
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011 1097

Lebesgue-Sampling-Based Optimal Control Problems
With Time Aggregation

Yan-Kai Xu and Xi-Ren Cao, Fellow, IEEE

Abstract—We formulate the Lebesgue-sampling-based optimal
control problem. We show that the problem can be solved by the
time aggregation approach in Markov decision processes (MDP)
theory. Policy-iteration-based and reinforcement-learning-based
methods are developed for the optimal policies. Both analytical
solutions and sample-path-based algorithms are given. Compared
to the periodic-sampling scheme, the Lebesgue sampling scheme
improves system performance.

Index Terms— Aggregation, Markov decision processes (MDPs),
performance potentials, reinforcement learning.

I. INTRODUCTION

I N A digital control system, the states are usually sampled
periodically with a fixed-length sampling interval [5]. Be-

cause true continuous control with digital computers is impos-
sible, this periodic sampling schema is widely used in computer
control systems in engineering. The problems with such a sam-
pling scheme are relatively easy to analyze. However, imple-
menting sampling and determining control actions are usually
expensive. To save computer power and resources, varying sam-
pling intervals may be used. One such alternative approach is to
sample the system whenever the signal (e.g., state) passes some
prespecified levels. This type of sampling is natural when dig-
ital sensors are used, and it is closer to human behavior as a
controller. This is called Lebesgue sampling [4], event-based
sampling [3], or event-triggered sampling [6]. A comparison
between periodic and Lebesgue sampling for one-dimensional
systems can be found in [4], among others, which shows that
with impulsive control, Lebesgue sampling may reduce the sam-
pling frequency to achieve the same performance as periodic
sampling. A brief explanation for this is that with periodic sam-
pling, in some cases, at the next sampling time, the system state
needs to be measured and a new control action has to be chosen
and applied even if the system state has not been changed much,
and in some other cases, no new action can be applied even if

Manuscript received November 26, 2008; revised August 11, 2009; April 05,
2010; May 28, 2010; and June 28, 2010; accepted June 28, 2010. Date of publi-
cation September 07, 2010; date of current version May 11, 2011. This work
was supported by the Hong Kong UGC under Grants 610806, 610808, and
610809 and by the National Natural Science Foundations of China under Grants
60574064 and 60736027. Recommended by Associate Editor C.-H. Chen.

Y.-K. Xu is with the Beijing GeoScience Center, Schlumberger Ltd.,
Beijing 100084, China, and also with the Center for Intelligent and Networked
Systems (CFINS), Tsinghua University, Beijing 100084, China (e-mail:
xuyankai@gmail.com).

X.-R. Cao is with the Department of Automation and Department of Finance,
Shanghai Jiao-Tong University, Shanghai 200240, China, and also with the In-
stitute of Advanced Study, The Hong Kong University of Science and Tech-
nology, Hong Kong (e-mail: eecao@ust.hk).

Digital Object Identifier 10.1109/TAC.2010.2073610

the system state already has a big change because the next sam-
pling time has not been reached.

Recent works in this area focus on sampling schemes [15],
[20] and applications to networked control systems [14], [16],
manufacturing systems [18], communication systems [17], and
so on. The controls adopted in these papers are often simple,
e.g., impulsive control [11], on–off control [23], or heuristic
PID control [3]. The optimal control problem with Lebesgue
sampling is not generally formulated and well studied, prob-
ably because of the difficulty involved in analyzing this type of
problem.

In this paper, we formulate the optimal control problem with
Lebesgue sampling and provide a solution to the problem.
The solution is based on the recently developed time ag-
gregation (TA) approach in discrete-time Markov decision
processes (MDPs) [10]. In this paper, we extend the TA ap-
proach to the Lebesgue-sampling-based control problems.
There are two main differences between this problem and the
problem considered in [10]: Lebesgue sampling deals with
continuous time and continuous states, while in [10], discrete
time and discrete states are considered. In addition, with
Lebesgue sampling, the control determined at a sampling point
is continuously applied to the system until the next sampling
point, while in [10], the action at an embedded point only
applies to the embedded point itself. We show that even with
these additional features, the principle in [10] applies to our
problem as well.

The fundamental idea is as follows. At the sampling points,
the system states form an embedded discrete-time Markov
chain. With a properly defined cost function, this embedded
Markov chain has the same performance as the original con-
tinuous-time dynamic system. Thus, the problem becomes
to optimize the performance of this embedded chain. The
difficulty comes from the fact that this “properly defined” cost
function depends on the controls at other states, and therefore
the conventional MDP solution methods cannot be applied.
However, we can show that the optimization problem of the
embedded chain can be changed to another equivalent MDP
problem, and therefore standard solution techniques such as
policy iteration and reinforcement learning [24] can be used to
solve the problem. Lebesgue-sampling-based control can also
be viewed as a special case of the event-based optimization
formulated in [9].

After presenting the theoretical analysis based on the above
ideas, we provide some examples—analytical, numerical, and
sample-path-based (with learning)—to illustrate the results.
The examples show that Lebesgue sampling does obtain better
performance than periodic sampling with the same sampling
frequency.

0018-9286/$26.00 © 2010 IEEE

1098 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

This paper is organized as follows. In Section II, we for-
mulate the optimal control problem with Lebesgue sampling.
In Section III, we study this optimal control problem with
the time aggregation approach; an equivalent MDP is found
so that the standard optimization methods can be applied to
solve the problem. A policy iteration algorithm is developed
in this section. In Section IV, analytical solutions are given for
some special cases. In Section V, sample-path-based learning
approaches, including both the -factor-based policy iteration
and the State-Action-Reward-State-Action (SARSA) algo-
rithm, are proposed for general cases. In Section VI, results on
periodic-sampling-based optimal control model are briefly re-
viewed, for a comparison to Lebesgue sampling. In Section VII,
several examples are given to illustrate the results.

