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Abstract— We study the structure of sample paths of Markov
systems by using performance potentials as the fundamental
units. With a sample path-based approach, we show that per-
formance sensitivities of Markov systems can be constructed by
using performance potentials (or equivalently, perturbation re-
alization factors) as building blocks. We propose an intuitive ap-
proach to derive, by first principles, formulas for performance
derivatives and performance differences for two Markov chains.
These formulas are the basis for performance optimization of
discrete event dynamic systems, including perturbation analysis,
Markov decision processes, and reinforcement learning.

I. INTRODUCTION

Recent research indicates that both perturbation analysis
(PA) and Markoc decision processe (MDP) can be explained
from a performance sensitivity point of view; the fundamen-
tal concept for both PA and MDP is the performance potential
of a Markov process; both of them can be implemented using
a single sample path; and RL, D(λ), neuro-dynamic program-
ming, etc, are sample-path-based efficient ways of estimating
the performance potentials and other related quantities (e.g.,
Q-factors).

There are two types of sensitivities: When the system
parameters are continuous variables, the sensitivity is the
performance gradient (derivatives) with respect to the pa-
rameter(s); when the system is characterized by discrete
quantities (e.g., policies), the sensitivity is the performance
difference between two systems (e.g., under two different
policies). With the Markov model, different systems corre-
spond to different transition probability matrices determined
by different policies. Moreover, the parameters in a transition
matrix may depend on continuous parameters (e.g., in case of
random policies). Performance optimization can be achieved
either by using the performance gradients combined with
stochastic approximation methods, or by applying policy
iteration algorithms in MDP, which can be easily derived
from performance difference formulas.

In previous studies [2], it is shown that the performance
derivatives can be constructed by using performance poten-
tials as building blocks. In this paper, we will extend this
idea to general cases including the performance derivatives
and performance difference for two systems. Following the
terminology of PA, we refer to the two systems under
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comparison as an original system and a perturbed one,
respectively, and their sample paths the original path and
the perturbed path, respectively. (For performance derivatives
with respect to a parameterθ, the original system is the
one withθ, and the perturbed one, withθ + ∆θ.) The main
ideas are as follows: Any change in system parameters or
even in system structure is reflected by “jumps” on the
system’s sample path; a jump here refers to the case that
from the same sate, the original path transits to statei, while
the perturbed one transits to statej. The effect of such a
single jump fromi to j on the system performance can be
measured by a quantity called realization factord(i, j) which
equalsg(j) − g(i), whereg(i) is the performance potential
at statei. Both d(i, j) andg(i) can be estimated one sample
paths. Finally, the performance sensitivity, which reflects the
effect of the change in parameters and/or structure, can be
decomposed into the effects of many single jumps on the
system’s sample path and can be therefore constructed by
using realization factors or potentials as building blocks.

Using the above idea, we can derive performance sensi-
tivity formulas by first principles. This approach is common
in physics where researchers first formulate and solve prob-
lems based on experimental evidence and then prove their
results rigorously. In this vein, we can view the sample path
based reasoning for constructing performance sensitivities as
“thought experiments”. In Section II, we briefly review the
concepts of realization factors and performance potentials.
In Section III-A, we apply our idea to construct the perfor-
mance derivatives for the case where the perturbed system
and original one are in the same state space. This is the
simplest case and serves as a template for more complicated
cases to follow. In Section III-B, we derive the formula for
performance difference of two Markov chains in the same
state space. The results can be extended to the performance
derivatives and differences for two Markov chains with one
state space being a subspace of the other, and to the case
where the two Markov chains have different state spaces
with a common subspace. These examples also serve to
illustrate the flexibility in applying the “building block” idea
to construct performance sensitivities: we need to focus our
attention to only the states that are affected by the parameter
changes.

The contributions of the paper are as follows. We pro-
posed an intuitive approach to construct, by first principles,



performance derivatives and difference by using potentials
as the fundamental building blocks. This clearly illustrate
the physical meaning of potentials and their crucial role in
performance optimization of discrete event dynamic systems.
Using this approach, we can flexibly derive formulas for
performance sensitivities which are otherwise not easy to
conceive.

