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Abstract— In a partially observable Markov decision pro-
cess (POMDP), if the reward can be observed at each step,
then the observed reward history contains information for
the unknown state. This information, in addition to the
information contained in the observation history, can be used
to update the state probability distribution. The policy thus
obtained is called a reward-information policy (RI-policy); an
optimal RI policy performs no worse than any normal optimal
policy depending only on the observation history. The above
observation leads to four different problem-formulations for
partially observable Markov decision processes (POMDPs)
depending on whether the reward function is known and
whether the reward at each step is observable.
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I. INTRODUCTION

Markov decision processes (MDPs) are widely used

in many important engineering, economic, and social

problems. Partially observable Markov decision processes

(POMDPs) are extensions of MDPs in which the system

states are not completely observable. The solutions to

POMDPs are based on the state probability distributions

which can be estimated by using the information obtained

via observations. In this paper, we argue that the reward

history also contains information for system states, and we

provide some studies based on this fact.

We discuss the discrete-time model. An MDP concerns

with a state space X and an action space A. At time

step t, t = 0, 1, · · ·, the state is denoted as xt and the

action, at. When an action a ∈ A is taken at state x′ ∈
X , the state transition law is denoted as P (dx|x′, a), for

x ∈ X . In a POMDP, at any time step t, the state xt is

not directly observable; instead, an observation yt can be
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made; and yt depends on xt−1, xt, and at−1 and obeys

a probability law Q(dyt|xt−1, at−1, xt) on the observation

space Y . In particular, it is natural to assume that the the

initial observation y0 depends only on x0 and also obeys a

probability law Q0(dy0|x0) on Y .

In addition, there is a reward (or cost) function

r(x′, a, x, w), which specifies a random reward (or cost)

with w being a random noise representing the uncertainty.

Precisely, we denote the reward accumulated in period

[t, t + 1) as

zt+1 = r(xt, at, xt+1, wt), t = 0, 1, · · · , (1)

where {wt} is a reward-disturbance process. For simplicity,

we assume here that the initial distributions p0 and µ0 for

initial state x0 and initial value z0 respectively, are known.

A detailed model will be discussed in Section 2.

Let a = {a0, a1, · · ·} be a sequence of actions taken

at t = 0, 1, · · ·, respectively. With the transition laws, this

sequence of actions and the initial state x0 determine a

unique state trajectory denoted as xt(a, x0), t = 0, 1, · · ·.
For simplicity, we will omit the symbol a and x0 in the

expression of state xt. Therefore, for any action sequence

a, we can define the discounted- and average-performance

criteria as

Vβ(p0,a) :=
∞∑

t=0

βtE[r(xt, at, xt+1, wt)], 0 < β < 1, (2)

and

J(p0,a) := lim sup
N→∞

∑N
t=0 E[r(xt, at, xt+1, wt)]

N + 1
, (3)

respectively, where “E” denotes the expectation correspond-

ing to all the randomness involved in the system. When

the reward-disturbance wt is mutually independent and

independent to all the other random variables in the system,
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we can define

r̄(xt, at) = E[r(xt, at, xt+1, wt)].

The expectation is taken with respect to the distribution of

wt and the state transition law P (dx|x′, a), which yields

the distribution of xt+1 given xt and at. In this case, the

performance criteria (2) and (3) takes the simplified form:

Vβ(p0,a) :=
∞∑

t=0

βtE[r̄(xt, at)], 0 < β < 1, (4)

and

J(p0,a) := lim sup
N→∞

∑N
t=0 E[r̄(xt, at)]

N + 1
, (5)

respectively.

The optimal control problems is to find a sequence a that

maximize the performance (2) or (3) by using the infor-

mation available to us. Such problems are often called the

partially observable Markov decision processes (POMDPs).

The main contribution of this paper is based on a simple

fact: when the system state is not completely observable,

the observed reward history certainly contains information

about the unknown state.

POMDPs based on observation history {yt} only have

been widely studied; see [1], [2], [3], [4], [5], [6], [9], [12],

[13], [14], [15], [18], [20], [22], [24], [25], [26] for instance.

The common approach in the analysis of a POMDP is

to first construct a completely observable Markov decision

process (i.e., a standard Markov decision process (MDP))

that is equivalent to the POMDP in the sense that not only

they have equal optimal values but also their corresponding

policies have equal performance. (A policy is a strategy that

assigns an action to the system at any time t based on the

information available up to t.) The state of the equivalent

MDP at time t is the conditional distribution of the state of

the POMDP given the information available up to time t.

