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a b s t r a c t

We consider the optimization of queueing systems with service rates depending on system states.
The optimization criterion is the long-run customer-average performance, which is an important
performance metric, different from the traditional time-average performance. We first establish, with
perturbation analysis, a difference equation of the customer-average performance in closed networks
with exponentially distributed service times and state-dependent service rates. Thenwe propose a policy
iteration optimization algorithm based on this difference equation. This algorithm can be implemented
on-line with a single sample path and does not require knowing the routing probabilities of queueing
systems. Finally, we give numerical experiments which demonstrate the efficiency of our algorithm.
This paper gives a new direction to efficiently optimize the ‘‘customer-centric’’ performance in queueing
systems.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Queueing systems are widely used in modeling modern engi-
neering systems such as communication networks, manufacturing
systems, transportation and logistic systems, etc. In a queueing sys-
tem, customers arrive to service stations (called servers) and wait
in queues to be served; each customer requires a random amount
of service froma serverwhich provides servicewith a certain speed
called service rate. Wemay control the service rates of the servers.
The systempays a cost to provide the service and to cover the losses
due to the waiting of customers. We wish to minimize the cost by
choosing the right service rates. The cost is the performance to be
optimized. We quantify the cost per served customers and call it
customer-average performance.
Our recent study (Cao & Chen, 1997) shows that many results

in performance optimization of stochastic systems can be derived
and explained with two types of performance sensitivity equa-
tions: performance derivative equations and performance differ-
ence equations (see (11) and (12) in Section 2). With performance
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derivatives, gradient-based optimization approaches can be devel-
oped for Markov systems, and with the special structure of the
performance difference equations, policy iteration algorithms in
Markov decision processes (MDP) can be developed (Cao & Chen,
1997).
Perturbation analysis (PA) provides efficient algorithms to

estimate the performance gradients with respect to system
parameters (e.g., the service rates of servers in queueing systems)
by analyzing a single sample path (Cao, 1994; Cassandras &
Lafortune, 1999; Glasserman, 1991; Gong & Ho, 1987; Ho &
Cao, 1991; Ho, Cao, & Cassandras, 1983). Performance derivative
equations have been developed for queueing systems (Cao, 1994).
PAwas extended from queueing systems toMarkov systems in the
past decade (Cao & Chen, 1997). Both the performance derivative
and performance difference equations have been established for
Markov systems. Thus, both gradient-based and policy iteration
type of optimization algorithms have been developed for Markov
systems. However, so far we do not have the performance
difference equation for queueing systems and therefore, we do not
have policy iteration type of algorithms for queueing systems.
The goal of this paper is to derive the performance difference

equations for queueing systems with exponentially distributed
service times, and based on these equations to develop policy it-
eration algorithms for performance optimization of such queueing
systems. These policy iteration algorithms are similar to those in
MDP and converge fast to the optimal policy.
Both PA of queueing systems and PA of Markov systems are

based on a concept called perturbation realization factor (for
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simplicity, we also call it realization factor). Roughly speaking, the
realization factor of a state n measures the final effect of a small
perturbation at this state on the performance. The perturbation
realization factor for queueing systems is completely different
from that for Markov systems. This is because the perturbations
in queueing systems are infinitesimal delays of service times,
which are continuous in nature, while the perturbations inMarkov
systems are the jumps of system states, which are discrete in
the case of Markov process representations of queueing systems.
However, since a closed queueing network with exponentially
distributed service times can be modeled as a Markov process,
it is natural to expect that the realization factors for queueing
systems and those for Markov systems are related. Such a
relationship was established in Xia and Cao (2006). Based on
this relationship, we can develop similar results for both types
of systems. Particularly, in this paper, we will develop the
performance difference equations for queueing systems.
One important feature of our results is that the performance

difference equations and optimization algorithms developed in
this paper are for the customer-average performance, instead
of the time-average performance used in many performance
optimization problems. Customer-average performance quantifies
the system performance averaged by the number of served
customers and reflects the ‘‘customer-centric’’ view, which is
popular in many service industries. In practice, many performance
measurements belong to the customer-average performance.
Examples include the average waiting time of each customer
in a bank, the probability of a packet successfully reaching the
destination node in a wireless communication network, and the
average hop-count of a packet passing by before it reaches the
destination in a packet switched network. However, to the best of
our knowledge, most optimization algorithms usually concern the
time-average performance and not much literature discusses the
optimization of customer averages.
In summary, the contributions of this paper include: (1) We

derive the customer-average performance difference equations
for a state-dependent closed Jackson network (a network with
exponentially distributed service times and state-dependent
service rates, see Section 2 for a formal definition), (2) We develop
a policy iteration optimization algorithm for customer-average
performance of state-dependent closed Jackson networks; this
algorithm is unique in the sense that it is based on perturbation
realization factors, which brings new insights andmay lead to new
research topics such as event-based aggregation (Cao, 2005), and
(3) We develop an on-line algorithm to estimate the perturbation
realization factors and to implement the policy iteration algorithm.
Numerical examples show that the policy iteration algorithm
converges fast and the on-line estimation algorithm is accurate.
The rest of this paper is organized as follows. Section 2 gives

a background review of PA theory in queueing systems and
Markov systems. In Section 3, we derive the difference equation
of customer-average performance in queueing systems. Further-
more, in Section 4, we propose the policy iteration algorithm for
customer-average performance and the on-line estimation algo-
rithm for perturbation realization factors. Numerical experiments
are shown in Section 5 to demonstrate the convergence of the pol-
icy iteration algorithm and the accuracy of the on-line estimation
algorithm. Finally, in Section 6, we give a brief discussion and con-
clusion of this paper.

2. Background on perturbation analysis theory

2.1. Perturbation analysis of queueing systems

Consider a closed Jackson network consisting ofM servers Chen
and Yao (2001), Gordon and Newell (1967). The number of total
customers in the network is N . The customers are cycling among
the servers. After the completion of the service of a customer at
server i, the customer will depart from server i and enter server
j with routing probabilities qij, i, j = 1, 2, . . . ,M . The service
discipline in each server is FCFS (First-Come First-Served) and the
buffer size is adequate (not smaller than N). Let ni be the number
of customers at server i, n = (n1, n2, . . . , nM) be the system state,
and S = {all n :

∑M
i=1 ni = N} be the state space. The service

rate of server i depends on system state n and is therefore denoted
as µi,n, i = 1, 2, . . . ,M , n ∈ S. The service time of server i at
state n is a random variable which is exponentially distributed
with parameterµi,n. The distribution function is written as F(t) =
1 − e−t/µi,n , where t is the service time. When the system state
n changes, the service rate µi,n will change, therefore the service
time of server iwill also change since its distribution function F(t)
is changed. The details involve the generation of random variables
and can be referred to the Chapter 4 of Cao (1994). Such type of
service rates is called state-dependent service rates and such type
of networks is also called state-dependent closed Jackson networks.
Let n(t) denote the system state at time t; n(t), t ∈ [0,∞) is

a stochastic process. Let f : S → R = (−∞,∞) be the cost
function. Let TL be the time when the whole network has served
L customers (i.e., the Lth service completion time of the network).
Consider a sample path of n(t), the time-average performance on
the sample path is defined as

ηT = lim
L→∞

∫ TL
0 f (n(t))dt

TL
= lim
L→∞

FL
TL
, w.p.1, (1)

where FL :=
∫ TL
0 f (n(t))dt denotes the accumulated performance

until TL. On the other hand, we consider the customer-average
performance which defines the average performance on each
served customer as follows.

