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Nonlinear Adaptive Blind Whitening
for MIMO Channels

Han-Fu Chen, Fellow, IEEE, Xi-Ren Cao, Fellow, IEEE, Hai-Tao Fang, Member, IEEE, and
Jie Zhu, Senior Member, IEEE

Abstract—A nonlinear adaptive whitening method is proposed
for blind deconvolution of MIMO systems by whitening the re-
ceived signals in both time and space, with a highly nonlinear
function of the past output data. The whitened signals are ISI-free
and can be viewed as outputs of a memoryless paraunitary mixing
system. The convergence of the proposed recursive algorithm is
proved. Numerical simulation shows that the whitening method
proposed in the paper works well, even if the output signal is
corrupted by additive noise.

Index Terms—Blind equalization, blind intersymbol inter-
ference (ISI) cancellation, blind source separation (BSS), mul-
tiple-input-multiple-output (MIMOQO) linear systems, nonlinear
blind equalization, second-order statistics (SOS), signal uncorre-
lation, signal whitening.

NOMENCLATURE

The following notation is the list of mathematical symbols
used in the paper.

z Backward-shift operator.

Ex Expectation of z.

I Identity matrix (with a compatible dimension).

I Al Norm of a matrix A, defined as the square root of

the maximal singular value of A.

Amax(A4) Maximum eigenvalue of a non-negative definite ma-
trix A.

® Kronecker product.

trA Sum of the diagonal elements of matrix A.

1. INTRODUCTION

HE GOAL of blind equalization for multiple-input—-mul-
tiple-output (MIMO) systems is to recover multiple source
signals from the observations of their mixtures without using a
reference signal to determine the channels. Such a signal pro-
cessing problem can be abstracted from many applications in
communications, image processing, speech enhancement, and
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biomedical measurements. When passing through a media in
digital communication, a source signal in an MIMO system gen-
erally suffers from a convolutive distortion between its sym-
bols and a mixture distortion from other source signals. These
two distortions are called intersymbol interference (ISI) and in-
teruser interference (IUI), respectively. Specifically, let sy, be a
p-dimensional input signal. An MIMO channel is characterized
by a matrix polynomial

H(z)=Hy+ Hyz+---+ H,z" (1

where H;,7 = 0,1, ---,r are unknown ¢ X p matrices, ¢ > p,
and z* denotes the time-delay operator

2'Sp = Sp—;.

We consider the case without noise first and then extend the re-
sults to the noise case. The channel output, thus, can be formu-
lated by

T = H(z)sp. 2

Blind equalization of an MIMO system is to recover the channel
input sy, by using the output xj, only. For a system having one
source signal [i.e., p = 1, the single-input—single-output
(SISO), or the single-input—multiple-output (SIMO) system],
a large amount of algorithms has been developed based on
either nonzero higher order statistics of stationary sources
or second-order statistics (SOS) of nonstationary (cyclosta-
tionary) sources. On the other hand, if the media effect on the
signals can be modeled by a memoryless scale, the convolutive
distortion vanishes, i.e., 7 = 0 in (1). The problem for this
special case is named blind source separation (BSS) [3], [4],
[26]. Again, there are many results published in this area.
When the mixing matrix is full-column rank, non-Gaussian
sources can always be separated by higher order statistics, and
nonstationary (cyclostationary) sources can be picked out by
SOS, provided that they have distinct power spectra [16]. Due
to its potential applications in digital communications, blind
equalization of MIMO systems has attracted attention from a
growing number of researchers recently. Many equalization
solutions to MIMO systems are the extensions of algorithms
developed for SISO or SIMO systems based on higherorder
statistics (see [20], [21], and references therein). The principle
behind it is the Skitovich-Darmois theorem or the maximum
entropy formulation. Tugnait [23] developed a blind MIMO
equalizer by using a Godard cost function. Chen and Petropulu
[5] gave a solution by jointly diagonalizing the polyspectra
slices. Touzni et al. [22] proposed a set of hierarchical criteria
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from the maximum entropy principle point of view to build
an adaptive globally convergent MIMO equalizer. The source
signals are required to be sub-Gaussian, i.e., their normalized
kurtosises should be less than three.

As it is known, the higher order statistics may not be accurate
in comparison with the SOS for a given limit number of signal
samples. Also, the higher order statistics require more compu-
tational power. Thus, it is usually preferred to use the SOS if
it works. Inouye and Liu [11] studied the blind equalization of
finite impulse response (FIR) MIMO channel systems on the
SOS and concluded that every equalizable channel has an FIR
irreducible-paraunitary factorization and can be reduced to a pa-
raunitary FIR system by decorrelation. Although the parauni-
tary FIR system can be arbitrary, its output signals do not have
the ISI distortion, thus reducing the equalization in MIMO sys-
tems to the BSS problem. It is worthwhile to mention that be-
cause of the resultant paraunitary structure, the BSS can be done
by rotating the source signals only with higher order statistics.
Consequently, the blind equalization for MIMO systems can be
achieved with two steps: ISI cancellation by SOS (decorrela-
tion) and IUI cancellation by higher order statistics or maximum
entropy principle. Tugnait and Huang [24] realized this two-step
procedure by first whitening the observations up to a unitary
mixing matrix and then “unmixing” them with fourth-order sta-
tistics. Lopez-Valcarce et al. [15] showed that a user channel can
be equalized based on only SOS if it is the unique one having the
longest memory. Referring to (1), a user channel with longest
memory means that the column of matrix H, corresponding to
the user is nonzero. If there is only one such channel, H, also
has only one nonzero column accordingly. As a result, a matrix
F satisfying FH; = 0for: =0, ..., — 1 will provide a copy
of the user signal up to a scale. To detect a special user signal,
the authors suggested filtering the user signal before transmit-
ting it so that the “whole” channel it goes through has the longest
memory. By multiplying each user signal with a (known to re-
ceiver) complex exponential at a characteristic frequency before
transmission so that the whitened signal admits conjugate cyclo-
stationarity, Chevreuil and Loubaton [8] proposed to equalize
an MIMO channel up to a paraunitary mixing matrix by SOS
and to recover all the user signals on the characteristic frequen-
cies. This method is somehow similar to that in code-division
multiple-access (CDMA) systems, where an assigned “code” is
used to recognize a particular user. CDMA signal detectors also
benefit from the ISI-free whitened signals.

In this paper, we consider the blind ISI cancellation problem
for MIMO systems in general cases, i.e., p > 1, r > 0. The
source signals are assumed to be white and mutually indepen-
dent (i.e., the identification of those MIMO systems driven by
colored source signals is, therefore, not involved here.) We pro-
pose a self-whitening algorithm to directly output ISI-free esti-
mates for MIMO systems without identifying the channel. The
algorithm consists of two steps: whitening in time and whitening
in space. The whitened outputs can be seen as all source sig-
nals transmitted through a memoryless FIR system. When the
received signals are corroded by noises, the whitened outputs
give the maximal signal-to-noise (including intersymbol inter-
ference) ratio. The algorithm is different from those presented
in existing literatures: It is neither a zero-forcing equalizer nor a
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maximum-likelihood estimator. Its output is not derived via the
received signals passing through a linear filter bank but is a di-
rect estimate nonlinearly depending on the past output signals.
More realistically, it is a recursive algorithm that is expected to
adapt the slow change of the channel, although in the sequel, the
time-invariant channel is still assumed.

