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Semi-Markov Decision Problems and Performance
Sensitivity Analysis

Xi-Ren Cagq Fellow, IEEE

Abstract—Recent research indicates that Markov decision derivative provided by PA. Both MDP and PA of Markov pro-
processes (MDPs) can be viewed from a sensitivity point of cesses are based on an important concept, cptieidrmance

view; and perturbation analysis (PA), MDPs, and reinforcement  ,qtenia| which is strongly related tperturbation realization
learning (RL) are three closely related areas in optimization of

discrete-event dynamic systems that can be modeled as Markovin PA. These Cor_]cepts provide an intuitiv.e. gxplanation for both
processes. The goal of this paper is two-fold. First, we develop PA PA and MDPs (in view of discrete sensitivity) and their rela-
theory for semi-Markov processes (SMPs); and second, we extendtions [6], [7]. The performance potential at statean be ap-
the aforementioned results about the relation among PA, MDP, proxima’[ed by the mean of the sum of the performance func-

and RL to SMPs. In particular, we show that performance sensi- iong at the firstV transitions on a sample path starting from
tivity formulas and policy iteration algorithms of semi-Markov

decision processes (SMDPs) can be derived based on performancegf[atei’ and hence it can be estmatt_ad onllne._ A number of other
potential and realization matrix. Both the long-run average and Single sample path-based estimation algorithms for potentials

discounted-cost problems are considered; this approach provides have been derived [6]. With the potentials estimated, perfor-
a unified framework for both problems, and the long-run average mance derivatives (i.e., PA) can be obtained and policy itera-

problem corresponds to the discounted factor being zero. The yiq, (j e MDPs) can be implemented based on a single sample
results indicate that performance sensitivities and optimization ’

depend only on first-order statistics. Single sample path-based path. StOChaTSt'C approximation methods can be used in these
implementations are discussed. two cases to improve the convergence speeds and to reduce sto-
Index Terms—DBiscounted Poisson equations, discrete-event dy- chastic errors. The samplg path. based |mplemen.tat|on of PA
namic systems (DEDS), Lyapunov equations, Markov decision pro- and MDP resembles RL, in particular ,the Q"eam'”g method
cesses (MDPs), perturbation analysis (PA), perturbation realiza- [21], which estimates Q-factors, a variant of potentials when
tion, Poisson equations, policy iteration, potentials, reinforcement the system structure is completely unknown. The analysis based
learning (RL). on performance potentials provides a unified framework to both
MDPs and PA with both average- and discounted-cost perfor-
I. INTRODUCTION mance measures [7]. The results for the average-cost problems
in the discrete time case) correspond to the case with the dis-

ARKOV decision processes (MDPs), perturbation anai‘ounted factor being one [7]. The sensitivity point of view of PA,

ysis (PA), and reinforcement learning (RL) are three difypp, and RL brings in some new insight to the area of learning

ferent approaches to optimization of discrete event dynamic sygrg optimization. For more details, see [8].
tems (DEDSs). In MDPs, performance depend on policies; aj this paper, we develop the PA theory and extend the
policy with a better performance can be identified by analyzingyove results to semi-Markov processes (SMPs) with a
the behavior of the Markov process under the current policygntinuous-time model. The previous results on MPDs and
the policy with the best performance can then be obtained By of Markov processes become special cases. Therefore,
policy iteration[1], [20]. With PA, the derivative of a perfor- oyr approach provides a unified framework to both decision
mance measure with respect to a parameter can be obtaine@@plems and sensitivity analysis (PA) with both average- and
analyzing the behavior of a DEDS. (For PA of queueing Sygiscounted-cost performance measures for both semi-Markov
tems; see [4], [11], [15], and PA of Markov processes [9]). Thgnd Markov processes. In this approach, decision problems
derivatives obtained by PA can then be used to determine §1@ viewed as performance sensitivities in a discrete policy
optimal value of the performance measure [13], [18]. The goghace, and PA is regarded as performance sensitivities in a
of RL [1], [3], [21], [22] is to learn how to make decisions tocontinuous parameter space. Both of them depend on the
improve a system’s performance by observing its behavior. concept of performance potential. The average-cost problem

Recent research shows that MDPs can be viewed from a sgia special case of the discounted-cost problem with discount
sitivity point of view [6], and policy iteration, in fact, choosesigctor B = 0. RL methods can be developed to estimate the
its next policy along the direction with the steepest performanﬁgtemim& Q-factors, or even the performance derivatives.

In Section II, we review the fundamentals of semi-Markov
processes. In particular, we show that the steady-state perfor-
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[4], [9]- We define realization matrix and prove that it satisfieprocess is irreducible and nonperiodic and hence ergodic. De-
the Lyapunov equation. From the realization matrix, we defirfame the hazard rates as

performance potentials and prove that it satisfies the Poisson 40, 1)

equation. With realization matrix and performance potential, q(it) = 4272

sensitivity formulas and policy iteration algorithms of semi- H(i,t)

Markov decision processes (SMDPs) can be derived easily"’m dore
the same way as for Markov processes. It is also shown that q(i, j,t) = EQ(W?”
the potentials can be estimated on a single sample path and, ’ H(i,t).

hence, online algorithms can be derived for performance senfiia |atter is the rate that the process jumps fidmj in [£, ¢ +

tivities and policy iteration of SMDP. Section IV deals with thedt) given that the process does not jump out from sttgo, ).
discounted-cost problem. We derive the equivalent infinitesimal| 4 Pi(i,j) = P{X, = j|X, = i}. By the total probability

generators with discounted factdrand the corresponding dis-ihaorem. we can easily derive
counted Poisson and Lyapunov equations. The sensitivity for- '

mulas and policy iteration can be derived using performance po- 7

tentials which is the solution to the discounted Poisson equatioRi+at(i, ) = Y Pi(i, k) /Pt(SVf)

