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Abstract

Due to its simplicity, the completion-of-squares technique is quite popular in
linear optimal control. However, this simple technique is limited to linear
quadratic Gaussian systems. In this note, by interpreting the completion-of-
squares from a new angle, we extend this technique to performance optimiza-
tion of general Markov systems with the long run average criterion, leading
to a new approach to performance optimization based on direct comparisons
of the performance of two policies.

Keywords: Performance optimization, Performance potential,
Completion-of-squares, Direct-comparison approach

1. Introduction

Completion-of-squares is one of the simplest techniques to obtain an op-
timal control for linear quadratic Gaussian (LQG) control problems. By
completing the objective function (i.e., the system performance) in a squared
form, an optimal control and the corresponding optimal value of the objective
function can be obtained directly. Due to its simplicity, many real problems
have been formulated under the LQG framework, e.g., the dynamic nonco-
operative game [1], the performance limitation problem of feedback control
[2, 3], communication networks [4], and so on. However, for general Markov
systems, when either “linear” or “quadratic” or “Gaussian” fails to be the
case, the traditional completion-of-squares technique no longer works.
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In this note, by revisiting the completion-of-squares technique, we try
to extend this simple method from LQG systems to general continuous-time
continuous-state (CTCS) Markov systems. First, we interpret the completion-
of-squares technique from a new angle, by showing that the completed square
form in fact is the difference of the performance of two policies. Then, with
this point of view, we extend the technique to the Markov systems, by show-
ing that in general the Bellman optimality equation [5, 6] and the policy
iteration approach [7, 8] can be directly derived from the performance dif-
ference formula between two policies. The fundamental of this idea is that
performance optimization can be achieved simply by comparing the perfor-
mance of two policies. Thus, this approach is named as the direct comparison
approach [9], and the completion-of-squares method becomes its special case.

So far, many results have been obtained with the direct comparison ap-
proach for discrete-time discrete-state (DTDS) systems. For example, the
nth bias optimality [10], the event-based optimization [11, 12], and the op-
timization of multi-chain Markov systems [13]. Recently, we have found
that the optimal portfolio strategy of Markowitz’s mean variance portfolio
selection in a continuous-time setting [14] can also be easily obtained with
the direct comparison approach. Further research on applications of this
approach to other non-linear problems is going on.

The rest of the note is organized as follows. In Section 2, we state the
continuous time LQG problem with the long run average criterion and in-
troduce the operators used in dealing with the CTCS Markov systems. In
Section 3, we first apply the completion-of-squares technique to solve the
finite horizon LQ problem, then we show that the completed square form in
fact is the difference of the performance of two policies. Then we derive the
performance difference formula between two policies for the infinite horizon
LQG problem with the long run average criterion. Motivated by this inter-
pretation, in Section 4, we introduce the direct comparison approach to the
CTCS Markov systems and show that the completion-of-squares method is
its special case. Finally, some conclusion remarks are given in Section 5.

2. Problem formulation

2.1. Continuous time LQG problem

Consider an Ito process described by the following stochastic differential
equation:

dX(t) = AX(t)dt+Bu(t)dt+DdW (t), (1)
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where X(t) is an Rn-valued state vector; u(t) is an Rm-valued control vector;
W (t) is an Rp-valued standard Brownian motion; A,B and D are constant
matrices with compatible sizes.

Assume that the performance function (or the cost function) f has a
quadratic form:

fu(X(t)) = X(t)TQX(t) + u(t)TRu(t), (2)

with Q a symmetric positive semi-definite matrix and R a symmetric positive
definite matrix. The goal of control is to minimize the following long run
average cost:

ηu(x) = lim
L→∞

1

L
E
{∫ L

0

[
X(t)TQX(t) + u(t)TRu(t)

]
dt

∣∣∣X(0) = x
}

= lim
L→∞

1

L
E
{∫ L

0

fu(X(t))dt
∣∣∣X(0) = x

}
. (3)

A control (or a policy) u is a mapping from the state space to the action
space, that is, at each time, if the system state is X(t), we apply an action,
denoted as u(X(t)), to the system.

