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Abstract—We study the structure of sample paths of Markov comparison as an original system and a perturbed one,
systems by using performance potentials as the fundamental respectively, and their sample paths the original path and
units. With a sample path-based approach, we show that per- e perturbed path, respectively. (For performance derivatives
formance sensitivities of Markov systems can be constructed by . . .
using performance potentials (or equivalently, perturbation re- with rgspect to a parametd, the or!g|nal system is Fhe
alization factors) as building blocks. We propose an intuitive ap- On€ with, and the perturbed one, with+ A¢.) The main
proach to derive, by first principles, formulas for performance ideas are as follows: Any change in system parameters or
derivatives and performance differences for two Markov chains.  even in system structure is reflected by “jumps” on the
These formulas are the basis for performance optimization of system’s sample path; a jump here refers to the case that
discrete event dynamic systems, including perturbation analysis, ’ . . ) .

Markov decision processes, and reinforcement learning. from the same sate, the erglnal path transits to stathile
the perturbed one transits to stgteThe effect of such a
I. INTRODUCTION single jump from: to j on the system performance can be

Recent research indicates that both perturbation analyé%e""surec,i by a quantlty calIgd_ realization faet@x j) Wh'Ch.
ualsg(j) — g(¢), whereg(i) is the performance potential

(PA) and Markoc decision processe (MDP) can be explaine%q

from a performance sensitivity point of view; the fundamenfit statei. Bothd(i, j) andg(i) can be estimated one sample

tal concept for both PA and MDP is the performance potentiéﬂaths' Finally, the performance sensitivity, which reflects the
of a Markov process; both of them can be implemented usinfgreCt of the ghange In parameters and/pr strgcture, can be
a single sample path; and RL, K)( neuro-dynamic program- ecomposed into the effects of many single jumps on the
ming, etc, are sample-path-based efficient ways of estimatir?é
the performance potentials and other related quantities (e.a
Q-factors).

stem’s sample path and can be therefore constructed by
ing realization factors or potentials as building blocks.
“Using the above idea, we can derive performance sensi-
There are two types of sensitivities: When the syster%vIty fofm“'as by first pr|n0|ple§. This approach is common
i physics where researchers first formulate and solve prob-

parameters are continuous variables, the sensitivity is tIemS based on experimental evidence and then prove their
performance gradient (derivatives) with respect to the pz%- sults rigorousl Ipn this vein, we can view the sara le path
rameter(s); when the system is characterized by discre%% 9 Y- ' pie p

quantities (e.g., policies), the sensitivity is the performanc ased reasoning for constructing performance sensitivities as

difference between two systems (e.g., under two differen hought experiments”. In Section Il, we briefly review the

policies). With the Markov model, different systems Corre_concepts of realization factors and performance potentials.

spond to different transition probability matrices determine!ﬁ ai?:(e:tlggril\lgtbi\\,/evgef;ptﬁz ?::rselzdsvetlw;?ec?hnesnLé?:utrhbeegesrfzz-em
by different policies. Moreover, the parameters in a transition P y

matrix may depend on continuous parameters (e.g., in case original one are in the same state space. This is the

. L . “simplest case and serves as a template for more complicated
random policies). Performance optimization can be achieved"P P P

either by using the performance gradients combined Wit'f‘lases to fOHOW.' In Section Ill-B, we derive Fhe formula for
erformance difference of two Markov chains in the same

stochastic approximation methods, or by applying polic(g
iteration algorithms in MDP, which can be easily derive tate space. The results can be extended to the performance

. derivatives and differences for two Markov chains with one
from performance difference formulas.

) . L state space being a subspace of the other, and to the case
In previous studies [2], it is shown that the performancé : :
ST . where the two Markov chains have different state spaces
derivatives can be constructed by using performance poten:
. S : . - with a common subspace. These examples also serve to
tials as building blocks. In this paper, we will extend this.

. . : ... llustrate the flexibility in applying the “building block” idea
idea to general cases including the performance derivatives 2
: : 0 construct performance sensitivities: we need to focus our
and performance difference for two systems. Following the )
; attention to only the states that are affected by the parameter
terminology of PA, we refer to the two systems under

changes.
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performance derivatives and difference by using potentials a random numbeL* such thatX;. = X .. Therefore,
as the fundamental building blocks. This clearly illustratdy the strong Markov property, (3) becomes [2]

the physical meaning of potentials and their crucial role in _—

performance optimization of discrete event dynamic systems, .. . _ g XN — F(X X! — i X =
Using this approach, we can flexibly derive formulas for (i) Z(f( D)= X)) X =J, Xo =i,

ce . . =0
performance sensitivities which are otherwise not easy to

conceive. i,j=1,---,M. (4)
Il. PERTURBATION AND PERFORMANCE We haved(i, j) = —d(j, i), andd(i,i) = 0. d(i, j) can also
POTENTIALS be expressed with a single sample path. D&t = ¢ and

