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Abstract In this note, we discuss the problem of the sample-path-based (on-line)
performance gradient estimation for Markov systems. The existing on-line per-
formance gradient estimation algorithms generally require a standard importance
sampling assumption. When the assumption does not hold, these algorithms may
lead to poor estimates for the gradients. We show that this assumption can be relaxed
and propose algorithms with multi-step sampling for performance gradient estimates;
these algorithms do not require the standard assumption. Simulation examples are
given to illustrate the accuracy of the estimates.
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1 Introduction

The policy gradient approach has recently received increasing attention in the opti-
mization and reinforcement learning communities (Baxter and Bartlett 2001; Baxter
et al. 2001; Greensmith et al. 2004; Cao 2005). It is closely related to perturbation
analysis in the discrete event dynamic system theory (Cao and Chen 1997; Cao and
Wan 1998). With the policy gradient estimates, performance optimization algorithms
can be developed for Markov systems (Baxter et al. 2001; Marbach and Tsitsiklis
2001; Cao 2007). Compared with the value-function methods, the policy gradient
approaches can avoid the problems associated with policy degradation (Baxter
and Bartlett 2001). However, the existing on-line policy gradient estimation algo-
rithms generally need a standard assumption in importance sampling (Marbach and
Tsitsiklis 2001; Baxter and Bartlett 2001; Greensmith et al. 2004; Cao 2005). When
the assumption does not hold, these on-line policy gradient estimation algorithms
will lead to poor estimates.

In this note, we give examples to illustrate that the existing on-line policy gradient
approaches cannot provide an accurate gradient estimate when the assumption does
not hold. We then show that this assumption can be relaxed and propose a few
new algorithms based on multi-step sampling; these algorithms do not require this
assumption. All the algorithms can be implemented on sample paths and policy
gradients can be estimated on line.

2 Problem formulation

Consider an ergodic (irreducible and aperiodic) discrete time Markov chain X =
{X;,1=0,1,...} on a finite state space S = {1, 2, ..., M} with transition probability
matrix P = [p(jli)] € [0, 11M*M where X; denotes the system state at time / and
p(jli) denotes the one-step transition probability from state i € S to state j€ S. Let
7 = (n(l),7(2),...,7(M)) be the row vector representing its steady-state probabil-
ities, then we have the following balance equations

nP=nnme=1, (1)

where e = (1, 1, ..., DT is an M-dimensional column vector whose components all
equal 1 and the superscript “ T ” denotes transpose. Let f = (f(1), f(2), ..., f(M)T
be a column vector with f(i) being the expected immediate reward at state i, i =
1,2, ..., M. We consider the long-run average reward defined as

1 L-1
n=) 7O f0)=nf=lim =3 f(X). wpl
1=0

ieS
For Markov chain X, we have the following Poisson equation
(I - P)g+ne=f. 2)

where I is the M x M identity matrix. Its solution g = (g(1), g(2), ..., g(M)7T is
called a performance potential and g(i) is the potential at state i. (It is equivalent
to the value function in dynamic programming, or the “differential” or “relative cost
vector” (Bertsekas 1995), or the “bias” (Puterman 1994)). The solution to Eq. 2 can
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be obtained only up to an additive constant, i.e., if g is a solution to Eq. 2, then so
is g + ce, where c is any constant. It is well known (Cao and Chen 1997; Cao 2005,
2007) that both

g =E {Z[f(Xz) — | xo = i} : 3)
1=0
and
Li(i*)—1
g(i)zE{ 3 [f(Xz)—n]‘oni},i#i*; g(i*) =0, )
1=0

are the solutions to the Poisson equation (Eq. 2), where L;(i*) denotes the first
passage time from state i to a reference state i* (which can be chosen arbitrarily)
and “E” denotes the expectation.