Consider a linear stationary control u0(t) = −CX(t), where C is an m×n
matrix. Under this policy u0, system (1) becomes:

dX(t) = (A−BC)X(t)dt+DdW (t). (4)

Assume (A − BC) is a Hurwitz matrix, so that process (4) is stable with
steady state distribution given by:

π(dy) =
dy√

(2π)n det(V )
exp

(
− 1

2
yTV −1y

)
, (5)

with V the solution to:

(BC − A)V + V (BC − A)T −DDT = 0.

2.2. Operators for CTCS Markov systems

We review the definitions of some operators that will be used in this note
[9]. Operator Pt maps a function h(x) to another function as follows:

(Pth)(x) =

∫
Rn

Pt(dy|x)h(y). (6)

3



Obviously, we have

(Pth)(x) = E
{
h(X(t))

∣∣X(0) = x
}
.

Another important operator for CTCS Markov systems is the infinitesi-
mal generator A. Specifically, for process (1), when operating on a suitable
function h(x), A takes the following form:

(Ah)(x) = (Ax+Bu)T
∂h(x)

∂x
+

1

2
tr
(∂2h(x)

∂x2
DDT

)
. (7)

The third operator ππ maps a function h(x) to a real number. Given a
probability distribution π(dx), the corresponding operator ππ is defined as:

ππ(h) =

∫
Rn

h(y)π(dy). (8)

For any probability distribution π(dx), we have ππ(e) = 1, where e(x) is a
constant function, e(x) = 1 for all x in space Rn.

For the long run average criterion, as discussed in [15, 12], we assume that
all policies are ergodic, meaning that there exists a steady state probability
distribution πu for each u: limt→∞ P u

t (dy|x) = e(x)πu(dy).
Under some regularity conditions of the performance function, the order

of limit and integration can be changed:

ηu(x) = lim
L→∞

1

L
E
{∫ L

0

fu(X(t))dt
∣∣∣X(0) = x

}
= lim

L→∞

1

L

∫ L

0

∫
Rn

fu(y)Pt(dy|x) dt

=

∫
Rn

fu(y)πu(dy) = ππu(fu)e(x) = η̄ue(x), (9)

here η̄u = ππu(fu) is a constant number.

Lemma 1 Assume the regularity conditions that allow the order of integra-
tion and derivation to be interchangeable. In a CTCS Markov system, for a
function h(x), if Auh exists and is πu-integrable, we have:

ππu(Auh) = 0.
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Proof:

ππu(Auh) =

∫
x

πu(dx)(Auh)(x)

=

∫
x

πu(dx)
{∂E{h(X(t))|X(0) = x}

∂t

∣∣∣
t=0

}
=

∂

∂t

∫
x

{
πu(dx)E{h(X(t))|X(0) = x}

}∣∣∣
t=0

=
∂

∂t

∫
x

{
πu(dx)(Pth(x))

}∣∣∣
t=0

=
∂

∂t

∫
x

{
πu(dx)h(x)

}∣∣∣
t=0

= 0.

The fifth line is due to π(dx) =
∫
y
π(dy)Pt(dx|y). �

3. Optimal control for the LQG problem

3.1. Completion-of-squares

Researchers usually study the finite horizon deterministic Linear Quadratic
(LQ) optimal control problem first, then prove that the optimal control for
the LQG problem has the same form as the one for the LQ case [16]. Now, we
first introduce the classical completion-of-squares method in the LQ optimal
control then interpret this approach from our point of view. This view will
be extended to the CTCS Markov systems later.

The system equation for a finite horizon LQ system is given by:

dX(t) = A(t)X(t)dt+B(t)u(t)dt, t ∈ [0, L]. (10)

For simplicity, the time dependence of each matrix may not be shown explic-
itly in the following. Given X(0) = x, the control objective is to find a u(t)
to minimize:

ηu(x) =

∫ L

0

[X(t)TQX(t) + u(t)TRu(t)]dt+X(L)TFX(L) (11)

with Q,R, and F suitable matrices. If the Riccati equation:

−Ṁ = ATM +MA+Q−MBR−1BTM, M(L) = F, (12)
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has a solution on [0, L], by adding “−xTM(0)x” to (11), we get:

ηu(x)− xTM(0)x =

∫ L

0

(
X(t)TQX(t) + u(t)TRu(t) +

d

dt
(X(t)TMX(t))

)
dt

=

∫ L

0

(
XTQX + uTRu+ (AX +Bu)TMX

+XTM(AX +Bu) +XTṀX
)
dt

=

∫ L

0

(u+R−1BTMX)TR(u+R−1BTMX)dt. (13)

From the quadratic form of (13), we immediately obtain an optimal control:

u∗(t) = −R(t)−1BT (t)M(t)X(t),

and the corresponding minimal cost:

ηu
∗
(x) = xTM(0)x.