II. PERTURBATION AND PERFORMANCE
POTENTIALS

We first review some fundamental concepts and their
related theory. Consider a Markov chain with transi-
tion probability matrix P , which may depend on a pa-
rameter θ and therefore is sometimes denoted asP (θ).
Let S = {1, 2, · · · ,M} be the state space,X =
{X0, X1, · · · , Xn, · · ·} be a sample path, andf : S → R be
the cost function. We assumeP is irreducible and aperiodic
and hence ergodic. Define the steady-state probability as a
row vectorπ = (π(1), · · ·π(M)), then

πP = π, πe = 1, (1)

where e = (1, 1, · · · , 1)T is an M-dimensional column
vector whose all components are 1’s, and the superscript
“T” denotes transpose. We will use subscript to indicate the
dimension when it is needed (e.g.,e ≡ eM in (1)). The
performance measure is defined as

η = Eπ(f) =
M∑

i=1

π(i)f(i) = πf

= lim
L→∞

1
L

L−1∑

l=0

f(Xl) = lim
L→∞

FL

L
, w.p.1 (2)

wheref = (f(1), · · · , f(M))T (we usef as both a function
and a vector) and

FL =
L−1∑

l=0

f(Xl);

the limit in (2) exists with probability one.
The central concept of optimization of DEDS is the

perturbation realization. The perturbationrealization factor
d(i, j) measures the effect of a jump (or called a perturbation)
from state i to statej on FL and is defined as follows.
Consider two independent Markov chainsX = {Xn; n ≥ 0}
and X′ = {X ′

n;n ≥ 0} with X0 = i and X ′
0 = j; both of

them have the same transition matrixP . We define [2]:

d(i, j) = lim
L→∞

E [F ′L − FL|X ′
0 = j, X0 = i, ]

= lim
L→∞

E

[
L−1∑

l=0

( f(X ′
l)− f(Xl) )

∣∣∣∣∣ X ′
0 = j, X0 = i

]
,

i, j = 1, · · · ,M. (3)

If P is irreducible, then with probability one the two
sample paths ofX andX′ will merge together. That is, there

is a random numberL∗ such thatX ′
L∗ = XL∗ . Therefore,

by the strong Markov property, (3) becomes [2]

d(i, j) = E

[
L∗−1∑

l=0

( f(X ′
l)− f(Xl) )

∣∣∣∣∣ X ′
0 = j, X0 = i

]
,

i, j = 1, · · · ,M. (4)

We haved(i, j) = −d(j, i), andd(i, i) = 0. d(i, j) can also
be expressed with a single sample path. LetX0 = i and
Li(j) = min{n ≤ 0, Xn = j} be the first passage time to
statej. Then

d(j, i) = E{
Li(j)−1∑

l=0

[f(Xl)− η]|X0 = i}. (5)

The matrixD ∈ RM×M , with d(i, j) as its(i, j)th element,
is called aperturbation realization matrix. DT = −D. From
(4), we can prove the Lyapunov equation

D − PDPT = F, (6)

whereF = efT − feT . It was shown thatD takes the form

D = egT − geT ,

where g = (g(1), · · · , g(M))T is called a performance
potential (or simply potential) vector andg(i) the potential
at statei. The above equation is equivalent to

d(i, j) = g(j)− g(i), i, j = 1, 2, · · · ,M.

