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Semi-Markov Decision Problems and Performance
Sensitivity Analysis

Xi-Ren Cao, Fellow, IEEE

Abstract—Recent research indicates that Markov decision
processes (MDPs) can be viewed from a sensitivity point of
view; and perturbation analysis (PA), MDPs, and reinforcement
learning (RL) are three closely related areas in optimization of
discrete-event dynamic systems that can be modeled as Markov
processes. The goal of this paper is two-fold. First, we develop PA
theory for semi-Markov processes (SMPs); and second, we extend
the aforementioned results about the relation among PA, MDP,
and RL to SMPs. In particular, we show that performance sensi-
tivity formulas and policy iteration algorithms of semi-Markov
decision processes (SMDPs) can be derived based on performance
potential and realization matrix. Both the long-run average and
discounted-cost problems are considered; this approach provides
a unified framework for both problems, and the long-run average
problem corresponds to the discounted factor being zero. The
results indicate that performance sensitivities and optimization
depend only on first-order statistics. Single sample path-based
implementations are discussed.

Index Terms—Discounted Poisson equations, discrete-event dy-
namic systems (DEDS), Lyapunov equations, Markov decision pro-
cesses (MDPs), perturbation analysis (PA), perturbation realiza-
tion, Poisson equations, policy iteration, potentials, reinforcement
learning (RL).

I. INTRODUCTION

M ARKOV decision processes (MDPs), perturbation anal-
ysis (PA), and reinforcement learning (RL) are three dif-

ferent approaches to optimization of discrete event dynamic sys-
tems (DEDSs). In MDPs, performance depend on policies; a
policy with a better performance can be identified by analyzing
the behavior of the Markov process under the current policy;
the policy with the best performance can then be obtained by
policy iteration [1], [20]. With PA, the derivative of a perfor-
mance measure with respect to a parameter can be obtained by
analyzing the behavior of a DEDS. (For PA of queueing sys-
tems; see [4], [11], [15], and PA of Markov processes [9]). The
derivatives obtained by PA can then be used to determine the
optimal value of the performance measure [13], [18]. The goal
of RL [1], [3], [21], [22] is to learn how to make decisions to
improve a system’s performance by observing its behavior.

Recent research shows that MDPs can be viewed from a sen-
sitivity point of view [6], and policy iteration, in fact, chooses
its next policy along the direction with the steepest performance
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derivative provided by PA. Both MDP and PA of Markov pro-
cesses are based on an important concept, calledperformance
potential, which is strongly related toperturbation realization
in PA. These concepts provide an intuitive explanation for both
PA and MDPs (in view of discrete sensitivity) and their rela-
tions [6], [7]. The performance potential at statecan be ap-
proximated by the mean of the sum of the performance func-
tions at the first transitions on a sample path starting from
state , and hence it can be estimated online. A number of other
single sample path-based estimation algorithms for potentials
have been derived [6]. With the potentials estimated, perfor-
mance derivatives (i.e., PA) can be obtained and policy itera-
tion (i.e., MDPs) can be implemented based on a single sample
path. Stochastic approximation methods can be used in these
two cases to improve the convergence speeds and to reduce sto-
chastic errors. The sample path based implementation of PA
and MDP resembles RL, in particular the Q-learning method
[21], which estimates Q-factors, a variant of potentials when
the system structure is completely unknown. The analysis based
on performance potentials provides a unified framework to both
MDPs and PA with both average- and discounted-cost perfor-
mance measures [7]. The results for the average-cost problems
(in the discrete time case) correspond to the case with the dis-
counted factor being one [7]. The sensitivity point of view of PA,
MDP, and RL brings in some new insight to the area of learning
and optimization. For more details, see [8].

In this paper, we develop the PA theory and extend the
above results to semi-Markov processes (SMPs) with a
continuous-time model. The previous results on MPDs and
PA of Markov processes become special cases. Therefore,
our approach provides a unified framework to both decision
problems and sensitivity analysis (PA) with both average- and
discounted-cost performance measures for both semi-Markov
and Markov processes. In this approach, decision problems
are viewed as performance sensitivities in a discrete policy
space, and PA is regarded as performance sensitivities in a
continuous parameter space. Both of them depend on the
concept of performance potential. The average-cost problem
is a special case of the discounted-cost problem with discount
factor . RL methods can be developed to estimate the
potentials, Q-factors, or even the performance derivatives.

