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a b s t r a c t

In this paper, we study the nth-bias optimality problem for finite continuous-time Markov decision
processes (MDPs) with a multichain structure. We first provide nth-bias difference formulas for two
policies and present some interesting characterizations of an nth-bias optimal policy by using these
difference formulas. Then, we prove the existence of an nth-bias optimal policy by using nth-bias optimal
policy iteration algorithms, and show that such an nth-bias optimal policy can be obtained in a finite
number of policy iterations.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Continuous-time Markov decision processes (MDPs) have
received considerable attention because many real-world systems
such as communication networks and logistics systems evolve
in continuous time (Anderson, 1991; Guo, Hernández-Lerma, &
Prieto-Rumeau, 2006). One of themost commonoptimality criteria
in continuous-time MDPs is the long-run average criterion; see,
for instance, Guo, Song, and Zhang (2009), Howard (1960), Miller
(1968), and Puterman (1994) for the case of finite state and
action spaces, Guo and Cao (2005), Guo and Hernández-Lerma
(2003), Guo and Liu (2001), Haviv and Puterman (1998), Kakumanu
(1972), Kitaev and Rykov (1995) and Puterman (1994) for the case
of denumerable state spaces, and (Guo & Rieder, 2006) for the
case of Polish spaces. In particular, an original idea, called the
optimality two-inequality approach, is proposed in Guo and Rieder
(2006); this approach allows weaker conditions and can deal with
unbounded reward/cost functionswhich cannot be treated by both
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the standard optimality inequality approach (Guo & Liu, 2001;
Sennott, 1999) and the optimality equation method (Puterman,
1994).
It is well known that the long-run average criterion focuses

on the asymptotic or limit behavior of a system and ignores
its transient performance. There may exist some policies that
yield the same long-run average reward but have quite different
finite-horizon rewards. Thus, the long-run average criterion is
extremely underselective because it does not distinguish such
policies that have different finite-horizon total rewards, as long
as they have the same long-run average reward. Therefore, it is
natural to propose and study more selective optimality criteria.
To this end, bias optimality, n-discount optimality, and Blackwell
optimality were introduced. These criteria are usually referred to
as sensitive discount optimality criteria; see, for instance, Miller
(1968) and Veinott (1969) for finite continuous-time MDPs,1 Guo
et al. (2006) and Prieto-Rumeau and Hernández-Lerma (2005,
2006) for denumerable but ergodic continuous-time MDPs. It
should be noted that the approaches in these papers depend
heavily on both the Laurent series expansion of a discounted
reward (cf. (8) in Section 2) and the corresponding results for
discrete-time MDPs.
In this paper, we deal with the finite continuous-time MDPs

from a different perspective with the concept of nth-bias

1 A finite continuous-time MDP is a continuous-time MDP with finite state and
finite action spaces.
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optimality. The nth-bias optimality, n ≥ 0, is introduced in Cao
(2007) and Cao and Zhang (2008) for discrete-timeMDPs. The 0th-
bias optimality is the long-run average optimality, and the 1st-bias
optimality is the bias optimality. In general, the nth bias is defined
as the ‘‘bias’’ of the (n− 1)th bias for n ≥ 1. For finite MDPs, when
n is large enough the nth-bias optimality becomes the Blackwell
optimality. The bigger the n is, the more selective the nth-bias
optimality is. Essentially, the approach of nth-bias optimality is
equivalent to that of n-discount optimality, but it is proposed from
a totally different perspective with a sensitivity-based view. A
complete theory for finite MDPs with nth-bias optimality criteria
can be developed with no discounting. The nth-bias optimality
problemwas solved in Cao (2007) andCao and Zhang (2008) for the
finite discrete-timeMDPs. In this paper, we extend these results to
the finite continuous-time MDPs.
Although idea and the primary technique are similar between

the discrete-time MDP (DTMDP) and the continuous-time MDP
(CTMDP), there still exist the differences as follows.
First, the continuous-time MDP does not have the period

problem as the discrete-time MDP. In the case of the discrete-time
MDP, we assume that Pd is aperiodic for all d ∈ D. If Pd is periodic,
we need to replace the normal limit (limL→∞[·]) with the Cesaro
limit (limL→∞ 1

L

∑L−1
l=0 [·]) (refer to Cao and Zhang (2008)).