By carefully defining the discounted-cost performance measure, keg 0

we show that the average-cost problem is the limiting case as  x {I(k,j) [1 — q(k, s)At] + q(k, j, s)At} ds (1)

the discount factof goes to zero. Thus, the potential based ap- ) L ) o o
proach applies to both average- and discounted-cost problef{@erel(j, k) = 1if j = k, I(j,k) = 0if 5 # k (I(i,])

Section V summarizes the results with a few remarks on its sig-the (i, 7)th entry in the identity matrix), p:(s|k)ds is the
nificance and future research topics. probability that given the state at tinteis & the process has

been in staté for a period ofs to s 4 ds, which may depend on
the initial state. Precisely, let, be the integer such thét,, <
t < T,,+1. Then
We study an SMR X, ¢ > 0} defined on a finite state—space
E=1{1,2,...,M}.LetTy, Ty,..., Ty, ..., withTy = 0, bethe pe(slk)ds = P(s <t =Ty, <s+ds| Xy =k). (2)
transition epoches. Each interydl,, T,,,,) is called a period. |, . . .
The process is right continum\J[s SO tr:re )state at each transitllto'r’? proved in the Appendix that
epoch is the state after the transition. ¢t = Xp,,n = . H(k,s)
0,1,2,.... Jim p(slk) = “mk) 3)

Define the semi-Markov kernel [12] as

Il. FUNDAMENTALS FOR SMPs

Now, setAt — 0in (1), and we obtain

Q(ivj7t>:P{Xn+1:j7Tn+1_Tn§t|X/:i}' .. oo
dPt(7’7.]) _ .
> QGi.t) =Y Q(i,j.t) = P{T, T, < t[X, =i} a _lépt(L7k)/
1,1) = 1,7,t) = n —4dn > n =1 0
o " < (sl (ko )k ) — alkgo s} ds. (&)

H{(i 1) =1- Q1) Since the semi-Markov process is ergodic, wher oo, we

Q(i,j) = lim Q(i, j,t) = P{Xn1 = j|Xn = i} haveP,(i, ) — p(j) [12] and(dP(i,5)/dt) — 0, wherep(j)
and is the steady-state probability pfLettingt — oo in both sides
. Q(1,74,t) of (4), we get
G(i,j,t) = p—
(0,,%) Qi ) *
= P{Tos1 — T < X, = i, Xog1 = j}- 0= -3 p(k) / i
ke&
Normally, Q(i,7) = 0, for alli € £. However, in general, we © 2 d
may allow the process jumps from a state into itself at the tran- X {[(k;,j)_ [Q(k,s)] — — [Q(k, j 3)]} ds
sition epoches; in such a cagg:,:) may be nonzero and our ds ds
results still hold. Furthermore, a Markov process with transition _ _ L 1 (k. ) — O(k. i }
rates\(z) and transition probabilitie€(i, j) can be viewed as kezgp( ) m(k) (k. 3) = @k, )]
a SMP whose kernel (i, j, t) = Q(i,)[1 — e=*®?]. . N o
We assume that the matr@}(i, 7) is irreducible and nonpe- - Zp(k) {A(R) [I(k, ) — Q(k, j)]}
riodic [2]. Let kee
where
r k) = 1
m(k) = /sQ(k,ds) — E[Ths1 — Ty X = i] m(k)

0 Finally, we have

be the mean of the sojourn time at stataVe also assume that > p(k)A(k,j) =0 VjeE

m(k) < oo forall k. Under these assumptions the semi-Markov hee
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where given thatX; = ¢, e.g.,lim;_, P(Y; = j|X; = i) (not to be
A(k,5) = = Ak)[I(k,§) — Q(k,5)].  (5) confused withim; .o P(Xy 41 = j[Xn = 1)). Itis proved in
the Appendix that
In matrix form, we can write 1 5QGjuds) O jymii.j)
0o S LJ7S_ 2, 7)mie, J
pA=0 (6) p(J| ) f = m(z) 9
wherep = (p(1),...,p(M)) is the steady-state probabilityWhere oo
vector_ andA is a matrix with elemgntsl(k,j). (6) is consis- (i,7) = /sG(z’,j./ ds)
tent with [12, Th. 10.5.22]. In addition, we have
0
Ae=0 @) = E[Tog1 = To| X = i, X g1 = J]
and
wheree = (1,1,...,1)T is an M-dimensional column vector oo
whose components are all ones (the superscript “T” denotes m(i) = ZQ(i,j)m(i,j) = /SQ(z’,ds). (20)
transpose). It is well known that for ergodic processes (6) and jee 0
(7) have a unique solution. Thus
Equation (6) is exactly the same as the Markov process with o o Qi j)m(i,j)
A being its infinitesimal generator. This means that the steady- p(i,3) =p(jl)p(d) = p(i) m()
state probability is insensitive to the high order statistics of the
sojourn times at the states, and is independent of whether Byeergodicity, we have
sojourn time at statedepends orj, the state it jumps into from
i. In the next section, we will see that plays the same role n=>_ p(i.)f(i,5) =Y p(i)f(i) =

for semi-Markov processes as the infinitesimal generator for i,j€E i€f

Markov processes in policy iteration and PA.
wheref = (f(1), f(2),...,f(M))T, and (Note that we usg