In Section II, we review the fundamentals of semi-Markov
processes. In particular, we show that the steady-state perfor-
mance (average cost) depends on an equivalent infinitesimal
generator which depends only on the first order statistics of the
semi-Markov kernel. We study the average-cost semi-Markov
decision problem in Section III. We start with introducing the
concept of perturbation realization, which is fundamental in PA
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[4], [9]. We define realization matrix and prove that it satisfies
the Lyapunov equation. From the realization matrix, we define
performance potentials and prove that it satisfies the Poisson
equation. With realization matrix and performance potential,
sensitivity formulas and policy iteration algorithms of semi-
Markov decision processes (SMDPs) can be derived easily in
the same way as for Markov processes. It is also shown that
the potentials can be estimated on a single sample path and,
hence, online algorithms can be derived for performance sensi-
tivities and policy iteration of SMDP. Section IV deals with the
discounted-cost problem. We derive the equivalent infinitesimal
generators with discounted factorand the corresponding dis-
counted Poisson and Lyapunov equations. The sensitivity for-
mulas and policy iteration can be derived using performance po-
tentials which is the solution to the discounted Poisson equation.
By carefully defining the discounted-cost performance measure,
we show that the average-cost problem is the limiting case as
the discount factor goes to zero. Thus, the potential based ap-
proach applies to both average- and discounted-cost problems.
Section V summarizes the results with a few remarks on its sig-
nificance and future research topics.

II. FUNDAMENTALS FOR SMPs

We study an SMP defined on a finite state–space
. Let , with , be the

transition epoches. Each interval is called a period.
The process is right continuous so the state at each transition
epoch is the state after the transition. Let ,

.
Define the semi-Markov kernel [12] as

Set

and

Normally, , for all . However, in general, we
may allow the process jumps from a state into itself at the tran-
sition epoches; in such a case may be nonzero and our
results still hold. Furthermore, a Markov process with transition
rates and transition probabilities can be viewed as
a SMP whose kernel is .

We assume that the matrix is irreducible and nonpe-
riodic [2]. Let

be the mean of the sojourn time at state. We also assume that
for all . Under these assumptions the semi-Markov

process is irreducible and nonperiodic and hence ergodic. De-
fine the hazard rates as

and

The latter is the rate that the process jumps fromto in
given that the process does not jump out from statein .

Let . By the total probability
theorem, we can easily derive

(1)

where if , if (
is the th entry in the identity matrix ), is the
probability that given the state at timeis the process has
been in state for a period of to , which may depend on
the initial state. Precisely, let be the integer such that

. Then

(2)

It is proved in the Appendix that

(3)

Now, set in (1), and we obtain

(4)

Since the semi-Markov process is ergodic, when , we
have [12] and , where
is the steady-state probability of. Letting in both sides
of (4), we get

where

Finally, we have
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where

(5)

In matrix form, we can write

(6)

where is the steady-state probability
vector and is a matrix with elements . (6) is consis-
tent with [12, Th. 10.5.22]. In addition, we have

(7)

where is an -dimensional column vector
whose components are all ones (the superscript “T” denotes
transpose). It is well known that for ergodic processes (6) and
(7) have a unique solution.

Equation (6) is exactly the same as the Markov process with
being its infinitesimal generator. This means that the steady-

state probability is insensitive to the high order statistics of the
sojourn times at the states, and is independent of whether the
sojourn time at statedepends on, the state it jumps into from
. In the next section, we will see that plays the same role

for semi-Markov processes as the infinitesimal generator for
Markov processes in policy iteration and PA.

III. A VERAGE-COST PROBLEMS

A. Perturbation Realization Matrices

Consider a semi-Markov process starting from a transition
epoch in state . At any time ,
denote , i.e., the state that the process jumps into at
the next transition epoch. We define the performance value at
any time as , where . The long-run
average performance measure is

where denotes the expectation operator. Denote the instant at
which the process jumps into statefor the first time as

Following the same approach as for the PA of Markov processes
[9], we define theperturbation realization factorsas (the only
difference is that must be a transition epoch in the semi-
Markov case)

(8)

As we will see, measures the effect of a change from
state to on the long-run integration of performance function

. The matrix is called aperturbation realization
matrix.