Second, since the nth-bias difference formulas are different in
the form (the summation in the DTMDP and the integral in the
CTMDP, refer to Lemma 2 in Cao and Zhang (2008) and Theorem 1
in this paper correspondingly), the proof techniques are also
different. For example, the proof in Theorem 4 in Cao and Zhang
(2008) for the case of DTMDP is direct while the corresponding
result in Lemma 5 for CTMDP is proved by contradiction since the
former technique does not work.
In this paper, we proceed as follows.
I.We first define nth biases and derive the nth-bias difference

formulas of any two policies which have the same (n − 1)th bias
(n ≥ 0). We prove that an |S|th-bias optimal policy is nth-bias
optimal for all n ≥ 0, where |S| is the number of states.

II. By using the nth-bias difference formulas and some simple
facts followed from the canonical form of a transition probability
function, we derive the necessary and sufficient conditions for the
nth-bias optimal policies in Theorems 3 and 4, respectively.

III.Again, by using the nth-bias difference formulas, we develop
the nth-bias optimal policy iteration algorithm, for all n ≥ 0, and
prove that it stops at an nth-bias optimal policy in a finite number
of iterations and this nth-bias optimal policy satisfies the sufficient
conditions.
In summary, starting from any policy we can apply the (0th-
bias) policy iteration algorithm,which reaches a (0th-bias) optimal
policy; starting from this 0th-bias optimal policy, we can apply the
(1st-) bias policy iteration algorithm, which reaches a (1st-) bias
optimal policy; and starting from this (n−1)th-bias optimal policy,
we can apply thenth-bias policy iteration algorithm,which reaches
an nth-bias optimal policy; continuing this process, we can obtain
an |S|th-bias optimal policy, which is a Blackwell optimal policy
(Cao, 2007).
Our arguments are based on the nth-bias difference formulas

of two policies which are derived in Theorem 1 and on a simple
observation from the canonical form of the transition probability
function. These formulas are all new in the literature and allow
us to compare the biases of two different policies based on only
one policy’s biases under some conditions. Therefore, the policy
iteration algorithms follow naturally from the bias difference
formulas which actually form the basis of the optimization theory
of the nth biases.
There are a number of advantages of our approach based

on the performance difference formulas. First, compared with
the previous works on MDPs and the n-discount optimality
theory (Miller, 1968; Prieto-Rumeau & Hernández-Lerma, 2005,
2006; Veinott, 1969), the approach based on the bias difference
formulas makes the presentation and derivation simpler, and is
more intuitive and direct. It is completely independent of the
discounted MDP formulation and does not depend on Laurent
series expansion. Our proofs need no results for discrete-time
MDPs or discounted continuous-time MDPs, while the approaches
used in Miller (1968) and Veinott (1969) depend heavily on
results about discrete-time MDPs and those in Prieto-Rumeau and
Hernández-Lerma (2005, 2006) on the Laurent series expansion of
discounted continuous-time MDPs.
Second, this research is a part of our effort in developing

sensitivity-based learning and optimization theory for stochastic
systems (see Cao (2007)). The development of this approach is
based on the following ‘‘philosophical’’ thought: Optimization
approaches such as policy iteration can be derived simply
from performance difference formulas (the difference of the
performance of any two policies); this sensitivity-based view on
performance optimization was first proposed in Cao (2003), and
many results in MDPs, perturbation analysis, and reinforcement
learning, etc., can be derived and explained naturally with this
sensitivity-based view (Cao, 2007). In this paper, we extend
the theory of finite discrete-time multichain Markov decision
processes with different performance optimization criteria (cf.
Arapostathis, Borkar, Fernandez-Gaucherand, Ghosh, and Markus
(1993), Cao and Guo (2004), Cao and Zhang (2008) and Lewis
and Puterman (2002)) to that of finite continuous-timemultichain
MDPs. Our on-going research indicates that the sensitivity-based
approach can also be applied to systems with continuous state
spaces that are driven by Brownianmotions and/or Levy processes
(for a description of such processes, see Oksendal and Sulem
(2007)). Thus, the research in this paper is one step towards a
unified approach in optimization of stochastic systems including
discrete time and continuous time, discrete states and continuous
states.
Third, the sensitivity-based approach also links the policy