The existence of the optimal Markov policies for POMDPs,

etc, can be easily derived by using the equivalence and

the well-developed theory for MDPs. Thus, solutions to

POMDP depend on those to MDPs. The reward history can

certainly improve the conditional distribution and therefore

can improve the policy.

However, the structure of the information contained in

the reward history is different from that in the observation

history. This can be explained by a comparison with the

situation in MDPs. There are two main approaches to

MDPs. One is the analytical approach based on the Bellman

equation (the optimality equation), in which the reward

function r̄(x′, a) in (4) or (5) is assumed to be known.

This approach belongs largely to the area of operations re-

search. The other was developed in the artificial intelligence

community, which takes a learning point-of-view. In this

approach, rewards z̄t := r̄(xt, at) (we will simply denote it

as zt for simplicity) at all times t = 0, 1, · · · are observed

from the system directly. The optimal policy is determined

by analyzing these data. In MDPs, because the state xt is

completely observable, knowing the function r̄ is equivalent

to observing zt. That is, the problem formulations for both

approaches are essentially the same for MDPs.

In POMDPs, however, knowing the reward function

r(x′, a, x, w) (or r̄(x′, a)) is not the same as observing the

value of zt = r(xt, at, xt+1, wt) (or r̄(xt, at)), because xt

is not observable. Thus, the information available to us for

the analytical approach (assuming r(x′, a, x, w) is known)

and the learning-based approach (assuming zt is observable)

are different. Specifically, if we know only r(x′, a, x, w),
then we do not know the exact value of zt. On the other

hand, if we are able to observe zt for all t = 0, 1, · · ·, we

may obtain some more information on the system states;

and if, furthermore, we know the function r(x′, a, x, w)
then we can update the probability distribution of xt using

the fundamental probability theory. Even if we do not

know r(x′, a, x, w), we may derive it’s approximations with

statistic inference methods. Thus, there are four different

problem formulations for POMDPs, depending on whether

the reward function is known and whether the reward at

each step is observable, each contains different information

about the system state. In all these cases, the optimal policy

depends not only on the histories of the observation process

and the actions taken at each step, but also on the history of

the rewards that are observed. Such a policy will be called

a reward-information policy.

Applying the same idea to the observation yt, we can

formulate another class of POMDP problems where yt,

t = 0, 1, · · ·, are observable, but the probabilities laws

Q0(dy0|x0) and Q(dyt|xt−1, at−1, xt) are unknown or only

partially known.

To the best of our knowledge, the information structure

regarding the observations of the rewards, zt, t = 0, 1, · · ·,
has not been well explored in literature. In this paper,

we first propose four different problem formulations for

POMDPs, as explained in the above discussion. Then we

discuss the differences among them as well as the ap-

proaches to these problems. We hope our exploratory work

can attract research attention to these interesting problems.
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II. PROBLEM FORMULATIONS FOR POMDPS

In general, a POMDP consists of the following elements:

{X,Y,A, P (dx|x′, a), Q(dy|x′, a, x),

Q0(dy|x), p0, r(x′, a, x, w), µ0}, (6)

where:

(a) X , the state space, is a Borel space;

(b) Y, the observation space, is also a Borel space;

(c) A, the control set, is a Borel space too;

(d) P (dx|x′, a), the state transition law, is a stochastic

kernel on X given X × A;

(e) Q(dy|x′, a, x), the observable kernel, is a stochastic

kernel on Y given X × A × X;

(f) Q0(dy|x), the initial observable kernel, is a stochastic

kernel on Y given X;

(g) p0, the initial distribution, is the (a priori) initial

distribution on X;

(h) r(x′, a, x, w), the reward function, is a measurable

function on X × A × X × U , and takes values in a

Borel set Z in the space of all real numbers; w is a

disturbance variable with a distribution µr(·|x′, a, x)
that may depend on (x′, a, x);

(i) µ0, the initial distribution for the system’s initial

wealth variable z0, is a distribution on the set Z.

Definition 2.1. The model (6) with the above properties

(a)-(i), is called a partially observable Markov decision

process (POMDP).

A POMDP evolves as follows. At the initial decision

step t = 0, the system has an initial (unobservable) state

x0 with a prior distribution p0 and an initial wealth z0

with the distribution µ0; in addition, an initial observation

y0 is generated according to the kernel Q0(·|x0). If at

time step t (≥ 0) the state of the system is xt and

a control at ∈ A is applied, then the system moves

to state xt+1 at step t + 1 according to the transition

law P (dxt+1|xt, at); an observation yt+1 is generated by

the observation kernel Q(dyt+1|xt, at, xt+1), and a reward

zt+1 = r(xt, at, xt+1, wt) accumulated in the time period

[t, t + 1) is received at time step t + 1. (In this definition,

zt+1, instead of zt, is used; this satisfies causality, i.e., the

reward is received after action at is taken). Since the effect

of µ0 on the performance criteria is straightforward, we will

omit the notation µ0 even when the quantity indeed depends

on it.