Let be the steady-state probability of and
and be the conditional steady-state probability of

given that , e.g., (not to be
confused with ). It is proved in
the Appendix that

(9)

where

and

(10)

Thus

By ergodicity, we have

where , and (Note that we use
for both and )

(11)

From (8), we have
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From (10) and (11), the previous equation leads to

or, equivalently

In matrix form, this is

(12)

where is a matrix whose components are .
Next, on the process , with being a transition epoch

and , for any state we define two sequences
, and , as follows:

(13)

(14)

and

(15)

e.g., is the first time when the process reachesafter and
is the first time when the process reachesafter . Ap-

parently, are stopping times and is a regenera-
tive process with as its associated renewal
process. By the theory of regenerative processes, we have

Thus

By the definition of , and , we know that the aforemen-
tioned equation is

Therefore, the matrix is skew-symmetric

Taking the transpose of (12), we get

From this equation and (12), satisfies the following Lyapunov
equation:

(16)

where . This is the same as the Lyapunov
equation for Markov processes [9]. When for all ,
we have , is the transition probability
matrix of the Markov chain embedded in the transition epoches.
From (12) and , we get . Thus, (16) becomes

This is the Lyapunov equation for discrete-time systems [6].

B. Performance Potentials

Similar to (13) to (15), for any three states, , , we define
three sequences ; ; and as fol-
lows: , , ,

, and
. By a similar approach, we can prove

In general, we can prove that for any closed circle
in the state–space, we have

This is similar to the conservative law of the potential energy in
physics. Therefore, we can define a potential at any state
and write and

(17)

where is a column vector. Note that if
fits (17), so does for any constant. is called aper-

formance potentialvector, and the performance potential at
state . Similar to the potential energy,may have different ver-
sions, each differs by a constant. ([9] contains more discussions
on and for Markov processes).

Substituting (17) into (12), we get

(18)

This is thePoisson equation. Since , is not invertible.
Thus, the solutions are not unique. Now supposeis any solu-
tion to (18). Set and choose . Then,

. Thus, there always exists a solution to (18) such that
. Putting this into (18), we get

and

(19)

This is the same as the Poisson equation for Markov processes.
For ergodic semi-Markov processes, is invertible.
Equation (19) only defines a particular version of the perfor-
mance potentials. Define thegroup inverseof as
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We have

Multiplying both sides of (19) by on the left, we get

This can be viewed as the “normalizing” condition to the poten-
tial defined in (19).

C. Sensitivity and SMDPs

We have shown that with the properly definedand ,
Poisson equation and Lyapunov equation hold for potentials
and realization matrices, respectively, for semi-Markov pro-
cesses. Thus, performance sensitivity formulas can be derived
in a similar manner, and the results are briefly stated here.

First, for two SMPs with , and , , , multiplying
both sides of (19) on the left by and using , we get

(20)

This serves as a foundation for SMDPs. Policy iteration for
SMPs can be derived from (20) by noting component-
wisely. This is the same as MDPs and we shall only briefly state
the results.

Specifically, a semi-Markov decision problem is defined
as follows. At any transition epochwith , an action

is taken from an action space and applied to the SMP.
This action determines theth item of the semi-Markov
kernel , , and performance function

, , which in turn determine ,
and (or equivalently and ). A

stationary policy is a mapping . For any state
, specifies an action . A policy specifies an

infinitesimal generator . The policy space is denoted as.
We use superscript to denote the quantities associated with
policy , e.g.,

The objective is to minimize the cost over the policy space,
i.e., to obtain . We first choose any initial policy

, which determines . Given a policy , ,
we solve the Poisson equation (19) for the potential. Then,
we choose a policy that minimizes , i.e.,

, componentwisely.
From (20), we have . If , we set

and continue the procedure until ; at
this point the policy iteration reaches the optimal policy.

Since we minimize componentwisely, it re-
quires that the actions at different states do not interact with each
other. This indeed is the case: by examining (5), we can see that
the th row of is determined completely by with the
same , which is controlled by the action .

