G policies/second), it requires 3�
1012 years to finish the counting!

3.1. Learning

To develop efficient algorithms for performance optimiza-
tion, we need to explore the special features of a system. This
process is called learning. For dynamic systems, learning may
involve observing and analyzing a sample path of a system to
obtain necessary information; this is in the normal sense of the
word ‘‘learning’’, as it is used in research areas such as
reinforcement learning. Simulation-based and on-line optimiza-
tion approaches are based on learning from sample paths. On
the other hand, we may also analytically study the behavior of a
system under a policy to learn how to improve the
system performance. This is done with a mathematical model
of the system. In a wide sense, we shall also call this analytical
process ‘‘learning’’ (to learn something about the system
performance under other policies from its behavior under the
current policy).

3.2. Fundamental limitations

Obviously, the task of learning and optimization is complicated
and we are facing a vast forest and wish to find a path in it to reach
our destination at the top of a peak. It is wise to pause for a short
while and take an overview of the forest from the outside to see
which directions may possibly lead us to our goal quickly. Indeed,
we are constrained by some philosophical and logical facts that
significantly limit what we can do. These facts are simple and
intuitively obvious, yet they provide general principles that chart
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the paths in our journey of developing learning and optimization
theories and methodologies. Because of the importance as well as
the simplicity of these facts, we state them as the ‘‘fundamental
limitations’’:

The Fundamental Limitations of Learning and Optimization

A. A system can be run and/or studied under only one policy at a
time.

B. If no structural information of the system is available, by
learning from the behavior of a system under one policy, we
cannot obtain any information about the performance of other
policies.

C. We can only compare two policies at a time.

These simple rules describe the boundaries in developing
learning and optimization approaches. First of all, if there is no
structural information about the system, from the fundamental
limitations A and B, we need to observe/analyze the system under
each policy, with a model or by simulating or operating the system
under the policy, to analytically compute or to estimate its
performance. In such cases, the search methods are the only
approaches for optimization. On the other hand, if we have some
knowledge about the system structure, we may infer some
information about the performance of the system under other
polices while analyzing its behavior under one policy. More
efficient approaches may be developed to identify optimal policies.

3.3. The search methods

The only search method that guarantees to give an optimal
policy under any circumstance is the exhaustive search, in which
the performance of every individual policy is estimated or
computed. From the fundamental limitation C, for M policies we
need to make M � 1 pairwise comparisons. This exhaustive search
method is stated as follows:

Exhaustive Search Given M policies di, i ¼ 1;2; . . . ;M. Let hdi be the

performance of policy di, i ¼ 1;2; . . . ;M.

i. Set d̃ :¼ d1, and h̃ :¼ hd1 ;
ii. For i :¼ 2 to M, do: if hdi > h̃ then set d̃ :¼ di and h̃ :¼ hdi .

The algorithm outputs an optimal policy and the optimal
performance. In the algorithm, we may randomly order the
policies. However, in many problems the number of policies
increases exponentially with respect to the number of states.
Therefore, exhaustive search, which requires computing and
comparing the performance of every policy, is not computationally
feasible for most practical problems. A variation is the blind
random search, in which we randomly choose a limited number of
policies to be evaluated and compared.

Moreover, if there is no additional information about the
mapping hd : D!R (such as its shape, or the continuity if the
policy space D is continuous, or other similar properties regarding
how the performance hd, d2D, distribute over D, etc.), any
optimization scheme is no better than blind (random) search. This
result is formulated as the ‘‘No Free Lunch Theorem’’, see (Ho, Zhao,
& Pepyne, 2003).

Various search methods have been developed. These methods
may work better than the blind random search when policy space
D and/or the mapping hd : D!R have some special features (e.g.,
policies near a good policy are also good). Among them are
simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), genetic
algorithms (Srinivas & Patnaik, 1994), and the recently proposed
cross-entropy method (Rubinstein & Kroese, 2004), model
reference adaptive search (Hu, Fu, & Marcus, 2007), and nested
partition method (Shi & Olafsson, 2000).

The recently developed ‘‘Ordinal Optimization’’ approach deals
with the trade-off between accuracy and efficiency of random
search. It proposes an interesting idea of a ‘‘soft goal’’ and opens up
a new perspective for optimization. The main ideas are two folds:
First, the search algorithm depends on the comparison of the
performance of two policies, hdi > h̃. It is important to note that to
verify this relationship we may not need to obtain the exact values
of the performance of these two policies. For example, if the
performance of two policies is quite different, then we may need
only run a short simulation for each policy to verify this
relationship with a high accuracy. Second, we may not need to
sample and compare all the policies (impossible); it can be shown
that even we sample only a small set of policies, we are able to get a
‘‘good enough’’ policy with a reasonably large probability. See (Ho
et al., 2003; Ho, Zhao, & Jia, 2007) for details.

In summary, if we have no information about the system
dynamics or structure, by observing/analyzing the system under
one policy, we cannot know any information about the system’s
performance under other policies. Search methods, which requires
us to know only the performance of the system under each policy,
are the only approaches for optimization. Exhaustive search is not
computationally feasible for most practical problems. Ordinary
optimization searches for a good enough policy with significantly
reduced computation. Other search methods may work better than
random search if the performance does distribute ‘‘nicely’’ over the
policy space.

If we know something about the structure/dynamics of the
system, we may obtain some information about the performance
of the system under other polices while analyzing its behavior
under one policy. These additional information may lead to
optimization approaches that are more efficient than the search
methods. This is the focus of the rest of the paper.

4. A sensitivity-based view of learning and optimization

To develop more efficient approaches than the search methods,
we need to explore the special feature of a system. Naturally, we
wish to develop approaches that require as little structural
information and can be applied to as many systems as possible.
The question is ‘‘HOW’’. The fundamental limitations also provide
us with some hints.

4.1. Performance gradient

As indicated by the fundamental limitations A and B, if we
analyze a system’s behavior under one policy, we can hardly know
its behavior under other policies. It is natural to believe that if two
policies are ‘‘close’’ to each other, then the system under these two
policies may behave similarly. If this is the case, when we are
analyzing a system under a policy, it might be easier to ‘‘predict’’
the system behavior under a ‘‘close’’ policy and to calculate its
performance than to do the same for a policy that is ‘‘far away’’. In
other words, to predict the performance for a ‘‘close’’ policy may
require as little knowledge about the system structure as possible.

If a policy space can be characterized by a continuous
parameter u, then two policies are ‘‘close’’ if their corresponding
values for u are close. Such a policy space is called a continuous

policy space. For example, for Markov systems, policies correspond
to transition probability matrices. Therefore, two policies can be
viewed as ‘‘close’’ if their transition probability matrices are close
(entry-by-entry). In modeling manufacturing or communication
networks, policies may be characterized by production rates or
transmission rates. Two policies are close if their corresponding
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rates are close. In randomized policies, the distributions
ð p1; p2; . . . ; pMÞ over the action space A ¼ fa1;a2; . . . ;aMg are
continuous variables. Two randomized policies are close if their
corresponding distribution functions are close.