We first review some fundamental concepts and theifi(j) = min{n < 0,X, = j} be the first passage time to
related theory. Consider a Markov chain with transiStatej. Then

tion probability matrix P, which may depend on a pa- Li(j)—1
rameter 6 and therefore is sometimes denoted B&)). d(j,i) = E F(X)) — ]| Xo = i) (5)
let S = {1,2,---,M} be the state spaceX = (1) = B4 ; [F(X0) = m]|Xo =2}

{Xo, X1, -+, Xy, -} be a sample path, anfl: S — R be ) MXM o o
the cost function. We assunte is irreducible and aperiodic 1he matrixD € R » with d(i, j) as its(i, j)th element,

. o >
and hence ergodic. Define the steady-state probability asSyc@lled aperturbation realization matrixD™ = —D. From
row vectorr = (r(1), - w(M)), then (4), we can prove the Lyapunov equation

P =m, me =1, (1) D - PDP" = F, (6)
wheree = (1,1,---,1)T is an M-dimensional column whereF =ef” — fe”. It was shown thaD takes the form
vector whose all components are 1's, and the superscript D— ed” 7
“T” denotes transpose. We will use subscript to indicate the = T9c
dimension when it is needed (e.@.,E en in (l)) The where g = (g(l)’ - 7g(]M))T is called aperformance
performance measure is defined as potential (or simply potentia) vector andg(i) the potential

M at statei. The above equation is equivalent to
n = E:(f)=) w@)f(i)=nf - . N
; d(la]):g(])ig(l)a 7’?]:1’25"'aM'
L—-1 . .. .
o1 o 3 Since d(i,j) measures the difference of the performance
o ngriof Zf(Xl) _ngréo L’ wpl (2) starting from statesj and i, g(i) measures the average
=0 contribution to F;, of every visit to statei. Furthermore,
wheref = (f(1),---, f(M))" (we usef as both a function only the difference between differeni(i)s are important
and a vector) and for performance sensitivities. From (6), we can prove that
L—1 g satisfies the Poisson equation
Fr = X);
" ;f( l) (I—P)g+ne=f. )
the limit in (2) exists with probability one. The solution to (7) is only up to an additive constant; i.e.,

The central concept of optimization of DEDS is theif g satisfies (7), then for any constantg + ce also does.
perturbation realization The perturbatiorrealization factor Therefore, there must be one particular solution to (7) (still
d(i, j) measures the effect of a jump (or called a perturbatiorjenoted asg) such thatwrg = 5. For this solution, (7)
from statei to statej on F; and is defined as follows. becomes

Consider two independent Markov chaiKs= {X,,;n > 0} (I—P+emg=1f. (8)
andX’ = {X/;n > 0} with X, = i and X, = j; both of ) ) o .
o . / . _ g=(I—P+er)"tf, where(I — P+er)~!is called a
d(i,j) = lim E[Fy — FL|Xg = j, Xo=1i,] fundamental matrixWe have (up to an additive constant)
L—1 L—-1
= [lim E S (X)) = F(X0)) ’Xé =7, Xo= z] ; g(i) = lim B [F(X0) — ]| Xo = i}, (9)
=0 e 1=0
Z.uj:]w"'aM' (3)

which is finite for ergodic chains. It has been shown that the
If P is irreducible, then with probability one the two potential thus defined is an extension of tipotential from
sample paths oKX andX’ will merge together. That is, there 0 < a < 1 to a = 1.
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initial state Xy and with the same random sequerigel =
0,1,---, the two sample pathX’ = {XJ,X?{,---,} and
X = {Xy, X1, -, } are also very close. Suppose that with
the same values @f,,n = 0,1, ---,1—2, we haveX? = X,,,
forn=0,1,---,1—1. Furthermore, we assume that with the
same value of;_;, applying (10) toP determines thaX

Fig. 1. A Perturbation in a Sample Path of a Markov Chain and Its Effedransits to stateX; = 4, but applying (10) taP? determines

1. MARKOV CHAINS ON THE SAME STATE
SPACE

that X° transits to stateX) = j. We say that the perturbed
chain X° has a jump (or perturbation) fromto j at time
I. In Figure 1,X and X° are illustrated by the solid dots
and hollow circles, respectively; the perturbed p3th has

In this section, we derive, by applying first principles,@ jump from: to j atl = 4. After this time, the two sample
performance sensitivities to the case where the MarkdRaths differ until atL* (L* = 14 in Figure 1) they merge
chains under comparison are defined on the same state spiegether. Because is very small, we can assume that such
A brief intuitive explanation of the performance derivative inumps occur rarely; in particular, we can assume that between
Section III-A has appeared in [2], we provide here a moré(= 4 in Figure 1) and.* (= 14 in Figure 1) bothX andX’
detailed derivation, which motivates the study in subsequefB¥olve in the same way, i.e., according to the same transition

sections and makes the material in this paper complete.