If the transition probability matrix depends on a parameter 6 € ©, that is, P(0) =
[pe(jli)], where © is the parameter set, and P(6) is ergodic and differentiable for any
6 € O, (for simplicity, we assume f does not depend on 0), the performance gradient
of n(0) with respect to 6 is (see e.g. Cao (2005, 2007))

dn(9) B dP(9)
a0 ﬂ(@)wg(Q), )

where n(0), 7(0) and g(@) are the average reward, steady-state probability and
performance potential corresponding to transition matrix P(@), respectively. If P(6)
has a linear structure, i.e., P(0) = P+ 6 Q, where Q = [¢q(jli)] is an M x M matrix
with Qe =0 (e.g., Q= P'— P, where P’ be another irreducible and aperiodic
transition probability matrix and 6 € [0, 1]), then the performance gradient has the
following simple structure

dn(0)
de

Because Q indicates the direction of the derivative in Eq. 6, we call it a direction
matrix. We will develop gradient estimates based on Eq. 6; this does not lose any
generality because we can simply replace Q with % in the algorithms to obtain
estimates in the form of Eq. 5.

There are a number of sample-path-based policy gradient estimation algorithms
in literature (Cao and Wan 1998; Marbach and Tsitsiklis 2001; Baxter and Bartlett
2001; Greensmith et al. 2004; Cao 2005). These algorithms generally use a standard
technique in simulation called importance sampling. The basic principles can be
summarized as follows (Cao 2005). For convenience, we consider the performance
gradient at = 0. From the performance gradient formula (6), we have

dn(
WO S wbaling()

ieS jeS
=3 S =op(ind
ieS jeS p

_E {Q(X1+1|X1)
| p(Xi11 X))

=7(0)0g(6). (6)

G4
G

13]
7
|l.)g(J) (7

guml)} , ®)
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where E; denotes the expectation with respect to the steady-state distribution = and
the transition matrix P. Then, following the basic formula in Cao (2005), we have

dn(®) q(Xi11X)
~do lo=o = Jim T Z P (Xir IX) 8(Xi1), w.p.1. 9)

Since the ratio ”i’/"i;

sampling assumption:

is used in Eq. 7, we need the following standard importance

Foranyi, je S, if q(jli) #0, then p(jli) > 0. (10)

This assumption limits the application of these gradient-estimation algorithms. When
there exists some i, j € S such that g(j|i) # 0 but p(j|i) = 0, since the transition from
state i to state j does not occur in the simulation, the estimation algorithms based on
Eq. 9 will lead to a poor gradient estimate. This is clearly illustrated by the following
example.

Example 1 Consider a Markov chain with transition probability matrix P and matrix
QO defined as

02 0 08 0 -02 0.5 -0.8 0.5

p_ 0 05 0 05 0= 0.7 =05 03 —-0.5
030 0 0.7]° -03 04 0.6 —0.7 |’
0 0604 0 0.5 —0.6 -0.4 0.5

and f=(1,2,3,4)7. We compute the steady-state probability 7 and the poten-
tial g by the balance equations (Eq. 1) and the Poisson equation (Eq. 2), re-
spectively, and obtain g = (0.8630, 2.1788, 3.0998, 3751 +¢(1,1,1, DT and 7w =
(O 0718, 0.4019, 0.1914, 0.3349). Thus, from Eq. 6, the performance gradient at 6 =0

d”(g) lo=o = —0.6633. However, since q(j|i) = — p(j|i) for all i, j € S with p(j|i) > 0,

all the terms M‘&)} in Eq. 9 are —1. Thus, the performance gradient obtained by
Eq. 9is —mg! Note that —n g is different for different constant c. For instance, when
we consider the potential (3), c = —n = 2.7894, we have —r g = 0. Moreover, when
we consider the potential (4) with i* =1, ¢ = —0.8630, we have —wg = —1.9264.
From this simple example, we find all the performance gradient estimation algo-

rithms based on Eq. 9 cannot provide an accurate gradient estimate.

3 The performance gradient estimates with multi-step sampling

In this section, we show that the standard importance sampling assumption (10) can
be relaxed and propose some policy gradient estimation algorithms that may treat
the cases where assumption (10) does not hold.