Therefore, a reasonable step towards developing efficient and
generally applicable approaches is to look at a ‘‘neighborhood’’ of a
policy. The neighborhood must be small enough, so that the
behavior of the system under the policies in this neighborhood of
the policy can be predicted with as little knowledge about the
system structure as possible. In mathematical terms, ‘‘small
enough’’ is precisely described by the word ‘‘infinitesimal’’. When
the performance of the policies in an infinitesimal neighborhood of
a policy is known, we can further get the gradient of the
performance in the policy space at this policy.

We may summarize the above discussion by the following
statement:

Statement A:

With some knowledge about the system structure under
different policies, by studying the behavior of a system under
one policy, we can determine the performance of the system
under the policies in a small neighborhood of this policy; i.e.,
determine the performance gradient.

The prediction of the performance for other (neighboring)
policies while analyzing the system under one policy can be done
analytically, if we can describe the structure mathematically
(usually based on a model) and know the values of its parameters.
However, in many cases, we always start by analyzing a sample
path of the system. This is because

1. A sample path clearly illustrates the system dynamics, and
sample-path-based analysis stimulates intuitive thinking.

2. In many practical problems, the size of the problem is too large
for any analytical solution, or we may have only partial
information about the system; for example, in some cases, we
may only know the structure of the system but do not know the
values of its parameters, and in some other cases, we know the
values of the parameters, but the system structure is too
complicated to model. Sample-path-based algorithms may be
implemented easily even with these constraints, as long as there
is a sample path available.

Of course, the results obtained by the sample-path-based
approach can also be expressed in an analytical form.

4.2. Perturbation analysis (PA)

PA estimates the performance derivatives with respect to system

parameters by analyzing a single sample path of a stochastic dynamic

system.
Because PA emphasizes the dynamic nature of a stochastic

system with discrete states, such a system is also called a discrete

event dynamic system (DEDS) (Cassandras & Lafortune, 1999; Ho &
Cao, 1991). PA was proposed in the late 1970s and early 1980s
(Cao, 1994; Cassandras & Lafortune, 1999; Ho & Cao, 1991). The
early work on PA focused on queueing systems. Later, the basic
principles of PA were extended to Markov systems with both
discrete- and continuous-time models (Cao, 2007).

The basic principles of PA are: We start with a given sample
path of a system with parameter u. Suppose that u changes to
u þDu, Du< <1. This small change in the parameter u induces a
series of perturbations on the sample path. The average effect of
each single perturbation on the system performance can be
measured by a fundamental quantity called a perturbation
realization factor, which can be estimated by observing and
analyzing the given sample path of the system with parameter u.
Finally, the effect of the small change Du in the system
parameter u on the system performance equals the sum of the
effects of all the perturbations (i.e., all the perturbation
realization factors) induced by the parameter change on a
sample path. It is important to note that the realization factor
can be estimated on a sample path with parameter u, and no
information about the system with u þDu is needed. This means
that the effect of a small change Du, and hence the performance
derivative with respect to u, can be obtained on a sample path
with parameter u.

These basic principles are illustrated in Fig. 2. The important
step in this approach is to determine the average effect of a single
perturbation, i.e., the realization factor.

The PA principles illustrated in Fig. 2 can be applied to estimate
the performance derivatives with respect to the transition
probabilities of a Markov system. In this approach, the behavior
of the black box in Fig. 1 is described by a Markov model with
transition probability matrix P and the performance measure h is
defined in (4). We assume that the states Xl are observable, i.e.;
Yl ¼ Xl, l ¼ 0;1; . . . : In this model, a policy d corresponds to a
transition probability matrix denoted as Pd. We wish to get the
performance gradients around a policy Pd in the policy space by
analyzing the system’s behavior under this policy Pd. For
simplicity, we assume that the reward function is the same for
all policies.

Let Ph be another policy, and let DP ¼ Ph � Pd. Define
Pd ¼ Pd þ dðDPÞ ¼ ð1� dÞPd þ dPh, 0 � d � 1. Pd is a randomized
policy. With policy Pd, in any state k2S the system moves
according to phðkÞð jjkÞ, j2S, with probability d, and moves
according to pdðkÞð jjkÞ, j2S, with probability 1� d. Let pd and
hd be the steady-state probability and the performance measure
associated with Pd. We have P0 ¼ Pd, P1 ¼ Ph and h0 ¼ hd. The
performance derivative at policy Pd along the direction DP (from Pd

to Ph) is

dhd

dd
jd¼0 ¼ lim

d!0

hd � h
d

:

Different Ph s correspond to different directional derivatives in the
policy space.

The performance derivatives are obtained by predicting how
the system would behave if we slightly perturb the transition
probability matrix from Pd to Pd, d< <1. Small changes in Pd

induce a series of perturbations on a sample path of Pd. A
perturbation on a sample path is a ‘‘jump’’ from one state i to
another state j, i; j2S (i.e., at some time l, the Markov chain with Pd

was in state i, Xl ¼ i, however, because of the slight change in the
transition probabilities, the Markov chain with Pd is in state Xl ¼ j).



Fig. 3. The original and perturbed sample paths.

Fig. 4. The directional derivatives along any direction.
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In Fig. 3, the path with thick arrows denotes an ‘‘original’’
sample path X with the transition probability matrix Pd. Suppose
that Pd changes to Pd, with d< <1, the sample path will change to
another one denoted as Xd. Because d< <1, we can expect that the
changes are very few. That is, most part of X and Xd are the same,
which are shown as segments A� B, H � K , and R� C. (Because of
the limit in space, Fig. 3 is not drawn proportionally; in fact these
segments should be very long, much longer than shown in the
figure.) Occasionally, these two paths X and Xd are different; as
shown in the figure, at l ¼ 3 there is a jump from state i to state j.
The figure illustrates another jump at l ¼ 10. Starting from point G,
Xd are different from X. Because of the ergodicity, both paths X and
Xd merge together at some point denoted as l ¼ L�i j ¼ 6. Because
d< <1, Xd in G� H, which follows Pd, behaves the same as if
following Pd. (We ignore the possibility that in G� H, there is
another jump, since such a probability is of oðdÞ.)

Next, from the figure, it is clear that the average effect of the
jump at l ¼ 3 on the infinite sum in the system performance hd in
(4) can be measured by the perturbation realization factor, denoted
as (use X0l for the state of Xd at time l)

gdði; jÞ :¼ E
XL�i j

l¼0

½ f ðX0lÞ � f ðXlÞ�jX00 ¼ j;X0 ¼ i

)8<:
It can be shown that

gdði; jÞ ¼ gdð jÞ � gdðiÞ; 8 i; j2S;

where gdðiÞ is called the performance potential (or simply the
potential) of state i (Cao, 2007).