For infinite horizon LQ problems or stochastic LQG problems (both finite
and infinite horizon cases), we can prove that the optimal control is also a
linear feedback control given by u∗(t) = −R−1BTMX(t). For details, we
refer to the textbook [16].

3.2. Another viewpoint of completion-of-squares

An observation in the completion-of-squares for the LQ control is that
the term “xTM(0)x” in fact corresponds to the system performance of the
optimal policy, thus ηu(x) − xTM(0)x = ηu(x) − ηu

∗
(x) actually gives us

the performance difference between two policies, one of which is the optimal
policy, and the other can be any policy.

This result is consistent with the authors’ research experience in that
performance optimization in a policy space can be based on comparisons of
the performance of any two policies [12]. As we state above, for systems
with special structure properties, like the LQG case, the optimal policy can
be directly obtained from the performance difference between two policies.
A natural extension of this result is very appealing: for a general Markov
system, by simply comparing the performance of any two policies, we may
obtain the Bellman optimality equation and the policy iteration approach for
searching an optimal policy. This is the extension of “completion-of-squares”
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technique to the general case and offers a simple explanation for general
performance optimization problems: they are as simple as “completion-of-
squares”!

Since it is based on direct comparisons of the performance of any two
policies, we call this approach the direct-comparison approach [9]. As an
example, we will demonstrate this approach by solving the continuous time
LQG problem.

3.3. Performance difference formula for the LQG problem

We have the following lemma for the continuous time LQG system (1):

Lemma 2 For system (1), the system performance (3) under a linear policy
u0(t) = −CX(t) is given by:

η̄u0(x) =

∫
y

πu0(dy)fu0(y) = tr(MDDT ) (14)

with matrix M the solution to:

(A−BC)TM +M(A−BC) + (Q+ CTRC) = 0 (15)

Proof: By (5), πu0(dx) is normally distributed with mean 0 variance matrix
V . Thus, by (9), we have:

η̄u0 =

∫
y

πu0(dy)fu0(y) = tr[(Q+ CTRC)V ]. (16)

It is not hard to verify tr[(Q+ CTRC)V ] = tr(MDDT ). �
Consider a general policy u(x) (not necessarily linear) and a linear policy

u0(t) = −CX(t), if choosing h(x) = xTMx in Lemma 1, we have:

Theorem 1 The performance difference formula between a general policy u
and a linear policy u0 = −Cx is given by:

η̄u − η̄u0 =

∫
x

πu(dx)
{
[u+R−1BTMx]TR[u+R−1BTMx]

− xT [MBR−1BTM + CTRC − 2CTBTM ]x
}
. (17)
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Proof: Noting
∫
x
πu(dx)(Auh)(x) = 0, we have

η̄u − η̄u0 =

∫
x

πu(dx)
{
fu(x)− η̄u0e(x)

}
=

∫
x

πu(dx)
{
fu(x) + Auh(x)− η̄u0e(x)

}
=

∫
x

πu(dx)
{
xTQx+ uTRu+ 2(Ax+Bu)TMx

}
=

∫
x

πu(dx)
{
[u+R−1BTMx]TR[u+R−1BTMx]

− xT [MBR−1BTM + CTRC − 2CTBTM ]x
}
.

The fourth line above is obtained by replacing Q in the third line with −(A−
BC)TM −M(A−BC)− CTRC according to (15). �

Since [u + R−1BTMx]TR[u + R−1BTMx] ≥ 0, we conclude that if we
choose a matrix C such that:

MBR−1BTM + CTRC − 2CTBTM = 0, (18)

then the performance difference between u and u0 becomes:

ηu − ηu0 =

∫
x

πu(dx)
{
[u+R−1BTMx]TR[u+R−1BTMx]

}
≥ 0. (19)

Since the above inequality holds for all policy u, we know the linear feedback
control u0 should be optimal. Solving (18) yields:

C = R−1BTM. (20)

Replacing C in (15) by R−1BTM , we obtain the well-known algebraic Riccati
equation:

ATM +MA−MBR−1BTM +Q = 0. (21)

4. Direct comparison approach to Markov systems

Although the optimal policy can be obtained directly from the quadratic
form of the performance difference formula between two policies for the LQG
problem, it is often impossible to find out the optimal policy directly from
the performance difference between two policies for general Markov systems
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due to the loss of the quadratic property; however, we will see that the per-
formance difference formula does give us the Bellman’s optimality equation
for the optimal policy and the policy iteration approach to a solution of the
Bellman equation. In this sense, the direct comparison approach based on the
performance difference formula is an extension of the completion-of-squares
method from the LQG problem to general Markov systems.