When assumption (10) does not hold, there exists a pair of states i, j € S such
that g(jli) # 0 and p(jli) = 0. To illustrate the idea, we first assume that for any pair
of states i, j € S such that g(j|i) # 0, there exists a state, denoted as u; j, such that
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p(u; jli) p(jlu; ) > 0. The performance gradient formula (6) can be written as follows
(cf. Egs. 7 and 8):

dn(®
n() ZZn(i)q(jli)g(D

dg lo=o ieS jeS
— ; N q(jli)
- Zg‘ ,-ezsﬁ(l) gp(ull)p(jlu) > os Pl p G S

{ q( X142 X0)
" Yues Pl X)) p(Xipalu)

With this equation, we have

g(Xz+z)} .

dn(0) . — q(Xi12| X))

@ oy 2
do lo=0  L—ooo L = 3" ¢pu| X)) p(Xiia|u)

g(Xl+2), w.p.]. (11)

The performance gradient can be estimated according to Eq. 11, in which we do not
sample X; and X, but X; and X}, at each time step. Since p(u; ;i) p(jlu; ;) > 0,
the probability that the system moves from state i to state jin two steps, denoted as
PPl ==Y cs Pwli) p(jlu), is always positive; i.e., the sum on the denominator of
Eq. 11 is always positive when q(X;12| X)) # 0.
In general, for some systems, there may not exist such a state u; ; for all i, j € S.

Fortunately, for any ergodic transition matrix P, we have Cinlar (1975)

lim P" = em.

n—oo
Thus, there must exist a K such that p®(jli) > 0 for all i, j € S, where p©(jli)
denotes the probability that the system moves to state j at the Kth step from state
i. We only need to find a K such that p®(j)i) > 0 for all i, j with g(jli) # 0. Thus,
K might be a small integer for a particular problem. We can evaluate p®(jli) by
iteration

Xo=¢€j, Xpp1=Px,, n=0,1,...,K—1, PR (jli) = e; * xk, (12)

where e; (or ¢;) denotes a column vector whose jth (or ith) component is 1 and others
are zero. Because this is a series of matrix-vector multiplications, the worst case
complexity of these computations is O(K S?). The matrix P is usually sparse. Using
sparse matrix data structures and sparse multiplication algorithms, the practical
complexity is O(p KS) where p <« S and depends on the degree of sparsity. Generally
matrix Q is also sparse, thus the total computational complexity to compute p™ (ji)
for all i, j such that g(j|i) # 0 is acceptable.

With the above discussion, we rewrite the performance gradient formulas (7) and
(8) in the following general form:

dn(6) . K, a4~ 40D q( Xk |1 X1)
— =) 7)) p MU 8 = Ex { — o 8(Xi k) -

do lo=o ZS ,ZS p®(jli) p® (X X~
Thus, the performance gradient can be estimated according to

dn(6) 1S (Xl X))

- T2 oy e 8X K, .p.l. 13
do lomo = 12N T ~— p(K)(Xl+K|Xl)g( 1+K) w.p (13)
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Equation 13 is an extension of Eq. 9, in which we assume that
Foranyi, j€ S, if q(jli) # 0, then p®(jli) > 0. (14)

From the above discussion, such a K always exists. Therefore, Eq. 14 can be viewed
as a specification on K rather than an assumption.

On the basis of Eq. 13, we may develop the policy gradient estimation algorithms.
Following the same idea used in Cao (2005), we may use any sample-path-based es-
timate g( Xk, Xi+k+1, ---), With E[g( Xk, X1t k11, --)| X1+ k] =~ g(Xi1k), to replace
the g(Xi+x) in Eq. 13. In this way, using different sample-path-based estimates of the
potentials, we may obtain different gradient estimates, and these gradient estimates
do not require the assumption (10) once a proper integer K is determined.

First, let us consider the discounted potential approximation. That is, let

o0
8(Xirx) ~ E [ DA FC O n1|X1+K} , @01,
k=I+K
which can approximate potential g(X;1x) in Eq. 3 when « is close to 1. Thus,
we may choose g(Xj ik, Xitki1s ) = Y poysx @ [ f(Xi) — 0] as an estimate of
potential g(X;; k) and obtain

dn(6) = 9 Xkl X)) k—(+K)
7 ~ lim — B ks S o [f(Xk) —n]
d@ 0=0 L—oo L —0 P(K)(X1+K|Xl) k:XH—:K f g
L—1 L+K-1
o1 q(Xi k| X)) k—(+K
= lim — _ o R F(X) — 1)
L5oo L ZO: PO (X1 k1 X)) k:%r:K T =

Interchanging the order of the two sums, we have

I

L—1
dn(9) 1 ke 9(Xi k| Xi)
—_— ~ 1 — X — _— 15
00 oo ™ fim L;;[f( 1K) n]kZ:Oa S Xy x| X0 (15)

With Eq. 15, we may develop the following Algorithm 1. This algorithm does not
require the condition (10) for the policy gradient algorithms proposed in Baxter and
Bartlett (2001) and Cao (2005). In the algorithm, A; similarly converges to a biased
estimate of the performance derivative as / — oo.

