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The Potential Structure of Sample Paths and
Performance Sensitivities of Markov Systems

Xi-Ren Cao

Abstract—We study the structure of sample paths of Markov
systems by using performance potentials as the fundamental units.
With a sample path-based approach, we show that performance
sensitivity formulas (performance gradients and performance
differences) of Markov systems can be constructed intuitively,
by first principles, with performance potentials (or equivalently,
perturbation realization factors) as building blocks. In particular,
we derive sensitivity formulas for two Markov chains with possibly
different state spaces. The proposed approach can be used to ob-
tain flexibly the sensitivity formulas for a wide range of problems,
including those with partial information. These formulas are the
basis for performance optimization of discrete event dynamic sys-
tems, including perturbation analysis, Markov decision processes,
and reinforcement learning. The approach thus provides insight
on on-line learning and performance optimization and opens up
new research directions. Sample path based algorithms can be
developed.

Index Terms—Markov decision processes, performance sensi-
tivity, perturbation analysis, perturbation realization, reinforce-
ment learning.

I. INTRODUCTION

MOTIVATED by many engineering, economic, and social
problems in the information technology era, researchers

in different scientific disciplines have developed various ap-
proaches to the optimization of discrete event dynamic systems
(DEDSs); among them are perturbation analysis (PA) in con-
trol theory [7], [8], [13], [15], [21], [22], Markov decision pro-
cesses (MDPs) in operations research [2], [5], [6], [27], [28],
and reinforcement learning (RL) in computer science [3], [4],
[23]–[25], [29]–[33]. These approaches share a common fea-
ture: to improve a system’s performance based on the informa-
tion obtained by analyzing the current system behavior. Markov
process is the common model used in these approaches.

Recent research indicates that the above different approaches
are closely related [10], [12], and that the performance sensi-
tivities are the basis for optimization. The relation among these
areas can be illustrated by Fig. 1 (see [12]). At the center are the
two types of performance sensitivity equations (the notations in
the figure are for the standard Markov models and will be ex-
plained later): When the system parameters are continuous vari-
ables, the sensitivity is the performance gradient (derivatives)
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Fig. 1. Map of the optimization world with two sensitivity formulas at the
center.

with respect to the parameter(s); when the system is character-
ized by discrete quantities (e.g., policies), the sensitivity is the
performance difference between the system with two different
set of parameters (e.g., under two different policies). The fun-
damental concept for both sensitivities is the performance po-
tential (denoted as ) of a Markov process (which differs from
the “relative cost vector” in [5], or the “bias” in [28], by only
a constant). Both PA and MDP can be explained from a per-
formance sensitivity point of view: PA gives the performance
gradients (called policy gradient in RL literature) and policy it-
eration can be derived naturally from the performance differ-
ence formula [10], [12], [19]. Both of them can be implemented
using a single sample path; RL, Q-learning, , neuro-dy-
namic programming, etc, are sample-path-based efficient ways
of estimating the performance potentials and other related quan-
tities (e.g., Q-factors). As shown in the figure, performance opti-
mization can be achieved either by using the performance gradi-
ents combined with stochastic approximation methods, see, e.g.,
[16], [20], [26], and [34] (in each step, performance improves
by a small amount), or by applying policy iteration algorithms
in MDPs (in each iteration policy jumps to another one with a
better performance).

Fig. 1 describes the relations among the different optimiza-
tion areas and illustrates how the two sensitivity formulas lead
to different optimization approaches. However, because these
two sensitivity formulas are derived with the standard Markov
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model, the results thus obtained do not cover nonstandard prob-
lems. It is well known that the standard Markov approach suf-
fers from two major drawbacks: the state–space is usually too
large, and the actions have to be chosen independently at dif-
ferent states.

The research reported in this paper is a part of our effort in ex-
tending the above sensitivity view and the approaches depicted
in Fig. 1 to more general cases. The extension allows approaches
similar to those discussed above be applied to problems in which
the state space may be different, and/or the actions at different
states may be dependent; aggregation can be used to reduce the
state space. The central work is to derive the two types of sen-
sitivity formulas for more general problems. As illustrated in
Fig. 1, once the sensitivity formulas are obtained, optimization
approaches such as policy gradient, policy iteration, and RL, etc,
may be derived for these general (nonstandard) problems.

To achieve our goal, we first study the structure of perfor-
mance sensitivities (i.e., performance gradient and performance
difference). We show that both of them can be constructed, by
first principles, using performance potentials as building blocks.
We show that the construction of the performance sensitivities is
based on the sample-path structure determined by performance
potentials. More precisely, we can build up a sample path of one
system with that of another system and its performance poten-
tials. With the potential structure of sample paths introduced in
this paper, we can flexibly construct performance sensitivities
for many systems; these sensitivity formulas are the basis for
performance optimization. The construction approach is an ex-
tension of the previous work [9], [13], in which a simple case
was studied: the performance gradient when the parameterized
systems are in the same irreducible state space. In this paper,
we extend this result to cover performance differences and more
general systems. A major breakthrough in this extension is the
decomposition in dealing with the coupling effect of two jumps
that are close to each other; in PA, this represents a change from
infinitesimal perturbations to finite ones. As examples, we apply
the approach to both the performance derivatives and the perfor-
mance differences for two systems that may have possibly two
different state spaces with a common subspace.