A. Performance Derivatives

probability P. In other words, all the transitions on A-B-G-
C except the one fronX$ to X{ look the same as those
following transition matrixP. Apparently,d(i, j) measures

We first study the simplest problem, i.e., the performancée average affect of a jump frointo j on F in (2).
derivative, to introduce the idea. Given a Markov chain Now we consider a sample pak consisting ofL, L >>

with transition probability matrixP and state spacé =

1, transitions. Among these transitions, on the average there

{1,2,---, M}, let P’ be another irreducible transition matrix are Lm; transitions at which the system is at stateEach

on the same state spade P'e = 1, and setQ) = P’ — P,
Thus Qe = 0. For any0 < § < 1, define P’ = P + 6.

time whenX visits statei, because of the change fromto
P?, the perturbed patiX’ may have a jump, denoted such

We haveP’¢ = 1 and P? is also an irreducible transition @ jump as from states to statev. (i.e., after visitingi, X

matrix. The quantities associated wiff are denoted as’

transits tou and howeverX? transits tov). For convenience,

andn?, etc. We views as very small since we are concernedve allowu = v as a special case. We shall refeniet v as

about derivatives.

a “real jump”, which happens rarely. Denote the probability

Our approach is sample path based, so we first considefa jump fromu to v after visiting statei asb(i, u,v). We
the simulation of a Markov chain with transition probability have

matrix P. At any time! with X; = £, [ = 0,1,---, we
generate a uniformly distributed random variables [0, 1).
If
i—1 1
> p(k,n) <& <> plk,n), (10)
n=0 n=0
with p(k,0) = 0, then we setX;,; = i. For example,
consider the case whepgk,:) = 0.5, p(k,7) = 0.5, and

p(k,n) = 0 for all n # 4,5. If 0 < ¢ < 0.5, then the
Markov chain jumps into staté otherwise, it jumps into

state j. Suppose that the transition probabilities change tand >’

p'(k,i) = 0.5 -9, p'(k,j) = 0.5+ 4, andp'(k,n) = 0, if
n#1i,j. (.e,q(k,i) = -1, q(k,7) =1, andq(k,n) = 0 if

b(i,u,v) = p(i, u)p’ (i, v).
Thus,

b(i,u,v) :p‘s(i,v), (11)

M=

u=1

b(i, u,v) = p(i, u), 12)

M=

Il
_

v
wo_y b(i,u,v) = 1. On the average, in these tran-
sitions there ard 7 (i)b(i, u, v) jumps fromu to v following
visiting 7. Each has on the average an effectd6f, v) on

n #1i,7.) We use the same sequence of random varigble Fp .

to determine the transition of the Markov chain wikt{(d)
attimel, 1 =0,1,---, its sample path is denoted X&. We
observe that if it happens that € [0.5 — §,0.5), thenX
transits to state, but X? transits toj; however, becausé
is very small, most likely we havg & [0.5— 4, 0.5), in this
case botiX andX? transit in the same way.

Becaused is very small, P? is very close toP. Thus,

Because a real jump happens extremely rarely as 0,
the effects of two real jumps can be decoupled and therefore
considered separately. More precisely, consider Figure 2
which illustrates two jumps, one @t= 4 and the other at
[ = 11. After the first jump,X° merges withX atl = 7;
thus, the effects of the two jumps shown in Figure 2 can
be measured separately. Ads very small, the probability

the above discussion indicates that starting from the sartieat there is another jump occurs befdre- 7 is of order

4407



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2. The Effect of Two Rare Perturbations Are Decoupled

Fig. 3. The Effect of Two Perturbations

§2. Thus, on the average the total effect By due to the
change inP to P = P +6Q is
same state spac® = {1,2,---,M}. As we see in Section