The paper is organized as follows. In Section II, the extended
least-squares (ELS) method combined with the overparameter-
ization technique is applied for whitening in time, and the ELS
output is proved to be asymptotic whitening. In Section III, the
recursive whitening in space is asymptotically derived in the
mean-square sense. In Section IV, performance comparison be-
tween the nonlinear whitening (NW) method and the linear pre-
diction deconvolution (LPD) method [11] for FIR channels is
presented. Some concluding remarks are given in Section V.

II. WHITENING IN TIME

We consider the case where the observation is free of noise.
In this section, by the use of the ELS method, we whiten the
observed signal in time.

The following conditions are to be used.

Al) The components of {s;} are mutually independent,
Es; = 0, Esgst = 021, and sup,, E||s¢]|*T® <
for some real number § > 0, where o2 is the power of
source signals.

There exists a p x ¢-matrix L such that L H (z) is stable
[i.e., all roots of det LH(z) are outside the closed unit
disk].

Remark 1: Notice that the condition Al) is weaker than
common independent and identically distributed (i.i.d.) as-
sumption. In fact, the whitening algorithm developed in the
sequel is based on the SOS only; thus, it does not require the
source signals to be i.i.d.. Under A1), we have

A2)

3y $i% =071 and Tim L Y sish =o’Tas. (3)

i=1 ! et

Remark 2: Without loss of generality, we assume that all
source signals have the same power, because if a source signal
has a different power level, the power difference may be com-
pensated by changing the gain of the channel it goes through.

Remark 3: The condition A2) does not necessarily imply
that the MIMO channel has to be irreducible or equalizable. It
ensures the convergence of the recursive whitening procedure
developed in the sequel. When the MIMO channel meets A2)
and is reducible as well, the whitening procedure still provides
white outputs, and the source signal can asymptotically be re-
covered up to a multiple being an orthogonal matrix. The algo-
rithm cannot whiten the signal when the channel does not meet
A2).

Denoting a,f 2 Ly, g, 2 Cosk, Co = LHy, and C} 2
LHjCal,j =1,---,r, we then have

Clz)=I1+Ciz+---+C.2" 4)
and

ok = C(2)ep. (%)
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It is worth noting that
Er = LHosk

can be viewed as the output of a flat fading channel, and {z£}
serves as the observed signal. The problem is now reduced to
transforming {z£} to a sequence that is white in both time and
space. In this section, we whiten {zF} in time. As a matter of
fact, based on {z k} we give an estimate &; converging to €y,
in the mean-square sense. Then, {€;} may serve as a sequence
whitened in time. Since it depends upon the first tap-matrix Hy
only, the estimate of £, may not be acceptable when Hj is away
from full-column rank. We refer to [9] for more information
about this issue.
By stability of C(z), we have

= iDizi V[z| <1

(6)
i=0
where || D;|| < M, for some M > 0 and X € (0,1).
Let m be a sufficiently large integer such that
(108 [lC)1Z M2 = N)])
m -1 @)

log A

where [|C(2)]|oo = max|.|=1 Amax[C(2)C" (27")], and denote

®)

Lemma I1: If C(z) is stable and D(z) is defined by (6)—(8),
then

[D(z)0(=)]"" - 5 ©

is strictly positive real (SPR), i.e.,
. . _ . . -1
[D(eM ™) + ([P ™)) =10

VA € [0,27], and D(z) is stable.
Proof: The SPR property is proved in [7, p. 139].

SPR of [D(2)C(z)]"! — (1/2)I implies SPR of
[D(2)C(z)]~*. Then, D(z)C(z) is also SPR (see, e.g., [7,
Lemma 4.1]), and hence, D(z) is stable. []

Remark 4: 1f C(z) is SPR, then we may take D(z) =

Denote

F(z) 2 D(z)C(z) (10)
Then, from (5), we obtain the following ARMA system
D(2)xy = F(z)ex (11)

Itisclearthat F'(0) = I.Let F(2) = T+ Fiz+ -+ -+ Fpppn 2™,
and

HT:[_D17...,_Dm/7F17..-7Fm,,‘]. (12)
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The recursive algorithm whitening {z£} in time is defined as
follows:

Eht1 = Tiy1 — 010k (13)
Or+1 =0k + axPeor (zr11 — o1 Ok) (14)
Pey1 =P, — arProror, PL
ar = (1+ @{Pk@k)i (15)
with Py = al and arbitrary 6, where
sz - [ fTV xmeJrlszvék 177 7é£—mr+1] ' (16)

Theorem 1: Under Conditions Al) and A2), {£;} is a se-
quence asymptotically whitened in time with

logn
—ZIIEk—akIIZ < ’ ) (17)
and
20,0 >0, j=0
_nggkﬂ {g "CT > 0, §>0. (18)

Proof: Let & = ép — e, and denote by )\max(n) the
maximum eigenvalue of (Pn+1) =Y il + (1),
ie., Amax(n) = /\max(Pn+1) By Lemma 1, we see that [7,
Theorem 4.1] is applicable to (11) by taking /4 = 2 + § and
ug = 0 in that theorem.

Then, it is proved in [7] (see (4.62) of [7]) that

lefmll

Let us define

O (log (Amax(n))) - (19)

k
1
T T T T
= . d = X2 —I
Vi = €k €h_py1] and Qryy (;dl ¥ + 5 )
(20)
and denote by fimax(n) the maximum eigenvalue of Q !, i.e.,
//Lmax(n) = )‘maX(QZI)
Further, denote
PR = len, en—rs1]” and ¥f = P — ) (21)
and notice that
2 T
. T g C()C s J = 0
A ;E’“gk“ - {07 ise
From (22) it follows that
1 n
1. - 0.,0T — l ZC CT 23
nEI;onkX:)wm ® 0> CoCy (23)

where ® is the Kronecker product, and I is an r-dimensional
identity matrix.
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From (5) and (22), it follows that

= 2
>Nkl =
k=1

Therefore, we have

-4{2N¢W+zmm@:om+%mm»
k=1 k=1

(24)
Let « be a unit vector with the same dimension as 1),,. Then, by
the Schwartz inequality, it follows that

zn:(xTwi)Z _ En: (QZTT/)Z'S +$T¢?)2

i=0 =0
<23 ("y))’
=0

From (23), we see 2 . (zT9)° =
and (24), it follows that

)\max(n

(25)

O(n), while from (19)

O (log (1 + fimax(n))) .

By noticing fimax(n) = maxjuj=1 Y i (xT’l/fi)Z + (1/a),
from (25), we conclude that
fmax(n) = O(n) + O (log (n + fimax(n)))
which implies
fimax(n) = O(n). (26)

Incorporating (26) with (24), from (19), we derive

n
> gl
1=0

which proves (17).

By (17) and (22), we see that all terms on the right-hand side
of (27) stated below tend to zero for j > 1 and to 2CyC{’ for
j=0an —

= O(logn)

n

1 . R
= Zekak+] = Z(sk - ak)ag_,_j

kl
ln
s

This proves (18). [ |

This means that {£;} has asymptotically been whitened in
time. We note that (13)—(16) is the extended least-squares esti-
mate for 6. Under the conditions of Theorem 1, 6}, actually is
strongly consistent for 6. If C'(z) is stable, then for sufficiently
large m, we have (18). So, for A2), we may try different L and
kick off those L for which (1/n) 3"y_, éxéf, ; diverges or be-
comes nondegenerate.

n

1 T
(Erts — Ek+J) + " EkEk4j-
k=1

27
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Since 02CoC may not be diagonal, we have to further
whiten £, in space.