The performance potential is the main concept of performance
optimization of Markov systems. Intuitively, the performance
potential of state i, gðiÞ, of a policy P measures the ‘‘potential’’
contribution of state i to the long-run average reward h in (4). It is
defined on a sample path of P as

gðiÞ :¼ E
X1
l¼0

½ f ðXlÞ � h�jX0 ¼ i

( )
: (5)

(We have omitted the Al that appeared in (4) since we assume that f

does not depend on the actions; in addition, we subtract a constant
h in each term to make the sum finite.) From (5), we can easily
derive

gðiÞ ¼ contribution of the current state i

þexpected long-run ‘‘ potential’’ contribution of the next state

¼ð f ðiÞ�hÞþ
X
j2S

pð jjiÞgð jÞ:

This can be written in a matrix form called the Poisson equation:

ðI � PÞg þ he ¼ f ; (6)

where g ¼ ðgð1Þ; . . . ; gðSÞÞT is the potential vector.
From the definition of gðiÞ in (5), we can see that the effect of a

jump from state i to j on the long-run average reward (4) can be
measured by gði; jÞ ¼ gð jÞ � gðiÞ. Finally, the effect of a small
(infinitesimal) change in a Markov chain’s transition probability
matrix (from Pd to Pd) on the long-run average reward (4) can be
decomposed into the sum of the effects of all the single
perturbations (jumps on a sample path) induced by the change
on a sample path. (Fig. 3 illustrates two such perturbations.) With
these principles, we can intuitively derive the formulas for the
performance derivative along any direction DP (from Pd to any Ph)
in the policy space:

dhd

dd
jd¼0 ¼ pdðDPÞgd ¼ pdðPh � PdÞgd: (7)

For a more rigorous analysis, see Cao (2007). (This formula can be
also easily derived from the Poisson equation; however, the PA
principles provide a clear and intuitive explanation for potentials
and the derivative formula, and it can be easily extended to other
non-standard problems for which the Poisson equation may not
exist.)

From (7), knowing the steady-state probability pd and the
potential gd of policy Pd, we can obtain the directional derivative
dhd
dd jd¼0 along any direction ðDPÞ pointing to any given policy Ph

from Pd. This is illustrated in Fig. 4. The potentials in (7) can be
estimated (or ‘‘learned’’) from a sample path of the Markov chain
under policy Pd. Optimization can be carried out using the
performance derivatives together with stochastic approximation
(Marbach & Tsitsiklis, 2001), or other gradient-based methods
(Cao, 2007; Ho & Cao, 1991). It is explained in the next subsection
that the potentials also play a key role in policy iteration in MDPs.

The extension of (7) to the case where the transition matrix
depends arbitrarily on any parameter u (denoted as Pu with P0 ¼ P)
is straightforward. Replacing DP in (7) with ðdPu=duÞju¼0, we have

dhu

du
ju¼0 ¼ p

dPu

du
ju¼0g;

where p and g are associated with P ¼ P0 (i.e., u ¼ 0). Therefore,
without loss of generality, we need only to discuss the linear case
(7).

Now, suppose that policy Ph has a different reward function f h.
Let DP ¼ Ph � Pd and D f ¼ f h � f d. Define Pd ¼ Pd þ dðDPÞ and
f d ¼ f d þ dðD f Þ, 0 � d � 1. Then the directional derivative from
ðP; f Þ to ðPd; f dÞ is

dhd

dd
jd¼0 ¼ pd½ðDPÞgd þD f �: (8)

The potentials gðiÞ, i ¼ 1;2; . . . ; S, can be obtained by solving the
Poisson equation (6), analytically or numerically, or can be
estimated based on a sample path by using (5). The expectation
can be approximated by average or by applying stochastic
approximation on a sample path (Bertsekas, 1995, 2001, 2007;
Bertsekas & Tsitsiklis, 1996; Cao, 2007). The performance
derivatives can then be calculated by (8).

Furthermore, the derivatives (i.e., the term pdDPgd in (7)) can
be estimated as a whole without estimating each potential for
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every state (cf. we may estimate hd ¼ pd f as a whole without
estimating each component pdðiÞ for every i2S). This can be
implemented on line without disturbing the operation of a system;
efficient algorithms have been developed (Baxter & Bartlett, 2001;
Baxter, Bartlett, & Weaver, 2001; Cao, 2005, 2007; Cao & Wan,
1998).

In summary, there are a number of advantages of PA: It can
estimate performance derivatives along all directions based on a
single sample path of a Markov chain. It can estimate derivatives
along any direction on line as a whole, and the ‘‘curse of
dimensionality’’ issue does not appear; furthermore, the
approach applies to any policy space or subspace with
constraints. However, PA-based approaches may reach a local
optimal point.

In addition to PA of Markov systems, efficient algorithms were
developed by PA principles for queueing systems (Cao, 1994; Ho &
Cao, 1991); these algorithms utilize the special ‘‘coupling’’ feature
among servers to determine the effect of a single perturbation.
Recently, fluid model of queueing systems was introduced into PA,
which provides good approximations (Cassandras, Sun, Panayio-
tou, & Wardi, 2003).

4.3. Performance differences

The gradient method does not apply to discrete policy spaces.
For discrete policy spaces, we need to compare the performance of
different policies that may not be close to each other.

The fundamental limitation C implies more than it seems on
the surface. It says that all we can do in terms of optimization is
based on a simple comparison of two policies. In other words, if
we cannot compare two policies, then we have no way to do
optimization. Furthermore, in many cases, we may even
emphasize that the performance difference formula contains
almost all the information about what we can do in performance
optimization. This simple philosophical point guides the
direction of our research in optimization: We should always

start with developing a formula for the difference of the

performance measure of any two policies and then to investigate

what we can learn from this performance difference formula. In
many cases, it is not difficult to derive such a difference formula
for a particular problem, yet the insights provided and the
results thus obtained can be remarkable.

How much we can get from the performance difference formula
depends on the system structure. So far, the best result is that with
some assumptions such as the independent-action assumption in
Markov decision processes, by analyzing the system’s behavior
under one policy, we can find another policy that performs better,
if such a policy exists (see the discussion below).

We may summarize the above discussion by the following
statement:

Statement B:

With some assumptions on the system structure, by studying
the behavior of a system under one policy, we can find a policy
that performs better, if such a policy exists.

4.4. Markov decision processes

It has been shown (Cao, 2007) that the MDP theory (see, e.g.,
(Bertsekas, 1995, 2001, 2007; Puterman, 1994; Veinott, 1969)) can
be developed based on the performance difference formula. MDPs
use the Markov model and policies defined in Section 2; in
addition, it assumes that the action at different states dðiÞ, i2S, can
be chosen independently (the independent-action assumption). For
any policy d, we have transition probability matrix Pd, reward
vector f d, steady-state probability pd, and performance hd. The
goal of MDPs is to find a policy bd such that its performance is the
best among all policies.

Policy iteration is one of the main solutions to MDPs. Its basic
principle is the same as Statement B: With the independent-action

assumption, by analyzing the behavior of the system under one policy,

we can always find another policy under which the system performs

better, if such a policy exists. This can be shown by following the
performance difference formula.