Equation (20) can be viewed as a sensitivity equation in a
discrete space, in which each point represents a policy. Next, we
consider the performance sensitivity in continuous space. This
continuous space can be obtained by randomizing policies in a
discrete policy space. Let be a randomized policy which
takes policy with probability and policy
with probability , where and is an matrix
satisfying . Then, . Let and

be the performance functions associated with policies
and , respectively. Suppose changes to ,

changes to . (For example, if changes
to , , then according to (5),
changes to , i.e., ; if
changes to , then ). Then, will change to

and changes to . From (20), we have

Letting , we get

(21)

where denotes the derivative along the direction of.
We can also obtain performance sensitivity using. From (17),
we have

Replacing with in the sensitivity equation, we get the per-
formance difference

and the performance derivative

Equation (8) provides a way to estimate realization matrices
and potentials on a sample path. From (8), we obtain

where has the same kernel as . Therefore

(22)

is a performance potential at, where is any constant. This
is the same as for the Markov process case, except that the in-
tegration starts with a transition epoch. The convergence of the
right-hand side of (22) can be easily verified by, e.g., using the
embedded Markov chain model [6]. Single sample path based
algorithms (e.g., Monte Carlo estimates) can be easily devel-
oped for potentials and realization matrices, and therefore the
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performance derivative (21) can be obtained and policy iteration
can be implemented with a single sample path. For example

(23)

where and are defined in (13) to (15). Each segment from
to , , can be viewed as an independent

sample path starting with an initial state, is

the value of in (8) on one sample path, and

is that of . can be estimated on a sample
path by using

More complicated algorithms involving simultaneous estima-
tion of and can also be developed. , can then
be obtained by setting for any arbitrarily chosen
and using (17). Algorithms based on (23) usually have smaller
variannce than those based on (22). This is similar to the case
with Markov process [6].

The high-order derivatives are the same as those for Markov
processes [5]

In addition, we have the following expansion:

When , this becomes

Thus, we can use to estimate with
being the error in the estimation. All the

items in and can be estimated on a sample path of the
Markov process with ; see [5].

D. Example

We use an simple example to illustrate the application of the
theory previously developed. Consider a communication line
(or a switch, a router, etc.) to which packets arrive in a Poisson
process with rate. The packet length is assumed to have a gen-
eral distribution function , with the unit of being bit. For
each packet, the system manager can choose the transmission
rate , whose unit is bit per second. Thus, the transmission time
for each packet has a distribution function

. In a real system, takes discrete values,
e.g., the number of channels; each channel has a fixed amount
of bandwidth. Thus, we can viewas an action and denote the

actions space as , with , where
denotes the transmission rate of one channel. The system can
be modeled as an M/G/1 queue; the state at timeis
with being the number of customers in the queue at time.
For stability, we assume , where is the mean length
of a packet. The decision for actions is made at the beginning
of the transmission of each packet. Thus, the decision epoches,
which consist of all the service completion times and the arrival
times to all the idle periods, are denoted as . Define

for , , then is
a semi-Markov process. It is clear that the following equations
hold for :

and

where the term in braces is the probability that there are
arrivals in the period of .

The cost consists of two parts: the holding cost and
the bandwidth cost . That is

It is well known that if in an interval there are arrivals
from a Poisson process, then thesearrivals uniformly dis-
tribute over the period (see, e.g., [17]). Thus, the average number
of customers in is and we can set

where the first term represents the cost for average waiting time.
The problem is now formulated as a SMDP problem and the
results developed in this paper can be applied.

IV. DISCOUNTED-COST PROBLEMS

A. Performance Formula

Instead of the average-cost performance, we consider the
problem with discounted performance criteria. For any ,
we define the performance measure as

(24)
the performance potentials as

(25)

where is the average performance, and the performance
and potential vectors as and

.
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Note that the definition (24) differs from the
standard one (e.g., in [20], is defined as

) with a factor
“ .” We adopt such a definition for the following reasons.
First, the continuity of holds at . In fact, we define

We shall prove that the limit exists and , where is
the performance for the average-cost problem. Second, (24) has
its own physical meaning: since , in (24) the
performance value is distributed on the sample path according
to the weighting factor . The average cost performance
corresponds to an “even” distribution on the sample path. (With
the standard definition, goes to infinity as approaches 0).
Third, with this approach, we can develop a unified theory of
PA and MDP that applies to both the discounted-cost and the
average-cost problems. Finally, sinceis a fixed number for a
particular problem, it should be straightforward to translate all
the results in this paper to the “standard” definition. A similar
definition is used in [7] for discrete time Markov chains.