II. PROBLEM FORMULATION

Consider a one-dimensional continuous-time nonlinear con-
trol system

(1)

where is the system state at time ,
is the control variable (or action) at time ,

with denoting a control set, is a Wiener process
(under a probability measure denoted as), and is a constant.

is a scalar function of , and
. The cost function associated with control variable is

denoted as a Lebesgue measurable function . The goal of
the optimal control problem is to determine a control law ,

, which may depend on , that minimizes the
long-run average performance defined as

(2)

where “ ” denotes the expectation with respect to . We as-
sume that the system under is stable [21], and that the per-
formance does not depend on the initial state .

With digital technology, we need to take samples of the
system state . With Lebesgue sampling, we define a
finite event set: . Each event corre-
sponds to a prespecified state value denoted as . The set
of state values corresponding to the event set is denoted
as . For convenience, we also
call the set of events. Without loss of generality, we as-
sume and . If at some
time , the system state “reaches” (meaning and

), we say that event occurs at .
Now, we consider a sample path . We

assume that the sample path starts from an event, i.e.,
. Let , and for , define

(3)

is the th sampling point. Denote the event at as .
This definition excludes the case , and

; forms an embedded chain.
An alternative is to define the occurrence time epoch of events

as follows:

(4)

This definition allows . However, this definition may
not properly define a discrete-time embedded chain. For ex-
ample, if is a constant in the system dynamic (1),
then the state process becomes a Brownian motion with drift co-
efficient and diffusion coefficient . In this case, we have the
following theorem (for a proof, see Appendix A).

Theorem 2.1: With definition (4) and , we have
.

From this theorem, events occur infinitely often in any small
time interval. Thus, with definition (4), the resulting embedded
chain is infinitely dense and cannot be handled. Therefore, we
adopt (3) instead of (4) to obtain a proper discrete-time em-
bedded chain.

In Lebesgue-sampling-based (or event-based) formulation,
control action is updated only when an event occurs. The action
adopted at time is denoted as , which remains unchanged
until , i.e., for . Thus, the system
dynamic becomes

(5)

The control action can be determined according to an admis-
sible control law (or called a policy) denoted as ,

, , Action is determined by
event , thus is an event-based policy. We assume that
the number of available actions is finite, i.e., is a finite set.
The problem becomes to find an event-based policy so
that the performance (2) is minimized, subject to the system
dynamic (5).

III. TIME AGGREGATION APPROACH

The system in an optimal control problem is often modeled
as a Markov process [26], [27]. Thus, the optimization methods
for Markov systems can be applied. In this paper, we solve the
optimal control problem with Lebesgue sampling by using the
time aggregation approach developed in [10] (also see [9]).

Consider the system (5) under a policy , .
The state process , , of the system described
in (5) is not a Markov process because the control variable at

, , depends on the state at
time . However, is a semi-Markov process because
at any sampling point , , the future of the system
depends only on , and the embedded chain

is a Markov chain with state space . Let
denote the transition probability matrix of

this embedded Markov chain under policy . From (3), for a
stable system, we have

or
otherwise

(6)

for , and ,
. Obviously, this embedded Markov chain is an irre-

ducible periodic chain with period 2 under any policy . For
such a periodic chain, there is a unique invariant probability
(row) vector satisfying and , where

is a -dimensional (column) vector with all
components 1, with “ ” denoting transpose.

Most results in MDPs in the literature are developed for ape-
riodic chains because the proofs of these results for periodic

XU AND CAO: LEBESGUE-SAMPLING BASED OPTIMAL CONTROL PROBLEMS WITH TIME AGGREGATION 1099

chains are technically involved. In this paper, we will verify that
the policy iteration approach and reinforcement learning algo-
rithms we are going to use for our problem are valid even for
periodic chains.

Consider the embedded Markov chain .
Our first step is to find a cost function for the embedded Markov
chain so that its average performance is the
same as that of original system (2) and (5). The sample path of
the system is divided into segments by the embedded points. Let

denote the th segment. The sample
path can be written as . Consider a segment
starting from event with action , and define the quantities

(7)

and

(8)

Then, is the expected cost received on a segment starting
from event with action . For any policy , let

(9)

We will use the notation and to denote the above quan-
tities for the constant cost function , for all
and all . Thus, is the length of the
th segment, which depends on implicitly, and

(10)

is the average length of the segment starting from event with
action . We also have .
From stability, it is clear that . We also assume
that , which is satisfied, e.g., for any bounded
function .

Applying the strong law of large numbers, we obtain the per-
formance of the system under policy (cf. [12, Eq. (19)])

w.p. (11)

where is the average length of segments, or the
average sampling interval, under policy . If we define a cost
vector for the embedded Markov chain as

(12)

then the embedded chain has the same performance
as the original system (2) and (5) under policy . Therefore,
the optimal control problem of Lebesgue sampling system (5)
with performance (2) is equivalent to the optimization of the
embedded Markov chain with transition probability matrix
in (6) and cost function defined in (12). From a sample path

point of view, it looks as if the total cost on a segment is “aggre-
gated” onto the embedded point that starts the segment, thus we
call this approach “time aggregation.” This approach was pro-
posed in [10] for discrete-time Markov chains; in this paper, we
extend it to continuous-time systems.

However, we have a major obstacle here: According to (12),
the cost at event of the equivalent embedded chain, ,
depends on the average length , which depends on the ac-
tions taken at events other than . This violates the formula-
tion of the standard MDPs (in which the cost at state depends
on the action taken at , not on the policy [19]), and there is
no simple solution to such a problem. The situation is similar
to the problem studied in [10], where a discrete-time Markov
chain is assumed to be controllable (in terms of transition prob-
abilities) only when it is in a subset of the state space. The same
obstacle was encountered, and it was solved by constructing an-
other equivalent MDP problem that can be solved by the stan-
dard methods in MDPs.