Ill. AVERAGE-COST PROBLEMS for both f(4) and f (i, 7))
A. Perturbation Realization Matrices 1) > jee QUi 9) f(i, 5)m(i, j) (11)
1) = - .
Consider a semi-Markov process starting from a transition m(i)
epochTy = 0 in stateXy, = j. At any timet¢ € [T, Ty4+1),
denoteY; = X, 11, i.e., the state that the process jumps into arom (8), we have
the next transition epoch. We define the performance value at T
any timet as f(X;,Y:), wheref : £ x £ — R. The long-run D(i,j)=E /[f(Xt Y,)—n] dt| Xo=j
average performance measure is J U
. T 57 (1)
n=tim 2B | [ v w8 | [ ey —al o=
0 Tl
whereFE denotes the expectation operator. Denote the instant at = Z Q4 k)
which the process jumps into statéor the first time as keE
. Tl
S]('L) :an {tZO|Xt :'L./XO :j}. X {E /[f(X[);YO)_n] dt|X0:]7X1:k
Following the same approach as for the PA of Markov processes o
[9], we define theperturbation realization factoras (the only 57 (i)
difference is thafly, = 0 must be a transition epoch in the semi- +E / [f(X:,Yy)—n]dt| Xo=7,X1=k
Markov case) 7
@) = > QGk)
D6q) =8 | [ YY) -aldixo=i|.  © = |
5 xA[f (4, k) —n] E[T1|Xo=j, X1 =k]
5% (3)
As we will see,D(%, j) measures the effect of a change from VB / (X0, Ya) =] dt| X1 =k
statej to : on the long-run integration of performance function '
f.The matrixD = [D(i, j)] is called aperturbation realization i
matrix. = Z Q, k)

Letp(i, j) be the steady-state probability & = i andY; = keE
jandp(j|i) be the conditional steady-state probabilitypt= j x {[f(4,k)—n]m(j, k)
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S* (i) From this equation and (12]) satisfies the following Lyapunov
+E / [f( X, Y)—n]dt| X1 =k| ». equation:
1 AD + DAT = —-F (16)
From (10) and (11), the previous equation leads to where F = efT — feT. This is the same as the Lyapunov
L equation for Markov processes [9]. Wha(i) = 1 for all i,
DG, j) = mG) [f(7) = n] + Z QU kD (i, k) we haved = Q — I, Q = [Q(4, 7)] is the transition probability
hee matrix of the Markov chain embedded in the transition epoches.
or, equivalently From (12) andde = 0, we getAD AT = 0. Thus, (16) becomes
. . _ T _ _
= {-XG) (. k) — Q. k)] D(i. k)} D+QDQ" =
res ) _ This is the Lyapunov equation for discrete-time systems [6].
=Y {AG. k)D(i,k)} .
keg B. Performance Potentials
In matrix form, this is Similar to (13) to (15), for any three statgg, &k, we define
three sequences, uy, - . .; vg, V1, - - -; andwg, wy, ... as fol-
DAT = —[efT — neeT] (12) lows:iug = Tp = 0, Xg = j, vy = inf{t > u,, Xy = i},
. _ o wy, = inf{t > vy, Xy = k}, andu,41 = inf{t > w,, X; =
whereD is a matrix whose components d&{l,)). J} By a similar approach, we can prove
Next, on the procesk;, with T, = 0 being a transition epoch
and X, = j, for any states € £ we define two sequences D(i,5) + D(j,k) + D(k,i) = 0.
ug, U1, . .., andvg, vy, . .., as follows: .
In general, we can prove that for any closed ciigle 1o —- - - —
=Ty =0 (13) in —i1 in the state—space, we have
Un —mf {t 2 un| Xy = 1} A9 D(iy,in) + Dlinyiz) + -+ + Dlin_1, i) + D(in,i1) = 0.

and
(15) This is similar to the conservative law of the potential energy in
physics. Therefore, we can define a potengi@l) at any state

e.g.,u,, is the first time when the process reachesteru,, and and writeD(i, j) = g(j) — g(i) and
un+1 1S the first time when the process reachiesterv,,. Ap- T T
parently,ug, u1, ... are stopping times and; is a regenera- D=eg’ —ge 17
tive process Wlth[un,n = 0,1,...} as its associated renewalwhereg = (g(1),...,g(M))T is a column vector. Note that if
process. By the theory of regenerative processes, we have g fits (17), so doeg + ce for any constant. g is called aper-
" formance potentiatector, andy(7) the performance potential at
[fu (X, Y dt] statei. Similar to the potential energy,may have different ver-
= E(u1 — uo) sions, each differs by a constant. ([9] contains more discussions

g uy on D(i,j) andg(i) for Markov processes).
B [ J(X, 1) dt] +E U A Xt’Yt)df} Substituting (17) into (12), we get
[?)0] + E[u1 — Uo] ’

Up41 = inf{t > v, | X; = j}

Ag = —f + ne. (18)
Thus
This is thePoisson equatiorSinceAe = 0, A is not invertible.
Thus, the solutions are not unique. Now suppgs$eany solu-
B /[f(XhYt) —nldi| + E /[f(Xtht) —nldt| =0. {ionto (18). Sett = i — pg and choosg’ = ¢ + ce. Then,
0 vo pg’ = n. Thus, there always exists a solution to (18) such that
pg = n. Putting this into (18), we get

v w1y

By the definition ofug, vo anduy, we know that the aforemen-

tioned equation is Ag= — f+ (pg)e = —f + e(pg)
D(i,5) + D(j.i) = 0. and
(=A+ep)g=1. 19)
Therefore, the matrixD is skew-symmetric
This is the same as the Poisson equation for Markov processes.
DT = —D. For ergodic semi-Markov processés; A + ep) is invertible.
Equation (19) only defines a particular version of the perfor-
Taking the transpose of (12), we get mance potentials. Define thgoup inverseof A as