Following the terminology of PA, we refer to the two systems
under comparison as an original system and a perturbed one,
respectively, and their sample paths the original path and the
perturbed path, respectively. (For performance derivatives with
respect to a parameter , the original system is the one with ,
and the perturbed one, with ). The main idea is as fol-
lows: Any change in system parameters or even in the system
structure is reflected by “jumps” on the system’s sample path; a
jump here refers to the case that from the same sate, the original
path transits to state , while the perturbed one transits to state
. The effect of such a single jump from to on the system

performance can be measured by a quantity called the realiza-
tion factor which equals , where is the
performance potential at state . Both and can be es-
timated on sample paths. Finally, the performance sensitivities,
which reflect the effect of the change in parameters and/or struc-
ture, can be decomposed into the effects of many single jumps
on the system’s sample path and can be therefore constructed
by using realization factors or potentials as building blocks.

Using the aforementioned idea, we can derive performance
sensitivity formulas by first principles. Such an approach is
common in physics where researchers first formulate and solve
problems based on experimental evidence by first principles
and then prove their results rigorously. In this aspect, we can
view the sample path based reasoning for constructing perfor-
mance sensitivities as “thought experiments.” In Section II,
we briefly review the concepts of realization factors and per-
formance potentials. In Section III–A, we apply our idea to
construct the performance derivatives for the case where the
perturbed system and original one are in the same state–space.
This is the simplest case and serves as a template for more
complicated cases to follow. In Section III-B, we derive a
formula for the performance difference of two Markov chains
in the same state space. In Section IV, we further illustrate
the idea by applying it to more cases. In Section IV-A, we
construct both the performance derivatives and differences for
two Markov chains with one state space being a subspace of
the other. In Section IV-B, we extend the results to the case
where the two Markov chains have different state spaces with
a common subspace. In Section V, we show, by two examples,
that the same principle can be applied to construct performance
sensitivities for systems with partial information that can be
obtained on a single sample path. These examples also serve to
illustrate the flexibility in applying the “building block” idea
to construct performance sensitivities: we only need to focus
our attention to the states that are affected by the parameter
changes. In addition, these examples show that performance
potentials can be aggregated and the number of quantities need
to be estimated on a sample path can be reduced.

The contributions of this paper are as follows. We propose an
intuitive approach to construct, by first principles, performance
derivativesanddifferencesbyusingpotentialsas the fundamental
building blocks; or equivalently, we show that the difference be-
tween two sample paths of two different systems can be decom-
posed into path segments that can be measured on the average by
performance potentials of one of the systems. This clearly illus-
trate the physical meaning of potentials or realization factors and
their crucial role in performance optimization of discrete event
dynamic systems. Using this approach, we can flexibly derive
formulas for performance sensitivities which are otherwise not
easy to conceive. Especially, we obtained sensitivities formulas
for Markov chains with different state spaces and for systems
with partial information. Compared with the traditional MDP so-
lutions where the potentials (i.e., biases) at all states are treated as
a vector and considered as a group altogether, our approach offers
anovelviewtopotentialsby treating themseparatelyandflexibly.
Next, the sensitivity formulas constructed for general problems
play the central role as the two standard sensitivity formulas
illustrated in Fig. 1. Therefore, these sensitivity formulas lead to
new research topics for future studies. For example, new policy
iteration algorithms can be developed, and sample-path-based al-
gorithms can be developed for estimating performance gradients
and implementing policy iterations. Furthermore, as illustrated
in Section V, the approach applies to problems in which actions
at different states are dependent and aggregation techniques can
be used to reduce the computation complexity. Further research
is needed in these directions.
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In this paper, we study the long-run average performance cri-
teria; but the results can be easily extended to discounted perfor-
mance criteria (see [11]). Also, for simplicity, we study systems
with discrete time and a finite state space; thus, the model is a
finite-state discrete-time Markov process; which we shall refer
to as a “Markov chain.”

