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Markov decision processes (MDPs), also known as Markov controlled
processes, stochastic problems, Markov decision problems, or stochastic
dynamic programming, with applications in engineering, economics, oper-
ations, statistics, resource management, queueing systems and control of
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epidemics, etc, are a class of stochastic control problems, which consist of
five elements: decision epochs, states, actions, transition probabilities, and
rewards. Choosing an action in a state at a decision epoch generates a re-
ward and determines the state in the future through a transition probability
function. Policies are prescriptions of which action to choose at every de-
cision epoch. Decision-makers seek policies which are optimal under some
criterion. A main analysis of MDPs includes:

• providing conditions under which there exists an optimal policy;

• developing algorithms for computing optimal policies;

• applying MDPs to practical problems.

These analysis depend on the decision epochs and the criterion used to
compare policies. When the set of decision epochs is discrete (or contin-
uous), the corresponding MDP is called a discrete-time (or continuous-
time) MDP. Most of the existing literature is concentrated on discrete-time
MDPs. However, in many real-world situations, for instance, communica-
tion engineering, queueing systems, population processes, and control of
epidemics, the state processes evolve in continuous time; and so it is very
natural and suitable to use continuous-time MDPs for some optimality
problems of such systems. Therefore, continuous-time MDPs become one
of the topics that deserve some attention. The most common and basic
optimality criteria in continuous-time MDPs are the long-run expected av-
erage and discounted reward criteria. When the sets of states and actions
are both finite, as shown in this paper, the existence of discounted- and
average- optimal stationary policies is indeed guaranteed, and the policy
iteration and linear programming algorithms for computing such optimal
policies have been given. However, as shown in Dynkin and Yushkevich
(1979), Puterman (1994), and Sennott (1999), an average-optimal station-
ary policy may not exist for the case of continuous-time MDPs with in-
finitely many states (i.e., denumerable continuous-time MDPs). Thus, the
research on denumerable continuous-time MDPs becomes more complex.
First of all, since the transition functions in continuous-time MDPs are
determined by given transition rates which may be unbounded, some un-
derlying (possibly nonhomogeneous) continuous-time Markov process may
have more than one transition functions under one policy. Moreover, the
expected discounted and long-run average reward values of a policy may
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be infinite when rewards are unbounded. These lead to two important
questions:

• What conditions can guarantee the regularity of a possibly nonhomo-
geneous continuous-time Markov process with respect to any given
policy?

• What conditions can be used to verify the finiteness of the expected
discounted or average reward values of a policy?

The above two questions are at the outset of the research on continuous-
time MDPs. The answers to these questions depend heavily on the struc-
ture theory of transition functions of a continuous-time Markov process,
and this paper by Guo, Hernández-Lerma and Prieto-Rumeau makes a sig-
nificant contribution to this research area since it gives very mild conditions
that ensure the desirable results. In particular, Lemma 3.1 in this paper is
fundamental since it can be used not only to answer the above questions
but also give more generalized results. We now turn to the existence of
discounted- or average- optimal stationary policies. The question is:

• What conditions can guarantee the existence of discounted- or average-
optimal stationary policies?

Obviously, such an existence problem of optimal policies is most essential
and should be first answered in MDPs. Indeed, many authors have worked
on this problem and obtained many interesting results. However, most of
them are restricted to the case that either transition rates or rewards are
bounded. As mentioned in Bather (1976), the challenging and most difficult
problem is to study the case when the transition rates and rewards are both
unbounded. Recently, important development has been achieved by the
authors of this paper. This survey paper by Guo, Hernández-Lerma and
Prieto-Rumeau gives a deep insight and excellent overview over different
approaches and variant conditions for the existence of optimal stationary
policies, as well as the relationship between the approaches and conditions.
In particular, many of these conditions are imposed on the preliminary data
of the model of continuous-time MDPs, and so they are desired and easy
to be verified.