Similarly, we define

and will prove , the performance potential for the av-
erage-cost problem. From (24) and (25), we have

(26)

Now, we have

(27)

To continue our analysis, we set

(28)

and

or

(29)

Then, we can verify that

where is the matrix of , and (27) becomes

(30)

where

(31)

where is the “equiva-
lent” conditional probability of given that ,
and “ ” denote the expectation under . We can verify that

. Dividing both sides of (30) by
yields

(32)

Define , then (32) becomes

(33)

where is an infinitesimal generator with

if
if

(34)

We have . For any infinitesimal generator,
is invertible. (This can be shown as follows: Let .
Then, is an ergodic Markov matrix; its eigenvalues are in
the unit circle except one of them being one [2]. In addition,
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. For
any , all the eigenvalues of are in the unit
circle and those of are not zero and, thus,

is invertible). Therefore, we have

(35)

If the performance function is independent of , i.e.,
for all , then from (31), we have

. Thus

(36)

B. Equivalent Markov Processes

The Markov process with infinitesimal generator defined
in (34) and in (31) is called anequivalent Markov process
for the SMP with discount factor. First, if an SMP is Markov,
then the equivalent Markov process with any discount factor

is the Markov process itself. Indeed, a Markov chain with
transition rates and transition probabilities can be
viewed as a semi-Markov process whose kernel is

. Therefore

Substituting this into (28), (29), and (31), we get

and

for all , and . Therefore, for Markov processes

where is defined in (11).
Second, since (33) for both the SMP and the equiva-

lent Markov process are the same, the equivalent Markov
process has the same as the original SMP. Indeed, for the
equivalent Markov process, we define the transition function

, and the transition function
matrix . By a standard result [12], we have

Therefore, for the equivalent Markov process, we have

where is a row vector whose components are zeros except for
its th component being 1. In matrix form, we have

which is the same as (36).

C. Limiting Case

We will prove that when , all of the aforementioned
results converge to those for the average-cost problem. There-
fore, the average-cost problem can be viewed as a special case
of the discounted-cost problem with . First, we can easily
verify that the following limits exist:

(37)

(38)

(39)

or

(40)

and

(41)

From (37)–(40), we have

if
if

Denoting be the matrix with components ,
which is the same as (5) in the average-cost problem, we have

Lemma 1: , where satisfies
.

Proof: It was proved that for any ergodic Markov matrix
, we have

where is the steady-state probability vector of: , and
. Let , then . Setting , we

have

(42)
Next, it is easy to verify that
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Letting on the both sides of the aforementioned equa-
tion and using (42) and , we obtain

(43)

Next, from (28) and (29), is an analytical function at
. Thus

where represents a matrix with .
From , we have

Now, from ,
we get

From (43), the lemma follows directly by letting on
both sides of the previous equation.

Lemma 2: The discounted performance measure and poten-
tials defined in (24) and (25) converge to their counterparts for
the long-run average problem as , i.e.,

Proof: The second equation is a direct consequence of
Lemma 1, (35), and (41). The first one follows from (26).

Next, from (26), we get

or (noting )

(44)

which is called thediscounted Poisson equation. Setting
leads to the special case of (18). Let be the steady-state

probability of the equivalent Markov process, i.e., .
Then, from (33), we have

with denoting the steady-state performance of the equivalent
Markov process. In addition, we have

This applies to the particular potentials defined in (25). Of
course, for any constant, is also a potential.

D. Sensitivity and Semi-Markov Decision Problems With
Discounted Costs

Now, we consider the sensitivity problem. Let , ,
, and , , , be two ergodic SMPs defined

on the same state–space. Let the corresponding infinitesimal
generators be and , and their corresponding discounted
performance measures be and .

Theorem 1: We have

(45)
Proof: From (33), we have . Thus

Thus

From (26) and , we get

which leads directly to (45).
Theorem 1 forms the basis for the semi-Markov decision

problem with discounted performance measures. It is important
to note that the transition rates at any state(i.e., the th
row of ) and depend on only with this
particular . In other words, each action on statecontrols the
th row of . Thus, in policy iteration the new policy can be

determined state-by-state. Specifically, at each step we first
solve the discounted Poisson equation (44) for the potentials
for the current policy, then choose the actions that minimize

componentwisely as the next policy. Of course,
the performance potentials can also be estimated on sample
paths.