η(f ) = lim
L→∞

FL
L
, w.p.1. (2)

We assume that the state process n(t) is ergodic; thus, the two
limits in (1) and (2) exist with probability one (w.p.1) and are
independent of the sample path. This is true for a closed Jackson
network if it is strongly connected: that is, customers in each server
have a positive probability of visiting every other server in the
network.
We now review the perturbation realization factors in PA

theory. In a closed network, if the service completion time of a
server is delayed by a small amount of time ∆, we say that the
server has a perturbation. This perturbation will affect the system
performance η(f ). The effect of a single perturbation ∆ of server k
when the system is in state n at time 0 can be measured by the
perturbation realization factor, which is defined as

c(f )(n, k) = lim
L→∞

lim
∆→0

E
{
∆FL
∆

}
= lim

L→∞
lim
∆→0

E
{
F ′L − FL
∆

}

= lim
L→∞

lim
∆→0

E

{
1
∆

(∫ T ′L

0
f (n′(t))dt −

∫ TL

0
f (n(t))dt

)}
, (3)

where n′(t) is the state of the perturbed sample path at time t ,
T ′L is the Lth service completion time on the perturbed sample
path. We define the perturbation realization probability c(n, k)
as a special c(f )(n, k) with f (n) = I(n) ≡ 1 for all n ∈ S,
i.e., c(n, k) := c(I)(n, k). It can be verified that c(n, k) is the
probability that eventually every server in the network will have
the same perturbation as that of server k at state n via propagation.
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With the realization factors c(f )(n, k), the performance deriva-
tives with respect to the service rates are derived as follows (Cao,
1994).

dη(f )

dµk,n
= −

η(I)

µk,n
π(n)c(f )(n, k), (4)

where η(I) is a special η(f ) with f (n) = I(n) ≡ 1 for all n ∈ S, and
π(n) is the steady-state probability of state n. Since η(I) is a special
case of η(f ), from (2) we have

η(I) = lim
L→∞

∫ TL
0 I(n(t))dt

L
= lim
L→∞

TL
L
. (5)

It is easy to show that η(I) is the reciprocal of the average
throughput of the network, i.e.,

ηth := lim
L→∞

L
TL
=
1
η(I)

, (6)

where ηth denotes the throughput of the queueing network. With
(1), (2) and (5), we have

η(f ) = lim
L→∞

FL
TL

TL
L
= lim
L→∞

FL
TL
lim
L→∞

TL
L
= ηTη

(I), (7)

which shows the relation between the customer-average perfor-
mance η(f ) and the time-average performance ηT . The second
equality of (7) can be verified from the definition of limit and phys-
ical meanings of FL and TL. Eq. (7) has a strong affinity to the Lit-
tle’s Law in queueing systems. Especially, for an M/M/1 queue, if
the cost function is f (n) = n, then η(f ) is the mean response time
(waiting time+ service time) of customers, ηT is the queue length
(including the customer being served), and η(I) is the reciprocal of
customer arrival rate. Thus, for this special case, (7) is exactly the
Little’s Law.
From (7)we can see, since the service rateswill affect the values

of bothηT andη(I), the optimal values of service rates forη(f ) andηT
are generally different. The numerical experiments in Section 5.2
further demonstrate this point. Therefore, it is necessary to develop
an algorithm to optimize the customer-average performance.
With (4), in order to obtain the performance derivative, we only

need to estimate the values of η(I), π(n), and c(f )(n, k). From the
physical meaning of η(I) and π(n), we can estimate them easily
based on the sample paths. While, the estimation of c(f )(n, k) can
also be implemented based on the definition of realization factors
(3). The main idea is to simulate the perturbations propagated
through the network and calculate the induced increment of
system performance. Thus the realization factors can be obtained
through the sample path. The details can be found in Algorithm 2
Section 4. With the estimated performance derivative, we can
use the gradient-descent algorithms to optimize the system
performance (Cao, 1994; Chong & Zak, 2001).

2.2. Perturbation analysis of Markov systems

Consider an ergodic Markov process X = {Xt , t ≥ 0}, where Xt
is the system state at time t . The state space is finite and denoted
as S = {1, 2, . . . , S}. The infinitesimal generator (also called
transition ratematrix) is B = [b(u, v)]S×S , where b(u, v) ≥ 0 if u 6=
v, b(u, u) = −

∑
v∈S,v 6=u b(u, v), u, v ∈ S. We use a row vector π

to denote the steady-state distribution and let e be a column vector
whose elements are all one. We have Be = 0, πe = 1, πB = 0. Let
the columnvector f be the cost functionwith f (u)denoting the cost
at state u, u ∈ S. Then, the time-average performance is ηT = π f .
In PA of Markov systems, we define the performance potential

g to measure the ‘‘potential’’ contribution of a state to the total
system performance ηT (Cao & Chen, 1997). g is a column vector
whose element g(u), u ∈ S, is defined as

g(u) = lim
T→∞

E
{∫ T

0
[f (Xt)− ηT ]dt | X0 = u

}
. (8)

From (8), we can see that g is also known as the bias in Markov
decision theory. We can further derive the Poisson equation as
below (Cao & Chen, 1997).

Bg = −f + ηT e. (9)

The perturbation realization factor in PA of Markov systems is
defined as the difference between the performance potentials of
any two states.

d(u, v) = g(v)− g(u)

= lim
T→∞

E
{∫ T

0
[f (X ′t )− f (Xt)]dt|X0 = u, X

′

0 = v

}
. (10)

As wemay see, d(u, v) is the difference of the contributions of two
states to the total system performance. It measures the effect on
the system’s transient performance if the initial state is perturbed
from u to v.
The performance difference equation in Markov systems can

be derived from the Poisson equation (9). Consider two Markov
processeswith infinitesimal generators B and B′, and cost functions
f and f ′, respectively. Letπ andπ ′ be the steady-state distributions
and ηT = π f and η′T = π ′f ′ be the time-average performance of
the two Markov processes, respectively, and g be the performance
potential of the system with parameters (B, f ). Let 1B = B′ − B
and h = f ′ − f . The following performance difference equation is
derived.