Algorithm 1 (With discounted potential approximation)

1. Given a state sequence Xy, X}, ... generated by transition probability matrix P
and discount factor «;

2. SetZy=0,190=0,A¢0=0and/=0;

3. Attimel+ K,[=0,1,2,...,with state X; and state X}, ¢, do

q( X1 k| X1)

=0+ —————"—.
! B (X, kX))
1

N1 = + li[f(XlJrK) — .

1
1
A=A+ 1 {Lf(Xirk) = m1lZig — A}
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Next, let us use the perturbation realization factors in Cao and Chen (1997) to es-
timate the potentials. With this approach, the potentials are estimated based on Eq. 4.
We first choose any state, denoted as i*, as a reference state. For convenience, we set
Xy =i* and define up = 0 and u,,; = min{n : n > u,,; X, = i*} be the sequence of
regenerative points. Then, for any time step k, there always exists an m(k) such that
Ui < k < Upao+1- Set g(@*) = 0. From Eq. 4, for any Xj # i*, umpy < kK < Umpy+1,
we have

Uy +1—1

gX)=E{ Y [f(X)—nlXk

I=k

Um(+K)+1—1

Thus, we may use Zk=l+1< [ f(Xkx) — n] to estimate potential g(X;;+x) in Eq. 13
when X, # i*;if Xjpx =%, g(Xi+x) = 0. Then, we obtain

L—1 Ui+ K)+1—1
Xkl X
6]( I+K| 1) Z [f(Xk) — n][l — Ii*(Xl+K)] )

k=I+K

dn(9) — i 1
a6 oo =T pary PE( X4k X))

where I;-(x) is an indicator function, i.e., I;-(x) = 1 if x = i*, otherwise 0. Interchang-
ing the order of the two sums, we have

n@®) . 1& : (X k| X0)
|, = jim Z; [fXie)—nl ) Fxaaxo [ 19

k=ttyk)—K+1
Denote Zic:umamflﬂl % by Zi41. We set Ziyy = 01if X x =i* and let k
begin from 0 if v+ x) — K+ 1 < 0in Eq. 16.

With Eq. 16, we can develop the following policy gradient estimation Algorithm 2.
This algorithm may be applied to the optimization schemes proposed in Marbach and
Tsitsiklis (2001) to deal with the cases where assumption (10) does not hold. A, in
Eq. 18 calculates the average in Eq. 16, which converges to an unbiased estimate of
the performance derivative as / — oo.

Algorithm 2 (With perturbation realization factors)

1. Given a state sequence Xy, X}, ... generated by transition probability matrix P
and a reference state i*;

2. SetZy=0,790=0,A¢0=0and/=0;

3. Attimel/+ K,[=0,1,2,...,with state X; and state X}, ¢, do

q( X1k X)) . )
Z+————— . if X *;
Zin = 2 0 X xR (17)
0, if Xiox = i*.
1
M1 =M+ ﬁ[f(XlJrK) —nl.
1
A1 = AN+ iT1 {[f(Xihk) = 11 Zig — A} (18)
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Finally, let us focus on the potential approximations obtained by truncation. That
is, we use

I+K+T
§(Xiek) ~ E{ > LX) —n]\XHK}.

k=I+K

When T is large, this gives a good approximation of potential g(X;,x) in Eq. 3. T
needs to be carefully chosen to balance the bias and variance of the estimate (Cao
and Wan 1998). Thus, we may use Z;;If:,?[f(Xk) — n] to estimate g(X;4x) in Eq. 13
and obtain

dn(6) 1 & aXxlxy BE
A T |17 R i N e\ il [F(Xo) —nl}.
dg le=o  L—oo i L ; PR (X k| X1) kg;K S (X
Interchanging the order of the two sums, we have
dn(®) e w q(Xerk] Xp)
— ~ 1 — X — —_— . 19
10 oo LEI;O{L;[f( I+ K+T) n];p(K)(XkJrKle) (19)

From Eq. 19, we have the following Algorithm 3, which improves the similar
algorithm presented in Cao and Wan (1998).