Since d(i, j) measures the difference of the performance
starting from statesj and i, g(i) measures the average
contribution to FL of every visit to statei. Furthermore,
only the difference between differentg(i)s are important
for performance sensitivities. From (6), we can prove that
g satisfies the Poisson equation

(I − P )g + ηe = f. (7)

The solution to (7) is only up to an additive constant; i.e.,
if g satisfies (7), then for any constantc, g + ce also does.
Therefore, there must be one particular solution to (7) (still
denoted asg) such thatπg = η. For this solution, (7)
becomes

(I − P + eπ)g = f. (8)

For ergodic Markov chains,(I − P + eπ) is invertible, thus
g = (I − P + eπ)−1f , where(I − P + eπ)−1 is called a
fundamental matrix. We have (up to an additive constant)

g(i) = lim
L→∞

E{
L−1∑

l=0

[f(Xl)− η]|X0 = i}, (9)

which is finite for ergodic chains. It has been shown that the
potential thus defined is an extension of theα-potential from
0 < α < 1 to α = 1.
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Fig. 1. A Perturbation in a Sample Path of a Markov Chain and Its Effect

III. MARKOV CHAINS ON THE SAME STATE
SPACE

In this section, we derive, by applying first principles,
performance sensitivities to the case where the Markov
chains under comparison are defined on the same state space.
A brief intuitive explanation of the performance derivative in
Section III-A has appeared in [2], we provide here a more
detailed derivation, which motivates the study in subsequent
sections and makes the material in this paper complete.

A. Performance Derivatives

We first study the simplest problem, i.e., the performance
derivative, to introduce the idea. Given a Markov chain
with transition probability matrixP and state spaceS =
{1, 2, · · · ,M}, let P ′ be another irreducible transition matrix
on the same state spaceS, P ′e = 1, and setQ = P ′ − P .
Thus Qe = 0. For any0 ≤ δ ≤ 1, defineP δ = P + Qδ.
We haveP δe = 1 and P δ is also an irreducible transition
matrix. The quantities associated withP δ are denoted asπδ

andηδ, etc. We viewδ as very small since we are concerned
about derivatives.

Our approach is sample path based, so we first consider
the simulation of a Markov chain with transition probability
matrix P . At any time l with Xl = k, l = 0, 1, · · ·, we
generate a uniformly distributed random variableξl ∈ [0, 1).
If

i−1∑
n=0

p(k, n) ≤ ξl <

i∑
n=0

p(k, n), (10)

with p(k, 0) = 0, then we setXl+1 = i. For example,
consider the case wherep(k, i) = 0.5, p(k, j) = 0.5, and
p(k, n) = 0 for all n 6= i, j. If 0 ≤ ξ < 0.5, then the
Markov chain jumps into statei; otherwise, it jumps into
statej. Suppose that the transition probabilities change to
p′(k, i) = 0.5 − δ, p′(k, j) = 0.5 + δ, andp′(k, n) = 0, if
n 6= i, j. (i.e., q(k, i) = −1, q(k, j) = 1, andq(k, n) = 0 if
n 6= i, j.) We use the same sequence of random variableξl

to determine the transition of the Markov chain withP (δ)
at time l, l = 0, 1, · · ·, its sample path is denoted asXδ. We
observe that if it happens thatξl ∈ [0.5 − δ, 0.5), then X
transits to statei, but Xδ transits toj; however, becauseδ
is very small, most likely we haveξl 6∈ [0.5− δ, 0.5), in this
case bothX andXδ transit in the same way.

Becauseδ is very small,P δ is very close toP . Thus,
the above discussion indicates that starting from the same

initial stateX0 and with the same random sequenceξl, l =
0, 1, · · ·, the two sample pathsXδ = {Xδ

0 , Xδ
1 , · · · , } and

X = {X0, X1, · · · , } are also very close. Suppose that with
the same values ofξn, n = 0, 1, · · · , l−2, we haveXδ

n = Xn,
for n = 0, 1, · · · , l−1. Furthermore, we assume that with the
same value ofξl−1, applying (10) toP determines thatX
transits to stateXl = i, but applying (10) toP δ determines
that Xδ transits to stateXδ

l = j. We say that the perturbed
chain Xδ has a jump (or perturbation) fromi to j at time
l. In Figure 1,X and Xδ are illustrated by the solid dots
and hollow circles, respectively; the perturbed pathXδ has
a jump fromi to j at l = 4. After this time, the two sample
paths differ until atL∗ (L∗ = 14 in Figure 1) they merge
together. Becauseδ is very small, we can assume that such
jumps occur rarely; in particular, we can assume that between
l (= 4 in Figure 1) andL∗ (= 14 in Figure 1) bothX andXδ

evolve in the same way, i.e., according to the same transition
probability P . In other words, all the transitions on A-B-G-
C except the one fromXδ

3 to Xδ
4 look the same as those

following transition matrixP . Apparently,d(i, j) measures
the average affect of a jump fromi to j on FL in (2).