II. PERTURBATION REALIZATION AND

PERFORMANCE POTENTIALS

We first review some fundamental concepts and their related
theory. Consider a Markov chain with transition probability ma-
trix [17]. may depend on a parameter and therefore is
sometimes denoted as . Let be the
state space, be a sample path, and

be the cost function. In this section, we assume that
is irreducible and aperiodic and hence ergodic. Define the

steady-state probability as a row vector ,
then its flow balance equation is

(1)

where is an M-dimensional column vector
whose all components are 1’s, and the superscript “T” denotes
transpose. We will use subscript to indicate the dimension of

when it is needed (e.g., in (1)). The performance
measure is defined as

(2)

where (we use as both a function
and a vector) and

the limit in (2) exists with probability one.
The central concept of optimization of DEDSs is the pertur-

bation realization. The perturbation realization factor
measures the effect of a jump (or called a perturbation) from
state to state on and is defined as follows. Consider two
independent Markov chains and

with and ; both of them have
the same transition matrix . We define [9], [13]

(3)

This is the average of the difference of defined in (2) starting
from two different states and . If is irreducible, then with
probability one the two sample paths of and will merge

together. That is, there is a random number such that
. Therefore, by the strong Markov property, (3) becomes

[9], [13]

(4)

From the definition (3), we have , and
. can also be expressed with a single sample

path: let and
be the first passage time to state . Then, it is not difficult to
prove [13]

(5)

The matrix , with as its th element, is
called a perturbation realization matrix. We have .
From the definition (3) or (4), by simple calculation, we can
verify the Lyapunov equation

(6)

where . Again, by (3), we have

(7)

Thus, takes the form

where is called a performance poten-
tial (or simply potential) vector and the potential at state .
This equation is equivalent to

Since measures the difference of the performance
starting from states and measures the average contri-
bution to of every visit to state . Furthermore, only the
difference between different s are important for perfor-
mance sensitivities. (7) resembles the conservation law of the
potential energy in physics. From (6), we can prove that
satisfies the Poisson equation

(8)

The solution to (8) is only up to an additive constant; i.e., if
satisfies (8), then for any constant also does. Therefore,
there must be one particular solution to (8) such that
(With any solution , let and ). For
this solution, (8) becomes

(9)

For ergodic Markov chains, is invertible, thus
, where is called a

fundamental matrix. From this, we can prove (up to an additive
constant)

(10)

which is finite for ergodic chains.
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Fig. 2. Perturbation in a sample path of a Markov chain and its effect.

III. MARKOV CHAINS ON THE SAME STATE SPACE

In this section, we derive performance sensitivity formulas
by applying first principles for the case where the Markov
chains under comparison are defined on the same state space.
A brief intuitive explanation of the performance derivative in
Section III-A has appeared in [9], we provide here a more
detailed derivation, which motivates the study in subsequent
sections and makes the material in this paper complete.

A. Performance Derivatives

We first study the simplest problem, i.e., the perfor-
mance derivative, to introduce the idea. Given a Markov
chain with transition probability matrix and state space

, let be another irreducible transition
matrix on the same state space , and set .
Thus . For any , define . We
have and is also an irreducible transition matrix.
The quantities associated with are denoted as and ,
etc. We view as very small when we study derivatives.

Our approach is sample-path based, so we first consider the
simulation of a Markov chain with transition probability matrix

. At any time with , we generate a
uniformly distributed random variable . If

(11)
then we set . For example, consider the case where

, and for all .
If , then the Markov chain jumps into state ; oth-
erwise, it jumps into state . Suppose that the transition proba-
bilities change to , and

, if . (i.e., , and
if .) We use the same sequence of random

variable to determine the transition of the Markov chain with
at time , its sample path is denoted as . We

observe that if it happens that , then transits
to state , but transits to ; however, because is very small,
most likely we have , in this case both and

transit in the same way.
Because is very small, is very close to . Thus,

the previous discussion indicates that starting from the
same initial state and with the same random sequence

, the two sample paths
and are also very close. Suppose that with
the same values of , we have ,
for . Denote . Furthermore, we
assume that with the same value of , applying (11) to
determines that transits to state , but applying (11)

to determines that transits to state . We say that
the perturbed chain has a jump (or perturbation) from
to at time . In Fig. 2, and are illustrated by the solid
dots (A-B-W-C) and hollow circles (A-B-G-C), respectively;
the perturbed path has a jump from to at . After
this time, the two sample paths differ until at (
in Fig. 2) they merge together. Because is very small, we
can assume that such jumps occur rarely; in particular, we can
assume that between ( in Fig. 2) and ( in Fig. 2)
both and evolve in the same way, i.e., according to the
same transition probability . In other words, all the transitions
on A-B-G-C (including those points between G and H) except
the one from to look the same as if they follow the
transition matrix . From Fig. 2, it is clear that defined
in (4) measures the average affect of a jump from to on
in (2). Note the states of and between to are
completely different, we may assume the transitions of and

in this period are independent.
Now we consider a sample path consisting of ,

transitions. Among these transitions, on the average there are
transitions at which the system is at state . Each time

when visits state , because of the change from to , the
perturbed path may have a jump, denoted as from state to
state , as shown in Fig. 2. For convenience, we allow
as a special case. A “real jump” (with ) happens rarely.
Denote the probability of a jump from to after visiting state

as . We have

where denotes the conditional probability that
transits from state to state given that transits from state
to . Thus

(12)

Similarly

(13)

and . On the average, in these transi-
tions there are jumps from to following vis-
iting . Each has on the average an effect of on .