iteration-based methods to other subjects such as perturbation
analysis, gradient-basedmethods, and reinforcement learning, see
Cao (2007) for the discrete-time case. Therefore, the research in
this paper opens up topics in these directions such as sample-path-
based learning, event-based optimization etc.
In Section 2, we briefly describe the model of continuous-time

MDPs and the nth-bias optimality criteria that we are concerned
with. In Section 3, we give some technical preliminaries and then
derive the nth-bias difference formulas, which are the core of our
approach. In Section 4, we derive the necessary and sufficient
conditions of nth-bias optimal policies, and finally, in Section 5, we
develop the nth-bias optimal policy iteration algorithms and prove
that they stop in a finite number of steps to an nth-bias optimal
policy satisfying the sufficient conditions.

2. nth-bias optimality criteria

In this section, we first state the model of continuous-time
MDPs and briefly review some related results, and we then define
the nth biases and the nth-bias optimality criteria.
A continuous-time MDP is defined as

{S, A(i), q(j|i, a), r(i, a), a ∈ A(i), i, j ∈ S}, (1)

where S is a state space, A(i) is the set of admissible actions at
state i, i ∈ S, and we assume that S and A(i), i ∈ S, are finite.
Let K := {(i, a) : i ∈ S, a ∈ A(i)} be the set of pairs of states
and actions. The real-valued function q(j|i, a) in (1) is the transition
rates that satisfy:

(A) 0 ≤ q(j|i, a) <∞, for all (i, a) ∈ K and i 6= j; and
(B)

∑
j∈S q(j|i, a) = 0, q(i|i, a) ≤ 0, for all (i, a) ∈ K .
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The reward rate function r(i, a) on K is real-valued. We set A =
∪i∈S A(i).
A continuous-time MDP evolves as follows. A decision-maker

observes continuously the current state of a system. Whenever the
system is in state i ∈ S, he/she chooses an action a ∈ A(i)
(depending on i) according to some rules. In general, if action a
is chosen when the system is in state i, the state transition rate
of the underlying Markov chain is q(j|i, a) and the decision-maker
receives a reward at a rate of r(i, a) (say, $/sec) (Suppose that
q(j|i, a) and r(i, a) are all finite for all a ∈ A(i), i, j ∈ S). The goal
of the decision-maker is to maximize some performance criteria,
which in our present case are defined by (4) and (7), below.
We now introduce the class of (deterministic and stationary)

policies.

Definition 1. A policy is a mapping d: S → A such that d(i) ∈ A(i)
for all i ∈ S.

We denote by D the family of all deterministic and stationary
policies.
For each fixed d ∈ D, Q (d) := [q(j|i, d(i))]i,j∈S is also called

an infinitesimal generator matrix; see Feller (1940), Guo and Cao
(2005), Guo and Hernández-Lerma (2003), Guo and Liu (2001) and
Kakumanu (1972) for instance. Moreover, by Feller (1940), Guo
and Cao (2005), Guo and Hernández-Lerma (2003) and Guo and
Liu (2001), there exists a unique homogeneous transition function
p(i, t, j, d) := P(Xt = j|X0 = i, d) (where {Xt , t ≥ 0}
is a continuous-time Markov chain) having the transition rates
q(j|i, d(i)) and satisfying the Kolmogorov equation
d
dt
p(i, t, j, d) =