—AD = —[fe" —nee”]. A* = (=A+ep)h
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We have Equation (20) can be viewed as a sensitivity equation in a
discrete space, in which each point represents a policy. Next, we
g= A" consider the performance sensitivity in continuous space. This
continuous space can be obtained by randomizing policies in a
Multiplying both sides of (19) by on the left, we get discrete policy space. Let(6) be a randomized policy which
takes policyA with probability1l — § and policyAd’ = A+ B
pg=n=pf. with probability§, whered < § < 1 andB is anM x M matrix
satisfyingBe = 0. Then,A(6) = A + Bé. Let f andf’ =
This can be viewed as the “normalizing” condition to the potery 4 ;, be the performance functions associated with poligies

tial defined in (19). and A’, respectively. Supposé changes tod(§) = A + B§,
f changes tof (6) = f + ho. (For example, if\(:) changes
C. Sensitivity and SMDPs to A(4) + (AN)6, i = 1,2..., M, then according to (5)A

We have shown that with the properly defingdand A, changes tod + §(AN(I — @), i.e, B = AN — Q); if Q
Poisson equation and Lyapunov equation hold for potenti&ilanges t@) + AQ, thenB = A(AQ)). Then,n will change to
and realization matrices, respectively, for semi-Markov pré{é) = n+ An andp changes tg(6). From (20), we have
cesses. Thus, performance sensitivity formulas can be derived
in a similar manner, and the results are briefly stated here. 1(6) = n(0) = p(6) [(A(6) — A) g + (f(6) = f)]-

FirsF, for two SMPs withd’, n f’ and.A, n, f, multiplying Letting 6 — 0, we get
both sides of (19) on the left y and usingy’ A’ = 0, we get

dn .
, — =p(Bg+h)=p(BA*f+h 21
n=n=p (A= ADg+ (" = )] ap PP h) = p(BATS + ) 1)
=p [(A'g+ f) = (Ag+ f)]. (20) wheredn/dB denotes the derivative along the direction/®f

) _ o ) We can also obtain performance sensitivity usihg=rom (17),
This serves as a foundation for SMDPs. Policy iteration fQfe have

SMPs can be derived from (20) by notipg > 0 component-
wisely. This is the same as MDPs and we shall only briefly state Dp" = (eg” — ge")pt =ne —g.
the results.

Specifically, a semi-Markov decision problem is definefReplacingg with D in the sensitivity equation, we get the per-
as follows. At any transition epochwith X, = 7, an action formance difference
« is taken from an action spacé and applied to the SMP.
This action determines théth item of the semi-Markov W —n=p [(A=ADTP" +(f - f)]
kernelQ*(i,j,t), 7 = 1,2,..., M, and performance function
f(i,9), 3 = 1,2,...,M, which in turn determine\(z),
Q°(i,7) and f*(i) (or equivalently A%(z,5) and f*(i)). A dn
stationary policy is a mapping : £ — A. For any state iB ~
1 € &, L specifies an actio(¢) € A. A policy £ specifies an
infinitesimal generatord“. The policy space is denoted &s
We use superscripf to denote the quantities associated wit

policy £, e.g.,
D(i,j) = Tlim {E

T oo
/ FECO(X,, Yyt
0

and the performance derivative
pT(BDTp" + h).

Equation (8) provides a way to estimate realization matrices
ﬁlnd potentials on a sample path. From (8), we obtain

/ (X0 Yo) — ] di| Xo = j

nt =

1
—F .
T

lim
T—o0

T
g /[f()?hf@)_n] dt| Ko = i
0

}

The objective is to minimize the cost over the policy spéce
i.e., to obtainmin,cc n*. We first choose any initial policy

Lo, which determinest£o. Given a policyA%~, n = 0,1, ..., whereX, has the same kernel a. Therefore

we solve the Poisson equation (19) for the potentfal. Then, T
we choose a policyi~+1 that minimizesA% g% + £ i.e., N lim E / X, V) — nldtlXg = i| e (22
Lnt1 = arg{mingec[AX g + f£]}, componentwisely. () = fim, J (X0, 1) = ml dtXo = 5 22)

From (20), we have/“~+1 < nf». If p“~+1 < nf~, we set
n := n + 1 and continue the procedure unjff~+1 = n*~; at is a performance potential gt wherec is any constant. This
this point the policy iteration reaches the optimal policy. is the same as for the Markov process case, except that the in-
Since we minimized< g%+ + f£' componentwisely, it re- tegration starts with a transition epoch. The convergence of the
quires that the actions at different states do not interact with eaafht-hand side of (22) can be easily verified by, e.g., using the
other. This indeed is the case: by examining (5), we can see thatbedded Markov chain model [6]. Single sample path based
theith row of A is determined completely b9 (4, j, t) with the algorithms (e.g., Monte Carlo estimates) can be easily devel-
samei, which is controlled by the actiofi(z). oped for potentials and realization matrices, and therefore the
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performance derivative (21) can be obtained and policy iteratiaations space ad.,0s,...,0k}, with 8, = k x u, wherep

can be implemented with a single sample path. For exampledenotes the transmission rate of one channel. The system can
be modeled as an M/G/1 queue; the state at tiiseV(¢) = i

with ¢ being the number of customers in the queue at time

o ] For stability, we assumg > Az, wherez is the mean length
al N of a packet. The decision for actions is made at the beginning
X Z /f(Xt,Yt)dt—nZ(vn—un) (23)
n:Odn n=0