Now we consider a sample pathX consisting ofL, L >>
1, transitions. Among these transitions, on the average there
are Lπi transitions at which the system is at statei. Each
time whenX visits statei, because of the change fromP to
P δ, the perturbed pathXδ may have a jump, denoted such
a jump as from stateu to statev. (i.e., after visitingi, X
transits tou and however,Xδ transits tov). For convenience,
we allowu = v as a special case. We shall refer tou 6= v as
a “real jump”, which happens rarely. Denote the probability
of a jump fromu to v after visiting statei asb(i, u, v). We
have

b(i, u, v) = p(i, u)pδ(i, v).

Thus,
M∑

u=1

b(i, u, v) = pδ(i, v), (11)

M∑
v=1

b(i, u, v) = p(i, u), (12)

and
∑M

u,v=1 b(i, u, v) = 1. On the average, in theseL tran-
sitions there areLπ(i)b(i, u, v) jumps fromu to v following
visiting i. Each has on the average an effect ofd(u, v) on
FL.

Because a real jump happens extremely rarely asδ → 0,
the effects of two real jumps can be decoupled and therefore
considered separately. More precisely, consider Figure 2
which illustrates two jumps, one atl = 4 and the other at
l = 11. After the first jump,Xδ merges withX at l = 7;
thus, the effects of the two jumps shown in Figure 2 can
be measured separately. Asδ is very small, the probability
that there is another jump occurs beforel = 7 is of order
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Fig. 2. The Effect of Two Rare Perturbations Are Decoupled

δ2. Thus, on the average the total effect onFL due to the
change inP to P δ = P + δQ is

E(F δ
L − FL) =

M∑

i=1

{
M∑

u,v=1

Lπ(i)b(i, u, v)d(u, v)}

=
M∑

i=1

{
M∑

u,v=1

Lπ(i)b(i, u, v)[g(v)− g(u)]}

=
M∑

i=1

{
Lπ(i){

M∑
v=1

[g(v)
M∑

u=1

b(i, u, v)]}

−{
M∑

u=1

[g(u)
M∑

v=1

b(i, u, v)]}
}

. (13)

From (11) and (12), (13) becomes

E(F δ
L − FL)

≈
M∑

i=1

{
Lπ(i){

M∑
v=1

[pδ(i, v)g(v)]} − {
M∑

u=1

[p(i, u)g(u)]}
}

=
M∑

i=1



Lπ(i){

M∑

j=1

[pδ(i, j)− p(i, j)]g(j)]





= Lπ[P δ − P ]g = LπQδg. (14)

Thus,

ηδ − η = lim
L→∞

1
L

E(F ′L − FL) = πQδg. (15)

Finally, we get
dη

dδ
= πQg. (16)

Given P and P ′, g, D, and π can be estimated on a
single sample path; thus, the performance sensitivity along
any directionQ = P ′ − P can be obtained by estimating
these quantities on a single sample path. Algorithms can be
developed for estimating the performance sensitivity based
on a single sample path using (16) without estimating each
component ofg.

B. Performance Differences of Two Markov Chains

In this section, we show how we can use realization
factors, or potentials, as building blocks to construct the
difference of performance of two different Markov chains.