4.1. Performance difference formula

The Poisson equation for an ergodic Markov process with infinitesimal
generator A and cost function f is given by [15, 12]:

−Ag(x) + η̄e(x) = f(x). (22)

The solutions to the Poisson equation differ by an additive term: if g(x) is
a solution to the Poisson equation, so is g(x) + cr(x), with Ar(x) = 0 and
c being any constant. Any solution g(x) is called performance potential, or
simply potential, in the direct comparison approach.

It can be verified that, if exists, the following function satisfies the Poisson
equation (22) (c.f. equation (8.22) in [15]):

g(x) = lim
L→∞

∫ L

0

E
{
[f(X(t))− η̄]

∣∣X(0) = x
}
dt. (23)

(23) is called the sample path based expression of potential function g(x).
Consider two policies u and u′. The corresponding processes of these two

policies are denoted as X = {X(t), t ∈ [0,∞)} and X ′ = {X ′(t), t ∈ [0,∞)},
respectively. In the following, we use superscript “′” to denote quantities
associated with X ′.

Theorem 2 Assume g(x) satisfies the regularity conditions in Lemma 1.
We have the following performance difference for policies u′ and u:

η̄′ − η̄ = ππ′{(f ′ + A′g)− (f + Ag)}. (24)

proof: Left-multiply both sides of the Poisson equation (22) with ππ′, we get

η̄ = ππ′f + ππ′(Ag).

Noting ππ′(A′h) = 0, we have:

η̄′ − η̄ = ππ′f − η̄ + ππ′(f ′ − f)

= −ππ′(Ag) + ππ′(f ′ − f)

= ππ′{(f ′ + A′g)− (f + Ag)}.
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(24) is called the performance difference formula. �
The performance difference formula indicates that the performance dif-

ference between any two policies in a Markov system can be decomposed
into the product of two quantities, π′ and g. The contribution of policy u′ is
reflected by its steady state distribution π′ and the contribution of policy u
is captured by its performance potential function g.

In the following, we assume for all policy u, its steady state distribution
πu(x) > 0 for all state x in state space Rn. This assumption makes sense
since the noise part of a CTCS Markov system is generally modeled by a
Brownian motion, which is supported in the entire state space [9]. Thus, for
a non-negative π-integrable function h(x), we have

ππ(h) =

∫
x

π(dx)h(x) ≥ 0.

If in addition h(x) > 0, for all x ∈ B ⊂ Rn, with B having a positive Lebesgue
measure, then we have

ππ(h) > 0.

Therefore, if
[(f ′ + A′g)− (f + Ag)](x) ≥ 0, ∀x ∈ Rn (25)

then from the performance difference formula (24), policy u performs better
than, or at least the same as, policy u′. If in addition,

[(f ′ + A′g)− (f + Ag)](x) > 0, ∀x ∈ B ⊂ Rn, (26)

then policy u must be better than policy u′.
Thus, based on the performance difference formula, we can identify which

policy is better by only analyzing the system under one policy. This easily
leads to the optimality equation and the policy iteration method.

4.2. Optimality equation and policy iteration

The next theorem follows directly from the performance difference for-
mula (24).

Theorem 3 For a CTCS Markov system, assume all policies are ergodic
and the performance function fu(x) satisfies the regularity conditions such
that Augu exists and is πu-integrable. A policy û(x) is optimal, if and only if

(f û + Aûgû)(x) ≤ (fu + Augû)(x), ∀x ∈ Rn, (27)

for all policies u.
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Proof:“=⇒” If for all policy u, we have (27), then by the performance differ-
ence formula (24) and the fact π(x) > 0, we have ηû ≤ ηu, for all u in the
policy space, which indicates that û is optimal.