Algorithm 3 (With potential approximation by truncation)

1. Given a state sequence Xy, X|, ... generated by transition probability matrix P
and a truncation parameter 7;

q( Xy x| Xr)
2. Set Zy=3TI _LOHRIAK =0,A¢0=0and/ = 1;
et Zo =3 ko P® (X | X0) o > 80 an 5

3. At time [+K+T, [=1,2,..., with states X;_;, X;or and states
Xiyk-1, Xitk+71,do

q(Xger+| X110 q( X x-11X-1)

Zi=7Z1+ — .
PO Xl X)) p P (Xik 11 Xi1)

1
N =n-1+ Y[f(XK+T+l) — -]

1
A=A+ 7{[f(XK+T+l) —mlZ; — Ay}

4 Further considerations

In this section, we show some further considerations that may utilize more informa-
tion on the sample path and reduce the computation. These are achieved based on
the following observation.

For any particular integer n, if there exist states # and v € S such that p™ (v|u) =

0 but g(v|u) # 0, although lim; o % Z,L:BI %g()ﬁw) cannot estimate the

gradient, it does estimate the sum of 7 (i)g(jli)g(j) for all i, j € S with p™(jli) > 0.
All the algorithms in Section 3 choose a K, and therefore the information contained
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in n-step state transitions, with 0 < n < K, are not utilized. Thus, we may use this
information to get a more accurate estimate.

Let K be a positive integer such that p® (jli) > 0 for all i, j € S with g(j|i) # 0.
Define matrix Q as follows,

~ o . 1 -
0 =I[qUDl, ql) = E/q(fll),

where Kj; denotes the number of the positive numbers in {p(jli), p@ (jli), ...,
p®(jli)}. For example, if K=3 and p(jli)=0, p®(jli) >0, p® (jli) > 0, then K;; = 2.

From the definition of O, lim;_ % ZZL:BI %g(&ﬂd yields an esti-

mate of the sum of K%jn(i)q(ﬂi)g(]) for alli, j € S with p™(jli) > 0. Thus, we have

: 1L‘1H51(X/+K|XZ+K_1> L a(Xukl XD ]g(X )}
L~ L & | [ p(Xrek| Xivk—1) PP Xkl X |77
1 1
=y <1 OqUIDg() + -+ > 2 T Oalbg(p w.p.1 (20)
@pes Y Gpesk Y
dn(®
=2 malig(p = % WPl 1)
ieS jeS B

where S, denotes the set of state pairs (i, j) such that p(”)(j|i) >0,n=1,2,..., K.
Note that for any particular i, j € S, the term 7 (i)q(jli)g(j) appears in Eq. 20 Kj;
times.

With Eq. 21, we can design the following Algorithm 4, which utilizes all the
information contained in n-step transitions, n = 1, 2, ..., K, before each time / + K,
[=0,1,.... (Here, we only provide the algorithm with the discounted potential
approximation; algorithms with perturbation realization factors and potential trun-
cation approximation can be developed in a similar way.)

Algorithm 4 (With more information)

1. Given a state sequence Xy, X}, ... generated by transition probability matrix P
and a discount factor «;

2. SetZy=0,70=0,A¢0=0and/=0;

3. Attimel+ K,[=0,1,2,...,with states X;, X;y1, ..., X;1k,do

G Xk Xigg—1) Q(X1+K|Xz)]
P( X k| Xy k1) PR(Xi k| X)) ]

Zl+1=aZl+[
LX) — i
Niy1 = N Il I+K nil.