III. WHITENING IN SPACE

Assume L has been selected.
We have

n

.1 R A
lim — E Eksg = UQCOC{;F = R..

(28)

Using the data { ékéf}, we proceed to recursively diagonalize
R.. In fact, we present a recursive method for principal compo-
nent analysis.

Recursively define

ﬂgﬁl ug + E€k+1€k+1ul(c ) (29)
(1) “EC )1 1)
Upy1 = H (;; H if Huk-i-lH # 0. (30)
If |a ,(61_21 | =0, u,(cl) is reset to be a vector with norm 1. Define
Vo) = [’ug) PO plgjmul(cj)] 32)

N N G 1 . . .
gc]:—ll) PISJ)“I(CJH) + EPISJ)Ek+1€z+1PI£])ul(c]+1) (33)
G _ g (it 1
J . J

S g ||z 0<e< 6o

k41
If ||& kfll)H < ¢, define a u,(CjH) with ||u,(cj+1)|| = 1 such that
PP ) =1

Let M}, be a sequence of positive real numbers such that
Mk+1 > M, M;, > 0, Mkk_) 0. Define
—00

. 1 . ST .
A2 = W= (W) = e )]
><I[|/\§7> FD T e el 0 [ <0, (35)
k-1
Ok = ;IH)\E])—%(Aij)—ufj)TéiJr1éT+1u(3) |>J\/I ]
g0 :07 J = 17 Y 4
1
A 0
A 2
0 AP
Uk 2 [uf - ufl] (36)

where | [o] is an indicator function, which equals 1 if the relation
in the bracket is true and 0 otherwise. Set

. A -1 R -1

a2 A TUT S, (: AL PUT (Lay — 05%_1)) NGY)

The following theorem shows that §j, is the desired estimate
whitened in both time and space.
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Theorem 2: Assume that Conditions Al) and A2) hold and
(IIskll*/k) — 0 a.s. Then, 5, is asymptotically whitened in
space hee

1 n
—§ N A (38)
n n—oo

k=1
I~ .1 _
— E SkSky; — 0,V 2>1 (39)

and
UpM UL — R.. (40)

Proof: Applying the Taylor’s expansion leads to

) 1)

1, 1
Upiq = <uk + E€k+18£+1u§: )>

<1 + ku( )T5k+1é{+1u§€)

wh-‘

1 . R 2
+ ﬁ <1)T (6k+15{+1) u}&”)

L, .
= <’U,]<Cl) + E6k+1E£+IU£1)>

1
X {1 — E’U,](CI)TA

AT 1
5k+15k+1“§c :

1) /4 2 (1
_ﬁul(c)(gk+15k+l) “2)

3[4 . 2
T3 [ﬁ (ui )TE’“HEZHUS))

e ks ( - 5k+lgf+1uz§1)uz§1)T
2 (1
x (Eep1el ) ul >}

5 (T
T (“k

Since (||sk||3/k)k—>000 we have (||ex || /k)k—> 0 as. It is

3
ek+1é£+1u,§1>) +7"k}. (41)

clear that (17) implies that ||, — ex|| = O(log k). Therefore
4 3
_||6k|l Z (H&‘k” + ||Ek — EkH ) k_—);oo a.s. 42)
Therefore, in (41)
1 4
llrell < c <E€Ak+1é£+1> —0

where ¢ may depend on a sample path.
We then rewrite (41) as

) 1)

)
Uppy = U "+ E€k+1€k+1uk

1 1
- (ul(gl)Tgk—i-lgszlu](g )) ](cl) + EVIE:{{—)I (43)
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where

n al T wyr /. 4 1
R A CRE

+

2
VT (1) (1)
(uk €k+1€k+1uk uk
nT. v @
Ep+1€k 41Uy

DT, v (1
) 5k+15k+1“§c ))

T (x T \2 (1 1
(Ert18k41) “( )) ul(c)

(uk ak+1££ lu,(c)) ,(cl)

)) §k+1é£+1“§cl)}

+
Xl
—
/N
<

~——

|

X W  — N W
<
~——

Q/\
=2
N

2 MY T (D)
5k+15k+1) Uy, )5k+15k+1uk

C\J[\Dl}—‘l\DlCﬂ/\

+
DO |

2
( T ek+1éz+lu;“)
x 1€l ul ] + 6 (44)

where ||6%]] < e1(1/k3)||éky1]|® with ¢; possibly varying in a
different sample path.

By (42)
v — Oas (45)
Rewrite (43) as follows:
’“1&1421 ](cl) 4+ ( ( DT R 4 ) (1))
% ( 1£1+)1 £1+)1 ‘*‘%&31) (46)

where

(1) _ (a 2T T (1)
VeL1 = (€k+15k+1 - €k+1€k+1) Uy,

+ (u,(j)T (expreTin — éxpréley) ull )) ul) (47)
/j’gc-lzl = (€k+15£+1 - R )U(l)

+ (u,(cl)T (R €k+15k+1) u,(cl)) u,(cl). (48)

We may consider the truncated version of (46), but it will coin-
cide with the untruncated version for large & since {||u,(€1) I} is
known to be bounded by 1. Therefore, the algorithm (46) is a
special form of stochastic approximation algorithm (66) given
in Appendix A, where u(l) R u,(cl) (u,(Cl)TReu,(cl))ug), and

,gizl + /‘194)-1 +'y,(clﬁl correspond to ¥y, f(J), and vy1 in (66),
respectively. Therefore, C3) is clearly satisfied.

Set
m(k, t) max < m il <t (49)
- 1=k ¢ '
We now show
m(k,T) 1
1

3 lyl(ﬁl = 0,¥T >0, (50)
1=k
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Denote and by (52), we have
n m(k,T)
ny 2 5L 1.
Sy = Z: ll€r+1 — erall, Z 7||5,+1||2k_—>)ooTtrRE.
- 1=k
52 2 Z llérs1])? From these, we see that the right-hand side of (54) tends to zero

as k — oo. This %)roves (50).