η′T − ηT = π
′ (1Bg + h) . (11)

Next, consider a randomized policy which adopts B′ with
probability δ and adopts Bwith probability 1− δ. The infinitesimal
generator of this system is B(δ) = (1 − δ)B + δB′ = B + δ1B.
When δ � 1, we denote the cost function under this policy as
f (δ) = f + δhwith h = ∂ f (δ)

∂δ
. The time-average performance of this

system with parameters (B(δ), f (δ)) is denoted as η(δ)T . We get the
derivative of η(δ)T with respect to δ as below.

dη(δ)T
dδ
= π (1Bg + h) . (12)

Eqs. (11) and (12) are the fundamental formulas for the PA theory
of Markov systems. For example, we can derive the policy iteration
algorithm directly from the performance difference equation (11).
The details can be found in Cao and Chen (1997).
As explained in Section 3, a closed queueing network with

exponentially distributed service times can be modeled by
a Markov process, whose infinitesimal generator B can be
determined by µi,n and qij. Therefore, the optimization of a
queueing network can be performed using techniques from both
PA of queueing systems and Markov systems. From the definitions
(3) and (10), we can see there are two types of realization factors in
queueing systems and Markov systems, i.e., c(f )(n, k) and d(u, v)
respectively. The first one measures the effect of an infinitesimal
continuous perturbation of service time on the customer-average
performance η(f ), while the second one describes the effect of a
discrete jump of system initial state on performance ηT . Although
they describe different characteristics of the systems, it seems they
must have some relations. Recently, the following relationship
formula has been established (Xia & Cao, 2006).

c(f )(n, k)− c(n, k)ηT = ε(nk)µk,n
M∑
j=1

qkjd(nkj,n), (13)
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where nkj = (n1, . . . , nk− 1, . . . , nj+ 1, . . . , nM) is a neighboring
state of n with nk > 0, ε(nk) is an indicator function which is
defined as: if nk > 0, ε(nk) = 1; otherwise ε(nk) = 0. This
formula builds up a bridge between PA of queueing systems and
Markov systems. One of the direct consequences is that we can
establish parallel results between these two theories. For example,
similar to the difference equation (11) in Markov systems, we may
establish the difference equation with realization factors c(f )(n, k)
for queueing systems. This leads to the policy iteration algorithm
for customer-average performance of queueing systems, which is
new in the literature. We will discuss the details in the next two
sections.

3. Difference equation of customer-average performance

In this section, we first derive a difference equation for the case
when the cost function is set as f (n) = µ(n) :=

∑M
k=1 ε(nk)µk,n

and a single service rate is changed. Then we extend it to an
arbitrary cost function and allow multiple service rates to change.
In order to obtain the difference equation, we give the following

theorem.

Theorem 3.1. In a state-dependent closed Jackson network, if
f (n) = µ(n) :=

∑M
k=1 ε(nk)µk,n, the perturbation realization factor

is c(f )(n, k) = ε(nk)µk,n, k = 1, 2, . . . ,M, n ∈ S.

Proof. The detailed proof can be found in the Appendix. �

Theorem 3.1 means that when the cost function f (n) is equal to
the sum of ‘‘active’’ service ratesµ(n), the perturbation realization
factors will have a special form c(f )(n, k) = ε(nk)µk,n. With
this cost function, the time-average performance is the average
throughput of the network: ηT = π f =

∑
n∈S π(n)µ(n) =∑

n∈S π(n)
∑M
k=1 ε(nk)µk,n, i.e., ηT = ηth, when f (n) = µ(n).

Based on Theorem 3.1, we first derive the performance
difference equation in queueing systems when the cost function
is f (n) = µ(n), for all n ∈ S. A state-dependent closed Jackson
network can be modeled by a Markov process with infinitesimal
generator B, which can be determined by µi,n and qij, i, j =
1, 2, . . . ,M and n ∈ S.
In order to more clearly show the structure of matrix B, we give

an example network with M = 3,N = 2. Thus the system has 6
states: n1, . . . ,n6, which are (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0,
1, 1), (0, 0, 2) respectively. With the same order of above states, B
can be written as in Box I.
The elements of matrix B are obtained through a standard

analysis of this stochastic system, e.g., the first element −µ1,n1
means that the transition rate from state (2, 0, 0) to other states.
For a general network, the structure of matrix B is similar.
We pick a particular state, denoted as n, and assume that the

service rate of a particular server, denoted as server k, changes from
µk,n toµk,n +∆µk,n; the infinitesimal generator will change from
B to B′ = B+1B. We will establish the difference equation for ηth
by using (11). From the structure of matrix B, all the elements of
matrix1B = B′−B are zero except the row corresponding to state
n.We denote this non-zero row as1B(n, ∗). For this row, the value
of the diagonal element is 1B(n,n) = −ε(nk)∆µk,n; the value
of the neighboring states of n is 1B(n,nkj) = ε(nk)qkj∆µk,n, j =
1, 2, . . . ,M; and all the other elements are zero. Because f (n) =
µ(n), the cost function f changes by h = f ′ − f = µ′ − µ, where
µ is a vector consisting of µ(n). We have h(n) = ε(nk)∆µk,n and
h(n′) = 0 for all n′ 6= n. Therefore, following (11), we obtain

η′th − ηth = π
′ (1Bg + h)

=π ′(n)

[
M∑
j=1

ε(nk)qkj∆µk,ng(nkj)−ε(nk)∆µk,ng(n)+h(n)

]

= π ′(n)

[
M∑
j=1

ε(nk)qkj∆µk,ng(nkj)

− ε(nk)∆µk,ng(n)
M∑
j=1

qkj + ε(nk)∆µk,n

]

= π ′(n)
[
ε(nk)∆µk,n

M∑
j=1

qkj
(
g(nkj)− g(n)

)
+ ε(nk)∆µk,n

]

=π ′(n)

[
−ε(nk)∆µk,n

M∑
j=1

qkjd(nkj,n)+ε(nk)∆µk,n

]
(14)

Substituting the relationship (13) into (14), we get

η′th − ηth = −π
′(n)

∆µk,n

µk,n

[
c(f )(n, k)− c(n, k)ηth

]
+π ′(n)ε(nk)∆µk,n. (15)

From Theorem 3.1, c(f )(n, k) = ε(nk)µk,n. Substituting it into (15)
obtains the performance difference equation for ηth

η′th − ηth = −π
′(n)

∆µk,n

µk,n

[
ε(nk)µk,n − c(n, k)ηth

]
+π ′(n)ε(nk)∆µk,n

= π ′(n)
∆µk,n

µk,n
c(n, k)ηth. (16)

Substituting (6) into (16), we have

1
η′(I)
−
1
η(I)
=
η(I) − η′

(I)

η(I)η′(I)
= π ′(n)

∆µk,n

µk,n

c(n, k)
η(I)

. (17)

Thus, we have the following theorem about the performance
difference equation of η(I).