Because a real jump happens extremely rarely as , the
effects of two real jumps can be decoupled and therefore con-
sidered separately. More precisely, consider Fig. 3 which illus-
trates two jumps at and . After the first jump,

merges with at ; thus, the effects of the two jumps
shown in Fig. 3 can be measured separately. As is very small,
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Fig. 3. Effect of two rare perturbations are decoupled.

the probability that another jump occurs before is of order
; its effect can be ignored for performance derivatives. Thus,

on the average the total effect on due to the change in to
is

(14)

From (13) and (12), (14) becomes

(15)

Thus

(16)

Finally, we get

(17)

Strictly speaking, the approximation in (14) is not accurate
(the difference of both sides may not be small for a large ). It is
accurate only after both sides of (14) is divided by , resulting in
(16). Nevertheless, (14) provides a good intuition for thinking.

Note that , and can be estimated on a single sample path
of a Markov chain with transition matrix ; thus, given any ,
the performance sensitivity along the direction
can be obtained by (17) using the sample path-based estimates
of and . Algorithms can be developed for estimating the per-
formance sensitivity based on a single sample path using (17)
without estimating each component of [14], [3], and [4].

B. Performance Differences of Two Markov Chains

In this section, we show how we can use realization factors,
or potentials, as building blocks to construct the difference of
the performance of two different Markov chains.

Consider the simulation of two Markov chains with transi-
tion probability matrices and , respectively, on the same
state–space . As we see in Section III-A,
for with small , if we use the same
random sequence for both chains, then the two sample paths

and are very close, and the jumps happen rarely on
and their effects can be treated separately. However, when we
consider , two sample paths and are
completely different and the effect of the jumps may be coupled
(after a jump on , another jump may occur before and
merge together).

We first show how to determine the effect of two “coupled”
jumps. In Fig. 4, A-B-W-C is the original sample path (with

) and A-B-G-E-H-F is the perturbed path with . Suppose
the sample path is generated with a sequence of
uniformly distributed random variables .
We use a similar terminology as for the performance deriva-
tive problem: If with from (which is most likely dif-
ferent from ) the Markov chain transits to the same state
according to both and , we say that the sample path
does not have a jump at . However, if with transits
to state according to while it transits to state ac-
cording to , we say that the perturbed chain has a jump (or
a perturbation) from to at time . Fig. 4 illustrates two jumps
on , one at from to , the other at from to

.
One cannot see on either or . In Fig. 4, we have

added point to illustrate the transition at (according
to ) to state . Thus, all the transitions on G-E-R are the
same as if they follow the transition matrix . Now, after ,
we add an auxiliary path that follows until the auxiliary path
merges with at . Let us denote the path - - - as
path 1, - - - - as path 2, and - - - as path 3. Path
1 follows (hence ), and Path 3 follows (hence ) on
which the segments - - , and - are the same as if they
were generated according to . With the auxiliary path, segment

- - - also follows . Now it is clear that the effect of the
jump from to can be measured by G-E-R-C and W-C,
and that of the jump from to by H-F and R-C, all these
segments follow the transition matrix .

Let us make the previous observation precise. We use su-
perscripts to indicate the paths associated with. For example,
the sequences of states on these three paths are denoted as
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Fig. 4. Effect of two perturbations.

Fig. 5. Potential structure of a sample path.

; and ; respec-
tively. Of course, some states are the same in two or three paths,
e.g., , and . It is clear from
Fig. 4 that for any

(18)

(19)

Therefore

(20)

Because G-E-C follows transition probability , the expectation
of as is .
Similarly, also follows transition probability . Path 3
eventually merges with Path 2 (before or after ), thus,
the expectation of as
is . Finally, the effect of the two “coupled” jumps at

and is on the average .
The aforementioned observation for the two-jump case shed

light on the general case (Fig. 5). If changes to ,
suppose that there are jumps on (After the th jump,

looks the same as if following ). Let , be
the instants at which jump occurs, and denote the jump at
as from state to state . Let . In Fig. 5,

, and . By definition, the segments from
to are the same as if they were

generated according to . (It is possible that ,

in such cases the segment is null.) As in the two-jump case, we
add an auxiliary path starting from each that follows ex-
actly the transition matrix (e.g., the paths E-R-C and K-M in
Fig. 5). Denote the auxiliary path starting from as .

is B-W-C, which is the same as a part of is E-R-C,
and is K-M. Denote the path from to
to as path 1 (Path A-B-W-C in Fig. 5), and the path from

via , and and then to , as
path , etc., with path 1 being (a sample path for ). We de-
note as path .