D(yi) = Jim S

of the transmission of each packet. Thus, the decision epoches,
which consist of all the service completion times and the arrival

whereu,, andw,, are defined in (13) to (15). Each segment frorimes to all the idle periods, are denotedZasTy, . ... Define
Up 10 Uny1, n = 0,1,..., can be viewed as an independentt = N(T) for T, <t < T 41, m = 0,1,2,.., thenXy is
sample path starting with an initial state [*" f(X;, Y;)dt is @ semi-Markov process. It is clear that the following equations

S7(4) . hold for X;:
the value of[;” " f(X,,Y;)dt in (8) on one sample path, and
n(vn — u,) is that offosj(” ndt.n can be estimated on asample Q(0,1,) =1 —¢

path by using Q(n,t) = F(0t), n>0
; and
n= N / F(Xe, Yoydt. QUi,j,dt) = P[Xny1 = j,t < Tpyy = Tn < t+dt| X, = i]
T BN joitl
0 :{lﬁi——7eM}Fwﬁ) i—1<j
More complicated algorithms involving simultaneous estima- (j—i+1)!

tion ofy andD (i, j) can also be developegli), i € £ canthen a6 the term in braces is the probability that thergjare+ 1
be obtained by setting(i*) = 0 for any arbitrarily choses* 4 ivals in the period ofo, #).

and using (17). Algorithms based on (23) usually have smallerTha cost consists of two parts: the holding cfgt, /) and
variannce than those based on (22). This is similar to the casg pandwidth cosf>(9). That is
with Markov process [6].
The high-order derivatives are the same as those for Markov fe(i7j) = f1(i,5) + f2(0).
processes [5]
It is well known that if in an interval0, t] there arek arrivals

an = n!p(BA#)n_l(BA#f +h). from a Poisson process, then thdsearrivals uniformly dis-
dB tribute over the period (see, e.g., [17]). Thus, the average number
In addition, we have the following expansion: of customers if0, ¢] is (< + 7)/2 and we can set
- — - i+j
n(6) =n+ps > (BA) ' (BA*f +h) F0(,3) = m + b
k=1

+p(6)(6BA#)"(BA#f +h). where the first_term represents the cost for average waiting time.
The problem is now formulated as a SMDP problem and the

Whenh = 0, this becomes results developed in this paper can be applied.
n(6)=p Z (§BA#)kf + p(&)(&BA#)an. IV. DISCOUNTED-COST PROBLEMS
k=0 A. Performance Formula
Thus, we can use >, _, (5BA#)kf to estimaten(§) with Instead of the average-cost performance, we consider the

p(é)(éBA#)"+1f being the error in the estimation. All theprobler_n with discounted performance criteria. For gny 0,
items inp and A# can be estimated on a sample path of th&e define the performance measure as

Markov process wittd; see [5]. Ty
D. Example np(i) = lim B /ﬂe_ﬂtf(Xt-/Yt)dﬂXo =il, To=0
We use an simple example to illustrate the application of the 0 (24)

theory previously developed. Consider a communication ligge performance potentials as
(or a switch, a router, etc.) to which packets arrive in a Poisson
process with rat@. The packet length is assumed to have a gen-
eral distribution functionf (), with the unit ofz being bit. For  g4(i) = lim £ /e—,Bt [f(X.,Yy) — 5] dt| Xo = i
each packet, the system manager can choose the transmission - 2

rated, whose unit is bit per second. Thus, the transmission time i=1,2,.
for each packet has a distribution functidir) = P(t < 7) = ’

P(x < 61) = F(67). In areal systeny takes discrete values, wheren = pf is the average performance, and the performance
e.g., the number of channels; each channel has a fixed amaamd potential vectors ag; = (n(1),...,m3(M))T andgg =

of bandwidth. Thus, we can vietvas an action and denote the(gs(1), ..., gs(M))T.

Tn

M (25)
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Note that the definition (24) differs from the To continue our analysis, we set
standard one (e.g., in [20],mg(i) is defined as o
limy oo E{f, ¥ e 7 f(X,,Y2)dt|Xo = i}) with a factor (i) = / BT Qi dr)
“B.” We adopt such a definition for the following reasons. = ’
First, the continuity of)g holds atg = 0. In fact, we define
fo e™P7Q(i, j, dr)
Jo© e Qi dr)
P . . . fO ]' —€ ﬂT)Q(”?J dT)
We shall prove that the limit exists and = ne, wheren is mg(i, j) = ﬂf e=P7Qi, , d7)
the performance for the average-cost problem. Second, (24) haa 0 (@4

Qp(i,j) = (28)

= lim ng.
o = lim 775

its own physical meaning: sincg~ Be=?*dt = 1, in (24) the [2°(1 = e=)Q(i, dr)
performance value is distributed on the sample path according (i) = =° — Z Qa(i,j)mp(i, j)
to the weighting factoﬁe 8t The average cost performance 5f e=77Q(i, dr) je€
corresponds to an “even” distribution on the sample path. (Wit
the standard definitiom;; goes to infinity as3 approaches 0). (i) = 1 By e Qi dr) 29)
Third, with this approach, we can develop a unified theory of "# m(i) f0°°(1 — e ANYQ(i,dr)’
PA and MDP that applies to both the discounted-cost and the
average-cost problems. Finally, sinéés a fixed number fora  Then, we can verify that
particular problem, it should be straightforward to translate all .
the results in this paper to the “standard” definition. A similar Z @pli,j) =1 or Qge=c
definition is used in [7] for discrete time Markov chains. iee
Similarly, we define whereQ g is the matrix ofQ (i, j), and (27) becomes

go = lim gg
ﬂ-)O/ l—e‘T LdT)

and will provegy = g, the performance potential for the av-

erage-cost problem. From (24) and (25), we have

>

/—/Ho\g

/ =B Q(i. 4. dr)ns(j )} (30)

ng = Bgp + ne. (26) i€ |
where
Now, we have fali) = Yice 1160) JoT (L =eP)Q(, 4, dr)}
T 7 (1= e=P7)QUi, dr)
ns(i) = /ﬂe*f’ff(z',Yo)dt|Xo =i _ Djee [0, 5)Qp (i, )mp(d, §)
0 - mg(")
= > fi.4)ps(ili) = Ba [f(X1,Yy)| Xy = 4] (31)