For a given sequence of actions a = {a0, a1, · · ·}, the

discounted- and average-performance criteria are defined as

(2) and (3). The goal of POMDPs is to find a sequence a

that maximizes one of the performance (2) or (3) by using

the information available to us.

Example 1. A stochastic control problem is typically

modeled as

(a) xt+1 = F (xt, at, ξt), t = 0, 1, · · · ,
(b) yt+1 = G(xt, at, xt+1, ηt+1), t = 0, 1, · · · , (7)

(c) y0 = G0(x0, η0),

where xt, at, and yt are, respectively, the state, the control,

and the observation at time t; {ξt} is the state-disturbance

process, and {ηt} the observation (or measurement) noise.

We assume that the initial probability distribution of x0 is

p0. (7) is typically called a partially observable system.

The system (7) with the reward structure (1) fits the gen-

eral setting of POMDPs. Let xt, yt, at take values in Borel

spaces X,Y and A, respectively. Suppose that {ξt}, {ηt+1}
and {wt} are sequences of independent and identically

distributed (in time) random variables with values in Borel

spaces Ss, So and U , respectively, and we assume that they

may depend on states and actions. Thus, their distributions

are denoted by µξ(·|x, a) (with xt = x and at = a),

µη(·|x′, a, x) (with xt = x′, xt+1 = x and at = a),

and µr(·|x′, a, x) (with xt = x′, xt+1 = x and at = a),

respectively. We also denote by µη0(·) the distribution of η0

taking values in So. Let F, G and G0 be given measurable

functions, and x0 be independent of {ξt}, {ηt+1} and {wt}.

We denote by IB[·] the indicator functions of any set B.

Then the state transition law P (·|x, a) is given by

P (B|x, a) =
∫

Ss

IB[F (x, a, u)]µξ(du|x, a)

for every Borel set B in X . Similarly, if xt = x′, at = a

and xt+1 = x, the observation kernel Q(·|x′, a, x) is given

by

Q(C|x′, a, x) =
∫

So

IC [G(x′, a, x, v)]µη(dv|x′, a, x)

for all Borel set C in Y . If x0 = x, then

Q0(C ′|x) =
∫

So

IC [G0(x, s)]µη0(ds)

for all Borel set C ′ in Y ; whereas, if xt = x′, xt+1 = x

and at = a, then the observation value zt+1 is obtained

by the reward-observation kernel R(·|x′, a, x) on Z given

X × A × X , defined by

R(D|x′, a, x) :=
∫

U

ID[r(x′, a, x, s)]µr(ds|x′, a, x), (8)

for all Borel set D in Z. Thus, the above discussion

regarding the reward information applies to this control
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problem. It is easy to see that the same is true for time

variant systems with F and G replaced by Ft and Gt

depending on t, respectively.�

However, the information available to us are different

for POMDPs depending on whether the reward function

r(x′, a, x, w) is known and whether the reward at each step

zt, t = 0, 1, · · ·, can be observed. This leads to four different

problem formulations for POMDPs specified as follows:

(a) The function r(x′, a, x, w) is known, and the reward

zt can be observed at each step t;

(b) The function r(x′, a, x, w) is known, but the reward

zt cannot be observed at each step t;

(c) The function r(x′, a, x, w) is unknown, but the reward

zt can be observed at each step t;

(d) The function r(x′, a, x, w) is unknown, and the re-

ward zt cannot be observed at each step t.

In the standard Markov decision processes (e.g. [1], [7],

[8], [17]), the reward function r̄(x, a) does not involve ran-

domness. With analytical approaches, it is natural to assume

that the reward function is known. However, with on-line

(or sample path based) approaches such as reinforcement

learning, it is convenient to assume that the reward at each

step zt can be exactly observed, which is used to update

the estimate of the value function. Because the state is

completely observable, knowing the function r̄(x, a) is the

same as knowing the reward zt. Therefore, the assumptions

in both cases are equivalent. In the case of POMDPs, these

assumptions have different implications and we will discuss

the four cases listed above separately.