@) A n ) Notice that (', Fx) is a martingale difference sequence,
no = Z llerall™. where Fy, is the o- algebra generated by {u(]) j=1,---,pl<
- k}, and
By (3), (17), and (18), we see that 148
) 2
SupE <H,uk+1H |.77k> < oo
S =0(logn) as. (51)
Sr(?) Therefore
—— —trR, a.s. (52)
n
(1)
53 —Hp Yy < ooas. (55)
— —trRR. as. (53) Z !
n
and Combining (35), (50), and (55) leads to
m(k,T) 1
m(k,T 1 1 1
<Z "1 > (R u +al) = vas 66
l71+1 I=k
1=k
(kT This verifies C2) in Appendix A. "
— Lly. .7 T Denote by S the unit sphere in R?. Then, u Y evolves on S.
= ; 1 HE[HEZH - EH—lEH_lH Define *
m(k,T) T
1,,. R . f(u) = Reu — (u” Rouw)u, u € S.
= Z 7 H(€l+1 - 5l+1)511:|_1 +erp1(Er1 — €1+1)TH
1=k The root set of f(-) on S is
1
m(k,T) 2 A
1. S f =1
< 3 7||El+1_51+1||2 J={fii=1,--p} (57)
=k where f; are unit eigenvectors of R..
r 1 1 .
m(k,T)l 2 'm(k,T) 1 z Defining
<[ Y 7||51+1||2 + Y 7||<51+1||2 - (34 N
1=k 1=k v(u) = —iu R.u
Notice that by (31), we have foru € S, we have
m(k,T) 1 m(k,T) 1 X X vy(u) f(u) = - U;R; [Rgu _T (UTJEEU)U]
> e —anlP= Y 1 (s} ) —sfjl) = — u"R2u+ (u” Rou)
1=k 1=k _ {< |Roull?||ul)? —uT R2u=0, ifu¢ J (58)
1) 1 - ;
_ Sk ) ~ SIE: )1 0, ifuelJ.
m(k,T) k This verifies C1°) in Appendix A. Thus, the convergence the-
m(k,T) orem of stochastic approximation given in Appendix A is appli-
w(_t 1 (1
+ Z S, =171/ joo 0  cable, and we conclude that u,, ~ converges to one of f;, say, fi.
1=k It is shown in Appendix B that by induction u,i 9 given by
by (53) (29)—(34) converge to different unit eigenvectors of R..
Rewrite (35) as
" "1 g o ) @) o L100) _\G) 4 yOT R g0 _ 2G
> flleal?= 3 5 (Sl - SH) A0 = {A,j + [/\(J) AW 4 DT Ry W) — A
I=k 1=k
@AOT (a2 ©)
S 0 T}
m(k, T) k X I“k(kj)_%(Aiﬁ_,ui.j)frékﬂézﬂuij))|§M%]- (59

m(k,T)
+ Z S (3) < L %) = TtR. X&S)seeqtghat this is in the form of (66) with ¥* = 0 and f () =
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Since u,(cj )

converges and ugj)TRau,(cj) — @) — 0, by the
treatment similar to that used for (47)—(55), we have

m(k,T) 1 ) )

> 7 [ R =204

=k

— 0.
k—oo

AT .
ul(J) (51+1€IT+1 — RE) ugj)}

Then, by the convergence theorem of stochastic approximation
given in Appendix A for linear regression functions, we have

Then, Ay and Uy, given by (36) have limits

A 0

) Uk_) [flfp]

Ay — .
0 (@)

From (18), it follows that

n
1 Z Ny
- Slsl -
n

=1

A TUTR.UAZ = I.

1
2

e _1 o
E E Al QUITEIElTUlAl
=1

e~ _1 _1
E 77T 2 2T . 2

; Al Ul €l€l+le+]Al+j
=1

—0, V5 > 0.

n
l E :glgT .
n I+j
=1

Then, (38) and (39) have been proved. [ |

By Theorem 1, we see that when the original source sequence
{51} is Gaussian, the estimated sequence {&, } is asymptotically
Gaussian. Since {$y} is transformed linearly from {£ }, by (37)
and (40), {5, } also is asymptotically Gaussian.

IV. SIMULATION RESULTS

In this section, we consider a numerical example to illustrate
our approach. For generating the signal {sy, }, we proceed as fol-
lows: Take a random sequence consisting of 0 and 1, and encode
the sequence by a turbo encoder. The coded bits {by } are inter-
leaved and passed through a serial to parallel (S/P) converter.
Then, they are fed into p transmission paths corresponding to
p transmitter antennas. At each path, the modulator maps each
of its inputs into one point of a quadrature phase-shift keying
(QPSK) constellation. The output of the modulator serves as
the channel input used in our example, i.e., {sy}. Let the ma-
trix polynomial H (z) characterizing the channel be given by

2 r 1 2 1
L3 1 5 5 3
1oy 1 2 _1 3

H(z) = 12 4 é i T

~3 ~5 2 10

2 3 3 2
0 1 -3 l-16 5 7
c1 2
8 7 5
_2 1 _3
9 6 7 2
+1 3 % ]2 60
8 25 11
3 3 2
L 11 8 13
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with p = 3, ¢ = 4, r = 2, and the observations by

Yp = T +np = H(2)sp + ng (61)

where the noise {n } is ani.i.d. Gaussian sequence with Enj =
0, Enknf = o2].

The NW method developed in this paper is compared with
the LPD method proposed in [11], by which a matrix polyno-
mial W (z) is first derived such that W (z2)H(z) = Hy. In this
example, we set the order of W (z) to 8. Then, the estimate for
ey, 1s defined as

ér = W(2)yr = Hosi + W(z)ng. (62)

To evaluate a whitening or deconvolution method, we use the
following performance indices: the mean-squared error (MSE)
of the estimate for Hysy,, the ISI, which characterizes the white-
ness of € in time, and the component correlatedness (CC) of S,
in space. They are defined, respectively, by

> ney éx = Hosi?

MSE = L (63)

> k=1 [ Hosk|l*

nS T gl
ISI= max |p it s B (64)
pi=1.2 (n = J) 2k=1 6k Ex
and
I, .1

CC=max|p| — Sksy, — 1 (65)

P mn b1

where p(A) denotes the eigenvalue of a matrix A. The efficiency
of the whitening method proposed in the paper is measured by
the bit-error rate (BER).

When applying NW, in order to keep ¢ as Hysy, we take

1 000 0 3 00
LW=10 % 0o oladZL®=1]0 0 % 0
00 1 0 00 0 1

The data to be used are 77,(:’), 1=1,2

In Appendix C, it is shown that 77,(;)
sentation [13]
771(;3_1 = wl(;-i)-l

has the innovation repre-

+GPu) 4 b GO

Let D(z) = I + D,z in (11), and treat 77,(:) and w,(;)
ek in (11), respectively. By (13)—(16), we derive 12),(:) . The initial

as £ and

1 1 1
values for (14) and (15) arep = |1 1 1| and Py = 0.21,
1 1 1

respectively. In order to reduce the effect caused by inaccuracy
of initial values, each frame with length of 1200 bits is used
twice to go through (13)—(16): The estimates 6, and P}, obtained
at the end of the first round of computation serve as the initial
values of the second round of computation, and the estimates
uA),(J), t = 1, 2 derived from the second round of computation
are used for comparison. Define iy, = LOTw(" 4+ LT
to serve as the estimate &, for ey. Putting the computed £j, into
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(63) and (64) immediately yields MSE and ISI. In order to de-
rive CC, we replace €1 in (29)-(37) by w,(glﬁl and derive a
whitened sequence {5y, } in space, which gives CC (M according
to (65). Similarly, by 12),(62_&1, we obtain CC®). To demonstrate
the efficiency of the NW method, we elect CC in the worse case,
ie.CC 2 max(CC™"), CC®), and illustrate it in Fig. 3.

In Figs. 1-3, the performance indices are plotted as functions
of signal-to-noise ratio (SNR), where the performance indices
are obtained by 100 Monte Carlo runs, while SNR is defined as

3 #{iil)

SNR = 10log;, } - 2}

q
> B{
i=1
In Figs. 1-3, the lines with cycles are given by NW, while
the lines with plus signs are given by LPD; the dashed line
with asterisks in Fig. 1 is the relative power of noise, i.e.,
E{||nw||*}/E{||Hosk||*}. Figs. 1 and 2 show that the method
NW proposed in the paper gives better results over the LPD
method, especially for low SNR. Fig. 3 demonstrates that the

i
L,

i
Ny
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Fig. 4. BERs.