Applying the same reasoning as for the two-jump case illus-
trated in Fig. 4, we can obtain an equation similar to (20) for the

-jump case (for )

(21)

in which the expectation of

as is .
Fig. 5 illustrates that a sample path, , of a Markov system

with transition matrix can be decomposed into the sum of a
sample path, , with transition matrix and many segments,
G-E-C, H-K-M, and so on, that can be measured on the average
by performance potentials of the Markov chain with . Picto-
rially, the perturbed sample path in Fig. 5 starts from point
A then follows transition matrix on the original path until
point B, at which it jumps to point G according to then fol-
lows again on another “original path” (with large circles) to
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Fig. 6. Perturbation between two different state spaces.

point E, at which it jumps to point H according to then fol-
lows again on another “original path” (with small circles) to
point K, and so on.

Now, we consider a sample path of the perturbed system with
with states . Among

these states, on the average states are at state . Sup-
pose that after visiting state has a jump from to (we
allow ). Denote the probability of a jump from to
after visiting as . Then on the
average, there are jumps from to following
visiting . According to (21), each of such a jump has on the av-
erage an effect of on . Thus, on the average the total
effect on due to the change in to is

(22)

Similar to (13) and (12), we have ,
and . (22) becomes

(23)

Finally, we have

(24)

IV. MARKOV CHAINS WITH DIFFERENT STATE SPACES

The construction approach can be applied flexibly to other
general problems. In this section, we apply this principle to two
special problems to illustrate its flexibility.

A. One is a Subspace of the Other

Now, we construct the performance difference between
two systems defined on different state spaces, with one
as a subspace of the other. Let and

be such two spaces, with
. An example is the and the

queues. Let and be the (irreducible)

transition probability matrices for the two Markov chains. We
decompose into

(25)

where is an matrix corresponding to . Let
and

.
Fig. 6 illustrates the sample paths, in which Path 1

(A-B-W-C) is viewed as , and Path 3 (A-B-G-E-H-J-F),
. For any segment in which lies in , the situation is the

same as the case discussed above. For example, at has
a jump from state to state . If both and are in , then
after the jump, may follow the transition matrix until at

it has another jump from to . By adding an auxiliary
path E-R-J-D that follows , we have a segment G-E-R-J-D,
which follows transition matrix . Thus, the jump at
from to , can be treated in the same way as in
Section III-B. However, if a jump is from a state in to a state
outside of , then after the jump, will follow the sub-matrix

until it reaches again. For example, in Fig. 6 there is
a jump from to at , and after the jump

follows until at point it reaches again. (More
precisely, follows until at it transits into at
following .) Fig. 6 illustrates that there is no jump on
until it merges with path 2 at . If after there is another jump
on before it merges with path 2, we add an auxiliary path
and denote it as . In both cases, the effect of the jump
from to can be measured by the difference between the
two segments H-J and R-J; R-J follows , while the first part
of H-J, H-K, follows , and the last part, K-J, follows

. That is, H-J follows the following transition matrix:

(26)

Pictorially, in Fig. 6 follows on the original path until
point B, at which it jumps to point G according to then fol-
lows again on the “large circles” path to point E, at which it
jumps to point H according to then follows on the “small
circles” to point J, and so on. Since is a closed submatrix of

, following is the same as following in a large state space.
From the previous discussion, the effect of a jump from

to , on the average-cost performance can be
measured by the difference of the two segments following the
transition matrix . When , the two paths (using auxil-
iary path if necessary, e.g., W-C and G-E-R-J-D) follow , and
when and , one path (e.g., R-J) follows
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and the other follows (e.g., H-K follows and K-J
follows ). Note that no jump can occur in H-K, which follows

(no jumps occur from ).
Now, we study the potential of . Let be its

realization matrix, then

(27)

where . We have
, and is the potential satisfying the Poisson

equation

(28)

Later, we will see that the solutions to (27) and (28) exist. In the
Markov chain with transition matrix , all recurrent states are
in . Thus its steady-state probability is

(29)

or in a vector form , with
being the steady-state probability corresponding to . We have

, and .
Left-multiplying both sides of (28) with , we get

(30)

Recall that in (28) is determined only up to an additive con-
stant.We may set

(31)

Denote

(32)

where is an -dimensional vector. (31) becomes .
Denote as

(33)

with being an matrix. Putting (26) and (33) into (27),
we get (34)–(36)

(34)

where , which shows that the up-left sub-
matrix of is the same as the realization factor matrix for the
Markov chain with transition matrix ; and

(35)

where is an matrix,
is an dimensional

vector, ; and

(36)

where .
From (34), we have and furthermore, from

(32) we have

Substituting the previous equation into (35) and using
, we get

Left-multiplying this equation with and using
, we obtain

(37)

or (the inverse exists for unichains, see [28])

(38)

Let . Substituting this into (36),
we can verify that (37) is indeed a solution to (36). We also
conclude that solutions to (27) and (28) indeed exist.