Case (a). (r(x′, a, x, w) known, zt observable) We em-

phasize that there is a fundamental difference between

Cases a and b discussed below in POMDP problems. If

zt = r(x′, a, x, w) is observable, then the value of zt

certainly provides information to state x via r(x′, a, x, w).
Therefore, once zt is obtained, we can update the con-

ditional distribution of the state, which should be more

accurate than only the observation y is used. We refer to this

case as POMDPs with full reward information (POMDPs-

FRI). This case will be discussed in details in Sections 3 and

4. We will show that a POMDP-FRI can be converted to an

MDP problem, both observation histories yt and zt provide

information for the distribution of state xt. Therefore, the

optimal performance of Case a (POMDP-FRI) should be no

worse than that of Case b below (POMDPs-PRI).

Case (b). (r(x′, a, x, w) known, zt not observable) This

is the standard formulation for most analytical approaches.

We use the classical LQG problem in stochastic control as

an example to illustrate the idea. The system is described

by a linear stochastic differential equation,

dx

dt
= F (t)x + G(t)u + w(t),

where x is the m-dimensional state vector, u is the control

action, and w(t) is a Gaussian white noise. The measure-

ment is an n-dimensional vector

y(t) = H(t)x(t) + v(t),

with v(t) being a Gaussian white noise. The performance

to be maximized is

J = E

{
1
2

∫ tf

t0

[xT , uT ]

[
A(t) N(t)

NT (t) B(t)

][
x

u

]
dt

}
,

(9)

where tf is a termination time. If we write

z(t) = [xT , uT ]

[
A(t) N(t)

NT (t) B(t)

] [
x

u

]
,

then J = E{1
2

∫ tf

t0
z(t)dt}. Apparently, we assume that the

form of z(t), i.e., A(t), B(t) and N(t) are known, but we do

not assume that the value of z(t) can be obtained at any time

t. Because the state is partially observable and the reward

function is known, the reward is also partially observable.

We refer to this case as POMDPs with partial reward

information (POMDPs-PRI). Although the LQG problem is

defined in a continuous time domain with a finite horizon,

the basic principle for problem formulation is the same as

our model (6).

Case b is well studied in literature and it is well known

that the problem can be converted to an MDP with all

possible state distributions as its states (called belief states).

Case (c). (r(x′, a, x, w) unknown, zt observable) For

many practical systems, the function r(x′, a, x, w) is very

complicated and cannot be exactly determined; however,

the instant reward zt can be observed. For instance, in

communication networks, even the state of the system is

hard to observe, but the instant reward (or cost), such as

dropping a packet, can be observed. In addition, the on-line

(or sample-path-based) optimization approaches depend on

observing the current reward to adjust their estimates for

the value functions (or potentials). In reinforcement learning

algorithms, the essential fact is the value of the reward at

each step, the form of the reward function is not needed.

Therefore, Case (c) is also practically important. We refer to

this case as POMDPs with incomplete reward information

(POMDPs-IRI).

Although the form of r(x′, a, x, w) is unknown, with

the reward observation sequence zt = r(xt, at, xt+1, wt),
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the distribution of wt, the distribution of xt obtained from

the observation history yt, and the action xt we can try

to estimate the function r(x′, a, x, w) using statistic theory.

Therefore, with zt observed, using the estimated function,

we can apply similar approaches as Case (a) to obtain more

information about xt and possibly a better policy than Case

(b). This is a difficult problem and will be left for further

research.

Case (d). (r(x′, a, x, w) unknown, zt not observable) Few

information is available in this case. However, if we can

obtain (observe) the total reward in a time period, such

as the value of J in the LQG problem (9), we still can

get some information about how good we are doing in

the entire interval [t0, tf ). Therefore, if we are allowed to

repeat the operation, we will be still able to learn from the

past operations. Thus, this case still presents a meaningful

research (albeit hard) problem. We refer to this case as

POMDPs with no reward information (POMDPs-NRI).

To understand more about the above cases, we give an

example.

Example 2. A robot moves among three rooms lining

up in a row. The rooms are denoted as L, M, and R,

representing the left, the middle, and the right rooms,

respectively. The robot can take two actions in each room.

In room M, if action Al (Ar) is taken, the robot will

move to room L with probability 0.8 (0.2) and to room

R with probability 0.2 (0.8). In room L, if action Al (Ar)

is taken, the robot will hit the left wall then stay in room

L with probability 0.8 (0.2), or will move to room M with

probability 0.2 (0.8). Similarly, In room R, if action Ar (Al)

is taken, the robot will hit the right wall then stay in room

R with probability 0.8 (0.2), or will move to room M with

probability 0.2 (0.8).

A unit cost will be received if the robot hits a wall. The

cost function is r(L,L) = r(R,R) = 1. and r = 0 for

other cases. The goal is to design a policy that minimizes

the long-run average cost.