There are, however, two major differences between our cur-
rent problem and that in [10]. First, the problem in this paper is
with continuous time, while that in [10] is with discrete time.
Second, in this paper, action is applied to the system during
the whole segment , while in [10], the action at an embedded
point only affects the transition at this point and does not affect
the transitions inside the segment. In the following, we will de-
velop the time aggregation approach for our current problem,
which can be viewed as an extension of the results in [10].

From (6) and (9), the th components of and and
the th row of depend only on action , which is taken
when event occurs, and we denote them as , ,
and , . Define a new cost function for the
embedded chain

(13)

where is a real parameter. Set
. From (11), the

average performance of the embedded chain with the newly
defined cost function is

(14)

We have the following simple theorem, which plays a crucial
role in developing policy iteration algorithms on the newly de-
fined MDP for our optimal control problem.

Theorem 3.1:
i) Policy is better than for the embedded Markov chain

with cost function (13) and if and only if is
better than for the embedded Markov chain with cost
function (12).

ii) Policy is optimal for the embedded Markov chain with
cost function (12) if and only if is optimal for the em-
bedded Markov chain with cost function (13) and

.
Proof:

i) From (14), with , we have
and . Because for any ,

we conclude that if and only if
.

1100 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

ii) From (14), with , we have
and . Therefore, for all policy if
and only if for all .

Note that the newly defined optimization problem also does
not satisfy the standard MDP formulation. In Theorem 3.1.i, we
fix a policy and compare any other policy to this particular
policy . Therefore, is a constant in the comparison, and the
cost function , , depends only
on action (not on other actions). A similar explanation holds
for Theorem 3.1.ii.

When , the cost function (13) is
and the performance is . Let be the per-

formance potential vector [9] of the embedded Markov chain
with policy and cost function . The potential indicates the
contribution of a state to long-run average performance under
a given policy. The definition of performance potential leads to
the Poisson equation [9] for periodic transition probability ma-
trix and cost function . The Poisson equation is

Since as mentioned before, Poisson equation reduces
to

(15)

where is the identity matrix, and is the performance po-
tential vector [9] of the embedded Markov chain with policy
and cost function . It is well known that if is a solution
to (15), then (is any real number) is also a solution to
(15). Especially, one solution takes the following form [9]

(16)

The performance potentials , , can also be
estimated from a sample path. We choose any event as a ref-
erence event. For any event , we define the stopping time

on a Markov chain
under policy . for recurrent

Markov chain . We have the following.
Theorem 3.2: For periodic Markov chains, the performance

potential satisfies

(17)

where and . (See Appendix B for a proof.)
From (17), sample-path-based algorithms can be developed

on the state process with (8), (10), and (13). These algo-
rithms are the same as those in the literature, except the cost
function is estimated by its sample path values
[cf. (46)].

With Theorem 3.1, the standard techniques, such as policy
iteration, reinforcement learning, etc., can be used to solve the
MDP (6) with cost (13), which is equivalent to the MDP (6) with
cost (12), and which is again equivalent to the original optimiza-
tion problem (2) and (5). Next, we propose the following policy
iteration algorithm for an optimal policy of the MDP (6) with

cost (13) [which is also the optimal event-based control policy
of the system (5) with performance (2)]. Let be the policy
used in the th iteration, and be the optimal policy.

Algorithm 3.1: Policy Iteration

1) Guess an initial policy , ; set .
2) (Policy evaluation) Obtain by (12). Obtain by

. Obtain the potential by (16) or (17).
3) (Policy improvement) Choose

for all (18)

If at an event , action attains the minimum, then
set .

4) If componentwisely (for
all), then set and the algorithm stops;
otherwise set and go to step 2.

By Theorem 3.1.i and the policy iteration theory [9], [19], if
the algorithm does not stop, at each iteration the performance of
the embedded Markov chain with cost function (12) improves.
When there are only a finite number of policies, the iteration pro-
cedure must stop. By Theorem 3.1.ii, when the iteration stops, it
reaches the optimal performance of the embedded Markov chain
with cost function (12).

Finally, note that there is a slight difference between the
problem (6) and (13) and the formulation of a standard MDP
problem: In (6) and (13), the cost function of action at the

th iteration depends on ,
which changes every iteration, while in the standard MDP
formulation, the cost function of any action is fixed in all
iterations. This difference does not change the policy iteration
algorithm and the proof for its convergence.

Sample-path-based algorithms will be presented in Section V.

IV. ANALYTICAL SOLUTIONS

The three quantities used in policy iteration— , ,
and —can be obtained analytically by solving differen-
tial equations or can be estimated from sample paths of the orig-
inal system (5). In this section, we first discuss the analytical ap-
proach. We derive the differential equations that the quantities
satisfy.

1) : First, suppose and
, . is the action

taken since , until the end of this segment. Let
[cf. (3)]

This is the first passage time from any state
to reach the set . Let

for all
, and for any other .

XU AND CAO: LEBESGUE-SAMPLING BASED OPTIMAL CONTROL PROBLEMS WITH TIME AGGREGATION 1101

First, from the backward Kolmogorov equation [13], we
have

(19)

where is the infinitesimal generator, which is defined by

(20)

where is a transition operator

(21)

with being the transition function from state
to a Borel set in time , determined by the system dy-
namics (5). We can easily verify that
(cf. [13, p. 193]). Thus

(22)

With boundary conditions
, we can solve (22) to obtain .

2) : Let [cf. (7) and (8)]

(23)

denote the expected cost on a segment starting from a state
, , under action , and

for any . Similar to (22),
we have

(24)

With boundary conditions
, we can solve it to obtain .

3) : Let denote the probability that from state
, , state is reached

before state under action . Similar to (22), we have

(25)

With boundary conditions and
, we can solve it to obtain

and .
The solutions to (22), (24), and (25) are as follows (see, e.g.,

[13, p. 195]). Let

(26)

where denotes an indefinite integral. We define a scale
function

(27)

and the speed density . Then, for
, , the solutions to the three (22), (24), and

(25) are

(28)

(29)

and can be obtained from the above equation by set-
ting . For the cases with and , the
boundary conditions are different, but there are no conceptual
difficulties. With these solutions, we can implement policy iter-
ation Algorithm 3.1 to obtain an optimal policy of the system (5)
with performance (2).