Consider two policies ðPd; f dÞ and ðPh; f hÞ with steady-state
probabilities pd, ph and performance hd and hh, respectively. Let gd

be the potential of policy ðPd; f dÞ. Left-multiplying both side of the
Poisson equation (6)ðI � PdÞgd þ hde ¼ f d with ph, we obtain the
performance difference formula

hh � hd ¼ ph½ðDPÞgd þD f �; (9)

where DP ¼ Ph � Pd and D f ¼ f h � f d. This equation can be also
derived with a sample-path-based argument intuitively by first
principles (Cao, 2007). The sample-path-based argument provides
a clear intuition that can be extended to problems where the
Poisson equation does not exist.

In (8), both pd and gd can be obtained from analyzing
the system with policy ðPd; f dÞ. Thus, from (8), we can obtain
the directional derivatives at Pd along any given direction DP ¼
Ph � Pd without analyzing the system under ðPh; f hÞ. However, to
obtain the performance difference with (9), we need to solve
for both ph and gd. This is the same as a comparison in
exhaustive search because we need to analyze both systems to
compare the performance of the two systems. Thus, (9) saves
nothing if we wish to get the exact value of the difference
hd � hh.

Fortunately, all is not lost. The particular factorized form of (9)
can be utilized. In fact, the updating procedure in policy iteration is
based on (9) and the following simple fact: ph >0 (i.e., phðiÞ>0 for
all i2S) for any ergodic Ph. Thus, for any given Pd, if we can find a Ph

such that ðDPÞgd þD f ¼ ðPhgd þ f hÞ � ðPdgd þ f dÞ�0 with at
least one positive component, then hh >hd. In particular, there
is no need to solve for ph in the procedure. Conventionally, in state i

we choose the action that maximizes the ith component of Phgd þ
f h as hðiÞ; i.e., we choose hðiÞ, i2S, such that

XS

j¼1

phðiÞð jjiÞgdð jÞ þ f ði;hðiÞÞ

¼max
XS

j¼1

pað jjiÞgdð jÞ þ f ði;aÞ : a2AðiÞ

8<:
9=;;

(10)

where AðiÞ	A is the set of actions available for state i2S. In
words, we choose the action such that the expected potential after
the next transition with this action is maximized. Let h be the
policy determined by (10). We have hh >hd if Pd is not the optimal
policy; however, h may not be optimal even if (10) holds.

The above discussion leads to the following policy iteration
algorithm:

(1) Guess an initial policy d0, set k ¼ 0.
(2) (Policy evaluation) Obtain the potential gdk by solving the

Poisson equation ðI � Pdk Þgdk þ hdk e ¼ f dk .
(3) (Policy improvement) Choose

dkþ1 2 arg max d2D½ f d þ Pdgdk �
n o

; (11)

component-wisely (i.e., to determine an action for each state).

If in state i, action dkðiÞ attains the maximum, set dkþ1ðiÞ ¼ dkðiÞ.
(4) If dkþ1 ¼ dk, stop; otherwise, set k :¼ kþ 1 and go to step 2.



Fig. 5. Policy iteration for n th-bias and blackwell optimal policies.
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In the algorithm, we need to choose actions independently at
each state. It is easy to prove that this algorithm outputs an optimal
policy (Puterman, 1994; Cao, 2007). The fundamental quantity in
(9) is the performance potential. From a learning point of view, we
need to analyze the behavior of a system under one policy to
‘‘learn’’ its potential of each state to determine how to make the
system perform better. Potential is equivalent to the bias or the
relative cost in the MDP literature, up to an additive constant. We
use the word ‘‘potential’’ because of its physical meaning. Roughly
speaking, the performance potential of a state i, i2S, measures the
‘‘potential’’ contribution of the state i to the system performance;
the difference between the potentials of two states measures the
effect of a jump (perturbation) from one state to another state on
the system performance; and to improve the performance, in any
state we should choose the action that leads to the best expected
potential with this action (i.e., the largest Phgd þ f h in (9)).

The optimality equation follows easily from the performance
difference formula (9): a policy bd is optimal if and only if

h
bdeþ g

bd ¼max d2Df f d þ Pdg
bdg: (12)

The only difference between (9) and (8) is that pd in (8) is
replaced by ph in (9). This leads to an interesting observation:
policy iteration in MDPs in fact chooses the policy with the steepest

directional derivative as the policy in the next iteration.

4.5. A complete theory for MDPs with the long-run average criteria

As shown above, with the performance difference formula (9),
the policy iteration procedure for ergodic chains can be derived
simply and intuitively. This sensitivity-based approach also
applies to multi-chain Markov systems, systems with absorbing
states, and problems with other performance criteria such as the
discounted performance and even the bias. The idea that many
results can be derived simply from the performance difference
formulas is further verified by the recently proposed approach
with the n th-bias optimality (Cao, 2007). Essentially, starting
with the performance difference formulas, we can develop a
simple and direct approach to derive the results that are
equivalent to the sensitive discount optimality for multi-chain
Markov systems with long-run average criteria (Puterman, 1994;
Veinott, 1969); and no discounting is needed. In this approach, a
new concept called the n th-bias (and the n th bias optimality) is
introduced.

The main results about the n th-bias optimality are as follows.
The transition probability matrix of a multi-chain takes the
following canonical form:

P ¼

P1 0 0 
 
 
 
 0
0 P2 0 
 
 
 
 0

 
 
 
 
 
 
 

0 0 0 
 
 
 Pm 0
R1 R2 R3 
 
 
 Rm Rmþ1

266664
377775; (13)

where P1; P2; . . . ; Pm are all irreducible square matrices. This form
indicates that the state space of a Markov chain consists of m closed
subsets of recurrent states; each subset corresponds to one of the
sub-matrices Pk, k ¼ 1;2; . . . ;m. The states corresponding to the
last row, R1;R2; . . . ;Rmþ1, are transient.

In this formulation, a policy is still denoted as ðP; f Þ, where f is
the reward function. The long-run average reward is called the 0th
bias, which is defined as a vector g0 with components

g0ðiÞ :¼ hðiÞ ¼ lim
L!1

1

L
E
XL�1

l¼0

f ðXlÞjX0 ¼ i

( )
; i2S;
where fXl; l ¼ 0;1; . . . g is a sample path of the Markov chain with P.
The performance depends on the initial state i. The bias or the 1st

bias is denoted as g1 :¼ g, its ith component is

g1ðiÞ :¼ gðiÞ ¼
X1
l¼0

E f ðXlÞ � hðiÞjX0 ¼ i½ �:

The n th bias, n>1, of policy ðP; f Þ is defined as a vector gn whose
ith component is

gnðiÞ ¼ �
X1
l¼0

E½gn�1ðXlÞjX0 ¼ i�; n>1:

The n th bias, n�0, associated with a policy d2D (with (Pd; f d)) is
denoted as gd

n .
A policy bd is said to be gain (0th bias) optimal if

g
bd
0 � gd

0 ; for all d2D:

LetD0 be the set of all gain-optimal policies. A policy bd is said to be
n th-bias optimal, n>0, if bd2Dn�1 and

g
bd
n � gd

n ; for all d2Dn�1; n>0:

Let Dn be the set of all n th-bias optimal policies in Dn�1, n>0.
The sets D, D0, D1,. . ., are illustrated in Fig. 5. Our goal is to find

an n th bias optimal policy in Dn, n ¼ 0;1; . . .. Following the
sensitivity-based view, we start with the performance difference
formulas for any two n th bias optimal policies, n ¼ 0;1; . . .; these
formulas can be easily derived. They are (Cao, 2007)

gh
0 � gd

0 ¼ ðP
hÞ
�
½ð f h þ Phgd

1Þ � ð f d þ Pdgd
1Þ� þ ½ðP

hÞ
�
� I�gd

0 ; (14)

where for any policy P, we define

P� ¼ lim
L!1

1

L

XL�1

l¼0

Pl:

If gh
0 ¼ gd

0, then

gh
1 � gd

1 ¼ ðP
hÞ
�
ðPh � PdÞgd

2

þ
X1
k¼0

fðPhÞ
k
½ð f h þ Phgd

1Þ � ð f d þ Pdgd
1Þ�g:

(15)
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If gh
n ¼ gd

n for a particular n�1, then

gh
nþ1 � gd

nþ1 ¼ ðPhÞ
�
ðPh � PdÞgd

nþ2

þ
X1
k¼0

fðPhÞ
k
ðPh � PdÞgd

nþ1g:
(16)

Indeed, all the following results can be obtained by simply
exploring and manipulating the special structures of these
performance difference formulas. For details, see (Cao, 2007)

(1) Choose any policy d0 2D as the initial policy. Applying the
policy iteration algorithm, we may obtain a gain (0th bias)
optimal policy bd0 2D0.

(2) Staring from any n th bias optimal policy bdn 2Dn, n ¼ 0;1 . . .,
applying a similar policy iteration algorithm we may obtain an
ðnþ 1Þ th bias optimal policy bdnþ1 2Dnþ1.

(3) If a policy is S th bias optimal, with S being the number
of states, it is also n th bias optimal for all n> S; i.e.,
DS ¼ DSþ1 ¼ DSþ2 ¼ . . ..

(4) An S th bias optimal policy is a Blackwell optimal policy.
(5) The optimality equations for n th bias optimal polices, both

necessary and sufficient, can be derived from the performance
difference formulas (14)–(16).

The sensitivity-based view provides a unified approach to all
these MDP-types of optimization problems; and the basic principle
behind this approach is surprisingly simple and clear: all these
results can be derived simply by a comparison of the performance
of any two policies.

4.6. Reinforcement learning (RL)

The fundamental model for systems in RL is also the
Markov chain. While MDP is basically an analytical approach,
which assumes that all the parameters are known, RL is a
simulation-based (or in some cases, on-line) learning approach.
Simulation produces a sample path of a system and can be carried
out by following the system structure (e.g., the queueing structure)
with out knowing the state transition probability matrix.

If we know enough information about the transition prob-
abilities to implement policy iteration with potentials, we need
only to ‘‘learn’’, or to estimate, the potentials gdk for all the states
from a sample path of the system under one policy dk and then
update the policies iteratively according to (11). In this sense, any
estimation-based or on-line approach for estimating potentials
belongs to RL. In this regard, many efficient RL algorithms, such as
TD(l) (Bertsekas, 1995, 2001, 2007; Sutton & Barto, 1998), and
approximate approaches, such as neuro-dynamic programming

(Bertsekas, 1995, 2001, 2007; Bertsekas & Tsitsiklis, 1996), have
been developed.

If we do not know exactly the transition probabilities, we
cannot implement policy iteration even if we know the potentials.
In this case, we need to learn the system behavior for all state-
action pairs. Basically, in state i, we need to try all the actions in
AðiÞ in order to get enough information for comparison. Therefore,
this type of RL approach (e.g., Q-learning) requires a sample path
that visits all the state-action pairs.

In such approaches, we consider a variant of the potential gdðiÞ,
called the Q-factor of a state-action pair ði;aÞ, denoted as Qdði;aÞ for
any i2S and a2AðiÞ. Qdði;aÞ is defined as the average potential of
state i if action a2AðiÞ (not necessarily dðiÞ) is taken at a particular
time and the rest of the Markov chain is run under a policy d:

Qdði;aÞ ¼
XS

j¼1

pað jjiÞgdð jÞ þ f ði;aÞ � hd; a2AðiÞ:
With this definition, (10) becomes

Qdði;hðiÞÞ ¼max a2AðiÞfQdði;aÞg

Thus, we may implement policy iteration by choosing the action
that leads to the largest Qdði;aÞ in state i as hðiÞ in the improved
policy h.

Sample-path-based algorithms may be developed to estimate
Q-factors. This leads to the Q-factor-based policy iteration, which
can be used when the Markov chain’s transition probability matrix
is unknown. This approach in fact estimates the combined effect of
the transition probabilities pað jjiÞ and the potentials gdð jÞ together
without estimating these items separately.

In the approach, we need a sample path that visits all the
state-action pairs. However, with a deterministic policy d, only
the state-action pairs ði; dðiÞÞ, i2S, are visited. This issue may be
resolved by introducing, with a small probability, other actions
into the system as follows: in any state i, we apply action dðiÞ
with probability 1� e and any other action a2AðiÞ randomly
with an equal probability e=ðjAðiÞj � 1Þ, 0< e< <1, where jAðiÞj
denotes the number of actions in set AðiÞ. We denote such a
policy as de.

In recent years, performance gradient-based optimization has
attracted more and more attention from the RL community.
Sample-path-based algorithms can be developed for performance
gradients (Baxter & Bartlett, 2001; Baxter et al., 2001; Cao, 2005,
2007; Cao & Wan, 1998) these algorithms are based on the
performance derivative formula (7).

In summary, the RL approach focuses on algorithms estimating
potentials and its variant Q-factors, or the potentials and Q-factors
for optimal policies, and the performance gradients.

4.7. Identification and adaptive control

Identification and adaptive control are well-developed areas. In
adaptive control theory, system dynamics are modeled by
differential or difference equations that determine the system
structure. With such a mathematical model, elegant analysis can
be carried out, leading to widely deployed adaptive control
algorithms. When the system parameters are unknown and/or
time varying, they need to be estimated from observations (this is
also called system identification), and performance optimization
can be achieved by using the adaptive control algorithms with the
parameters estimated from observations.

A stochastic system under control, although it has its special
structure, can be generally modeled as a Markov process, with the
control variables viewed as actions. Consider a (discrete-time)
linear stochastic control system modeled as

Xlþ1 ¼ AXl þ Bul þ jl; l ¼ 0;1; . . . ; (17)

where Xl is the system state at time l, which is usually a random
vector, ul is a vector of control variables, jl is a vector of noise, and A

and B are matrices with appropriate dimensions. Apparently, X ¼
fXl; l ¼ 0;1; . . . g is a Markov chain and ul can be viewed as the
actions that determine the transition probabilities of X, based on
the probability distribution function of jl. The problem is how to
choose ul, l ¼ 0;1 . . . ; such that a performance measure is
maximized.