Theorem 3.2. For a state-dependent closed Jackson network, if a
particular service rate changes from µk,n to µk,n + ∆µk,n, the
performance difference of η(I) is

η′
(I)
− η(I) = −η′

(I)
π ′(n)

∆µk,n

µk,n
c(n, k). (18)

Based on (18), we can further derive the performance difference
equation of η(f ) for an arbitrary cost function f . We assume that
for a particular state n, the service rate of a particular server k
changes fromµk,n toµk,n+∆µk,n, and therefore, the infinitesimal
generator changes from B to B′. We also assume that the cost
function changes from f (n) to f ′(n). Thus, all the elements of h =
f ′− f are zero except for the state n, h(n) = f ′(n)− f (n). Since we
have already determined the value of matrix1B, the difference of
η′T and ηT can be obtained by using (11). With a similar analysis to
(14) and (15), we have

η′T − ηT = −π
′(n)

∆µk,n

µk,n

[
c(f )(n, k)− c(n, k)ηT

]
+π ′(n)h(n). (19)

With (7), we have

η′
(f )
− η(f ) = η′Tη

′(I)
− ηTη

(I)

= η′Tη
′(I)
− ηTη

′(I)
+ ηTη

′(I)
− ηTη

(I)

= η′
(I)
(η′T − ηT )+ ηT (η

′(I)
− η(I)). (20)

Substituting (18) and (19) into (20), we get the following theorem.
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B =


−µ1,n1 µ1,n1q12 µ1,n1q13 0 0 0
µ2,n2q21 −µ1,n2 − µ2,n2 µ2,n2q23 µ1,n2q12 µ1,n2q13 0
µ3,n3q31 µ3,n3q32 −µ1,n3 − µ3,n3 0 µ1,n3q12 µ1,n3q13
0 µ2,n4q21 0 −µ2,n4 µ2,n4q23 0
0 µ3,n5q31 µ2,n5q21 µ3,n5q32 −µ2,n5 − µ3,n5 µ2,n5q23
0 0 µ3,n6q31 0 µ3,n6q32 −µ3,n6


Box I.
Theorem 3.3. For a state-dependent closed Jackson network, if a
particular service rate changes from µk,n to µk,n + ∆µk,n, the
performance difference of η(f ) is

η′
(f )
− η(f ) = η′

(I)
π ′(n)

{
−∆µk,n

µk,n
c(f )(n, k)+ h(n)

}
. (21)

It is obvious that (18) is a special case of (21)when the cost function
f (n) = I(n) for all n ∈ S.
In the previous analysis, we assume that the service rate µk,n

changes only at one particular state n. Now, we consider the
situation where the service rates of server k change at all the states
n, i.e., µk,n changes to µk,n + ∆µk,n for all n ∈ S. Suppose that
the cost function also changes from f (n) to f ′(n) for all n ∈ S.
Following the same analysis as above, we obtain the following
difference equation for η(f ).

η′
(f )
− η(f ) = η′

(I)
∑
n∈S

π ′(n)
{
−∆µk,n

µk,n
c(f )(n, k)+ h(n)

}
, (22)

where h(n) = f ′(n)− f (n) for all n ∈ S.
Furthermore, we consider the situation where the service rates

of all servers change from µk,n to µk,n + ∆µk,n, k = 1, 2, . . . ,M ,
n ∈ S. With a similar analysis, we obtain the performance
difference equation

η′
(f )
− η(f ) = η′

(I)
∑
n∈S

π ′(n)

{
M∑
k=1

−∆µk,n

µk,n
c(f )(n, k)+ h(n)

}
.

(23)

Eq. (23) can be further simplified as follows.

η′
(f )
− η(f ) = η′

(I)
∑
n∈S

π ′(n)
{ M∑
k=1

µk,n − µ
′

k,n

µk,n
c(f )(n, k)

+ f ′(n)− f (n)
}

= η′
(I)
∑
n∈S

π ′(n)
{ M∑
k=1

c(f )(n, k)−
M∑
k=1

µ′k,n

µk,n
c(f )(n, k)

+ f ′(n)− f (n)
}
. (24)

Substituting (32) of the Appendix into (24), we have

η′
(f )
− η(f ) = η′

(I)
∑
n∈S

π ′(n)

{
f ′(n)−

M∑
k=1

µ′k,n

µk,n
c(f )(n, k)

}
. (25)

So far, we have assumed that the service rates are state-
dependent. If the service rates are state-independent, e.g., µk,n =
µk for all n ∈ S, k = 1, 2, . . . ,M , we can also derive the
performance difference equations with a similar procedure. The
specific forms of difference equations are the same as those in
state-dependent networks except that all the µk,n are replaced by
µk, e.g., Eq. (22) will take the following form

η′
(f )
− η(f ) = η′

(I)
∑
n∈S

π ′(n)
{
−∆µk

µk
c(f )(n, k)+ h(n)

}

= η′
(I)

{
−∆µk

µk

∑
n∈S

π ′(n)c(f )(n, k)+
∑
n∈S

π ′(n)h(n)

}
. (26)

Until now, we have derived the difference equation for η(f ).
Both the derivative equation (4) and the difference equations (21)–
(26), are expressed in terms of the realization factors c(f )(n, k).
They have nothing to do with the realization factors of perturbed
systems c ′(f )(n, k). Therefore, we only need to estimate c(f )(n, k)
under the current system parameters to implement the policy
iteration optimization (see the next section). From (21)–(23), the
performance difference is linear with respect to the realization
factors, and the non-linear property is reflected by π ′(n). This is
an interesting characteristic for queueing systems.
Finally, we emphasize again that this performance metric η(f )

defined in (2) is a customer-average performance. In the standard
MDP formulation, the average performance to be optimized is a
time average defined in (1) (see (11) for its difference equation).
Therefore, the algorithms of MDP cannot be directly used to
optimize the customer-average performance. This is illustrated by
the experiments in Section 5.

4. Policy iteration of customer-average performance

In this section, we develop a policy iteration algorithm for
performance optimization of a state-dependent closed Jackson
network, where the action is the service rate of each server at
each state. We denote U = {µk,n, k = 1, 2, . . . ,M,n ∈ S}
as a stationary policy based on parameters µk,n. The total policy
space is denoted as Ψ = {allU}, where different µk,n’s represent
different policies. The cost function associated with policy U is
denoted as fU(n). With this notation, the cost functions with two
policiesU′ andU are fU

′

(n) and fU(n) respectively; for simplicity,
they are denoted as f ′(n) and f (n) in the previous two sections.
In this section,we just consider a special formof fU(n), inwhich

the cost function at state n depends only on the action taken at n,
not on the actions taken at other states. We denote it as f (n, Eµn),
where Eµn := (µ1,n, µ2,n, . . . , µM,n) is the action at state n. With
this notation, a policy can be denoted as U = {Eµn,n ∈ S}. The
objective is to minimize the customer-average performance η(f ).
We show that with the performance difference equations

derived in Section 3, a policy iteration algorithm for customer-
average performance can be easily developed. The algorithm is
based on the realization factors c(f )(n, k), which can be estimated
on sample paths, and hence the policy iteration algorithm can be
implemented on-line. First, we have the following lemma.