Generally, the integration in the scale function (27) may not
have a closed form, so , , and , [and
therefore, , , and] may not be calculated
analytically, but can be at least obtained numerically.

Example: We consider a special case with (it
is called the state-independent case, which is often used in the
formulation of manufacturing flow control problems; see, e.g.,
[1]) and a quadratic cost function , where

is a positive number and is a positive definite matrix. We
show that for this case, (28) and (29) have elementary functional
forms.

After careful calculation, we have the following results. For
all , , if , we have

(30)

(31)

1102 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

and

(32)

If , then

(33)

(34)

and

(35)

When , since the system is stable and as assumed
before, we have , and then we have ,

, and

(36)

When , . We have ,
and

(37)

In this special case, we apply (30)–(37) instead of (28) and
(29) to calculate the quantities , , and for
all , . If the size of event set is not very large, we
may calculate performance potential by using (16), without
simulation and observation. Therefore, for the state-indepen-
dent case, we can find an optimal policy for the optimal control
problem by policy iteration analytically.

V. SAMPLE-PATH-BASED ALGORITHMS

When a closed-form solution cannot be obtained, we may
develop sample-path-based algorithms in which the quantities
needed in policy iteration are estimated by observing/analyzing
the system’s behavior over a sample path.

We apply the -learning approach to our problem. Given a
policy , define a -factor [2] for every event–action pair
as (note that with the cost function ,
the corresponding performance is)

(38)

where and are the performance potential and the long-run
average performance under the given policy . From the policy
improvement (18), we choose

(39)

as the action taken at event in the next iteration. Therefore, if
we can estimate the -factors, we can update the policy using
(39).

However, it is impossible to estimate on a sample
path if the pair does not appear on the path at all. There-
fore, if a sample path is under a deterministic policy that maps
an event to one action, -learning approach is not useful be-
cause the sample path only contains one event–action pair for
each event. Thus, this approach applies only to random poli-
cies. The standard way to implement the -learning approach
is to use the -greedy policy [24]. At event , denote as
an action satisfying (39), which is called a greedy action, and

is called a greedy policy. The greedy action (or policy) may
not be unique. Given a small real number . From
any greedy policy , we can construct an -greedy policy as
follows: At event , with probability , we choose a greedy
action , and with probability , we choose any other action
randomly, usually with an equal probability (is
the number of actions), so that all the actions may be chosen for
any event . When is small, an -greedy policy is close to the
greedy policy determined by (39), yet it explores all the possible
pairs of .

Suppose that we are given a sample path under an -greedy
policy . To get , we need to estimate

with . At the th event, for all , ,
we have the estimates shown in (40)–(43), shown at the bottom
of the next page, where if and

; otherwise. From the strong law of large
numbers, we have and converge to and
with probability 1 as goes to infinity, respectively.

Recall the stopping time
under policy . From (17) and (38), we can

easily derive an equation for the -factors under the -greedy
policy

(44)

XU AND CAO: LEBESGUE-SAMPLING BASED OPTIMAL CONTROL PROBLEMS WITH TIME AGGREGATION 1103

with . When is small, this is close to the -factor of
the greedy policy .

Next, we develop an algorithm that estimates ac-
cording to (44) by observing and analyzing a sample path of the
system under . Consider such a sample path with .
Define regenerative points: , and

, . We call the period between the two
regenerative points and , , the th
regenerative period. Define as follows:

if the above set is not
otherwise

(45)

which denotes the first occurrence time of pair in the
th regenerative period. Also, let if

; otherwise. By (44),
we have the following estimate of at the th event, :

if

otherwise
(46)

where is the number of regenerative periods obtained up to
, and is given by (43). We have the following result on

the convergence of this estimate. (See Appendix C for a proof.)
Theorem 5.1: For every and

w.p. (47)

Applying (46) to estimate directly may require lots
of memory: When calculating at , all the costs along
the sample path, , , are used. Then, we
have to store all the quantities along the whole sample path. This
storage resource requirement is very large and increasing as the
length of sample path increases, so it limits application of the

algorithm. We propose a recursive estimation that is equivalent
to (46), but does not require the large storage. Define

be the number of visits to pair up to ,
then we have the following estimates:

(48)

(49)

(50)

(51)

with initial values , , for
all , , and . The cost function is
calculated by (43). We verify that the above values are the same
as (40)–(42), and these estimates are updated at every event.

As shown in (46), -factors are estimated by regenerative
periods. We propose a recursive algorithm in which -factors
are updated at every regenerative point. Recall is the number
of regenerative periods up to , then is the last regenerative
point before . Define to be the
number of regenerative periods, in which event–action pair

happens, among these regenerative periods. Then,
we have the following estimate of at regenerative
point :

(52)

(53)

with initial values , for all ,
. Apparently, for all .

However, with (48)–(53), we need store only ,
. This requirement of storage is much smaller than that

if

otherwise
(40)

if

otherwise
(41)

(42)

(43)

1104 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

of (46). Furthermore, recursive algorithms are more effective for
implementation in practice.

From the above estimates, Algorithm 3.1 becomes the
following.

Algorithm 5.1

1) (Initialize) Guess an initial (deterministic) policy .
Choose a reference event . Set a large integer as the
simulation length, a small number , and .

2) (Policy evaluation) Set , (i.e.,
). At each event , ,

choose action according to the -greedy
policy (constructed by the greedy policy). Run
the system up to , estimate , , ,

and , by (43) and
(48)–(53) recursively.

3) (Policy improvement) Choose

(54)

If at an event , action attains the minimum, then
set .

4) If component-wisely, then the algorithm
stops; otherwise set and go to step 2.