1
A=A+ 1 (Lf( X)) — 1] Zip — AL}

In Algorithm 4, we need to compute p@(jli), ..., p®(jli) for all i, j€ S with
q(jli) # 0 to determine K;; and matrix Q. To reduce computation, we may define
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the following matrixes to replace matrix Q:

Ql - Qa Qn = [Qn(]|l)]y
where

0, if p"¢(jli) >0 forsomel <m < n,

q(jli), otherwise, l<n<K.

qn(jl) = {

Let K* be the minimal K such that p(jli) > 0 for all i, je S with q(jli) #0,
then it follows that Q, = 0,n > K*. From the definition of Q,, we can find that
limz oo % ZZL;)' %g(&ﬂ@ estimates the sum of 7 (i)q(jli)g()) for all

i, j € S with p™(jli) > 0 and p(jli) =0, 1 <m < n < K*. Thus, we may use

L—-1
1 Xivxr | Xip k- (X x| X
lim — 3 [6]1( k| Xipgem) q(lli)( 1k | X1) ]g(XerK*)
Looo A= | p(Xike| Xiyie—1) PEIN( Xy k| Xi)

to estimate the gradient and develop the on-line policy gradient estimation algo-
rithms. The advantage of this approach is that if p (j|i) > 0, we needn’t compute the
probabilities p"*V(jli), p"*2(jli), ..., PEI(jli) because g,,(jli) =0, m > n. Thus,
we may use the well-known Dijkstra’s algorithm (Cormen et al. 2001) to determine
the smallest transition step number from state i € S to state j € S and only compute
the transition probability with smallest transition step number for each state pair i, j
such that g(j|i) # 0.

Finally, when K is large enough, we have p® (X, x| X)) ~ n(X; k) and Eq. 13
becomes

dn®) q( X1 k| X))
W 6=0 ~ l}l_I)I;o Z ()([+ ) (‘XvH»K)H wpl (22)

However, with Eq. 22, we need to know 7 (i) for all states i € S.

5 Simulation results

In this section, the simulation results for the above algorithms are given. We first
consider the simple Example 1 and then consider a practical example.

For Example 1, if K > 3, p(K)(j|i) > O foralli, j € S. For comparison, we consider
K=1,2,3,4,5,10,100. Then K = 1, 2 correspond to the cases that assumption (14)
does not hold. We set « = 0.9 in Algorithm 1, set i* =1 in Algorithm 2 and set
T =10 in Algorithm 3. Running these algorithms 10 times, respectively, each with
100,000 transitions, the simulation results are listed in Table 1, Table 2 and Table 3,
respectively, in which “Mean” denotes the average of the ten gradient estimates and
“SD” denotes the standard deviation of these ten estimates.

From these results, we observe that when K = 1, 2, all the gradient estimates
have a large bias. Note that the case K = 1 corresponds to the standard importance
sampling case. Moreover, we may find that the unbiased estimate obtained by Algo-
rithm 2 has a larger SD than the biased estimates obtained by Algorithms 1 and 3.
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Table 1 Simulation results of Algorithm 1 with o = 0.9

K 1 2 3 4 5 10 100 Theoretic
Mean  0.0031  0.0709 —0.6403 —0.6433  —0.6362 —0.6450 —0.6338  —0.6633
SD 0.0248  0.0107 0.0336 0.0418 0.0324 0.0315 0.0355

Table 2 Simulation results of Algorithm 2 with i* = 1

K 1 2 3

4

5 10

100 Theoretic

Mean —1.9762 —0.0050 —0.6566
0.0453

SD 0.0812 0.0407

—0.6718  —0.6658 —0.6645 —0.6691 —0.6633
0.0468 0.0416 0.0443 0.0447

Table 3 Simulation results of Algorithm 3 with 7' = 10

K 1 2 3

4

5 10

100 Theoretic

Mean —0.0090 0.0681  —0.6749
SD 0.0246  0.0231 0.0395

—0.6549  —-0.6473 —0.6746  —0.6460 —0.6633
0.0343 0.0296 0.0355 0.0215

Table 4 Simulation results of Algorithm 4 with @ = 0.9

K 3 4 5 6 10 100 Theoretic
Mean —0.6516 —0.6553 —0.6479 —0.6484 —0.6541 —0.6535 —0.6633
SD 0.0252 0.0149 0.0205 0.0259 0.0202 0.0151
Fig. 1 Simulation results of -«
existing algorithms A
M,
% AR R R > |1-0
: 1 D2 :
> ‘ > 4 Yo o>
________________________________________ o
Y
- <[]~
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Tgblg 5 Siml}lation results of K=1 o = 099 =1 T =20
existing algorithms
Mean 0.0803 1.7310 0.0337
SD 0.2307 0.0796 0.0356