Principally, such a problem is amenable to either MDPs, RL, or
PA. For example, we can apply policy iteration to find the optimal
feedback control policy ul ¼ dðXlÞ. Indeed, for the linear stochastic
control problem in (17) with a quadratic reward function and a
long-run average performance, we can derive, with policy
iteration, the famous Riccati optimality equation for optimal
policies (Cao, 2007).
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When the system parameters are unknown, the basic quantities
such as potentials and Q-factors have to be learned from a sample
path with various RL algorithms. When the system parameters
vary with a slow time scale, the policies have to be updated
frequently to keep up with the parameter changes. In this sense,
the on-line policy iteration, RL, or PA-based optimization are
equivalent to system identification and adaptive control.

Another feature is that with policy iteration, we estimate the
potentials and Q-factors, and the system parameters may not need
to be estimated. This corresponds to the direct adaptive control in
the literature, where the parameters for the optimal control law,
instead of those for the system, are identified (Åström &
Wittenmark, 1989).

One advantage of the on-line or sample-path-based approach is
that, from the learning point of view, principally it applies to both
linear and non-linear systems in the same way. The system
structure affects only the transition probability matrix. However,
determining the transition probability matrix for different control
parameters might be a difficult task. There are many works in this
direction (Werbos, 1992).

4.8. Continuous-time and continuous-state systems

So far we have shown that the sensitivity-based view provides a
unified framework for different disciplines in learning and
optimization of stochastic systems, and we mainly discussed the
discrete event dynamic systems with a discrete-time and discrete-
state model. Our recent on-going research shows that this
sensitivity-based view also works well for the stochastic control
problem with continuous-time and continuous-state (CTCS)
systems, and even for the singular stochastic control problem
that models the portfolio management problem in financial
engineering.

The simplest model for CTCS dynamic system is by the
stochastic differential equation

dXðtÞ ¼ aðXðtÞÞdt þ sðXðtÞÞdWðtÞ; (18)

where WðtÞ is a standard Brownian motion, and XðtÞ is a CTCS
Markov process defined on t 2 ½0;1Þ and state space R (the space
of real numbers).

In general, we consider a continuous-time Markov process X ¼
fXðtÞ; t 2 ½0;1Þgwith a continuous state space S ¼ Rn. Let B be the
s-field of Rn containing all the Lebesgue measurable sets. Let the
system state at time t be XðtÞ ¼ x2Rn. The probability that the
state at time t0 � t, Xðt0Þ, lies in a set B2B can be denoted as a set
function Pt;t0 ðBjxÞ with Pt;t0 ðRnjxÞ ¼

R
Rn Pt;t0 ðdyjxÞ ¼ 1 for all x2Rn.

For any t2 ½0;1Þ and t0 � t, Pt;t0 ðBjxÞ is called a state transition

probability function, which is a function from Rn � B to ½0;1�
satisfying the following conditions: for any given x2Rn, Pt;t0 ðBjxÞ is
a probability measure on B, and for any B2B, Pt;t0 ðBjxÞ is a Lebesgue
measurable function. Let Dt ¼ t0 � t�0. We write
Pt;t0 ðBjxÞ ¼ Pt;tþDtðBjxÞ. For time-homogenous systems, Pt;tþDtðBjxÞ
is independent of t and we denote Pt;tþDtðBjxÞ :¼ PDtðBjxÞ.

With this definition, any Lebesgue measurable set is also
measurable with any PDtðBjxÞ for any x2Rn. Without specifically
mentioning, we will assume that all the sets and the functions
discussed in this paper are Lebesgue measurable.

Let PDtðBjxÞ be a transition probability function and hðxÞ be any
function. We define a linear (right) operator on the space of
integrable functions, PDt: h! PDth, as follows:

ðPDthÞðxÞ :¼
Z

Rn
hðyÞPDtðdyjxÞ:

If there is no confusion, we will use a generic notation ‘‘P’’ for
operators and the corresponding transition probability functions.
Define eðxÞ ¼ 1 for all x2Rn. For any transition function P, we
have ðPeÞðxÞ ¼ 1 for all x2Rn. Thus, we can write Pe ¼ e. Define the
n-dimensional identity function I:

IðBjxÞ ¼ 1 if x2B;
0 otherwise:

�
The corresponding operator I is the identity operator: ðIhÞðxÞ ¼ hðxÞ,
x2Rn, for any function h; and we have PDt¼0ðBjxÞ ¼ IðBjxÞ for any
x2Rn.

For any probability measure nðBÞ on B, we define another
probability measure, denoted as nP, by

ðnPÞðBÞ :¼
Z
Rn

nðdxÞPðBjxÞ; B2B:

For any probability measure nðBÞ, we use en :¼ eðxÞnðBÞ to
denote a transition probability function which equals nðBÞ for all
x2Rn. A probability measure pðBÞ is called the steady-state
probability measure of the transition function PDtðBjxÞ, or its
corresponding Markov process, if for all x2Rn and B2B
lim

Dt!1
PDt!1ðBjxÞ ¼ eðxÞpðBÞ:

The long-run average performance is defined as

hðxÞ ¼ lim
T!1

1

T
E

Z T

0
f ðXðtÞÞdtjXð0Þ ¼ x

� �
;

where f is the reward function. The performance potential is
defined as

gðxÞ :¼ lim
T!1

E

Z T

0
½ f ðXðtÞÞ � h�dtjXð0Þ ¼ x

� �
:

From this, we may derive the Poisson equation

�AgðxÞ þ hðxÞ ¼ f ðxÞ;

where

A :¼ lim
Dt!0

PDt � I

Dt
� @Pt

@t
jt¼0

is called the infinitesimal generator of the Markov process.
It is well known that for the stochastic process in (18) the

infinitesimal generator A has the following property: for any twice
differentiable function f ðxÞ, it holds

A f ðxÞ ¼ aðxÞ @ f

@x
ðxÞ þ 1

2
s2ðxÞ @

2
f

@x2
ðxÞ: (19)

We have pA ¼ 0, if the steady-state probability measure p exists.
From (19), we can easily verify that for the stochastic process in
(18) the steady-state probability density function pðxÞ satisfies the
following Fokker–Planck equation:

� @
@x
½aðxÞpðxÞ� þ 1

2

@2

@x2
½s2ðxÞpðxÞ� ¼ 0: (20)

Now, we consider two policies and let fA0; f 0g and fA; fg be the
corresponding infinitesimal generators and reward functions, and h0

and h be their long-run average performance, g be the potential of
the policy fA; fg, and p0 be the steady-state probability measure of
fA0; f 0g. We may easily derive the performance difference formula

h0 � h ¼ p0½ð f 0 þ A0gÞ � ð f þ AgÞ�: (21)

Policy iteration algorithms for an optimal policy can be derived
from (21). In addition, we may establish the optimality equation as

max u2UfAugbu þ f ug ¼ A
bugbu þ f

bu ¼ hbu; (22)



Fig. 7. A map of the learning and optimization world (PA: perturbation analysis,

MDP: Markov decision process, RL: reinforcement learning, Q-L: Q-learning, I&AC:

identification and adaptive control, and NDP: neuro-dynamic programming).
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in which uðxÞ (which controls AðBjxÞ and f ðxÞ) denote a policy, U

denote the policy space, and bu denote an optimal policy. (22) takes
the same form as (12). For more details, see a forthcoming paper
Cao (2009). Our recent research also indicates that this sensitivity-
based approach also applies to the singular stochastic control
problems appeared in the portfolio management problem in
financial engineering.