The quantities estimated in the policy evaluation
step are for the -greedy policies. There are two types of errors
in the algorithm. One is the stochastic error due to the finite-
ness of , and the other is due to the difference between the
-greedy policy and greedy policy. We first consider the second

type of error. We expect that when is small, these errors are
also small. As shown in [9, Ch. 5], when the errors are small
enough, and policy space is finite as assumed before, the im-
proved greedy policies determined in the policy improvement
step are exactly the same as they would have been had the cor-
rect quantity been used. Therefore, if is small enough
and there is no stochastic error, Algorithm 5.1 stops at the op-
timal policy in a finite number of iterations. Finally, we can
choose large enough so that the probability that this algorithm
does not converge can be less than any given small number. For
a formal discussion, see [9, Ch. 5].

Many reinforcement learning algorithms can be developed
with the above formulation. For example, we can combine the
policy evaluation step and the policy improvement step together
to improve the efficiency of the algorithm [9]. An alternative is
to use the so-called SARSA algorithm [24], which explores the
temporal difference (TD) defined as

(55)

In the following algorithm, we choose a sequence ,
, diminishing to zero as increases. Thus, the

-greedy policies used in the algorithm converge to the greedy
policy.

Algorithm 5.2: SARSA

1) (Initialize) Guess a set of initial -factors
for all and (or guess an initial policy
and run a sample path of the system to estimate its

-factors). Set , , and . Choose an
initial event (i.e.), an initial action by

, a large integer as the
simulation length, a diminishing sequence ,
and a sequence of step sizes satisfying

(56)

2) (Simulation) Run the system under action , until
time when the next event occurs. Record

and of this segment.
3) (Determine actions) Determine a greedy action at

event according to

Choose action with probability ,
and choose any other action ,

, with probability .
4) (Update) Update by

(57)

and -factors by

(58)

where is the temporal difference in (55).
5) If , algorithm terminates. Otherwise, set

and go to step 2.

In the algorithm, whenever an event occurs, we update one of
the -factors and determine the next action according to the up-
dated -factors. The idea is the change of the -factors at each
event is usually very small, and this small change in -factors
may not change the greedy actions, thus the system in fact runs
under the same -greedy policy for many segments, and there-
fore the iterative process is hopefully stable. However, the con-
vergence of the SARSA algorithm for the average-performance
criterion problem is not guaranteed. With properly chosen and
step-size , Algorithm 5.2 may converge to an optimal policy.

VI. PERIODIC-SAMPLING-BASED CONTROL

In order to compare the performance of the Lebesgue sam-
pling approach to that of the periodic sampling approach, we
briefly review some results of the periodic-sampling-based op-
timal control problem. Details can be found in [5]. We consider
only the linear quadratic case. Denote the sampling time as ,

, with an equal sampling interval
for all . The system dynamic is

(59)

where is the control adopted at time , which remains un-
changed in , and and are parameters.

XU AND CAO: LEBESGUE-SAMPLING BASED OPTIMAL CONTROL PROBLEMS WITH TIME AGGREGATION 1105

The cost function is . Let .
Our goal is to find a feedback control law , , to min-
imize the performance (2).

From (59), if , we have

(60)

where , , and
is an i.i.d. random variable with mean zero

and variance .
Let . This is the

expected cost on a sampling period starting from . After some
calculation, we have

(61)

where ,
,

, and
. The optimal

control law is , where
, and satisfies the algebraic Riccati

equation

(62)
Solving (62), we get and . The corresponding optimal per-
formance is .

If (a special state-independent case considered in
Section IV), we have , , and is a random
variable with a normal distribution with zero mean and variance

. , , ,
and . We obtain the optimal control policy by
solving Riccati equation (62). The corresponding optimal per-
formance is .

If the system dynamic is not linear, or the cost function is not
quadratic, or the control set , the optimal control prob-
lems in general do not have an analytical solution. However, it
can be solved with approximate approaches, e.g., by approxi-
mate dynamic programming [22], [26] or policy iteration with
discretized state space [27].

VII. NUMERICAL EXAMPLES AND COMPARISON

Now, we give a few numerical examples to show the results
of our approach and to compare them to those with equal-length
sampling. In Examples 7.1–7.3, we use the analytical approach
of policy iteration derived in Sections III and IV, and in Ex-
ample 7.4, we apply the sample-path-based approach SARSA
introduced in Section V.

Example 7.1: Consider a linear quadratic optimal control
problem with , and control set

. In this example, the variance of the
system state is minimized. The event set is ,
and we have .

We first calculate , , and , for all
and , from (30)–(37), and then calculate the long-run

average performance and the performance potentials to
implement policy iteration Algorithm 3.1. A policy can be
written as a column vector . The initial
policy is chosen as the hollow circles in Fig. 1:

Fig. 1. Lebesgue-sampling-based control policy.

. After one iteration, the system performance reduces
from 2.2778 to 0.2943, and the optimal policy is obtained, which
is shown as the solid circle in Fig. 1: .
Under the optimal policy , the average length of a sampling
interval is s. As shown in [4], if the impulsive con-
trol (which requires an infinitely large control power) is applied,
the performance is . In this problem, the controls
are finite , and the system state cannot reach 0 im-
mediately when control is added, as the impulsive control does.
Therefore, the performance is not as good as that in [4], with the
cost function , which implies free energy cost even
for an infinite power. If the control variable can be very large,
then the optimal performance can be close to 0.1667.