The system states are L, M, and R. With the MDP

model, the state is observable, and the optimal policy is

obvious: Take action Ar at state L and action Al at state

R. With POMDPs, the state is not observable and we

need to consider four cases (assume there is no additional

observation y).

Case a. r is known and zt = r(xt, xt+1) is observable.

For example, we know that when the robot hits a wall we

will hear a beep. Suppose that a priori probabilities of the

states are p0(L), p0(M), and p0(R), respectively. If we hear

a beep after action Al (Ar) is taken, we have the following

conditional probabilities

p(beep|L,Al) = 0.8, p(beep|M,Al) = 0,

p(beep|R,Al) = 0.2.

With this, the state probability distribution after a beep can

be easily updated.

Case b. r is known but zt = r(xt, xt+1) is not ob-

servable. This is a standard POMDP problem. No addi-

tional information can be obtained by rewards. The state

distribution has to be estimated by observations. In this

particular problem, no additional observation is available.

Given any initial state probability distribution p0, the system

eventually will reach some steady state distribution denoted

as π = (π(L), π(M), π(R)). Suppose that with this state

distribution we take a random policy: take action Al with

probability pl and take action Ar with probability pr. Then

the transition matrix (list the states in the order of L, M,

and R):

P =

⎡
⎢⎣ 0.8pl + 0.2pr 0.2pl + 0.8pr 0

0.8pl + 0.2pr 0 0.2pl + 0.8pr

0 0.8pl + 0.2pr 0.2pl + 0.8pr

⎤
⎥⎦

Then we have π = πP . The problem becomes minimize

π(L)(0.8pl + 0.2pr) + π(R)(0.8pr + 0.2pl)

with pl + pr = 1.

Case c. r is unknown and zt = r(xt, xt+1) is observable.

That is, we can hear a beep when a cost is incurred, but we

don’t know why there is a beep. In this case, we need to

learn the pattern for the beeps. For example, we may find

that if we take action Al twice and mean while we hear the

beep twice, then it is more likely that we will hear a beep

if we take Al again; and so on. This is the learning-based

approach. After learning for some times, we may find the

form of the function r based on the patterns we learned.

Then the problem becomes Case a.

Case d. r is unknown and zt = r(xt, xt+1) is not

observable. If the total cost in a finite period of N steps can

be obtained and the experience is repeatable, we can still

do something. There are 2N possible ways to choose the

actions. We can search for the best choice in this space of

2N elements using various approaches such as the generic

algorithms etc. �

As we can see, Case b is the standard POMDP problem

and has been widely studied, Case c is a difficult problem

involving the estimation of the reward function r, Case d
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contains little information and may resort to searching. The

rest of the paper mainly focuses on Case a, POMDPs-FRI.

III. CONCLUSION

Our main observation is that the reward history in a

POMDP contains information about the distribution of

the unknown state. This leads to four different problem-

formulations for POMDPs depending on whether the reward

function r(x′, a, x, w) is known and whether the reward at

each step zt is observable. The policy depending on both

the observation and reward histories is called a reward-

information (RI) policy. An optimal RI policy performs no

worse than any normal optimal policy.

POMDPs-FRI (reward function known and zt observ-

able) can be converted to the standard MDPs, and the

optimality conditions for both the discounted- and average-

performance criteria are obtained. For POMDPs-PRI (re-

ward function unknown and zt observable), one approach

is to approximately estimate the function r̄(x′, a) =
E[r(x′, a, x, w)] and then apply the solution to POMDPs-

FRI. This certainly requires further research. In most rein-

forcement learning algorithms, it is assumed that zt can be

observed; these problems therefore belong to POMDPs-PRI

or POMDPs-FRI. POMDPs-IRI (reward function known

and zt unobservable) is a typical problem in control theory

(e.g., the LQG problem). Finally, POMDPs-NRI (reward

function unknown and zt unobservable) only make sense

when the process repeats and the total reward is known.

The study in this paper demonstrates the fundamental dif-

ference between the analytical approaches (no observation

on reward is made) and the learning based approaches in

the POMDP framework.
Finally, we note that the same idea applies to the observa-

tion yt. That is, we may assume that we can observe yt but

its distributions Q0(dy0|x0) and Q(dyt|xt−1, at−1, xt) are

unknown or only partially known. For example, in Example

1, the function G is unknown or the distribution of ηt+1

is unknown, and in the LQG problem, the variance of

the Gaussian noise v(t) is unknown, etc. Thus, we can

formulate another class of POMDPs which is similar to

Case c for the RI policies.
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