NW provides a good performance of recursive whitening in
space.

The overall efficiency of our whitening method is measured
by BER. The BERs of the recovered signal are computed when
LPD and NW are used for deconvoluting the system. The lines
with cycles and plus signs in Fig. 4 are computed on the “best
case scenario,”’ i.e., for the case where the channel matrix H is
assumed to be known. From Fig. 4, it is seen that NW gives
better results than LPD. For the case where H( is unknown,
we apply the signal rotation part of the JADE method [2], [3]
to the signal whitened in space according to NW. The JADE
algorithm is taken here because it is a simple algorithm and is
widely applied in BSS. The resulting signal differs from the true
signal s by a multiple being a diagonal matrix with diagonal
elements €%, j = 1,---,q, where ¢ is the dimension of sy,.
By using the property that each component of sy, is of the form
+(1/2/2) + i(\/2/2), the estimates for 6, j = 1,---,q, are
then obtained by the least-squares method. For this case, BER
is shown by the line with asterisks in Fig. 4. Therefore, even in
the case where Hy is unknown, the proposed method NW still
works well.
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Concerning the complexity of LPD and NW, they are not
comparable, in general, since LPD is a batch algorithm, while
NW is an adaptive one. The computation of NW is distributed
to each step when a new received sample comes. The LPD col-
lects a certain number of received samples before whitening.
The computation of NW is proportional to the length of the ob-
served signal sequence. For a given signal sequence that is long
enough to have an acceptable estimate, the overall computation
of NW is larger than that of LPD. Fig. 5 shows the behaviors
of the MSE as the number of steps in our recursive algorithm
grows up for different levels of the noise.

V. CONCLUSION

The paper proposes a recursive direct method for MIMO
channels to whiten the output signal in both time and space.
Unlike the conventional deconvolution methods that normally
construct a weighting matrix W (z) to form a linear filter acting
on the past output data to produce the estimate for input signal,
the estimate for input signal proposed in the paper is a highly
nonlinear function of the past output data. From (89), it can be
seen that the nonlinear method helps us in suppressing noise in
an optimal way, while for all linear methods, the influence of
noise is neglected during designing W (z), and as a result, the
noise term W (z)n; additively appears in the estimate éj for
Hysy, [see (62)]. This explains why our nonlinear method is
better than linear methods.

The convergence of the algorithm is proved in the paper.
Numerical simulation demonstrates that the proposed method
works very well when the observation is corrupted by noise.
As a matter of fact, in this case, the noisy output can still be
expressed as the output of an MIMO channel without noise
by using the innovation representation. The simulation results
show that the observation noise does not affect too much on the
innovation representation, especially for cases of large SNR,
and that ignoring such an effect leads to BERs much less than
those when simply ignoring the existence of noise in the LPD
method.

Although the proof of the method assumes that the channel is
time invariant, it is expected to work well for a slowly changing
MIMO channel. Unlike the batch methods, the algorithm pro-
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posed in this paper is recursive and updates at each sample. It
is an inherent property of recursive algorithms that they may
adapt to the change in system parameters if the change is slower
than the convergence speed of the algorithms. Intuitively, the re-
cursive algorithms spread the whitening process into each time
when the signal sample received, thus, is expected to give a more
accurate estimate than the batch method when the channel varies
slowly.

The key step when applying the NW method given in the
paper is to adequately select a matrix L satisfying A2) and a
sufficiently large m satisfying (7). One may first assume that
there exists a stable submatrix of H (z). If the stable submatrix is
available, then L can be taken such that each its column has only
one nonzero element that equals 1 and corresponds to the row
of H(z) that should be selected. If only the existence of a stable
submatrix is known but the submatrix itself is unknown, then
we may try different L with columns having only one nonzero
(equal to 1) element. The total number of such matrices is C}l =
[p-(p—1)---(p—q)]/lg-(g—1)---1], where p is the number
of rows of H(z), and ¢ is the number of columns of H(z). So,
after at most Cg trials, the desired L will be obtained. However,
in general, it may happen that LH (z) is stable for some matrix
L, even if there is no stable submatrix of H(z). In this case, we
do not have a general way to define L. At present, we need work
by “trial and error.” The development of a practical algorithm for
selecting L is a future research topic. Besides, to quantitatively
analyze the effect of the observation noise is also of interest for
further research.

APPENDIX A
CONVERGENCE THEOREM OF STOCHASTIC APPROXIMATION

For the stochastic approximation algorithm with expanding
truncations

Vg1 = <?9k + % (f(I) + Vk+1)>

X Mowt G0l <M, ]
+ 19*I[||19k+%(f(19k)+7/k+1)||>J\ng] (66)
k—1
%= D _[ll0.+ 20 4ves||> Mo ]
=1
o0 =0 67)

assume that the following conditions hold.

C1) There is a continuously differentiable function v(-) :
R! — R such that

FT(0)y(0) < 0

sup
§<d(9,J)<A

forany A > § > 0, where .J is the zero set of f(-)
consisting of isolated points. (¥, J) = inf, {||J—¢|| :
¢ € J} and vy(-) denote the gradient of v(-). Further,
¥* used in (66) is such that v(9*) < infjy)—c, v(V)
for some ¢y > 0 and [|9*]| < co.

C2) For the sample path under consideration

m(ny,t)

Z a;viy1|| =0,

i=ny

lim lim sup T vt € 10,7

T—0

k—oo
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for any {ny} such that 9, converges, where m(k,T')
is given by (49).
C3) f(-) is measurable and locally bounded.

Then, d(¥,.JJ) — 0 for any given initial value 9 for the
sample path for which C2) holds (see [6, Th. 2.2.1]).

Remark 5: Ifitis known that {¢; } evolves in a subspace S of
R!, then C1) can be weakened to C1°). There is a continuously
differentiable function v(-) : R' — R such that
Fr(@)ws(9) <0

sup
§<d(9,JnS)<A
veS

for any A > 6 > 0 (see Remark 2.2.6 in [6]).

APPENDIX B

Inductively assume

PO o =1, -1 (68)
and denote
VOR[f 5], POET_vOYOT pO 1 (69
By (68), we have
v = VO, P PO =1 -1  (70)
and
PODfi=fi i=1, -1, (71)
By (42) and (68), it follows that
D S f =11 (72)
and by (34)
= fi, =151 (73)
Since
VAV - VOV
= (V5 V) VT v (T )

= (o ) o+l (o

and from (46)

1 1 1 1 1 1
wh = = o (7)+ 7 (8 +ufhi+ofh)

nT nT
T )

we see
1 1 1)y AT 1 1 1
Vk(+)1Vk(+)1 - Vk( )Vk( M=o <E> + E(SI(C—Izl (74
where
1 1 1 1 nT
512-21 = ( 15:—121 + Ul(c-21 + 71&-21) l(c-121

T
1 1 1 1
+uf) (v + il + i)
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(1)

Since u,, * converges, by (56), it follows that
m(k,T) 1
3 761(}21 ~ Oas. (75)
=k
Together with (68), inductively we also assume
Vk(:_)lvk(i)?_v(z)v(Z)T <k> += 6k+17 i=1,---,5—-1
(76)
and
m(k,T)
L) : :
> —5l+1k—> Oas. i=1,---,5—1. (77

=k

‘We now show that u( R

contained in

converges to one of the unit eigenvectors

IN\Afr---, fi—a}

and that (76) and (77) hold also for 7 = j.
By definition

~(J) _P(J) (J)+ kP(J 1)€k+1€k‘+1p(j 1) (J) (78)

() _ k+1
Upyr =

i) 2=

gl (79)

ol

Since the last term in (78) tends to zero and P,z 711 — pU-1),

) t0 a new a1\’ with ||u(])|| = 1 and

we need only to reset u;
||P<] Vi (J) || = 1 at most for a ﬁmte number of times.