Therefore, the sensitivity based view provides a unified
framework for both DEDS and CTCS systems. In addition, this
sensitivity-based view will bring some new insight to the CTCS
problems. For example, the gradient-based learning and event-
based optimization (see the discussion in the next section) that
were orginally developed for DEDS may lead to new research topics
for performance optimization of CTCS systems.

4.9. A sensitivity-based view of learning and optimization

In summary, the fundamental limitations of learning and
optimization sketch out the directions of developing efficient and
widely applicable learning and optimization approaches; these
approaches may require as little information about the system
structure as possible. There are two feasible directions: First,
because we can only learn from one policy at a time, we may at most
obtain local (in the neighborhood of a policy) information in the
policy space; this observation leads to the approaches for estimating
performance gradients or derivatives. Second, because we can only
compare two policies at a time, we may start with the performance
difference formulas of any two policies in developing learning and
optimization methods. This observation leads to policy-iteration
based approaches and optimality equations. In short, these
directions can be characterized by performance derivatives and
performance differences, respectively. We say that we take a
sensitivity-based view in these approaches (Cao, 2007).

These two directions lead to two types of approaches. The first
type of approach is based on perturbation analysis (PA). With PA, we
can obtain the performance derivatives with respect to the
system’s parameters. We can develop gradient-based optimization
approaches using PA. This approach applies to problems where
policy spaces are parameterized with continuous parameters. The
basic idea is shown in Fig. 6 A. We first set the parameter u to be any
value and determine the performance gradient at u with PA. Then
we change u slightly along the direction of the gradient to u þDu
and determine the gradient again at this u þDu. We repeat this
procedure until reaching a point bu at which the performance
gradient is zero; this is a local optimal point. The performance
gradient can be calculated analytically, or estimated from a sample
path. Because the gradient estimates contain noise, stochastic
approximation techniques can be used in the optimization
procedure (Marbach & Tsitsiklis, 2001).

The second type of learning and optimization approach is based
on the comparison of the system performance measures of two
Fig. 6. Two types of optimization approaches.
different policies. The approach strongly depends on the system
structure. A well-known result in this direction is: When the
actions taken in different states are independent, it may be
possible to use the information learned by observing or analyzing
the system behavior under the current policy to determine a policy
under which the performance of the system is better, if such a
policy exists. This leads to the policy iteration procedure shown in
Fig. 6 B. We start with any policy d0, learn from its behavior and
find a better policy d1, then learn from d1 and find a better policy d2,
and so on until the best policy bd is reached.

4.10. A map of the learning and optimization world

With a sensitivity point of view, the world of learning and
optimization can be illustrated by the map shown in Fig. 7. The
central piece of the map is the performance potential. Various RL
methods yield sample-path-based estimates for potentials g, or
their variant Q-factors, or their values for the optimal policy; the
potentials are used as building blocks in constructing the two
performance sensitivity formulas; these two formulas form the
basis for gradient-based (PA-type) and policy-iteration-type
optimization approaches; RL methods can also be developed for
directly estimating the performance gradients on sample paths;
stochastic approximation techniques can be used to derive
efficient optimization algorithms with the sample-path-based
gradient estimates, and to derive on-line policy iteration algo-
rithms. Both the gradient-based approaches and policy iteration
can be applied to system identification and adaptive control (I&AC)
problems, even with non-linear systems. This same map also
applies to the CTCS systems.

5. Event-based optimization and potential aggregation

We have introduced a sensitivity-based view of learning and
optimization. In the framework, systems are modeled by Markov
processes. However, it is well known that the Markov model
suffers from the following disadvantages:

(1) The state space and the policy space are too large for most
problems.



Fig. 9. The state transition diagram of the random walk.
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(2) The MDP policy iteration theory requires the independent
action assumption.

(3) The model does not utilize any special feature of the system.

Now, we show that with the sensitivity-based view, we can
develop new learning and optimization approaches that utilize the
special features of the systems to overcome or alleviate the above
difficulties.

One of such approaches is the event-based optimization, which
can be applied to systems where the actions can be taken only
when some events happen.

5.1. The main features of the event-based approach

We first give a simple example to illustrate the ideas.
Example 1: A robot takes a random walk in a five-room maze

shown in Fig. 8. The numbers in the parenthesis indicate the
rewards that the robot gets in each room. The robot moves from
room 0 to the two top rooms 1 or 2 with probability p, and to the
two bottom rooms 3 or 4 with probability q ¼ 1� p. There is a
traffic light in each passage leading from room 0 to the top or the
bottom rooms; if it is red, the robot moves to the left rooms 1 (if it
moves to the top) or 3 (if it moves to the bottom), and if it is green,
the robot moves to the right room 2 or 4. We may control the
probability of the lights being red, a, or being green, 1� a. We
assume that the two traffic lights must be in the same color; i.e., a
is the same for both lights. The system can be modeled by a Markov
chain. Fig. 9 illustrates a part of a system’s state transition diagram,
and Fig. 10 lists the transition probabilities of state 0 when a
particular a is chosen.

Let us analyze the structure of the transition diagram. From
Fig. 9, if the system moves from state 0 to the two top states, 1 and
2, we need to take the biggest value a ¼ 1 to reach state 1 with
probability 1 and get a reward of 100; on the contrary, if the system
moves from state 0 to the two bottom states, 3 and 4, we need to
take the smallest value a ¼ 0 to reach state 4 with probability 1
and get a reward of 100. Thus, at state 0, a big a is good for the top,
but bad for the bottom, and vice versa. When p ¼ q ¼ 0:5, for any a
the average reward at the next step is zero. Therefore, the state-
based optimal policy may not be very good.

However, the situation improves significantly if we know a bit
of information about the state transition. From the structure
Fig. 8. Random walk of a robot.
shown in Fig. 9, the top two transitions, or the bottom two
transitions, have similar structural properties. This structure can
be captured by aggregating these transitions together and defining
two events:

a :¼ fh0;1i; h0;2ig and b :¼ fh0;3i; h0;4ig;

where hi; ji denotes a transition from state i to state j, i; j2S. These
two sets of state transitions aggregated into two events are shown
as the two ovals, a and b, in Fig. 9; they are also illustrated by the
two thick boxes in Fig. 10.