JEE

+ lim B [/ﬁe‘@tf(Xt,Yt)dﬂXo —

Ty

whereps(jli) = ((Qp(7,7)mp(i,5))/mps(i)) is the “equiva-
P lent” conditional probability ofY; = j given thatX; = 4,

= Z/ / pe " f (i, 5)dt Q(i, g, dr) + lim Z and “Es” denote the expectation undgg. We can verify that

J€ED > ;ee Ps(jli) = 1. Dividing both sides of (30) byfy~ (1 —

{ } e PT)Q(i, dr) yields

oo Ty =1

Tn
/ Be=00=") F(X,, Y)dt QUi j, dr)

Ti=r np(i) = fa(i) - ﬂ Ag(i 77ﬁ+ﬂz)‘ﬂ Qs (i, j)ns(s). (32)
JEE
= {f (/ /36_8tdt> i, dT)} Define f5 = (fs(1),. .., fs(M))T, then (32) becomes
jEE
j (81 = A5y = BF; (33
+2 {/e_ﬂTQ(ivj: dT)Wﬂ(j)} where A is an infinitesimal generator with
i€€ o
o0 S [ Ae()Qp(E ), if i # j,
- {f(m) (- e—f’ﬂQ(i,j,dT)} 1t = { B0, wiTh
jee 0 We haveAze = 0. For any infinitesimal generatot, 31 — A

(27) Then,Q is an ergodic Markov matrix; its eigenvalues are in

oo is invertible. (This can be shown as follows: Ll@t= I + A.
/e Qi 3, dr)ns(5)
o the unit circle except one of them being one [2]. In addition,
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BI—A=1+pI-Q=(1+p)(I—-(1/(1+p5))Q). For wheree; is arow vector whose components are zeros except for

any s > 0, all the eigenvalues dfl /(1 + (3))@ are in the unit itsith component being 1. In matrix form, we have

circle and those of/ — (1/(1 + /3))Q) are not zero and, thus,

(I —(1/(1+ B))Q) is invertible). Therefore, we have T

g = Tli_r)go/{ﬂe_me“‘*’tfﬁ}dt
0

ng = B(BI — Ag) ™" f5. (35)

If the performance functioif (s, j) is independent of, i.e., . T ST )
f(i,5) = f(i) forall j € &, then from (31), we haveis(i) = = Th_I};o/ {ﬂ€_<’ —46) fﬁ} dt = B(BI — Ag)™ fs
f(3). Thus 0

ng = B(BI — Aﬁ)—lf_ (36) Wwhich is the same as (36).

) C. Limiting Case
B. Equivalent Markov Processes _ i
We will prove that wherg — 0+, all of the aforementioned

. The Markov. p.rocess_with infinitesimal generatby defined results converge to those for the average-cost problem. There-
in (34) and,(2) in (31) is called arequivalent Markov process oo the average-cost problem can be viewed as a special case

for the SMP with discount factgs. First, if an SMP is Markov, of the discounted-cost problem with— 0. First, we can easily
then the equivalent Markov process with any discount faCt%rify that the following limits exist:

[ is the Markov process itself. Indeed, a Markov chain with

transition rates\(¢) and transition probabilitie§ (i, j) can be lim ag(i) =1 (37)
viewed as a semi-Markov process whose kerné)(s j,t) = B—0+
Q(i,5)[1 — e, Therefore Qo(i, j) = ﬂli%gr Qp(i,7) = Q(i,5) (38)
o 0GING mo(i,j) = lim mg(ij) =m(i,j)  (39)
/e QUG dT) = TGy BIEE mo(i) = lim mg(i) = m(i) or
0 B—0+
Substituting this into (28), (29), and (31), we get Ao(i) = @11,%14_ As(i) = A7) (40)
and
Qp(i,4) = Qi7)  Ap(i) = A(1) andfs(i) = f(i) : : . :
foli) = Jim_fa6) = £(0). (41)

for all ¢, 7 and3. Therefore, for Markov processes
ng = BBI—A)f

wheref (i) = > e Q(i,5) f(i, j) is defined in (11). Ao(i,5) = 11%1 Ag(i,j) = { —(;ig([bll]—)Q(z i, if z i J
Second, since (33) for both the SMP and the equiva- A0+ e J-
lent Markov process are the same, the equivalent Markﬁ\énotingA = A, be the matrix with componentd(i, j)

process has the samg as the original SMP. Indeed, for the, i, js the same as (5) in the average-cost problem, we have
equivalent Markov process, we define the transition function

Pt(z',.j) = P(X:; = j|Xo = 1), and the transition function lim Az = A.
matrix P, = [P;(7, j)]. By a standard result [12], we have p—0

From (37)—(40), we have

P, = 45t Lemma 1: limg_o4 B(BI — Ag)~ ! = ep, wherep satisfies
. pA = 0.
Therefore, for the equivalent Markov process, we have Proof: It was proved that for any ergodic Markov matrix
. P, we have
n(i) = Jlim / B By {f(X0.Y:)|Xo = i} di lim (1 a)(I - aP)™" = ep
> a—1—

0
z wherep is the steady-state probability vector®fpP = p, and

= %El;/ﬂfm Z pe =1.LetP =1+ A, thenpA = 0. Setting8 = 1 — a, we
0 JjEE have

x {Eg [f(Xe,Y2)| Xy = j] P(Xy = j|Xo = 1)} dt ﬁlifgl+5[51 (- ﬁ)A]—l _ li)nf_(l—a)(l—ap)_l = ep.