Replacmg ué ) by P(j D49) in (41)—(48), we arrive at the
following recursions correspondlng to (46)—(48):

1 - i .
“1?4)-1 _u](CJ) + - |:Pl§] 1)R8P]§J 1)u](€1)
_ (ulﬁj)TP,Sj_l)ReP,Y‘”ﬂi”) p,gf—%,gﬂ
1 .
T ( Sl + 71(cj+)1)

(4)
k1,

(80)

— 0
—00

where v

j 1
71&21 = (5k+1€k+1 - 5k+1€k+1) P(J ) (])

+ [uﬁj)TP,EJ 2 (Ek+15k+1 - €k+1€k+1) P(J Y (j)}
« PO )
il = Ernély — Re) Y Du))
b s BED (R, — fpn ) PO
) PUD,0).

Similar to (50) and (55), we have

m(k,T) 1
Z _’Vz(i)l — 0Oa.s.
i—k -
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and
oo
E lu(j) < oo a.s
— i 1+1
P

Noticing P,Sj_l)Plgj_l)
rewrite (80)

= Plgj_l) and using (70), we can

PO g

RPN . . N
:Png 1)u§CJ) _yU=-Dy U 1)TP,£J 1)uI(CJ)+EP(J—1)

k41 Ykl
x [P(j—1)R8p(j—1)P’5j_1)ul(cj)
_ (ug)Tplgjf1)P(j—l)REP(j—l)Plgjfl)ug))
x PO + 2 (o) + 1y +98) @D
where we have used the assumption

Plgj_l) — pU-b),

Denote the second term on the right-hand side of (81) by

1 A v i—1 v j—1)T j—1 j
k/Bl(cj+)1 = k(+]1 ) k(+]1 ) PIEJ )’u,ij)
1% j—1 Vv i—1)T
= k(+Jl ) k(-i—]l )
I v j—1 Vv j—1)T Vv j—1 1% j—1)T
X( k(+]1) k(-i—Jl) k(-l—Jl) k(+]1)

_V,jj—”V,jj—”T) o)
_ _yU-DyG-nr

k+1 k+1
j—1 —1)T j—1 —1)T
(VTG — vy,

By (70), (76), and (77), we have

Lo 1 L ()

and

m(k,T)

L)
Z ;/31_]1_1 T 0as.

1=k

(83)

(G-1)

Setting z,(cj ) = P, (9

uy’, from (81)—(83), we see

(@) _

Zk-‘,—l =z
% [p(j—l)REP(j—l)Z](Cj)
_ (Z,(vj)Tp(jfl)REP(jfl)zl(Cj)) zfj)]

n % (Ml(cj;i)—l + 0(1)) .

W 4 1 pG-1)
k + k

+ 7 + B (84)
Again, applying the convergence theorem of stochastic approx-
imation given in Appendix A, we can prove the convergence of

2" to an unit eigenvector of PU~D R_PU=1),
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By (32) and (33), ugcj) and, hence, u,(cj) converges: u,(cj) —
«9). Thus

20 L, pu-D,0),

From (33), we have
V(jfl)V(jfl)Tul(CJ;i)_l _ V(j71)V(j71)TP]§j—1)ul(€j_1)
1 . . -
+ VUTIVUTIT P g e

XP,ij_l)u,(Cj) — 0

k—o0

and by (34)

—
k—oo

V(j_l)v(j_l)Tul(c]-q)-l

e

This incorporated with u{) — u(?) leads to

vU-DyGE-DT,60) — 0 or PU—Dq0) = @) (85)

Since the limit of z,(“j ), POy is an unit eigenvector of
P(j_l)REP(j_l), we have

|:P(J'*1)R6P(J*1) _ (u(ﬁReu(J')ﬂ w =0
or
PUDR ) — (u(j)REu(j)) w9 = 0. (86)

From (85), it follows that u() can be expressed by a linear com-
bination of eigenvectors f;, - -, f,. Consequently

PUDR 4 = Ry
which, combined with (86), implies

R.ul) = (um Reum) uw)

This means that (") is an eigenvector of R, and u(9) is different

from fi,-- -, fj_1 by (85). Thus, we have shown (68) for i = j.
Since
PUDR PU=D0)— (AT PU-D R PU=D0) 200 — 0
from (84), we have
i i 1 1w . .

- =o (1) + el =1 e

where
al(:il = //‘I(v,?—l + 'Yl(c:)-l + /[31(;1)-1 +o(1) (88)
and
m(k,T) 1
(@)
Z 7a1+1 L 0, VI > 0.

=k
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Elementary manipulation leads to

VG - VOO
. - . T -
= (Vk(-]i-)l Vk(j)) Vk(—]i-)l + Vk(J) (Vk(-]i-)l Vk(]) )

= (VIS-{-)I - Vk(j)) V;i)1 E4+1 Vk41 k41
_y (VkaVk(j))‘ y T

(V(J) V(J)) V(J) n V(J) (Vk(i)ka(i)l)_
(VYO VT VT

(Vk(i) V(J)) V(J) n V(J) ( k(-]i-)lT k(i)l)

N |:(Vk(j)T— szi)fp)szj) + VT (Vm Vm)] VT

This equation, together with (87) and (88), proves (76) and (77)
for i = 7.

V(J) (V(J)T (J)) yor

APPENDIX C

Consider the case where the received signal is corrupted by an
additive noise n, which is uncorrelated with {s; } with En; =
0, Enknf_l_j =0,Vy >0, Enknf = RVk.

Denote

e = Lz + ny)
ie.,

My = LHosy + LH5p—1 + - -+ LH, S, + Lny,.

As in Section II [see (4) and (5)], setting e, = LHysy,

C(z)=T+Ciz+ -+ C,2", C; = LH;(LHy)™

we have

M = e + Crep—1 + -+ -+ Crep—r + Lng,.

Comparing with (5), we ﬁnd that when the signal is received
without noise the signal =¥ i to be whitened is an MA process,
while here we want to whiten 7, which consists of not only the
MA part but also an exogenous input L. In what follows, we
show that by using the innovation representation, 7, can still be
expressed as an MA process. Let

o

G =

C=1,0,---,0].

(r+1)p
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Then, we have the state-space representation of {7y, }

&1 = A&, + Bt
e = C&, + [0, I]Ck.