With this formulation, if event a occurs, the system moves to
state 1 with probability a and to state 2 with probability 1� a; and
if event b occurs, the system moves to state 3 with probability a
and to state 4 with probability 1� a. In the event-based approach,
we assume that we can observe the events, not the states; i.e., at
any time instant l, we can observe whether hXl;Xlþ1i 2 a, or
hXl;Xlþ1i 2 b, occurs. We need to determine an event-based policy
that specifies the probability a given event a or b: aa ¼ dðaÞ and
ab ¼ dðbÞ.

From the reward structure shown in Fig. 9, we may design a
myopic policy: if a occurs, we choose the largest value, i.e., aa ¼ 1,
which leads to state 1 and the reward at the next step is 100; and
similarly, if b occurs, we choose the smallest value, i.e., ab ¼ 0, and
the state at the next step is 4 and the reward is also 100. In this
example, this myopic event-based policy is better than the optimal
state-based MDP policy.

This example shows that an optimal event-based policy may be
better than an optimal state-based policy; or knowing the event is
better than knowing the state. This is because knowing the event
implies knowing something about the current transition, which,
strictly speaking, contains information about the future (the next
state). In addition, we can see that a history-independent event-
based policy is good enough in this example.

Many real-world systems fit the event-based formulation.
Example 2: (Admission control) Consider a communication

system modeled as a variant of an open network shown in Fig. 11.
Packets are called customers in queueing terminology. The
network consists of M servers; the customers’ service times at
server i are identically and independently distributed with an
exponential distribution with mean 1=mi, i ¼ 1;2; . . . ;M. After the
completion of its service at server i, a customer will join the queue
Fig. 10. The transition probabilities of state 0 when action a is taken in Example 1.



Fig. 11. The admission control problem.
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at server j with probability qi; j, and will leave the network with
probability qi;0, i; j ¼ 1;2; . . . ;M. We have

PM
j¼0 qi; j ¼ 1,

i ¼ 1;2; . . . ;M. Let ni be the number of customers at server i,
and n ¼

PM
i¼1 ni be the population of the system.

The customers arrive at the network in a Poisson process with
rate l. If an arriving customer finds n customers in the network, the
customer will be admitted to the system with probability aðnÞ and
will be rejected and leave the system with probability 1� aðnÞ,
0 � aðnÞ � 1. We assume that the system has a capacity of N; i.e.,
aðNÞ ¼ 0, or an arriving customer finding N customers in the
system will be dropped. An admitted customer will join queue i

with probability q0;i, i ¼ 1;2; . . . ;M,
PM

i¼1 q0;i ¼ 1.
The system can be modeled as a discrete-time Markov chain

embedded at the transition times. The system state is
n ¼ ðn1;n2; . . . ;nMÞ. The optimization problem is to find the best
admission probabilities aðnÞ, n ¼ 0;1; . . . ;N � 1, such that the
system performance (discounted, long-run average, etc.) is
optimized. In this problem, an action is taken only when a
customer arrives at the network; we call it an event of a customer
arrival (which can be precisely defined as a set of transitions).
When a customer arrives, the system can be in many different
states n’s. Thus, the problem is not a standard MDP, since in this
problem an action may affect the transition probabilities of many
states. In addition, the decision depends on events, rather than on
states.

With the sensitivity-based view, the solutions to the event-
based optimization problems can be derived from the performance
sensitivity formulas. It is easy to derive the performance difference
formula for the random walk example (with ‘‘0’’ denoting the
quantities for any other policy):

h0 � h ¼ p0ðaÞ½ða0a � aaÞgðaÞ� þ p0ðbÞ½ða0b � abÞgðbÞ�; (23)

where pðaÞ and pðbÞ are the steady-state probabilities of events a

and b, and

gðaÞ ¼ gð1Þ � gð2Þ; gðbÞ ¼ gð3Þ � gð4Þ; (24)

are the potentials of events a and b, which are aggregated from
potentials gð1Þ, gð2Þ, and gð3Þ, gð4Þ, respectively, according to the
structure of the problem.

For the admission control problem, we have

h0 � h ¼
XN�1

n¼0

p0ðnÞ½ða0ðnÞ � aðnÞÞ�dðnÞ; (25)

where pðnÞ is the steady-state probability of the event that a
customer arrives and finds a population of n, and (let
nþi ¼ ðn1; . . . ;ni þ 1; . . . nMÞ)

dðnÞ ¼ 1

pðnÞ
XM
i¼1

q0i

X
n1þ 


 þnM¼n

pðnÞgðnþiÞ
" #(

�
X

n1þ 


 þnM¼n

pðnÞgðnÞ
" #)

;

(26)

is the potential aggregated according to the event structure.
Policy iteration algorithms can be developed from (23) and (25).
Furthermore, performance derivative formulas can be easily
derived from (23) and (25); therefore, gradient-based optimization
algorithms can also be developed. The event-based potentials gðaÞ
and gðbÞ in (24) and dðnÞ in (26) can be estimated on a sample path
of the systems, and learning algorithms can be developed.

The number of events is usually much smaller than the number
of states. In the admission control problem, the number of states
grows exponentially with the system size N; however, the number
of events, N þ 1, is linear in the system size N.

In summary, the event-based approach has the following
advantages:

(1) Events may contain future information and an event-based
policy may perform better than state-based policies.

(2) The potentials of events are aggregated from potentials of states;
the number of event-based policies may be scale to the system
size, and thus the event-based approach may save computation.

(3) With an event-based policy, the same action is taken at
different states that correspond to the same event; thus, the
event-based approach applies to problems in which the
independent-action assumption does not hold.

The world of the event-based learning and optimization can be
described by a map similar to Fig. 7, in which the potentials g are
replaced by the aggregated potentials of the events, and the
performance difference and derivative formulas are replaced by
those for the event-based policies. From these formulas, gradient-
based approaches, and under some conditions (which are satisfied
by the two examples above, but not always so in general!) policy
iteration algorithms can be developed (Cao, 2007). The difference
and derivative formulas can be ‘‘constructed’’ on a sample path
with intuition by using potentials as building blocks (Cao, 2007).
Reinforcement learning and other algorithms can also developed.
Many of these topics require further study.

Many problems fit the event-based framework (a solution may
not be easy, though!). For example, in POMDP, we may define an
observation, or a sequence of observations, as an event. Other
examples including state and time aggregations, hierarchical
control (hybrid systems), options, and singular perturbation.
Different events can be defined to capture the special features
in these different problems. In this sense, the event-based
approach may provide a unified view for possible solutions to
these different problems (Cao, 2007).

6. Conclusion

We have shown that the world of learning and optimization of
stochastic dynamic systems can be built upon the two performance
sensitivity formulas. This sensitivity-based view provides a unified
framework for existing approaches for both discrete-time discrete-
state systems and continuous-time continuous-state systems,
including PA, MDPs, RL, and stochastic control. In addition, this
sensitivity-based view brings in new insights and leads to new
results such as the n th bias optimality, gradient-based learning, and
the time aggregation method. The derivations of these results, old or
new, are intuitive clear. The sensitivity-based view also points to
new research directions in the area of learning and optimization. For
example, the event-based optimization approach, which has many
advantages over the state-based approaches, may be developed with
this view. Much work needs to be done in that direction.
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