With the periodic sampling approach, to make a fair
comparison, we choose the sampling interval be the same
as that of the Lebesgue-sampling-based approach, i.e.,

s. From Section VI, if we allow to
use the continuous and unbounded control set , the
solution to the Riccati equation is , the theoretical
optimal control is , and the optimal performance
is . In this example, however, the
control set is discretized to be a finite set .
Thus, we do not have analytical solutions and need to apply
the sample-path-based approach [27] to get an optimal policy.
We have a discrete-time control problem (60), (61). The con-
tinuous state space is discretized into a finite number of states

, and each corresponds
to an interval , with and

. When the continuous state falls into the interval
, we say that a discrete state is

reached. is small enough so that the values of states in the
same interval are very close, and is large enough so that
the probability of visiting regions and

is close to zero. Thus, the error caused by
discretization can be negligible. We approximate the original
continuous-state system by a discrete-state system and then
implement policy-iteration-based numerical algorithms. For a
discrete state , we accumulate the costs of the next 100 steps
to estimate performance potential . At each iteration, we
run the system steps and then update the control policy.
In Fig. 2, the dashed line is the initial control law

(63)

1106 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

Fig. 2. Periodic-sampling-based control policy.

where denotes the largest integer that is not larger than .
After four iterations, an optimal policy is obtained, which is
shown as the solid line in Fig. 2. The optimal performance is
0.5825, which is slightly larger than the theoretical value for the
continuous-state problem. Overall, with the same average length
of a sampling interval, the optimal performance of the approach
with Lebesgue sampling is about 49.5% better than the approach
with periodic sampling. For periodic sampling method, perfor-
mance is linear to the sampling interval (as men-
tioned before), then in order to achieve the same performance as
Lebesgue sampling, periodic sampling technique has to sample
the system state twice faster than Lebesgue sampling.

It is worth noting that the optimal policy obtained by
Lebesgue sampling is of the min–max type, which drives the
system to the origin as quickly as possible. It is natural because
the cost for control energy is zero in this example. The larger
the control variable is, the faster the system state reaches zero,
and the better performance the system obtains. However, the
control law by periodic sampling is not of the type. It is more
conservative to avoid overshooting because once overshooting
happens (say the system state becomes very large), nothing
can be done before the next sampling instant, and therefore it
may result in a large state variance. With Lebesgue sampling,
whenever the system reaches a high level, e.g., 1 or

1, the system will detect it, and an appropriate control can
be (timely) applied to correct the error. This explains why the
Lebesgue sampling approach may be better.

Example 7.2: In this example, we consider the same system
as in Example 7.1, except the cost function changes to

, for .
In this example, we need to balance the system variance

and the control energy. Using the same approaches and the
same initial policies as in Example 7.1, we obtain the optimal
control policies and their performances for all possible . With
Lebesgue sampling, optimal policies are always obtained in
three iterations. When , the optimal policy may not be of
the min–max type any more. For example, when , the
optimal policy is . The optimal
performances and the corresponding average lengths of a
sampling interval are shown in Table I. With the same sampling
intervals, the optimal performances with periodic sampling are
also obtained, including both theoretical and simulation-based
(for the case with finite control set) results. The percentages of
improvement of Lebesgue sampling compared to periodic sam-
pling are listed in the last column in Table I. As increases,

Fig. 3. Improvement ratio.

TABLE I
RESULTS OF EXAMPLE 7.2

the percentage of improvement gets smaller because the cost
on control energy becomes more important.

Example 7.3: Consider the same system as Example 7.2, with
a fixed , except that the event set changes to

, with .
In this example, the intervals between two event values are not

constant. The case with is the same as that in Example 7.2.
With Lebesgue sampling, we optimize the system for all pos-
sible values of . Results are shown in Fig. 3. The solid line
represents the ratio of the optimal performance with all possible

versus the optimal performance with ; the dashed line
represents the ratio of the mean lengths of sampling intervals
versus the mean length with . From the figure, it is ob-
vious that the slope of the solid line is much smaller than that
of the dashed line. When increases slightly, performance be-
comes a little worse, and the mean length of a sampling interval
increases significantly. It means lots of computational resources
are saved, with a little cost on the system performance. This is
not surprising, as with the “uneven” event set , more em-
phasis is put to more important events, i.e., the events apart from
the origin.

A question naturally arises: How do we determine the event
set so that the optimal performance is the best? This problem
remains unsolved.

Example 7.4: In this example, we consider the system
with , and the other

parameters are the same as those in Example 7.1.
In this case, a closed-form solution for Lebesgue-sam-

pling-based approach is not available. Thus, we apply the
SARSA Algorithm 5.2 to obtain an optimal policy. In
simulation, the time scale is set to be 0.001 s. Choose

. At each event, the -greedy policy

XU AND CAO: LEBESGUE-SAMPLING BASED OPTIMAL CONTROL PROBLEMS WITH TIME AGGREGATION 1107

Fig. 4. Control policy by Algorithm 5.2.

picks up randomly any possible actions. Set the simulation
length . The initial policy is the same as in
Example 7.1, and the initial -factors are chosen to be all zero.
Set the step-size , where de-
fined in (48) is the number of visits to event–action pair
up to event . Let , and initial action . The
“optimal” policy obtained by Algorithm 5.2 is shown as the
solid circle in Fig. 4. The performance of this policy is 1.2116,
and the average length of a sampling interval is 0.4789 s. With
periodic sampling and using the same sampling interval, the
theoretical optimal control is and the optimal
performance is 1.4823. With the same finite control set and
the same discretized state space as in Example 7.1, the simu-
lation-based algorithm gives the optimal performance 1.5556.
Lebesgue sampling is 20% better than periodic sampling.

VIII. CONCLUSION

In this paper, we formulate the optimal control problem with
Lebesgue sampling and show that it can be solved by solving an
equivalent MDP problem. Both policy-iteration and reinforce-
ment-learning algorithms are developed. Policy iteration can
be implemented analytically, numerically, or based on sample
paths.

Compared to the periodic sampling approach, with the
same average length of a sampling interval, Lebesgue-sam-
pling-based policy may have a considerably better performance.
How to choose the event set to achieve the best performance
and under what conditions Lebesgue sampling performs better
remain open problems.

The paper considers only the one-dimensional case of state
space. The same idea applies for the multiple-dimensional case,
and some technical issues arise because we can only aggregate
one component at a time. This extension is promising and will
be done in our future work.