Lemma 4.1. If f (n, Eµ′n) −
∑M
k=1

µ′k,n
µk,n
c(f )(n, k) ≤ 0 for all n ∈ S,

then η′(f ) ≤ η(f ). In addition, if the inequality strictly holds for at
least one n ∈ S, then η′(f ) < η(f ). The lemma holds if we change≤ to
≥ and< to>.
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Since η′(I) > 0 and π ′(n) > 0 for all n ∈ S, this lemma can be
directly obtained from the performance difference equation (25),
where f ′(n) is replaced by f (n, Eµ′n).With Lemma4.1,we canderive
the necessary and sufficient condition for a policy to be optimal.

Theorem 4.1. A policyU = {Eµn,n ∈ S} is optimal if and only if

f (n, Eµ′n)−
M∑
k=1

µ′k,n

µk,n
c(f )(n, k) ≥ 0, (27)

for all U′ = {Eµ′n,n ∈ S} ∈ Ψ and n ∈ S, where c(f )(n, k),
k = 1, 2, . . . ,M, n ∈ S, are the realization factors for policyU.

This theorem follows directly from Lemma 4.1. With Lemma 4.1
and Theorem 4.1, we can develop a policy iteration algorithm to
optimize the service rates of queueing systems. The procedure of
the algorithm is described as follows.

Algorithm 1 (Policy iteration algorithm for customer-average per-
formance of queueing systems).

(1) Initialization: Choose an arbitrary policy U0
∈ Ψ as an initial

policy.
(2) Improvement: At the jth iteration with the policy denoted as

Uj
= {Eµn,n ∈ S}, calculate or estimate the realization factors

c(f )(n, k), k = 1, 2, . . . ,M , n ∈ S, under policyUj. Choose the
policy of the next (the (j+ 1)th) iteration asUj+1

= {Eµ′n,n ∈
S}with

Eµ′n = argmin
Eµ′n

{
f (n, Eµ′n)−

M∑
k=1

µ′k,n

µk,n
c(f )(n, k)

}
, n ∈ S.

If at a state n, Eµn already reaches the minimum of above large
bracket, then set Eµ′n = Eµn.

(3) Stopping Rule: IfUj+1
6= Uj, set j = j+ 1 and return to step 2;

otherwise, stop.

In most cases the service rates Eµn (actions) are discretized and
the number of possible action values is not too large, thus the
minimization in step 2 can be easily carried out. In addition, even
if the realization factors are not accurately estimated, the resulting
Eµ′n is the same as long as the imprecision does not affect the order
of the terms in the large bracket in step 2.
It follows from Lemma 4.1 that the system performance

improves in each iteration step. By Theorem 4.1, the policy is
optimal when the algorithm stops. If the service rates are chosen
from a set of discrete values, i.e., the action space is finite, then
the policy space Ψ is also finite. It is easy to show that the
iteration algorithm will stop within a finite number of steps
since the performance always improves in each iteration, i.e., the
algorithm converges to the optimal policy within a finite number
of iterations.
In Algorithm 1, the realization factors c(f )(n, k) are required in

each iteration. From the Appendix we can see the realization fac-
tors can be obtained by solving a set of linear equations (31)–(33).
But, the problem is that the dimension of (33) is |S| × M =(
M + N − 1
M − 1

)
× M , where the first factor is the number of differ-

ent ways of putting N customers into M servers, which may be
very large in practical systems. Therefore, it is desirable to de-
velop learning algorithms.Moreover, the learning algorithm is also
model-free, i.e., it does not require to know the routing probabil-
ities in order to apply the policy iteration algorithm. We observe
that the realization factors c(f )(n, k) can be estimated from a sam-
ple path of the queueing network. From thedefinition of realization
factors (3) and PA theory in queueing systems (Cao, 1994), we give
the following on-line algorithm for estimating c(f )(n, k). For sim-
plicity, we only discuss the realization factors of a particular server
k. The situations for other servers are similar.
Algorithm 2 (On-line algorithm for estimating realization factors of
server k).

(1) Initialization: Set ∆(n, i) = 0, T (n) = 0,∆FL(n) =
0, for all n ∈ S, i = 1, 2, . . . ,M . For a particular state n, T (n)
stores the total original perturbations generated at server k
when the state isn;∆(n, i) denotes the perturbations of server
i, which are propagated to server i from the perturbations
originally generated at server k when the state is n; ∆FL(n)
is the total accumulated perturbations of FL due to the
perturbations generated at server kwhen the state is n.

(2) Perturbation generation: At the service completion time of each
server, denote the system state before the customer transition
as n1. The perturbation is generated as follows. Set∆(n1, k) =
∆(n1, k) + t(n1) and T (n1) = T (n1) + t(n1), where t(n1)
is the time that the system has stayed in state n1. (Note:
actually the generated perturbations should be δt(n1) where
δ � 1 is an infinitesimal. But this δ will be eliminated at
the final calculation. Thus, for simplicity, we just ignore the
infinitesimal δ, see Cao (1994)).

(3) Perturbation propagation: When a server i, 1 ≤ i ≤ M ,
completes its current service, denote the system states before
and after the customer transition as n1 and n2, respectively.
For all n ∈ S, the perturbation is propagated as follows. If
the customer from server i enters server j and terminates the
idle period of server j, set ∆(n, j) = ∆(n, i); otherwise, set
∆(n, j) = (1 − κj(n1,n2))∆(n, i) + κj(n1,n2)∆(n, j), j =
1, 2, . . . ,M , where κj(n1,n2) = µj,n1/µj,n2 .

(4) Perturbation realization: At the same time of step 3, set
∆FL(n) = ∆FL(n)+ [f (n1)− f (n2)]∆(n, i), for all n ∈ S.

This process continues until the system has served L � 1
customers. In step 4, there is aminor point to note:When a server i
finishes the service of the Lth customer, we simply set ∆FL(n) =
∆FL(n) + f (n1)∆(n, i), for all n ∈ S. This is because at time TL,
the sample path ends and n2 does not exist. Finally, the realization
factors can be obtained as follows.

c(f )(n, k) = lim
L→∞

∆FL(n)
T (n)

, for all n ∈ S. (28)

The details of this algorithm can be explained using (3) and (33).
Readers who are interested may do so by some careful thinking
or may refer to Chapter 4 of Cao (1994). With this algorithm,
the realization factors can be estimated based on a single sample
path. The algorithm does not require the explicit knowledge of
the routing probabilities of queueing networks. Combining this
algorithm and the policy iteration algorithm together, we can
implement the policy iteration for customer-average performance
on-line.
With the Algorithms 1 and 2, this paper proposes a policy itera-

tion algorithmon the customer-average performance optimization
in queueing systems with realization factors. This links perturba-
tion analysis with policy iteration and creates a new research di-
rection. Our newpolicy iteration algorithm is expected to converge
in a small number of iterations, similarly to how policy iteration al-
gorithms in Markov systems have been observed to converge in a
small number of iterations under the time-average or discounted
cost criteria. Moreover, we implement this policy iteration algo-
rithm in an on-line optimization manner.
However, similar to the policy iteration in classical MDP

theory, this algorithm also suffers some problems. The first one
is the curse of dimensionality. When the system size increases,
the state space will grow exponentially and the step 2 of
Algorithm 1 will be computation intensive. Moreover, for a large
scale problem, the number of realization factors will be very
large and the on-line estimation Algorithm 2 will be not very
precise, especially when the sample path is not long enough.