∑
k∈S

p(i, t, k, d)q(j|k, d(k))

=

∑
k∈S

q(k|i, d(i))p(k, t, j, d), (2)

for all i, j ∈ S and t ≥ 0, where t and d typically represent
continuous time and policy respectively.
In what follows, we assume that all the relationships among

matrices (or vectors) and the operators, such as ‘‘limit’’ and ‘‘max’’,
hold componentwisely. Thus, for two vectors x and y defined on
state space S, we define x = y if x(i) = y(i) for all i ∈ S, where
x(i) and y(i) denote the ith component of x and y, respectively;
x > y if x(i) > y(i) for all i ∈ S; x ≥ y if x(i) ≥ y(i) for all i ∈ S.
Furthermore, we define x � y if x ≥ y and x(i) > y(i) for at least
one i ∈ S. The relation≥ includes=,�, and>. Similar definitions
are used for the relations <, ≤ and �. Without any confusion, we
denote by ‘‘0’’ the matrix and the vector with zero as all of their
components, and by I the identity matrix.
We denote by P(t, d) := [p(i, t, j, d)]i,j∈S the (homogeneous)

transition matrix of a Markov chain with the infinitesimal
generator matrix Q (d). Note that, P(0, d) = I . By these notations,
(2) can be rewritten as
d
dt
P(t, d) = Q (d)P(t, d)

= P(t, d)Q (d) ∀t ≥ 0,∀d ∈ D. (3)

By (3) and P(0, d) = I , we can obtain

P(t, d) = exp{Q (d)t} =
∞∑
n=0

tn

n!
(Q (d))n,

where (Q (d))0 = I .
For each d ∈ D, let r(d) be a column vector with ith-component

r(i, d(i)) for each i ∈ S. Then, the long-run average reward of policy
d is defined as

gd0 := lim sup
T→∞

∫ T
0 P(t, d)r(d)dt

T
, (4)
where gd0 is a column vector with ith-component g
d
0 (i) for each i ∈

S. The optimal average reward is defined as g∗0 (i) := maxd∈D g
d
0 (i),

for all i ∈ S. A policy d∗ is said to be average-reward optimal if

gd
∗

0 = g
∗

0 .

Let D∗0 := {d ∈ D : g
d
0 = g

∗

0 } be the set of all average-reward
optimal policies. We will see that D∗0 is not empty in Section 5.
Thus, as is well known (see Guo et al. (2009), for instance), we

have the following lemma.

Lemma 1. For each d ∈ D, the following assertions hold:
(a) The limit P∗(d) := limt→∞ P(t, d) exists, and gd0 = P

∗(d)r(d);
(b) Q (d)P∗(d) = P∗(d)Q (d) = 0, and Q (d)gd0 = 0;
(c)

∫
∞

0 |P(t, d) − P
∗(d)|dt < ∞, where |C | denotes the absolute

value norm of any matrix C = [cij]i,j∈S defined by |C | :=∑
i,j∈S |cij|;

(d) P(t, d)P∗(d) = P∗(d)P(t, d) = P∗(d)P∗(d) = P∗(d) for all
t ≥ 0.

Wedenote by B(S) the Banach space of all real-valued functions on
S. Choosing an arbitrary policy d ∈ D, we can define an operatorHd
from B(S) to itself by

Hdu :=
∫
∞

0
[P(t, d)− P∗(d)]udt ∀u ∈ B(S). (5)

By Lemma 1(c) and the finiteness of S, we see that Hdu are indeed
in B(S) for all u ∈ B(S).
For each d ∈ D, as is well known, the bias gd (or equivalently,

the 1st bias gd1 ) of d is defined by

gd ≡ gd1 :=
∫
∞

0
[P(t, d)− P∗(d)]r(d)dt

=

∫
∞

0
[P(t, d)r(d)− gd0 ]dt, (6)

where gd is a column vector with ith-component gd(i) for each
i ∈ S. The bias of d is the expected total difference between the
immediate reward P(t, d)r(d) and the long-run average reward gd0 .
The optimal bias g∗ is defined by its components g∗(i) :=

maxd∈D∗0 g
d(i) for all i ∈ S. A policy d∗ ∈ D∗0 is said to be bias optimal

if
gd
∗

= g∗.
Let D∗1 := {d ∈ D

∗

0 : g
d
= g∗} be the set of all bias optimal policies.