T
= Jim_ [ e Y {AaG)POX: = i1X0 = i)} (42)
0

ice Next, it is easy to verify that

{T-plor--paya}ppr-a

T
= lim [{Be Ple;es! fa}dt
T““’o/ =B~ (1= A"
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Letting 5 — 0+ on the both sides of the aforementioned equ#®. Sensitivity and Semi-Markov Decision Problems With

tion and using (42) angA = 0, we obtain Discounted Costs
. B Now, we consider the sensitivity problem. L@(s, j, 1), 1,
@hjﬁ BBI = A) " = ep. (43) ;€ &, andQ’(i,j,1), i, j € &, be two ergodic SMPs defined
on the same state—spagel et the corresponding infinitesimal
Next, from (28) and (29)4,; is an analytical function at = generators bel; and A;, and their corresponding discounted
0. Thus performance measures kg andn’;.
dA Theorem 1: We have '
Aﬂ =A+ —/34—0(/3) _1
4p s —np = P(BI = Ay) " [(Ahgs + f5) — (Apgs + f@)(] 5
45

whereo() represents a matrix withmg_,o4(o(8)/5) = 0.

From Age = 0, we have Proof: From (33), we hav@lng = Agns + 5 fs. Thus

iA, BI(njs —np)=B(f5 — fa) + Apny — Agngs

a5 ¢~ =0(f5 — fs) + (A — Ag)ng + Aj(n — 1p)-
Thus
_ 2 —
Vl\\llgV\sgzomﬁ(ﬁf— Ap) = B(BI — A) = B*(dAp/dB) — Bo(), My == (BT — A%) " [(A — Ag)ns + B(f5 — f4)] -
From (26) anddje = Age = 0, we get
B(BI = A)™h=B(BI — Ag)™" = [B(BI — Ag)™'] B
dAg 1 ny —ns = BBI — AY)" [(Ah — Ag)gs + (f — fs)]
X d—[i [ﬁ(ﬂl —A) ]
which leads directly to (45). O
+[B(BI — Ap)~? {@} [B(BI — 4)71]. Theorem 1 forms the basis for the semi-Markov decision
B problem with discounted performance measures. Itis important

to note that the transition rates at any staté.e., theith
. . . row of Ag) and f3(i) depend on onlyQ(s,j,t) with this
both sides of the previous equation. eparticularz’. In other words, each action on stateontrols the

. Lem”?a 2: _The discounted performance measure and pot Ith row of Apg. Thus, in policy iteration the new policy can be
tials defined in (24) and (25) converge to their counterparts f8retermined state-by-state. Specifically, at each step we first

the long-run average problem ds— 0+, i.e., solve the discounted Poisson equation (44) for the potentials
for the current policy, then choose the actions that minimize
(Aggﬂ + f@‘) componentwisely as the next policy. Of course,

o ) the performance potentials can also be estimated on sample
Proof: The second equation is a direct consequence @it

Lemma 1, (35), and (41). The first one follows from (26)01 | etting3 — 0 in the theorem and using Lemmas 1 and 2, we
Next, from (26), we get get

From (43), the lemma follows directly by lettingg — 0+ on

= lim gg = and = lim ng = ne.
9o ﬁ—>0+‘q’d g Tlo ’8_)04_77,5 n

g5 = (BI — Ag) L fs — %ne 1o — 1m0 = ep’ [(Apgo + ') = (Aogo + f)].
_ SinceAy = A’ and A, = A with A and A’ defined in (5), by
or (noting Age = 0) Lemma 2, this is equivalent to (20).
Suppose the semi-Markov kernel depends on a continuous
(BI — Ag)gs = fs —me (44) parameted and is denoted a9y (4, j,t), and the performance

measure is a function df, fy. With a discount factog, the

which is called thediscounted Poisson equatioBetting = o ivalent infinitesimal generator becomes [see (28), (29), and
0 leads to the special case of (18). et be the steady-state (34)]

probability of the equivalent Markov process, i.g343 = 0.

Then, from (33), we have By e PTQop(i, 4, dr)

App(i, §) = == — ., fori#j
- f . 0 /3( ) fo (1 _ e_'HT)Qg;,g(’L, dT)
bl = PplB = 77,8 y ( ) ﬂfooo e_ﬂTQG;ﬂ(L dT) -
0;8\%, 1) = — —=c . ) ?
with n; denoting the steady-state performance of the equivalent fo (1= eP7)Qp;5(i, d7)

Markov process. In addition, we have in which we assume th&, (i, ) = 0 for convenience. Setting

1, Qoxn0(i,7,t), andQq(i, 7,t) be the two semi-Markov kernels
PaYs = 5(77,3 - ). in Theorem 1, we get

This applies to the particular potentials defined in (25). OF6+a6:86 — 763 = BBT = Agyanp)™"
course, for any constant gs + ce is also a potential. X [(Ag+n6;896,8 + forne) — (Ae.390:8 + fo)] .
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Letting A# — 0, we get the derivative of the discounted perfor- V. CONCLUSION

mance measure We have shown that with properly definddg andD, the re-

dne. s _, [dAgs dfy sults for potentials, perturbation realization, PA, and MDP, etc.,
7 BAI = Ag;p) { a9 Jes T W} - (46)  can be extended naturally to SMP with both average and dis-
counted costs. Especially, sensitivity analysis and policy itera-