Lastly, the sensors used in Lebesgue sampling may work
slightly differently from those for periodic sampling. For ex-
ample, a pressure sensor may turn the air pressure into voltage,
and a temperature sensor may turn the temperature to the length
of mercury. In periodic sampling, the voltage or length is
turned into digital signals periodically. In Lebesgue sampling,
a signal is triggered when the voltage or length reaches a set
of specific values. Because the values, denoted as ,
are predetermined, the sensor may only need to send out the
identification numbers of these values, e.g., 1, 2, , and the
exact values are not needed.

APPENDIX A
PROOF OF THEOREM 2.1

When , the system is a Brownian motion with
drift coefficient and diffusion coefficient . A Brownian mo-
tion can be approximated by a random walk with the time in-
terval approaching zero. First, we have a lemma about random
walk.

Lemma A.1: A random walker wanders among points
denoted as . At any point , , he jumps to

with probability , or to with probability .
Suppose that the random walker starts from point , and let
be the expected number of steps for him to reach, for the first
time, the set . If , then ; if

, we have

(64)

and

(65)

Proof: From the definition, we have
. With boundary conditions and , the

results can be easily verified.
Consider a drifted Brownian motion with drift coefficient

and diffusion coefficient . We approximate it with a discrete-
time random walk in a standard way. The time interval of each
step is , and the size of one jump at each step is . We have

(66)

This random walk converges to the drifted Brownian motion as
.

When this discrete-time random walk starts from any event
level , it may reach the set in a finite number
of steps. At the next step, it first reaches with proba-
bility or with probability . We consider the case
when for simplicity. Suppose that it reaches

in the next step. After that, it will reach the set .
Let be the expected time length of jumping from to

, and then reaching the set . This procedure looks
like a random walk in Lemma A.1, with and

. From the lemma, we have that the expected
number of steps to reach is

. The time interval of each step is , so the total
expected time is .
Obviously, as . Next, if starting from the
random walk reaches in the next step, we define be
the expected time of jumping from to and then
reaching the set . With the similar derivation, we
have as . The expected time from to the
set is , which also goes to zero as

.
For the case when , we can calculate and from

Lemma A.1 and (66). The same result holds: The expected time

1108 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

as . Therefore, for a drifted Brownian
motion, . We omit the
details here. This completes the proof of the theorem.

APPENDIX B
PROOF OF THEOREM 3.2

For a periodic chain, does not exist. To prove
the theorem, we first construct an equivalent aperiodic Markov
chain to implement sample-path-based algorithms. Let

(67)

where . is an ergodic
transition probability matrix defined by policy . We use the
symbol to denote the quantities associated with .

It is easy to verify that the invariant probability row vector
of is the same as that of : , and therefore the
long-run average performance . Define the cost func-
tion of the aperiodic chain as with .
Then, we have and with . Let
be the performance potential of the aperiodic MDP ,
satisfying the Poisson equation

(68)

From (67), we have

(69)

Substituting (69) into (15) (for), and from (68), we have

(70)

Since is a transition matrix of an ergodic chain, so
is a singular matrix with rank , and is an eigenvector of

. Therefore, the solution to (70) is

(71)

where is any real constant.
Consider a sample path generated according to :

. We first choose any event as a reference event.
For any event , we define the stopping time

on . Since the chain is
ergodic, we have [9]

(72)

where and .
Now consider a sample path generated according to the pe-

riodic as . Note that the sample path
can be constructed from according to (67). Specifically, for
any sample path , we set ,
where is a sequence of consecutive
visits to state , with being a geometrically distributed in-
teger with parameter . From (67), is a sample path of the
aperiodic chain . The cost accumulated on is

, and its mean is

(73)

On the sample path , define the stopping time
. Construct a sample path

from . By Wald’s equation [25], we can rewrite (72) as (recall
that the performance with is zero)

(74)

Substituting (74) into (71), we have

(75)

which leads to (17) (with an additive constant). Theorem 3.2 is
proved.

APPENDIX C
PROOF OF THEOREM 5.1

Rewrite (46) as

(76)

By (44) and the strong law of large numbers, the first term on the
right-hand side of (76) converges to w.p.1 as .
The first fraction in the second term on the right-hand side of
(76), , converges to

, w.p.1 as . is the probability that the
pair appears in a regenerative period. Let denote the
second part

Define
. Then, we can rearrange the sum in as follows:

(77)
where is the number of visits to the event–action
pair before the th regenerative point along the
sample path. Note that is a function of , and we

XU AND CAO: LEBESGUE-SAMPLING BASED OPTIMAL CONTROL PROBLEMS WITH TIME AGGREGATION 1109

omit here for simplicity. Then, is also a function of
. It is obvious that the number of elements in set

is no more than . Let be the probability of ap-
plying action when event is , according to policy . Then,
we have (which is the
mean number of visits to in a regenerative period) w.p.1
as , and

w.p.

(78)
follows directly from

w.p.

where is the time epoch of the th visit to event–ac-
tion pair . The last two equalities follow from

. Since w.p.1 as
, (47) follows directly from (76)–(78).

REFERENCES

[1] H. Abou-Kandil, O. D. Smet, G. Freiling, and G. Jank, “Flow control
in a failure-prone multi-machine manfacturing system,” in Proc. INRIA/
IEEE Symp. Emerg. Technol. Factory Autom., 1995, vol. 2, pp. 575–583.

[2] J. Abounadi, D. Bertsekas, and V. S. Borkar, “Learning algorithms for
Markov decision processes with average cost,” SIAM J. Control Optim.,
vol. 40, no. 3, pp. 681–698, 2001.

[3] K. E. Arzen, “A simple event-based PID controller,” in Proc. IFAC
World Cong., Beijing, China, 1999, vol. 18, pp. 423–428.

[4] K. J. Astrom and B. M. Bernhardsson, “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,” in Proc. 41th
IEEE Conf. Decision Control, Las Vegas, NV, USA, December 2002.

[5] K. J. Astrom, K. Johan, and B. Wittenmark, Computer-Controlled Sys-
tems, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1997.