M M
6 / . .
E(FS — Fr) — L (i)b(i, u, v)d(u, -A, for P° = P+ 6(P’ — P) with small ¢, if we use the
(FL =) ;E;l m(@)o w v)d(u, )} same random sequence for both chains, then the two sample
MM ' pathsX?® andX are very close, and the jumps happen rarely
N 5 i
= Z{ Z L7 (i)b(i, u, v)[g(v) — g(u)]} on X? and their effects can be treated separately. However,

when we considel”” = P + @, (6 = 1 and is not small),
two sample pathX’ andX are completely different and the

M M M
— Ll v b3, u, v effect of jumps may be coupled (after a jump X, another
; { ( ){Z[g( ); ( 2 jump may occur befor&X’ and X merge together.)

i=1 wu,v=1

v=1

M M To see how we can evaluate the effects of the two
> lg(w) > bl u, v)]}}. (13) “coupled” jumps onX’, we follow a sample path oKX’
u=1 v=1 As illustrated in Figure 3, we start the simulation at paint
From (11) and (12), (13) becomes Again, we use the same random sequence to generate both
X’ andX and the same terminology as for the performance
E(F} — Fr) derivative problem: Suppose that wigh ; from X; , the

%

M RPN Mo Markov chain transits to the same staf¢ = X; according
D La@{D [P’ (6, v)g()]} = > _[p(i,w)g(w)]} ¢ to both P’ and P, we say that the sample paXf does not
i=1 v=1 u=1 have a jump at. However, if with§,_,, X; ;| transits to

M M stateX; = ¢ according toP while it transits to stateX; = j
= Z Lr(i){> [p°(i,5) — p(i, )9 (j)] according toP’, we say that the perturbed chakl has a

i=1 J=1 jump (or a perturbation) fromto ; at timel. Figure 3 shows
= Lxa[P’ — Plg = LwQJdy. (14) such a jump at = 4.

Different from the performance derivative case discussed
in Section lll-A, if a jump happens oX’ at/, then because
(15) other jumps may happen befo’& and X merge together,
these two paths are usually completely different afterwards.
Finally, we get In Figure 3,A — B — I — C illustrates a sample path for
dn P,andA - B -G — E — F, a path forP’. Starting from
a5~ Qg (16) [ = 4, these two paths can be generated independently. Now,

5 1
7’ —n= lim —E(F; — F) = 1Qdg.
L—oo L

dé

Given P and P, g, D, and = can be estimated on a €t us follow the pathG — £ — H — F in the same way
single sample path; thus, the performance sensitivity aloryp What we did ford — B — G — ... We use the same
any directionQ = P’ — P can be obtained by estimating random sequence to determine whether jump occurs at each
these quantities on a single sample path. Algorithms can &P (i-e., whether the Ma/rkoy chains transits to the same sate
developed for estimating the performance sensitivity basétfcording to bothP> and P'.) Figure 3 indicates that there is

on a single sample path using (16) without estimating ead} JUMP atl = 5,6,7,8, and there is another jump &&= 9
component ofy. from stateu to statev. After the jump,X’ follows the path

H-F.
To explore the idea, we assume that there is no further
In this section, we show how we can use realizatiojump onX’ after!/ = 9. At [ = 8, the Markov chain transits
factors, or potentials, as building blocks to construct théo statev according toP’ and to statex according toP.
difference of performance of two different Markov chains. After u, we add an auxiliary path that follows the transition
Consider the simulation of two Markov chains with tran-matrix P until the auxiliary path merges witK at! = 14.
sition probability matricesP and P’, respectively, on the Let us denote the path—B—I—C as path 1A—-B—E—-C

B. Performance Differences of Two Markov Chains
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as path 2, andd — B — E — F as path 3. Path 1 follows The performance derivatives can be used together with
P (henceX), and Path 3 followsP’ (henceX’) on which stochastic approximation algorithms in performance opti-
the segmentslt — B, G — E, and H — I’ are the same as if mization. When the Markov systems are in the same state
they were generated according/fo With the auxiliary path, space, the policy iteration algorithm in MDP can be easily

segmenti — E — C also follows P. derived from our performance difference formulas. It has
With the help of Figure 3, by using the similar argumenbeen shown that policy iteration in fact chooses the policy
as for performance derivatives, we can obtain that has the steepest gradient after randomization. Thus,
1 both the performance gradient and performance difference
/ . /! / . . . .
n—n= lim ZE(FL —F) =7'Qg. (17)  formulas are the basis for performance optimization. The

performance sensitivity formulas obtained in this paper open
IV. CONCLUSION AND DISCUSSION up some new research directions: can we derive approaches

The concept of potential is the same as the “bias” ogimilar to policy iteration for systems with different state
“differential” in the literature of MDPs. The novelty here spaces or with partial information? If so, how?

is summarized as follows. We show that the difference of
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