Concerning the algorithms for computing discounted- or average- opti-
mal stationary policies, Theorem 3.2 in this paper gives a value iteration
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algorithm to compute, or at least to approximate, both the optimal dis-
counted value and a discounted- optimal stationary policy. In particular,
the choice of initial value (i.e., u0 in (3.8)) for the value iteration algorithm
is very interesting since it plays a key role in this algorithm and it is also
rather different from any traditional choice. Moreover, Theorem 4.2 in this
paper also presents a policy iteration algorithm for computing or at least
approximating both the optimal average value and an average-optimal sta-
tionary policy. Of course, convergence rates and numerable examples about
the two algorithms are also worth to be further studied.

For the advanced optimality criteria such as the bias and sensitive dis-
counted optimality criteria, the authors of this paper first illustrate a strong
motivation to study these criteria, and then present many results, which
include the existence and properties of optimal policies for the so-called ad-
vanced criteria (e.g., Theorems 5.1, 5.2, 5.4, 5.5 and 5.7). These results are
very interesting and important contributions to the development of MDPs.

It would be interesting to note the recent works by Cao and his col-
leagues (2003a-2003c, 2004) on discrete-time MDPs with finite states and
actions. In their works, a stochastic system is viewed as a discrete-event
dynamic system, and the optimization problem is explored by using the
dynamic features of a system. This view is different from the traditional
approaches to MDPs, and it, therefore, leads to different insights and meth-
ods. With this view, a sensitivity-based approach is proposed to finding
the optimal solutions to the discounted and average optimization problems.
This approach provides a new perspective to the optimization problems
and establishes a relationship among MDPs, perturbation analysis, and
reinforcement learning. In particular, the paper Cao and Zhang (2006)
proposes the n-bias optimality criteria, which is closely related to, and es-
sentially equivalent to, the sensitive discounted optimality criteria; but the
problem is directly defined on long-run averages without discounting, and
the solution approach is intuitive clear and simple. The extension of these
results to continuous MDPs is in a recent paper to be finalized, and to ex-
tend these results to Markov processes with general state spaces is certainly
a worthwhile research topic.

Another point to mention is that in the above continuous-time MDPs,
any choice of actions is independent to each other. We call such continuous-
time MDPs standard ones. On the other hand, there are some systems in
which choice of action may depend. For example, in Jackson network Dijk
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(1993) each decision/action is taken only when a customer arrives at the
network. A customer arrival is described by an event. Optimality problems
for such Jackson network cannot be described as standard continuous-time
MDPs, because when an event occurs (a customer arrives), the system can
be in many different states, and therefore, an action may affect the transi-
tion probabilities of many states. The optimality problems for such systems
are called event-based optimization of Markov systems; see for instance,
Cao (2005) for discrete-time Markov chains. Based on the framework of
continuous-time MDPs and the idea of event-based optimality, we will add
the following question which may be interesting for the future.

• To extend the event-based optimality problems to continuous-time
Markov processes with general state spaces, and then find optimality
conditions and algorithms for so-called event-based optimal policies.

In summary, this paper by Guo, Hernández-Lerma and Prieto-Rumeau
gives an excellent overview over the most interesting results with respect to
the discounted, average and advanced criteria in continuous-time MDPs.
This is an important source for this challenging research area on continuous-
time MDPs, and may open up many possibilities for further study on other
related important problems such as stochastic games, minimax control, and
event-based optimization. The works by Cao et al. provide an alternative
way to the optimization of stochastic systems.
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This paper gives a good survey of recent results on continuous-time
Markov decision processes (CTMDPs) with countable state space. The pa-
per focuses on unbounded transition rates and unbounded reward rates.
The authors analyzed first the two main optimality criteria for infinite-
horizon CTMDPs, i.e., the discounted reward and the average reward opti-
mality criteria. Then they paid their attention to some “advanced” optimal-
ity criteria, including the bias, sensitive discount, and Blackwell optimality
criteria.

The main steps to analyze the first two optimality criteria in the survey
are as follows. First, some assumptions are presented. Then, the standard
results are shown under the assumptions. Here, the standard results in-
clude that (a) the optimality equations are true, and (b) any stationary
policy achieving the supremum or ǫ-supremum of the optimality equation
is an optimal or ǫ′-optimal policy. Here, ǫ′ depends on ǫ and tends to zero
whenever ǫ tends to zero.

Discounted Reward Optimality

The authors showed first that the expected discounted total reward Vα(i, ϕ)
is well defined with finite norm with respect to w(i) under Assumptions A