If (A, B, C) is controllable and observable, then for {(; } being
any uncorrelated sequence with E¢, = 0 and E(x (¥ = R,
it is well known [14] that the Kalman filter gain K}, converges
to a limit: K}, i~ K < oo. Further, if {(;.} is Gaussian, then

. . — 00
innovation of {ny}

E (me) F_1) (89)

is an i.i.d. sequence with Ewy, = 0 and F}* = F,', where F}*

denotes o{wy, - - -, wy }, and F}! is defined in a similar way.
Using the innovation property of residuals in the steady-state

Kalman filter, we derive the innovation representation [13]

A
Wi = Mk —

Met1 = Wkt1 + Grwg + - -+ + Grwi i1 (90
where G; = CA'K. Instead of A2), we now assume
G(z)=1+Grz+--+G.2" 1)
is stable. Corresponding to (5), we now have
e = G(2)w,. (92)

Since {w;} is Gaussian, we have E||w||' < oo for any [ > 0.
Then, (1/n) Y3, wnll' — Ellu, |'. Consequently

1
;||wn||’ — 0, forany ! > 0.

Therefore, if in addition to Al), {(x} is an i.i.d. Gaussian se-
quence and G(z) defined by (91) is stable, then the same method
as that used in Theorems 1 and 2 can still be applied to whiten
{n1}, which corresponds to {zL} in (5).

REFERENCES

[1] K. Abed-Meraim, J. Cardoso, A. Y. Gorokhov, P. Loubaton, and E.
Moulines, “On subspace methods for blind identification of single-input
multiple-output FIR systems,” IEEE Trans. Signal Process., vol. 45, no.
1, pp. 42-55, Jan. 1997.

[2] J. Cardoso and A. Souloumiac, “Blind beamforming for non Gaussian
signals,” Proc. Inst. Elect. Eng. F, Radar Signal Process., vol. 140, no.
6, pp. 362-370, Dec. 1993.

[3] J. Cardoso, “High-order contrasts for independent components anal-
ysis,” Neural Computat., vol. 11, pp. 157-192, 1999.

[4] X. R. Cao and R. Liu, “General approach to blind signal separation,”
IEEE Trans. Signal Process., vol. 44, no. 3, pp. 562-571, Mar. 1996.

[5] B. Chen and A. P. Petropulu, “Frequency domain blind MIMO system
identification based on second- and higher order statistics,” IEEE Trans.
Signal Process., vol. 49, no. 8, pp. 1677-1688, Aug. 2001.

[6] H.F. Chen, Stochastic Approximation and Its Application.
The Netherlands: Kluwer, 2002.

[71 H. F. Chen and L. Guo, Identification and Stochastic Adaptive Con-
trol. Cambridge, MA: Birkhduser, 1991.

[8] A. Chevreuil and P. Loubaton, “MIMO blind second-order equalization
method and conjugate cyclostationarity,” IEEE Trans. Signal Process.,
vol. 47, no. 2, pp. 572-578, Feb. 1999.

[9] D. Gesbert and P. Duhamel, “Robust blind identification and equaliza-
tion based on multi-step predictions,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., vol. 5, 1997, pp. 3621-3624.

[10] A. Gorokhov and P. Loubaton, “Subspace-based techniques for blind
separation of convolutive mixtures with temporally correlated sources,”
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44, no. 9, pp.
813-820, Sep. 1997.

Dordrecht,



CHEN et al.: NONLINEAR ADAPTIVE BLIND WHITENING FOR MIMO CHANNELS

[11] Y.Inouye and R. W.Liu, “A system-theoretic foundation for blind equal-
ization for an FIR MIMO channel system,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 49, no. 4, pp. 425-436, Apr. 2002.

Y. Inouye and T. Sato, “Iterative algorithms based on multistage criteria
for multichannel blind deconvolution,” IEEE Trans. Signal Process., vol.
47, no. 6, pp. 1759-1764, Jun. 1999.

T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation.
wood Cliffs, NJ: Prentice-Hall, 2000.

R. S. Liptser and A. N. Shiryayev, Statistics of Random Pro-
cesses. New York: Springer-Verlag, 1977.

R. Lopez-Valcarece, Z. Ding, and S. Dasgupta, “Equalization and inter-
ference cancellation in linear multiuser systems based on second-order
statistics,” IEEE Trans. Signal Process., vol. 49, no. 9, pp. 2042-2049,
Sep. 2001.

C. T. Ma, Z. Ding, and S. F. Yau, “A two stage algorithm for MIMO
blind deconvolution of nonstationary colored signals,” IEEE Trans.
Signal Process,, vol. 48, no. 4, pp. 1187-1192, Apr. 2000.

L. Parra and C. Spence, “Convolutive blind source separation of nonsta-
tionary sources,” IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp.
320-327, May 2000.

J. D. Shen and Z. Ding, “Zero-forcing blind equalization based on sub-
space estimation for multiuser systems,” IEEE Trans. Commun., vol. 49,
no. 2, pp. 262-271, Feb. 2001.

D. W. E. Schobben and P. C. W. Sommen, “A frequency domain blind
signal separation method based on decorrelation,” IEEE Trans. Signal
Process., vol. 50, no. 8, pp. 1855-1865, Aug. 2002.

A. Swami, G. B. Giannakis, and S. Shamsunder, “Multichannel ARMA
processes,” IEEE Trans. Signal Process., vol. 42, no. 4, pp. 898-913,
Apr. 1994.

L. Tong, Y. Inouye, and R. Liu, “A finite-step global convergence al-
gorithm for the parameter estimation of multichannel MA processes,”
IEEE Trans. Signal Process., vol. 40, no. 10, pp. 2547-2558, Oct. 1992.
A. Touzni, I. Fijalkow, M. G. Larimore, and J. R. Treichler, “A globally
convergent approach for blind MIMO adaptive deconvolution,” IEEE
Trans. Signal Process., vol. 49, no. 6, pp. 1166—1178, Jun. 2001.

J. K. Tugnait, “Blind spatio-temporal equalization and impulse response
estimation for MIMO channels using a Godard cost function,” IEEE
Trans. Signal Process., vol. 45, no. 1, pp. 268-271, Jan. 1997.

J. K. Tugnait and B. Huang, “On a whitening approach to partial
channel estimation and blind equalization of FIR/IIR multiple-input
multiple-output channels,” IEEE Trans. Signal Process., vol. 48, no. 3,
pp. 832-845, Mar. 2000.

G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares approach to
blind channel identification,” IEEE Trans. Signal Process., vol. 43, no.
12, pp. 2982-2993, Dec. 1995.

J. Zhu, X.-R. Cao, and Z. Ding, “An algebraic principle for blind sep-
aration of white non-Gaussian sources,” Signal Process., vol. 76, pp.
105-115, 1999.

J. Zhu, Z. Ding, and X. R. Cao, “Column anchored zeroforcing blind
equalization for multiuser wireless FIR channels,” IEEE J. Sel. Areas
Commun., vol. 17, no. 3, pp. 411-423, Mar. 1998.

[12]

[13] Engle-

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Han-Fu Chen (SM’94-F’97) graduated from
Leningrad (St. Petersburg) University, Leningrad
(St. Petersburg), Russia, in 1961.

He joined the Institute of Mathematics, Chinese
Academy of Sciences (CAS), Beijing, China, in
1961. Since 1979, he has been with the Institute
of Systems Science, which now is a part of the
Academy of Mathematics and Systems Science,
CAS. He is a Professor with the Laboratory of
Systems and Control of the Institute. His research
interests are mainly in stochastic systems, including
system identification, adaptive control, and stochastic approximation and
its applications to systems, control, and signal processing. He authored and
coauthored more than 160 journal papers and seven books. He was elected
as a Member of CAS in 1993. He now serves as a Council Member of the
International Federation of Automatic Control (IFAC) and as the Editor of both
Systems Science and Mathematical Sciences and Control Theory and Applica-
tions. He is also involved with the editorial boards of several international and
domestic journals.