[6] B. Bernhardsson, “Event triggered sampling,” in Research Problem
Formulations in the DICOSMOS Project, M. Torngren and M. San-
fridson, Eds. Lund, Sweden: Lund Inst. Technol. Press, 1998.

[7] D. P. Bertsekas and T. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[8] M. S. Branicky, V. S. Borkar, and S. Mitter, “A unified framework for
hybrid control,” IEEE Trans. Autom. Control, vol. 43, no. 1, pp. 31–45,
Jan. 1998.

[9] X. R. Cao, Stochastic Learning and Optimization—A Sensitivity-Based
Approach. New York: Springer, 2007.

[10] X. R. Cao, Z. Ren, S. Bhatnagar, M. Fu, and S. Marcus, “A time aggre-
gation approach to Markov decision processes,” Automatica, vol. 38,
pp. 929–943, 2002.

[11] S. DeWeerth, L. Nielsen, C. Mead, and K. J. Astrom, “A neuron-based
pulse servo for motion control,” in Proc. IEEE Int. Conf. Robot. Autom.,
Cincinnati, OH, 1990, vol. 3, pp. 1698–1703.

[12] J. P. Forestier and P. Varaiya, “Multilayer control of large Markov
chains,” IEEE Trans. Autom. Control, vol. AC-23, no. 2, pp. 298–305,
Apr. 1978.

[13] S. Karlin and H. M. Taylor, A Second Course in Stochastic Pro-
cesses. San Diego, CA: Academic, 1981.

[14] R. McCann, A. K. Gunda, and S. D. Damugatla, “Improved operation
of networked control systems using Lebesgue sampling,” in Proc. Ind.
Appl. Conf., 2004, vol. 2, pp. 1211–1216.

[15] M. Miskowicz, “The event-triggered sampling optimization criterion
for distributed networked monitoring and control systems,” in Proc.
IEEE Int. Conf. Ind. Technol., Maribor, Slovenia, 2003, pp. 1083–1088.

[16] M. Miskowicz and S. Kuta, “Application-driven flow control in dis-
tributed monitoring and control systems,” in Proc. IEEE Int. Conf. Ind.
Technol., Maribor, Slovenia, 2003, pp. 421–425.

[17] C. De Persis, “N-bit stabilization of n-dimensional nonlinear systems
in feedforward form,” IEEE Trans. Autom. Control, vol. 30, no. 3, pp.
299–311, Mar. 2005.

[18] N. Persson and F. Gustafsson, “Event based sampling with application to
vibration analysis in pneumatic tires,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Salt Lake City, UT, 2001, pp. 3885–3888.

[19] M. L. Puterman, Markov Decision Processes. New York: Wiley,
1994.

[20] M. Rabi and J. S. Baras, “Sampling of diffusion processes for real-time
estimation,” in Proc. IEEE Conf. Decision Control, Atlantis, Bahamas,
Dec. 2004, vol. 4, pp. 4163–4168.

[21] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control. New
York: Springer-Verlag, 1999.

[22] J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Handbook of
Learning and Approximate Dynamic Programming. Hoboken, NJ:
Wiley-IEEE Press, 2004.

[23] H. Sira-Ramirez, “A geometric approach to pulse-width modulated
control in nonlinear dynamical systems,” IEEE Trans. Autom. Control,
vol. 34, no. 2, pp. 184–187, Feb. 1989.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[25] A. Wald, “Fitting of straight lines if both variables are subject to error,”
Ann. Math. Stat., vol. 11, pp. 284–300, 1940.

[26] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control, D. A. White
and D. A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992.

[27] K. J. Zhang, Y. K. Xu, X. Chen, and X. R. Cao, “Policy iteration based
feedback control,” Automatica, vol. 44, no. 4, pp. 1055–1061, 2008.

Yan-Kai Xu received the doctoral degree in auto-
matic control from the Center for Intelligent and Net-
worked Systems (CFINS), Tsinghua University, Bei-
jing, China, in 2008.

He currently works for the Beijing GeoScience
Center, Schlumberger Ltd., Beijing, China, as a
Project Engineer. His research interests include opti-
mization and control of stochastic systems, discrete
event dynamic systems, and machine learning.

Xi-Ren Cao (S’82–M’84–F’96) received the M.S.
and Ph.D. degrees from Harvard University, Cam-
bridge, MA, in 1981 and 1984, respectively.

From 1984 to 1986, he was a Research Fellow
with Harvard University. From 1986 to 1993, he
worked as Consultant Engineer/Engineering Man-
ager with Digital Equipment Corporation, Marlboro,
MA. From 1993 to 2010, he was with the Hong Kong
University of Science and Technology (HKUST),
Hong Kong, where he served as a Reader/Pro-
fessor/Chair Professor. Since July 2010, he has been

a Chair Professor with Shanghai Jiao Tong University, Shanghai, China, and an
Affiliate Member of the Institute for Advanced Study, Hong Kong University
of Science and Technology. He owns three patents in data communications and
telecommunications and has published three books in the area of performance
optimization and discrete-event dynamic systems. His current research areas
include and financial engineering, stochastic learning and optimization, perfor-
mance analysis of economic systems, and discrete-event dynamic systems.

Dr. Cao has been a Fellow of the International Federation of Automatic Con-
trol (IFAC) since 2008. He has been the Chairman of IEEE Fellow Evaluation
Committee of IEEE Control System Society, Editor-in-Chief of Discrete Event
Dynamic Systems: Theory and Applications, and Associate Editor at Large of
the IEEE TRANSACTIONS OF AUTOMATIC CONTROL. He has served on the Board
of Governors of the IEEE Control Systems Society and on the Technical Board
of IFAC. He received the Outstanding Transactions Paper Award from the IEEE
Control System Society in 1987, the Outstanding Publication Award from the In-
stitution of Management Science in 1990, the Outstanding Service Award from
IFAC in 2008, and the National Natural Science Award (2nd class), China, in
2009.