The discount factor « in Algorithm 1 and truncation parameter 7' in Algorithm 3
play important role in the tradeoff between bias and SD. A larger « or T will lead
to a larger SD but a smaller « or T will lead to a larger bias. Generally, the choices
of « and T are problem dependent. We also estimate the performance gradient in
Example 1 by using Algorithm 4 with @ = 0.9 and samely run the algorithm 10 times.
The simulation results are listed in Table 4. Compared with Algorithm 1, since this
algorithm utilizes more information to estimate the gradient, it indeed provides more
accurate estimates.

Example 2 Consider a manufacturing system (Cao 2007) consists of two machines,
M, and M,, and N pieces of works, as shown in Fig. 1. Each work piece undertakes
three consecutive operations at M;. The service times at these three operations
are exponential distribution with rates A, A, and X3, respectively. M, has only one
operation with an exponential distributed service time with rate 14. A work piece,
after the completion of its service at each operation of M, will leave M, with
probability p;, i = 1, 2, 3, with p3 = 1, or go to next operation with probability 1 — p;;
if the work piece leaves M, it will go to M, with probability 6, where 6 € (0, 1] is a
tuning parameter, or return M, with probability 1 — 6.

To optimize the parameter ¢, we first want to obtain the derivative of system
performance with respect to 6. For this example, the marginal case 6 =1 is very
important and the gradient information at # = 1 is our concern. We may use the
embedded Markov chain to model this system and easily verify that 6 = 1 leads to the
case that the standard importance sampling assumption does not hold. We consider
N =3 and assume the performance function is f =1[0,1,2,3,4,5,6,7,0, 0]7. The
simulation results of the existing algorithms for the case that A} = Az = Aqy = 1,0, = 2,
p1 =0.2 and p, = 0.4 are listed in Table 5, where we also run these algorithms
10 times. Compared with the theoretical value of gradient %|9:1 = —0.5348, the
existing policy gradient estimates (K=1) are very poor and even with wrong direction.
However, the algorithms with K = 4 provide good estimates as described in Table 6.
Here, the computational complexity of iteration (12) is 22 multiplications and the
total computation to obtain p® (j|i) is 4 * 18 * 22, where “18” is the number of (i, j)’s

such that g(j|i) # 0 and the sparse structures of P and % have been used.

Table 6 Simulation results of algorithms with K = 4

K=4 a = 0.99 =1 T=20 Algorithm 4 Theoretic
Mean —0.5107 —0.5542 —0.5306 —0.5313 —0.5348
SD 0.0747 0.0559 0.0435 0.0273
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6 Conclusion

In this note, we proposed a few new sample-path-based (on-line) algorithms with
multi-step sampling for estimating the performance gradients of Markov systems;
these algorithms do not require the standard importance sampling assumption (10)
used in the existing algorithms. We also discussed possible ways to improve the
accuracy of the estimates and reduce the computation. These algorithms can be used
in performance optimization in a wider class of systems.

One possible issue related to these algorithms is that the multi-step transition
probabilities need to be computed. We hope that more efficient algorithms can be
developed, where the estimation of the multi-step transition probabilities might be
incorporated into the algorithms.

It is interesting to note that the two approaches, the policy gradient approach in
reinforcement learning and perturbation analysis in discrete event dynamic systems,
have different emphasis. Perturbation analysis focuses on “constructing”, or deriving,
formulas for performance gradients by studying the system dynamics to determine
the effect of any fictitiously introduced perturbations on the system performance
(Cao and Chen 1997; Cao and Wan 1998; Cao 2007). The policy gradient approach,
on the other hand, focuses on developing efficient and practical algorithms to
estimate the performance gradients by using the gradient formulas (Baxter and
Bartlett 2001; Baxter et al. 2001; Greensmith et al. 2004; Cao 2005). A combination
of both may lead to better perspectives and results.
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