L. Xia et al. / Automatica 45 (2009) 1639–1648 1645
Table 1
The numerical results of the on-line estimation Algorithm 2.

n µ1,n µ2,n µ3,n c(f )(n, 1) c(f )(n, 2) c(f )(n, 3) ĉ(f )(n, 1) ĉ(f )(n, 2) ĉ(f )(n, 3) SD of ĉ(f )(n, 1)

(0,0,5) 0.10 0.10 0.40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0,1,4) 0.10 0.10 0.35 0.0000 −0.0413 0.0413 0.0000 −0.0348 0.0348 0.0000
(0,2,3) 0.10 0.20 0.30 0.0000 0.0308 −0.0308 0.0000 0.0350 −0.0350 0.0000
(0,3,2) 0.10 0.30 0.25 0.0000 0.2183 −0.2183 0.0000 0.2189 −0.2189 0.0000
(0,4,1) 0.10 0.35 0.10 0.0000 0.1581 −0.1581 0.0000 0.1570 −0.1570 0.0000
(0,5,0) 0.10 0.50 0.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(1,0,4) 0.10 0.10 0.45 1.0002 0.0000 −0.0002 1.0012 0.0000 −0.0012 0.0103
(1,1,3) 0.15 0.15 0.35 1.4039 −0.3195 −0.0844 1.4049 −0.3191 −0.0857 0.0084
(1,2,2) 0.20 0.20 0.30 1.7893 −0.2815 −0.5077 1.7881 −0.2808 −0.5073 0.0084
(1,3,1) 0.15 0.35 0.15 1.4635 −0.1052 −0.3583 1.4622 −0.1035 −0.3587 0.0069
(1,4,0) 0.10 0.40 0.10 1.0697 −0.0697 0.0000 1.0698 −0.0698 0.0000 0.0055
(2,0,3) 0.15 0.10 0.30 1.7549 0.0000 0.2451 1.7596 0.0000 0.2404 0.0114
(2,1,2) 0.20 0.15 0.25 2.2307 −0.1250 −0.1057 2.2298 −0.1254 −0.1044 0.0082
(2,2,1) 0.20 0.25 0.15 2.2143 0.0907 −0.3050 2.2126 0.0929 −0.3055 0.0052
(2,3,0) 0.15 0.35 0.10 1.7149 0.2851 0.0000 1.7153 0.2847 0.0000 0.0053
(3,0,2) 0.30 0.10 0.20 2.9543 0.0000 0.0457 2.9545 0.0000 0.0455 0.0061
(3,1,1) 0.35 0.10 0.10 3.3355 −0.1061 −0.2294 3.3352 −0.1061 −0.2292 0.0067
(3,2,0) 0.30 0.20 0.10 3.0622 −0.0622 0.0000 3.0619 −0.0619 0.0000 0.0062
(4,0,1) 0.40 0.10 0.10 4.1934 0.0000 −0.1934 4.1939 0.0000 −0.1939 0.0070
(4,1,0) 0.35 0.15 0.10 4.0255 −0.0255 0.0000 4.0292 −0.0292 0.0000 0.0052
(5,0,0) 0.45 0.10 0.10 5.0000 0.0000 0.0000 5.0000 0.0000 0.0000 0.0000
Fig. 1. The difference between customer-average performance and time-average
performance.

Such imprecision of realization factors may affect the optimization
result of Algorithm1. Furthermore, our algorithm is to optimize the
state-dependent service rates. If the service rates do not depend
on states, but have other constraints, the optimization will be
much more complex. For example, if the service rates are load-
dependent, the action is to choose the service rates µk,nk , k =
1, 2, . . . ,M and nk = 1, 2, . . . ,N . The service rates of a server are
identical at many states when the numbers of customers at this
server are identical. It is equivalent to introducing constraints on
the control variables and is similar to the crucial problem in MDP
where the actions at different states are dependent (Puterman,
1994). The policy iteration algorithm developed in this section is
not applicable for this situation, andwemay apply the event-based
optimization approach proposed in Cao (2005). All these problems
are common in MDP and will be the future research topics.

5. Numerical experiments

In this section, we give numerical experiments to demonstrate
the efficiency of the policy iteration algorithm and the on-line
estimation algorithm for realization factors.
5.1. Experiments of on-line algorithm for estimating realization
factors

Consider a state-dependent closed Jackson network with M =
3 and N = 5. The routing probability matrix is

Q =

[ 0 0.5 0.5
0.8 0 0.2
0.3 0.7 0

]
.

The service rates µk,n are listed in Table 1. The cost function is
defined as f (n) = n1. Let L1 be the number of customers served by
server 1 in the period [0, TL). It is easy to show that the customer-
average performance is

η(f ) = lim
L→∞

FL
L
= lim
L→∞

L1
L
lim
L→∞

FL
L1
= v1τ̄1, (29)

where v1 is the visit ratio of server 1, τ̄1 is the (customer-)average
response time of each customer at server 1. For any i, j = 1, . . . ,M ,
vi/vj is the ratio of the numbers that a particular customer visiting
server i and server j in a long period of time. The vector of visit
ratios v can be determined by the equations vQ = v and ve =
1 (Chen & Yao, 2001), it has nothing to do with the service rates.
So, from (29) we can see that the customer-average performance
η(f ) is equal to τ̄1 multiplied by a fixed number v1, thus η(f ) is
proportional to the average response time of each customer at
server 1, which is an important performance metric of queueing
systems. Actually, for the parameter setting of this experiment,
we can solve the equations vQ = v and ve = 1, and obtain
v = (0.3723, 0.3680, 0.2597), thus η(f ) = 0.3723τ̄1. On the other
hand, if we consider the time-average performance, we can see

ηT = lim
L→∞

FL
TL
= n̄1, (30)

where n̄1 is the average queue length at server 1. n̄1 is also
an important metric of queueing systems. Therefore, these two
performance metrics, τ̄1 and n̄1, are both important for queueing
systems. The optimal solutions for these two performance metrics
are not the same. Thiswill be illustrated by the following numerical
examples in Section 5.2.
We use two methods to obtain the realization factors. One is

to solve the linear equations (31)–(33) in the Appendix. The other
is to use the on-line estimation Algorithm 2 based on a single
sample path. The total simulation duration is L = 100,000. The
results are listed in Table 1. Themean value (ĉ(f )(n, k), k = 1, 2, 3)
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and standard deviations (SD) are the results of 10 replications.
For simplicity, we only list the SD of ĉ(f )(n, 1). The simulation
results demonstrate that the on-line Algorithm 2 has a quite good
estimation accuracy.