After determining the effect of one jump on the performance,
and , the next step is to determine

the total effect of all the jumps caused by the changes in the tran-
sition probability matrix as well as the state space. Consider a
sample path of the Markov chain with transition probability ma-
trix for states . Recall that
is the probability that after visiting state the chain jumps from

to . We can follow the same procedure as described in Sec-
tion III-B with only one exception: there would be jumps only
when the system is in (There is no jump in between and
Fig. 6). Therefore, corresponding to (22), we have

(39)

where is the th component of . We
have and ,
for . Thus

Setting for , we
have

Finally, we have

(40)

where and



CAO: POTENTIAL STRUCTURE OF SAMPLE PATHS 2137

where “0” denotes an matrix in which all com-
ponents are zero.

The intuitively obtained (40) can be easily verify. Left-multi-
plying (28) by and using , we
have

For performance sensitivity, we define

Thus, and , which has the same
steady-state performance as . Superscript is added to quanti-
ties associated with Markov chain . Applying (40) to and

, we obtain . Letting , we get

(41)

In the previous analysis, we view the sample path associated
with transition matrix in the smaller state–space as the
original one and that of the Markov chain with in the larger
state–space as the perturbed one. The role of the two sample
paths can be reversed, i.e., we may view the sample path with

as the original one and that with as the perturbed one. In
this way, we follow the perturbed path and observe the jumps
from states in to states in . The realization factor matrix

is an matrix
satisfying

and satisfies

(42)

Again, consider a sample path of for transitions. Among
them, on the average are from state . After it,

will jump from to , etc. Following the
same reasoning as we did before, we eventually obtain

(43)

where . (43) can be
verified simply by left-multiplying both sides of (42) by

.
To study performance sensitivity, we use defined in (26)

again. Set

with , which has the same steady-state performance
as , and . From (43), we have

. Therefore

(44)

where .
Both and in (44) can be estimated with a single

sample path of the Markov chain . Thus, when the original

state–space is larger, the performance derivative from a large
state space to a small state–space can be determined based
on a sample path of the original Markov chain. However, in
(41), is determined by in (26), which depends .
Therefore, for performance derivatives from a small state space
to a large state space, additional information is needed besides
a sample path from the original Markov chain.

B. General Case

In this section, we study the case where two state spaces
have a common subspace. Consider two Markov chains

and . is defined on ;
both Markov chains have a common subspace denoted
as ; and is defined
on , which has

states. Denote
and . We have and

. Let ,
which has states.

Let and be the transition probability matrices of
the two Markov chains. Let and

be the
performance vectors, and , and , be the steady-state
probabilities and average-cost performance of the two chains.
Assume both are irreducible. We decompose and into

(45)

and

(46)

where in corresponds to in and
in correspond to subspace , and

to .
Without loss of generality, we assume that both and

start from the same state in . Following the same argument
as in Section IV-A, we use Fig. 6 to construct the perfor-
mance difference, with Path 1 (A-B-W-C) as and Path 3
(A-B-G-E-H-J-F) as . We can see that using auxiliary paths
if necessary, the paths that determine the realization factors
follow the transition matrix on [cf. (26)]

(47)

Similar to (27), we have

(48)

where is an realization matrix, ,
and

with .
We have , and is the potential

satisfying

(49)
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Now, we consider a sample path of the Markov
chain with transition probability matrix for states

. Similar to (39), we have

We have and
. Thus

Setting for , and for
, we have

Finally, we have

(50)

where and

Now, we consider the performance sensitivity. To this end, we
define

Thus, , which has the same steady-state perfor-
mance as , and has the same steady-state performance
as . We have . Letting , we get

with .
We have constructed performance sensitivities with intu-

itions. The results need to be rigorously proved. First, we define
an -dimensional row vector

The nonzero part is with . Thus, . Left-
multiplying both sides of (49) with and noting , we
get

Let be an dimensional row vector with
“0” denoting an -dimensional row vector with all compo-
nents being zeros. We have . Left-multiplying
both sides of (49) with , we get

in which

It is then clear that , and (50) is proved.
Equations (29)–(38) hold with some minor modifications. For

clarity, we repeat these equations with only notation changes to
fit the general case. We rewrite (47) as

(51)

where . Next, we denote

(52)

where is defined on , and on , and ,
respectively. Denote as

(53)

with being an matrix corresponding to . Putting
(51) and (53) into (48), we get

where . This is the same for the Markov chain
with transition matrix ; thus in (52) satisfies the Poisson
equation

Finally, we can obtain [cf. (38)]

V. PARAMETERIZED AND PARTIALLY OBSERVABLE SYSTEMS

It is well known that the standard Markov model and policy
iteration approach may encounter some difficulties: the dimen-
sion of the problem is usually too large, the transition matrix
may not be explicitly known, and the actions at different states
may not be independent. In this section, we show that our con-
struction approach can be applied in a more flexible way to some
special problems to obtain sensitivity equations; based on these
equations the above mentioned difficulties may be overcome or
alleviated. In particular, in parameterized systems, the construc-
tion approach can be applied to a part of the system that is af-
fected by the changes of the values of the parameters; no in-
formation about the other part of the system is needed. More
precisely, if a parameter change only affects the transition prob-
abilities and , then only the potentials and

have to be estimated. In the same spirit, the approach can
be applied to systems in which only a part of the states are ob-
servable (partially observable); in this case, the potentials are
aggregated. In both cases, the actions at different states may be
co-related and we may obtain performance sensitivities without
estimating potentials for all the states and without knowing the
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Fig. 7. Manufacturing system.

transition probability matrix. In addition, sample-path-based al-
gorithms can be developed for performance sensitivities. The
ideas are illustrated by two examples.