2647

Xi-Ren Cao (SM’89-F’96) received the M.S. and
Ph.D. degrees from Harvard University, Cambridge,
MA, in 1981 and 1984, respectively.

He was a research fellow at Harvard University
from 1984 to 1986. He then worked as a Principal
and Consultant Engineer/Engineering Manager at
Digital Equipment Corporation, Marlboro, MA, until
October 1993. Since then, he was been a Professor
with the Hong Kong University of Science and Tech-
nology (HKUST), Kowloon, Hong Kong, where
he is the Director of the Center for Networking.
He held visiting positions at Tsinghua University, Beijing, China, Harvard
University, and many other universities. His current research areas include
discrete event dynamic systems, communication systems, signal processing,
stochastic processes, and system optimization.

Dr. Cao owns three patents in data communications and telecommunications
and published two books: Realization Probabilities—the Dynamics of Queuing
Systems (New York: Springer-Verlag, 1994) and Perturbation Analysis of Dis-
crete-Event Dynamic Systems (Norwell, MA: Kluwer, 1991, coauthored with
Y. C. Ho). He received the Outstanding Transactions Paper Award from the IEEE
Control System Society in 1987 and the Outstanding Publication Award from
the Institution of Management Science in 1990. He is Associate Editor at Large
of IEEE TRANSACTIONS OF AUTOMATIC CONTROL, is on the Board of Governors
of the IEEE Control Systems Society, is a member of the standing committee
of the Chinese Association of Automation, is an associate editor of a number of
international journals, and is chairman of a few technical committees of inter-
national professional societies.

Hai-Tao Fang (M’00) received the B.S. degree in
probability and statistics in 1990 from Peking Uni-
versity, Beijing, China, the M.S. degree in applied
mathematics in 1993 from Tsinghua University, Bei-
jing, and the Ph.D. degree in 1996 from Peking Uni-
versity.

He now is with the Laboratory of Systems and
Control, Institute of Systems Science, Chinese
Academy of Sciences, Beijing, as an Associate
Professor. From 1996 to 1998, he was a postdoctoral
at the Institute of Systems Science and joined the
Institute as an Assistant Professor in 1998. During 1998, 1999, and 2001, he
was with Hong Kong University of Science and Technology as a Research
Associate. His current research interests include stochastic optimization and
systems control, communication systems, and signal processing.

Jie Zhu (S°95-M’98-SM’03) received the B.Eng.
degree from Southwest Jiaotong University,
Chengdu, China, in 1985 and the M.Eng. de-
gree from Northwestern Polytechnic University,
Chengdu, in 1988, both in computer engineering. He
received the Ph.D. degree in electrical and electronic
engineering from the Hong Kong University of
Science and Technology (HKUST), Kowloon, Hong
Kong, in 1997.

From 1988 to 1992, he was an Engineer with
the Aeronautical Computing Technique Institute of
China, Xi’an. From 1998 to 2001, he was a Research Fellow at the Center for
Signal Processing, Nanyang Technological University, Singapore. He has been
a Senior Engineer at ESS Technology Inc., Fremont, CA, since 2001, working
on the R&D of communication and DVD severo products. He holds one patent
in blind equalization and has published about twenty journal and conference
papers. His research interests include blind adaptive equalization, blind signal
separation, higher order statistics, and signal detection.




	toc
	Nonlinear Adaptive Blind Whitening for MIMO Channels
	Han-Fu Chen, Fellow, IEEE, Xi-Ren Cao, Fellow, IEEE, Hai-Tao Fan
	N OMENCLATURE
	I. I NTRODUCTION
	II. W HITENING IN T IME
	Remark 1: Notice that the condition A1) is weaker than common in
	Remark 2: Without loss of generality, we assume that all source 
	Remark 3: The condition A2) does not necessarily imply that the 
	Lemma 1: If $C(z)$ is stable and $D(z)$ is defined by (6) (8), t
	Proof: The SPR property is proved in [ 7, p. 139 ] .

	Remark 4: If $C(z)$ is SPR, then we may take $D(z)=I$ .
	Theorem 1: Under Conditions A1) and A2), $\{\mathhat{\varepsilon
	Proof: Let $\xi_{k}=\mathhat{\varepsilon}_{k}-\varepsilon_{k}$, 


	III. W HITENING IN S PACE
	Theorem 2: Assume that Conditions A1) and A2) hold and $(\Vert s
	Proof: Applying the Taylor's expansion leads to $$\eqalignno{u_{


	IV. S IMULATION R ESULTS

	Fig.€1. MSEs.
	Fig.€2. ISIs.
	Fig.€3. Components correlatedness.
	Fig.€4. BERs.
	Fig.€5. MSEs.
	V. C ONCLUSION
	C ONVERGENCE T HEOREM OF S TOCHASTIC A PPROXIMATION
	Remark 5: If it is known that $\{\vartheta_{k}\}$ evolves in a s

	K. Abed-Meraim, J. Cardoso, A. Y. Gorokhov, P. Loubaton, and E. 
	J. Cardoso and A. Souloumiac, Blind beamforming for non Gaussian
	J. Cardoso, High-order contrasts for independent components anal
	X. R. Cao and R. Liu, General approach to blind signal separatio
	B. Chen and A. P. Petropulu, Frequency domain blind MIMO system 
	H. F. Chen, Stochastic Approximation and Its Application . Dordr
	H. F. Chen and L. Guo, Identification and Stochastic Adaptive Co
	A. Chevreuil and P. Loubaton, MIMO blind second-order equalizati
	D. Gesbert and P. Duhamel, Robust blind identification and equal
	A. Gorokhov and P. Loubaton, Subspace-based techniques for blind
	Y. Inouye and R. W. Liu, A system-theoretic foundation for blind
	Y. Inouye and T. Sato, Iterative algorithms based on multistage 
	T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation . Eng
	R. S. Liptser and A. N. Shiryayev, Statistics of Random Processe
	R. Lopez-Valcarece, Z. Ding, and S. Dasgupta, Equalization and i
	C. T. Ma, Z. Ding, and S. F. Yau, A two stage algorithm for MIMO
	L. Parra and C. Spence, Convolutive blind source separation of n
	J. D. Shen and Z. Ding, Zero-forcing blind equalization based on
	D. W. E. Schobben and P. C. W. Sommen, A frequency domain blind 
	A. Swami, G. B. Giannakis, and S. Shamsunder, Multichannel ARMA 
	L. Tong, Y. Inouye, and R. Liu, A finite-step global convergence
	A. Touzni, I. Fijalkow, M. G. Larimore, and J. R. Treichler, A g
	J. K. Tugnait, Blind spatio-temporal equalization and impulse re
	J. K. Tugnait and B. Huang, On a whitening approach to partial c
	G. Xu, H. Liu, L. Tong, and T. Kailath, A least-squares approach
	J. Zhu, X.-R. Cao, and Z. Ding, An algebraic principle for blind
	J. Zhu, Z. Ding, and X. R. Cao, Column anchored zeroforcing blin