5.2. Experiments of policy iteration algorithm for customer-average
performance

In this section, we implement the policy iteration algorithm
for the customer-average performance of queueing systems. The
parameter setting is the same as that of Section 5.1. The cost
function is f (n) = n1 +

∑3
k=1 µk,n, which reflects the cost for

the average response time at server 1 and the cost for providing
service rates µk,n, k = 1, 2, 3. The objective is to minimize the
customer-average performance η(f ) through adjusting the service
rates µk,n, k = 1, 2, 3 and n ∈ S. The value domains of service
rates are listed as Dµk,n in Table 2. The initial service rates µk,n
are preset as the values in Table 1. In fact, based on the difference
equation (21) we can prove that the optimal values of service rates
can be either maximal or minimal. Thus, we only need to choose
µmaxk,n or µ

min
k,n , k = 1, 2, 3 and n ∈ S. The size of the policy space is

2|S|×M = 221×3 ≈ 1019, which is still very large.
With the estimated realization factors, we implement Algo-

rithm 1 to optimize the service rates. From the simulation results,
we find that the algorithm only iterates 4 times to obtain the op-
timal service rates (we have verified that this optimized service
rates are really the optimum, the same as the theoretical values).
This illustrates that Algorithm 1 has a very fast convergence speed.
The optimal service ratesµ∗k,n are listed in Table 2 and the optimal
customer-average performance is η∗(f ) = 1.1827.
As a comparison, we use the traditional MDP algorithms to

optimize the time-average performance of this problem. In this
situation, we obtain the optimal service ratesµ′k,n which are listed
in Table 2. The corresponding η(f ) = 1.4119, which is worse
than the optimal value η∗(f ) = 1.1827. The service rates µ′k,n are
also different from the optimal service rates µ∗k,n for customer-
average performance. This example illustrates that the algorithm
for time-average performance cannot be directly used to optimize
the customer-average performance.
Furthermore, in order to more clearly illustrate the difference

between customer-average performance and time-average perfor-
mance, we give another numerical example as follows. We con-
sider a cyclic network with 2 servers. The number of customers
is N = 3. For simplicity, we can use n1 to represent the sys-
tem state n. The service rates of server 2 is fixed at µ2,n1 = 1,
n1 = 0, 1, 2, 3. The service rates of server 1 is µ1,n1 = 1 when
n1 = 0, 1, 2, and µ1,n1 ∈ [0.5, 2] when n1 = 3. The cost func-
tion is f (0) = f (1) = f (2) = 1, f (3) = −µ1,3(1 − µ1,3)2. The
objective is to choose an optimalµ1,3 to minimize the system per-
formance η(f ). With numerical computation, we obtain the perfor-
mance curve as Fig. 1. It is obvious that the optimalµ1,3 is 2 for η(f ),
while the optimalµ1,3 is 0.5 for ηT . This example clearly illustrates
the difference between these two performance metrics.

6. Discussion and conclusion

In this paper, we first derived the performance difference
equations and then developed a policy iteration algorithm for
customer-average performance in state-dependent closed Jackson
networks. We also developed a sample path based algorithm
for estimating the realization factors so that the policy iteration
algorithm can be implemented on-line.
Policy iteration based on realization factors is new in the

customer-average performance optimization of queueing systems
and may bring new insights for future research. For example,
aggregation techniques such as the event-based optimization
approach (Cao, 2005) may be explored in the setting of queueing
systems. This may lead to a solution to the optimization of load-
dependent closed Jackson networks, where the service rates of a
sever depend on the number of customers at the server.
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Appendix. Proof of Theorem 3.1

First, we give a set of linear equations which are proved to be
able to uniquely determine the realization factors c(f )(n, k) (Cao,
1994).

If nk = 0, then c(f )(n, k) = 0; (31)
M∑
k=1

c(f )(n, k) = f (n); (32)

and{
M∑
i=1

ε(ni)µi,n

}
c(f )(n, k)

=

M∑
i=1,i6=k

M∑
j=1

ε(ni)µi,nqijκk(n,nij)c(f )(nij, k)

+

M∑
j=1

µk,nqkj

{
c(f )(nkj, k)+

M∑
i=1,i6=k

[
1− κi(n,nkj)

]
ε(ni)

c(f )(nkj, i)+
[
1− ε(nj)

]
c(f )(nkj, j)+ f (n)− f (nkj)

}
, (33)

where nkj = (n1, . . . , nk− 1, . . . , nj+ 1, . . . , nM) is a neighboring
state of nwith nk > 0, κi(n,nkj) = µi,n/µi,nkj , ε(ni) is an indicator
function which is defined as: if ni > 0, ε(ni) = 1; otherwise
ε(ni) = 0.
Eq. (31)means thatwhen the server k is idle, the perturbation of

its service time will have no effect on the whole network. Eq. (32)
means that if the all the service time of servers have a same delay
∆, it equals the effect of the whole sample path being shifted by
time ∆, thus the induced performance perturbation is f (n)∆ and
the sum of realization factors are f (n). Eq. (33) is more complex
and it describes how the perturbation of a server k is propagated
to other servers. The first term of right-hand side of (33) measures
the system effect if other servers (not server k) first finished its
current customer’s service. The second term of right-hand side of
(33) measures the performance effect if server k first finished its
current customer’s service. The detailed explanations relate to the
principle of perturbation propagation in PA theory, which can be
found in Theorem 4.1 of Cao (1994).
In order to prove Theorem 3.1, we only need to check that

c(f )(n, k) = ε(nk)µk,n, k = 1, 2, . . . ,M , n ∈ S, satisfy the above
Eqs. (31)–(33).
1. If nk = 0, then c(f )(n, k) = ε(nk)µk,n = 0. Thus, (31) holds.
2. We have

∑M
k=1 c

(f )(n, k) =
∑M
k=1 ε(nk)µk,n = f (n). Thus,

(32) holds.
3. For Eq. (33), we substitute c(f )(n, k) = ε(nk)µk,n into this

equation and verify that both sides are indeed equal. The first term
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Table 2
The optimal solution of the policy iteration Algorithm 1.