A. Parameterized Systems: An Example

We consider a manufacturing system consisting of two ma-
chines and parts circulating between the two machines, as
shown in Fig. 7. Machine 1 can perform three operations
(1–3); their service times are exponentially distributed with rates

, and , respectively. Some parts only require opera-
tion 1, some require operations 1 and 2, and others need to go
through all three operations in the sequence of 1–3. The prob-
abilities that a part belongs to these three types are

, respectively, as shown in Fig. 7. Ma-
chine 1 works on only one part at a time. Machine 2 has
only one operation; its service time is exponential with rate .
Machine 1 can also be viewed as having a coxian distributed
service time [18].

The system can be modeled as a Markov process with states
denoted as , where is the number of parts at and

, or denotes the operation that is performing.
The state–space is

. A part after completion of service at goes to
with probability (assumed to be independent of ),
or immediately returns to with probability . Let
be the performance function.

We can use uniformization to convert this model to a discrete-
time Markov chain so that we can apply the results in Section II.
(A parallel theory can be developed for continuous-time Markov
processes; see [13].) The transition probability matrix of this
Markov chain can be easily derived by using ,
and . We, however, will not do so because its explicit form is
not needed in our approach.

Following the same procedure as in Section III, we consider
a sample path with transitions. Let be the proba-
bility that a transition is due to a service completion of and
there are customers in it. Now, suppose that changes to

, for a particular . This change may cause a
state jump from to . The probability of such a
jump is and its average effect is measured by the realization
factor . Similar to (15), the average number
of transitions corresponding to ’s service completion time is

, the average number of jumps after such service comple-
tions is . Thus, we have

Fig. 8. M/G/1/N queue.

Therefore

Both and can be directly esti-
mated on a sample path without knowing and . From (5),

can be estimated by averaging the sum of
over the periods from state to state . Thus,

to obtain for a particular , we need to estimate only
. We can obtain for all if we

estimate for all . These derivatives can
be used in various optimization schemes (even with constrains).
For example, if changes to for all with a set
of fixed , then the performance derivative is

Now, suppose we have another system working under param-
eters . Following the same procedure as in
Section III-B, we obtain

(54)

This example shows that by our performance sensitivity con-
struction method, we may obtain the sensitivities by analyzing
a sample path without knowing the transition probability and
even without estimating for all the states. In this problem,
the same action applies to different state , and

; the standard MDP formulation does not apply.

B. Partially Observable Systems: The M/G/1/N Queue

In this section, we show that in systems where only a part
of the states is observable, we can aggregate the potentials on
a set of states that share the same observable part of states and
obtain the performance gradients. The aggregated potential can
be estimated on a single sample path.

Consider an M/G/1/N queue, in which the service time distri-
bution is a Coxian distribution consisting of stages, each of
them is exponentially distributed with mean
( in Fig. 8). For simplicity and without loss of gener-
ality, we assume for all . Let



2140 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 12, DECEMBER 2004

. After receiving service at stage , a customer enters stage
with probability , and leaves the station with proba-

bility , and . Let be
the number of customers in the system, and be the buffer
size: when an arriving customer finds , the customer
is lost. The arrival process is Poisson with rate . An arriving
customer enters the queue with probability (depending on

), and is rejected by the system with probability (the
admission control problem). This is equivalent to a load-depen-
dent arrival rate . The state space of the system is

, with denoting
the stage of the customer being served.

We assume that can be taken from a finite set, and let the
cost function be (independent of the stage ). Then,

can be viewed as the action taken when the state is .
However, the stage in a real system is not observable, i.e.,
the controller only knows the number of customers, , in the
system, but does not know the stage . This problem becomes
an MDP with partially observable states (POMDP). The actions
can only depend on , or its history.

It is well-known that POMDP is hard to solve. A sensitivity-
based approach may be feasible for performance optimization.
Thus, we shall construct the performance sensitivity with re-
spect to using realization factors. To illustrate the idea, we
set (thus, for all ). The system parameters are

, and . Let the discrete-time
Markov chain be denoted as .