As a special case, we I8t — 0 and setdy = A+ 0B, B = tion for SMDP can be implemented on a sample path. Perfor-
A’ — A. ltis easy to verify that the performance derivative ahance potentials, which play a crucial role in both sensitivity
6 = 0 has the same form as (21). analysis and policy iteration, can be estimated by the long-run
Define theperturbation realization matrixas performance integration, which has the same physical meaning
as for Markov processes. This approach provides a unified tool
Dg = egg - QﬁeT- in optimization of DEDSSs, including PA, MDP, and SMDP for
) o both average- and discounted-cost problems. In addition, RL
Dy is skew-symmetric, i.el); = —D . The performance sen- methods can be developed to estimate potentials, realization ma-
sitivities (45) and (46) can be obtained by using the perturbatigqbes, Q-factors, and performance derivatives by analyzing a
realization matrix. In particular, we have sample path of a stochastic system that can be modeled as a
. dAs. 5 dfs Markov process or an SME. _
5 " B(BI — Ag.p)~" { 7 D545 + @} . The sensitivity point of view of MDP and SMDP brings out

some new thoughts; for example, can we use the performance

Equations (45) and (46) are the sensitivity formulas in a discrefi€rivative andfor higher order derivatives, which can be ob-
policy space and a continuous-parameter space, respectivel{? ined by analyzing a single sample path of the current system,
From the definition, we havé (i, j) = gs(j) — gs(i). To 10 implement optimization or policy iteration? Other research
develop a formula for estimation, we consider two SMPs witiopics include extensions to more general processes such as gen-
the same kernef)(i, j, ), one starting withX, = i and the eralized semi-Markov processes and applications to queueing

other with X/, = j. We have networks with general service time distributions. SMDP theory
also has applications in the temporal abstraction approach [22])
Dg(i,5) = lim and the time aggregation approach [10].
- N—oo Finally, many results about SMP can be obtained by using

the embedded Markov chain method (see, e.g., [23]). It is nat-
XE / e PA(X],Y)) — (X, Y dt|Xg = j,Xo=4i| . ural to expect that the sensitivity analysis can also be imple-
0 mented using this approach. However, compared with the em-
i _ . ) i bedded-chain-based approach, our approach is more direct and
This formula is particularly useful if there is one state, denotedvise and, hence, the results have a clear interpretation. In ad-
asi®, at WE'C_h the system’s sojourn time is exponential. In thigiion with the embedded approach, the expected values (time
case, let™ (i, j) be the random instant such thmf*(i 7) — and cost) on a periodl,,,; — T,, are used; and our approach is

Xrp-(; ) = ¢ for the first time. By the memoryless propertygqier 1 he implemented on a sample path [e.g., see (8)].
of the exponential distribution, the behavior of the two SMPs

after T*(i, j) are the same statistically, i.e5[f(X],Y))] = APPENDIX
E[f(X:,Yy)], fort > T*(i,7). Thus
. VI. PROOF OF(3
D,@(lv.]) . i . ( )
T (i) Consider an intervg, Tv], with N > 1. Let I(z) = 1

_ st P PP if v = kandIi(z) = 0if x # k; andI(x) be an indicator
=k / e TG YY) = f(X, Y] dt| X =5, Xo =i function, i.e.,I(x) = 1 if the expression in the brackets holds,

0 1(x) = 0 otherwise. From (2), by ergodicity we have
If X, is a Markov process, theéfi*(i, j) can be chosen to be the . foTN I(s<t—T,, <s+ds)I}(X;)dt
first time that the two processé§ and X; merge together. pe(s|k)ds = Tilinoo T 1 (X2)dt :
From the definition ofDg, Age = 0, and the discounted Jo ™ De(Xa)dt (47)
Poisson equation, it is easy to verify thag satisfies Let V; be the number of periods §, ] in which X, = k.
AsDjs+ Dy A% — 3Dy = — F We have
TN oo
. 1
whereF; = efj — fse” or, equivalently olim /Ik(Xt)dt = /sQ(k,ds). (48)
N —00 k . .
0 0

1 1 \"
(A,a - 5/”) Dgs + Dg <A,3 - 5/”) = —Fp. Next, we observe thaf, ™ I(s < t — T,,, ) I4(X,)dt is the total
length of the time period if0, Tv] in whichs < ¢t — T,,,. Fur-
Wheng = 0, this is the same as the Lyapunov equation (16) féhermore, among th&. periods, roughlyV,Q(k, dr) periods
the average-cost problem. terminate with a length im to 7 4+ dr. For anys < 7, in each of
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such periods the length of time in whieh< ¢ — T;,, isT — s. where

Thus
o0
Tn o .. .. . .
. : m(i,j) = /sG(z J,ds)=E[Tht1—Th| Xn=1, Xn+1=1]
/I(sgt—Tni)Ik(Xt)dtzNk/(T—s)Q(k7d7-) J ’
0 s and
or oo
Tn 0o . .. .. .
| m(i) = 3 Qi) = [ Q. ds).
lim — [ I(s<t-T,,) I (Xy)dt= [(7 —8)Q(k,dT). .
Jim - [1e<t-T) LxXdi= [ - 9(kdr) J
0 s
Therefore
Tn
. 1/
lim — / I(s<t—"T,, <s+ds)i(Xy)dt
Tn—00 k.
0
TN
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