Consider the simulation of two Markov chains with tran-
sition probability matricesP and P ′, respectively, on the
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Fig. 3. The Effect of Two Perturbations

same state spaceS = {1, 2, · · · ,M}. As we see in Section
III-A, for P δ = P + δ(P ′ − P ) with small δ, if we use the
same random sequence for both chains, then the two sample
pathsXδ andX are very close, and the jumps happen rarely
on Xδ and their effects can be treated separately. However,
when we considerP ′ = P + Q, (δ = 1 and is not small),
two sample pathsX′ andX are completely different and the
effect of jumps may be coupled (after a jump onX′, another
jump may occur beforeX′ andX merge together.)

To see how we can evaluate the effects of the two
“coupled” jumps onX′, we follow a sample path ofX′.
As illustrated in Figure 3, we start the simulation at pointA.
Again, we use the same random sequence to generate both
X′ andX and the same terminology as for the performance
derivative problem: Suppose that withξl−1 from X ′

l−1 the
Markov chain transits to the same stateX ′

l = Xl according
to bothP ′ andP , we say that the sample pathX′ does not
have a jump atl. However, if with ξl−1, X ′

l−1 transits to
stateXl = i according toP while it transits to stateX ′

l = j
according toP ′, we say that the perturbed chainX′ has a
jump (or a perturbation) fromi to j at timel. Figure 3 shows
such a jump atl = 4.

Different from the performance derivative case discussed
in Section III-A, if a jump happens onX′ at l, then because
other jumps may happen beforeX′ and X merge together,
these two paths are usually completely different afterwards.
In Figure 3,A − B − I − C illustrates a sample path for
P , andA − B − G − E − F , a path forP ′. Starting from
l = 4, these two paths can be generated independently. Now,
let us follow the pathG − E − H − F in the same way
as what we did forA − B − G − · · ·: We use the same
random sequence to determine whether jump occurs at each
step (i.e., whether the Markov chains transits to the same sate
according to bothP andP ′.) Figure 3 indicates that there is
no jump atl = 5, 6, 7, 8, and there is another jump atl = 9
from stateu to statev. After the jump,X′ follows the path
H − F .

To explore the idea, we assume that there is no further
jump onX′ after l = 9. At l = 8, the Markov chain transits
to statev according toP ′ and to stateu according toP .
After u, we add an auxiliary path that follows the transition
matrix P until the auxiliary path merges withX at l = 14.
Let us denote the pathA−B−I−C as path 1,A−B−E−C



as path 2, andA − B − E − F as path 3. Path 1 follows
P (henceX), and Path 3 followsP ′ (henceX′) on which
the segmentsA−B, G−E, andH − F are the same as if
they were generated according toP . With the auxiliary path,
segmentG− E − C also followsP .

With the help of Figure 3, by using the similar argument
as for performance derivatives, we can obtain

η′ − η = lim
L→∞

1
L

E(F ′L − FL) = π′Qg. (17)

IV. CONCLUSION AND DISCUSSION

The concept of potential is the same as the “bias” or
“differential” in the literature of MDPs. The novelty here
is summarized as follows. We show that the difference of
the potentials, the perturbation realization factor, measures
the effect of a single jump on the performance (A basic
idea from PA). We further propose an approach that allows
us to construct performance sensitivities, both performance
derivatives and performances differences, by first principles
with “thought experiments”. The thought experiments are
based on sample paths. Performance potentials, or realization
factors, are used as building blocks in the construction. The
approach is flexible in the sense that it can be applied to
many systems including those with partial information, and
it only requires to estimate the potentials that are directly
related to the changes in parameters. The sensitivity formulas
obtained have clear meanings and are not so easy to conceive
otherwise.

The performance derivatives can be used together with
stochastic approximation algorithms in performance opti-
mization. When the Markov systems are in the same state
space, the policy iteration algorithm in MDP can be easily
derived from our performance difference formulas. It has
been shown that policy iteration in fact chooses the policy
that has the steepest gradient after randomization. Thus,
both the performance gradient and performance difference
formulas are the basis for performance optimization. The
performance sensitivity formulas obtained in this paper open
up some new research directions: can we derive approaches
similar to policy iteration for systems with different state
spaces or with partial information? If so, how?
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