We observe the system for transitions and obtain
a sample path . Similar to the example in
Section V-A, let be the probability that a transition in the
Markov chain is due to a customer arrival when there are cus-
tomers in the system

where is the number of transitions in the observation pe-
riod that belong to the arrival process and the number of cus-
tomers is before the arrival point. Thus, , and
the number of customers accepted by the system in the observa-
tion period when there are customers in the system is

. Now, suppose , changes to .
Then, is the number of additional arrivals that are
admitted to the system when there are customers in it due to
the change . We have

where is the probability that a transition in is a cus-
tomer arrival when the state is . Therefore,
is the number of additional arrivals that are admitted to the
system when the state is due to the change . The av-
erage effect of one such additional arrival is .
Thus, the total effect of all these additional admitted customers
on the performance is

or letting

Letting , we get

Define the conditional probability
. Then

where is the
mean of the realization factor in the subset all
when an arrival customer is accepted. Note

Finally, we have

where is the mean of
the potentials in set given
that jumps to , and is the
mean of the potentials in set given that remains the same.

Finally, , and can be estimated on a
single sample path. For example, can be estimated in the
following way. In the observation period ,
denote the sequence of arrival points that find customers in
the system as . Among these points, denote those in-
stants at which the system jumps from to (i.e., the cus-
tomers are accepted at these points) as . Then

at , there are customers in the system.
Choose a large integer . Set

Now, we partition the set into
subsets , such that if then

. Let be the number of instants in . Then we
have
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Because

we have

(55)

Equation (55) shows that can be estimated on a
sample path in a similar way as estimating [cf. (10)
and [13]].

This example shows that potentials can be aggregated to-
gether over the set of states with the same observable part of the
states; thus, our approach can be used to construct the perfor-
mance gradients with only the observable information. Again,
the exact values of the transition probability matrix is not needed
(but the system structure as shown in Fig. 8 is known). In this
example, the action depends on , not its history. This cor-
responds to the reactive policy in POMDP literature. Further re-
search is going on to explore the applicability of this approach
to more general POMDPs in which the policy depends on the
observation history.

VI. CONCLUSION AND DISCUSSION

The novelty of the research in this paper can be summarized
in twofold. First, we propose an intuitive approach to construct
the sensitivity formulas for Markov systems, including those
that do not fit the standard MDP formulation. Second, these sen-
sitivity formulas form the basis for performance optimization;
system structure can be utilized in the sensitivity construction
and, thus, computation and/or memory spaces may be saved and
techniques such as aggregation may be implemented.

Specifically, we show that a sample path of a Markov chain
with transition probability matrix can be built upon a sample
path of a Markov chain with transition probability matrix to-
gether with the segments that can be measured on the average
by the performance potentials (see Fig. 5). We refer to this as
the potential structure of the sample path. We show that this
structure allows us to construct performance sensitivities, both
performance derivatives and performances differences, by first
principles with sample path-based arguments. Performance po-
tentials, or realization factors, are used as building blocks in
the construction. When the two systems under comparison have
the same state space, or the original system has a larger state
space, the potentials used in the sensitivity formulas can be es-
timated on a single sample path of the original system. This is
in the same spirit as perturbation analysis: one can obtain the
performance sensitivity by analyzing only the original system.
When the two systems have different state–spaces or the per-
turbed system has a larger state–space, the potentials can be es-

timated on sample paths with an enlarged transition probability
matrix [see (26) and (47)]. For these systems, efficient methods
in estimating potentials based on reinforcement learning should
be developed.

The approach is flexible in the sense that it can be applied to
many systems including those with partial information, and it
only requires to estimate the potentials that are directly related
to the changes in parameters. The sensitivity formulas obtained
have clear meanings and are not so easy to conceive otherwise.

Since the sensitivity formulas are the basis for performance
optimization, the construction approach introduced in this paper
opens up a new direction for further research in optimization.
Two examples are given to illustrate the idea. Both problems
do not fit the standard MDP formulation because the same ac-
tion has to be applied to a group of different states. In the first
example, the number of potentials to be estimated is reduced
because of the system structure. The second example is on the
reactive policy of a POMDP problem. From the sensitivity for-
mulas, the potentials can be aggregated and the number of ag-
gregated potentials to be estimated is also reduced. Finally, it is
worth noting that to utilize the system structure, one has to know
the system structure in advance; i.e., one has to know some prop-
erty about the underlying transition probability matrix.

The policy gradient of POMDP proposed in [1] is based on
the standard Markov model with an enlarged state space con-
sisting of two components, the natural state and the internal
state. Therefore, the state space usually becomes larger and no
system structure is utilized.

The performance derivatives can be used together with sto-
chastic approximation algorithms in performance optimization.
When the Markov systems are in the same state space, the policy
iteration algorithm in MDPs can be easily derived from our per-
formance difference formulas. It has been shown that policy it-
eration in fact chooses the policy that has the steepest gradient
after randomization [10], [11]. Thus, both the performance gra-
dient and performance difference formulas are the basis for per-
formance optimization. The performance sensitivity formulas
obtained in this paper open up some new research directions: can
we derive approaches similar to policy iteration for systems with
different state spaces or with partial information? If so, how?

Finally, our approach applies to discounted performance cri-
teria as well (cf. [11]). Thus, our approach provides a uniform
framework for optimization with both average and discounted
performance criteria.
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