“⇐=” Suppose (27) does not hold, by the continuity property, we know
there exists a policy ũ and a set H with positive Lebesgue measure, in which
we have:

(f û + Aûgû)(x) > (f ũ + Aũgû)(x), ∀x ∈ H

Construct a policy ū by:

ū(x) =

{
û(x), x /∈ H
ũ(x), x ∈ H.

By the performance difference formula for policy ū and û, and noting that
π(H) > 0, we have:

ηū < ηû,

which shows that û cannot be optimal. �
From (27), a policy û is optimal if and only if the following optimality

equation
min
u∈U

{fu + Augû} = f û + Aûgû = ηû (28)

holds for all x ∈ Rn. This is the Bellman’s optimality equation [5, 15].
One should note that it is generally difficult to check the sufficient and

necessary condition (28) for a real system. It requires first to solve the Poisson
equation (22) to get the potential function gû, and then to verify the relation
(28) for every x ∈ Rn and every feasible action at x. However, for systems
with closed-form solutions, such as the LQG problem, the condition can be
verified analytically, see the discussion in the next subsection.

Next, the results in (25) and (26) lead naturally to the policy iteration
method to find an optimal policy [9]. Roughly speaking, at the kth step with
policy uk, k = 0, 1, · · · , we set

uk+1(x) = arg{min
u∈U

[fu(x) + Auguk(x)]}, x ∈ S, (29)

with guk being any solution to the Poisson equation (22) for (Auk , fuk). If at
some x, uk(x) attains the minimum, we set uk+1(x) = uk(x). The iteration
starts with any policy u0 and stops if uk+1 and uk differ only on a set with
a zero Lebesgue measure. From (25), the performance improves at every
iteration; from (26), when the algorithm stops, it stops at an optimal policy.
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Again, for any real Markov system, to solve the Poisson equation is com-
putationally involved, and to implement policy iteration is as difficult as to
verify the optimality equation. In addition, to find the conditions and to
prove that, under these conditions, the iteration indeed stops is not an easy
task [8]. This goes beyond the scope of this note.

Next, we will illustrate how the LQG problem fits the direct comparison
framework.

4.3. The LQG problem

In the LQG problem with the long run average criterion, if take u0(x) =
−Cx as an initial policy, we can derive its potential function:

gu0(x) = xTMu0x+ ce(x),

where c is a constant number. Consider any policy u (not necessarily linear),
by (7), we have:

Augu0(x) = (Ax+Bu)T
∂gu0(x)

∂x
+

1

2
tr
(∂2gu0(x)

∂x2
DDT

)
= (Ax+Bu)T2Mu0x+ tr

(
Mu0DDT

)
.

Apply policy iteration algorithm (29), and notice that both xTQx and tr
(
Mu0DDT

)
are independent on u, we have:

u′(x) = arg
{
min
all u

[
fu(x) + Augu0(x)

]}
= arg

{
min
all u

[
uTRu+ (Ax+Bu)T2Mu0x

]}
= −R−1BTMu0x

= −C ′x

where C ′ = R−1BTMu0 .
This result shows that if the original policy is linear, then the improved

policy constructed by the policy iteration algorithm is also linear. Obviously,
if C ′ = C, the linear policy u0 satisfies the optimality equation (28) and thus
is optimal. By letting C = R−1BTM , we may simplify equation (15):

0 = (BC − A)TM +M(BC − A)− (Q+ CTRC)

= (BR−1BTM − A)TM +M(BR−1BTM − A)− (Q+ (R−1BTM)TBTM)

= −ATM −MA+MBR−1BTM −Q.
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Now, equation (15) becomes:

ATM +MA−MBR−1BTM +Q = 0, (30)

which is the algebraic Riccati equation.

5. Conclusion

In this note, we first show that, in the completion-of-squares technique
for linear quadratic Gaussian systems, the completed square term in fact is
the difference of the performance of two policies. The optimal policy can be
easily obtained with the form of the completed square. We show that this
intuitive approach can be extended to the performance optimization prob-
lems of general Markov systems. We find that the performance difference
formula plays a similar role as the completion-of-squares in the LQG prob-
lem. From the performance difference formula, we can easily derive (with
no dynamic programming) Bellman’s optimality equation and the policy it-
eration method. This leads to the “direct comparison approach”, and the
completion-of-squares for the LQG problem becomes a special case of this
new approach.
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