Letting in the theorem and using Lemmas 1 and 2, we
get

Since and with and defined in (5), by
Lemma 2, this is equivalent to (20).

Suppose the semi-Markov kernel depends on a continuous
parameter and is denoted as , and the performance
measure is a function of, . With a discount factor , the
equivalent infinitesimal generator becomes [see (28), (29), and
(34)]

for

in which we assume that for convenience. Setting
, and be the two semi-Markov kernels

in Theorem 1, we get
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Letting , we get the derivative of the discounted perfor-
mance measure

(46)

As a special case, we let and set ,
. It is easy to verify that the performance derivative at

has the same form as (21).
Define theperturbation realization matrixas

is skew-symmetric, i.e., . The performance sen-
sitivities (45) and (46) can be obtained by using the perturbation
realization matrix. In particular, we have

Equations (45) and (46) are the sensitivity formulas in a discrete-
policy space and a continuous-parameter space, respectively.

From the definition, we have . To
develop a formula for estimation, we consider two SMPs with
the same kernel , one starting with and the
other with . We have

This formula is particularly useful if there is one state, denoted
as , at which the system’s sojourn time is exponential. In this
case, let be the random instant such that

for the first time. By the memoryless property
of the exponential distribution, the behavior of the two SMPs
after are the same statistically, i.e.,

, for . Thus

If is a Markov process, then can be chosen to be the
first time that the two processes and merge together.

From the definition of , , and the discounted
Poisson equation, it is easy to verify that satisfies

where or, equivalently

When , this is the same as the Lyapunov equation (16) for
the average-cost problem.

V. CONCLUSION

We have shown that with properly defined, and , the re-
sults for potentials, perturbation realization, PA, and MDP, etc.,
can be extended naturally to SMP with both average and dis-
counted costs. Especially, sensitivity analysis and policy itera-
tion for SMDP can be implemented on a sample path. Perfor-
mance potentials, which play a crucial role in both sensitivity
analysis and policy iteration, can be estimated by the long-run
performance integration, which has the same physical meaning
as for Markov processes. This approach provides a unified tool
in optimization of DEDSs, including PA, MDP, and SMDP for
both average- and discounted-cost problems. In addition, RL
methods can be developed to estimate potentials, realization ma-
trices, Q-factors, and performance derivatives by analyzing a
sample path of a stochastic system that can be modeled as a
Markov process or an SMP.

The sensitivity point of view of MDP and SMDP brings out
some new thoughts; for example, can we use the performance
derivative and/or higher order derivatives, which can be ob-
tained by analyzing a single sample path of the current system,
to implement optimization or policy iteration? Other research
topics include extensions to more general processes such as gen-
eralized semi-Markov processes and applications to queueing
networks with general service time distributions. SMDP theory
also has applications in the temporal abstraction approach [22])
and the time aggregation approach [10].

Finally, many results about SMP can be obtained by using
the embedded Markov chain method (see, e.g., [23]). It is nat-
ural to expect that the sensitivity analysis can also be imple-
mented using this approach. However, compared with the em-
bedded-chain-based approach, our approach is more direct and
concise and, hence, the results have a clear interpretation. In ad-
dition, with the embedded approach, the expected values (time
and cost) on a period are used; and our approach is
easier to be implemented on a sample path [e.g., see (8)].

APPENDIX

VI. PROOF OF(3)

Consider an interval , with . Let
if and if ; and be an indicator
function, i.e., if the expression in the brackets holds,

otherwise. From (2), by ergodicity we have

(47)
Let be the number of periods in in which .
We have

(48)

Next, we observe that is the total
length of the time period in in which . Fur-
thermore, among the periods, roughly periods
terminate with a length in to . For any , in each of
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such periods the length of time in which is .
Thus

or

Therefore

(49)

From (47), (48), and (49), we get

Therefore,

VII. PROOF OF(9)

Consider a time interval , with . Let be the
number of periods in which the process is in state . Then

Let if and , and ,
otherwise. We have

Thus, we have

where

and
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