n Dµ1,n Dµ2,n Dµ3,n µ∗1,n µ∗2,n µ∗3,n µ′1,n µ′2,n µ′3,n

(0,0,5) [0.01,1.5] [0.04,1.0] [0.09,4.0] 0.01 0.04 4.00 0.01 0.04 0.09
(0,1,4) [0.01,1.5] [0.03,1.0] [0.06,4.5] 0.01 0.03 4.50 0.01 0.03 0.06
(0,2,3) [0.02,1.0] [0.05,1.5] [0.03,3.5] 0.02 0.05 3.50 0.02 0.05 0.03
(0,3,2) [0.03,1.5] [0.07,1.0] [0.02,2.5] 0.03 0.07 2.50 0.03 0.07 0.02
(0,4,1) [0.04,2.0] [0.09,1.8] [0.05,3.0] 0.04 0.09 3.00 0.04 0.09 0.05
(0,5,0) [0.05,1.0] [0.05,2.6] [0.01,2.0] 0.05 2.60 0.01 0.05 0.05 0.01
(1,0,4) [0.05,2.0] [0.01,2.0] [0.04,1.0] 2.00 0.01 0.04 2.00 0.01 0.04
(1,1,3) [0.05,1.5] [0.02,2.5] [0.09,1.5] 1.50 0.02 0.09 1.50 0.02 0.09
(1,2,2) [0.02,1.8] [0.03,2.0] [0.05,1.5] 1.80 0.03 0.05 1.80 0.03 0.05
(1,3,1) [0.06,2.0] [0.05,3.0] [0.02,2.5] 2.00 0.05 0.02 2.00 0.05 0.02
(1,4,0) [0.04,2.4] [0.06,1.5] [0.08,4.5] 2.40 0.06 0.08 2.40 0.06 0.08
(2,0,3) [0.08,1.8] [0.03,3.0] [0.10,2.0] 1.80 0.03 0.10 1.80 0.03 0.10
(2,1,2) [0.09,1.0] [0.05,4.5] [0.07,2.0] 1.00 0.05 2.00 1.00 0.05 0.07
(2,2,1) [0.10,2.0] [0.10,1.0] [0.03,3.0] 2.00 0.10 3.00 2.00 0.10 0.03
(2,3,0) [0.07,2.5] [0.03,3.5] [0.10,4.5] 2.50 0.03 0.10 2.50 0.03 0.10
(3,0,2) [0.03,3.0] [0.05,2.0] [0.01,2.0] 3.00 0.05 2.00 3.00 0.05 0.01
(3,1,1) [0.05,3.5] [0.10,2.0] [0.08,4.5] 3.50 0.10 4.50 3.50 0.10 0.08
(3,2,0) [0.09,4.0] [0.06,1.5] [0.03,2.5] 4.00 0.06 0.03 4.00 0.06 0.03
(4,0,1) [0.10,3.0] [0.09,2.5] [0.06,1.0] 3.00 0.09 1.00 3.00 0.09 0.06
(4,1,0) [0.08,4.5] [0.05,3.5] [0.09,1.5] 4.50 0.05 0.09 4.50 0.05 0.09
(5,0,0) [0.09,5.0] [0.04,2.0] [0.02,1.0] 5.00 0.04 0.02 5.00 0.04 0.02
of the right-hand side of (33) is
M∑

i=1,i6=k

M∑
j=1

ε(ni)µi,nqijκk(n,nij)c(f )(nij, k)

=

M∑
i=1,i6=k

M∑
j=1

ε(ni)µi,nqij
µk,n

µk,nij
ε(nij(k))µk,nij , (34)

wherenij(k) is the number of customers at server kwhen the system
state is nij. In fact, n(k) = nk. Since nk > 0 and i 6= k in (34), it is
obvious that ε(nij(k)) = 1. So, the first term of the right-hand side
of (33) is
M∑

i=1,i6=k

M∑
j=1

ε(ni)µi,nqijκk(n,nij)c(f )(nij, k)

=

M∑
i=1,i6=k

M∑
j=1

ε(ni)µi,nqijµk,n

=

M∑
i=1,i6=k

ε(ni)µi,nµk,n. (35)

For the second term of the right-hand side of (33), we have
M∑
j=1

µk,nqkj

{
c(f )(nkj, k)+

M∑
i=1,i6=k

[
1− κi(n,nkj)

]
ε(ni)

c(f )(nkj, i)+
[
1− ε(nj)

]
c(f )(nkj, j)+ f (n)− f (nkj)

}
=

M∑
j=1

µk,nqkj

{
ε(nkj(k))µk,nkj +

M∑
i=1,i6=k

[
1−

µi,n

µi,nkj

]
ε(ni)ε(nkj(i))µi,nkj +

[
1− ε(nj)

]
ε(nkj(j))µj,nkj

+

M∑
i=1

ε(ni)µi,n −
M∑
i=1

ε(nkj(i))µi,nkj

}
=

M∑
j=1

µk,nqkj

{
ε(nkj(k))µk,nkj +

M∑
i=1,i6=k

[
1−

µi,n

µi,nkj

]
ε(ni)µi,nkj +

[
1− ε(nj)

]
µj,nkj

+

M∑
i=1

ε(ni)µi,n −
M∑
i=1

ε(nkj(i))µi,nkj

}
=

M∑
j=1

µk,nqkj

{
ε(nkj(k))µk,nkj +

M∑
i=1,i6=k

[
µi,nkj − µi,n

]

ε(ni)+
[
1− ε(nj)

]
µj,nkj +

M∑
i=1,i6=k

ε(ni)µi,n

+ ε(nk)µk,n −
M∑

i=1,i6=k

ε(nkj(i))µi,nkj − ε(nkj(k))µk,nkj

}
=

M∑
j=1

µk,nqkj

{ M∑
i=1,i6=k

[
µi,nkj − µi,n

]
ε(ni)

+
[
1− ε(nj)

]
µj,nkj +

M∑
i=1,i6=k

ε(ni)µi,n + µk,n

−

M∑
i=1,i6=k,j

ε(nkj(i))µi,nkj − ε(nkj(j))µj,nkj

}
=

M∑
j=1

µk,nqkj

{ M∑
i=1,i6=k

[
µi,nkj − µi,n

]
ε(ni)

+
[
1− ε(nj)

]
µj,nkj +

M∑
i=1,i6=k

ε(ni)µi,n + µk,n

−

M∑
i=1,i6=k,j

ε(ni)µi,nkj − µj,nkj

}
=

M∑
j=1

µk,nqkj

{ M∑
i=1,i6=k

[
µi,nkj − µi,n

]
ε(ni)

+

M∑
i=1,i6=k

ε(ni)µi,n + µk,n −
M∑

i=1,i6=k

ε(ni)µi,nkj

}

=

M∑
j=1

µk,nqkjµk,n = µk,nµk,n. (36)

The summation of the two terms of the right-hand side of (33)
is
∑M
i=1,i6=k ε(ni)µi,nµk,n + µk,nµk,n =

∑M
i=1 ε(ni)µi,nµk,n, which

is equal to the left-hand side of (33). So, c(f )(n, k) = ε(nk)µk,n,
k = 1, 2, . . . ,M , n ∈ S, also satisfy (33), and Theorem 3.1 is
proved. �
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