With the notation for the 1st bias, we can also write D∗1 = {d ∈ D :
gd0 = g

∗

0 , g
d
1 = g

∗

1 }, with g
∗

1 ≡ g
∗. For each d ∈ D, by Lemma 1(a),

(5) and (6), we have gd = Hdr(d). In general, for each n ≥ 1, by (5),
we define inductively that

gdn := (−1)
n−1Hnd r(d). (7)

By Lemma 1(c), gdn is finite.

Definition 2. For each d ∈ D and n ≥ 0, gdn is called the nth bias of
policy d.

From (6) and (7), gd2 is the bias of d when the reward rate is −g
d
1 ,

and in general, gdn is the bias of dwhen the reward rate is−g
d
n−1.

An average-reward optimal policy d ∈ D∗0 maximizes the long-
run time average of the reward received. A bias optimal policy
can be viewed as maximizing the total expected reward; since the
steady-state reward is the same for all policies inD∗0 , a bias optimal
policy in fact maximizes the initial part of the expected reward,
or the transient rewards. Furthermore, as we can see from (6),
bias places equal weight on rewards received at different times.
We, however, sometimes prefer to receive the rewards earlier,
this motivates us to study other optimality criteria that are more
selective than the long-run average and bias optimality. They are
the nth-bias optimality defined as follows.
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Definition 3. The optimal nth bias is denoted as g∗n (i) :=

maxd∈D∗n−1 g
d
n (i), for all i ∈ S. A policy d

∗
∈ D∗n−1 is called nth-bias

optimal if

gd
∗

n (i) = g
∗

n (i) ∀i ∈ S, n ≥ 0,

where D∗n−1 := {d ∈ D
∗

n−2 : g
d
n−1 = g

∗

n−1} = {d ∈ D : g
d
l = g

∗

l , l =
0, 1, . . . , n−1} is the set of all (n−1)th-bias optimal policies, and
D∗
−1 := D.

From the definition, we can see that g∗n always exists. We will
prove that an nth-bias optimal policy, n ≥ 0, also always exists
in Section 5.
From Definition 3, the 0th-bias optimality and the 1st-bias

optimality are the same as the average-reward optimality and the
bias optimality, respectively. The nth-bias optimality has a clear
physical meaning (see Cao and Zhang (2008)). For example, the
2nd-bias optimality gives a larger weight on the early rewards.
From Definition 3, an (n+ 1)th-bias optimal policy is also nth-bias
optimal, i.e., D∗n+1 ⊆ D

∗
n for all n ≥ 0. That is, the bigger the n is,

the more selective the nth-bias optimality is.
As a comparison, we note that the n-discount optimality in the

existing literature (see Taylor (1976) and Veinott (1969)) is based
on the following expansion

gd0
α
+

∞∑
n=1

αn−1gdn =
∫
∞

0
e−αtP(t, d)r(d)dt, (8)

where α > 0, which is the discounted factor.
The right-hand side of (8) is the α-discounted expected reward

of d, and the left-hand side of (8) is the Laurent series of the α-
discounted expected reward of d. From (4) and (8), we see that
the long-run average criterion (e.g., Guo and Hernández-Lerma
(2003), Guo and Liu (2001), Guo et al. (2009), Haviv and Puterman
(1998), Kakumanu (1972), Kitaev and Rykov (1995) and Puterman
(1994)) is concerned with the optimality of the first term of the
Laurent series, and the bias criterion (e.g., Miller (1968), Prieto-
Rumeau and Hernández-Lerma (2005, 2006) and Veinott (1969)),
with the optimality of the second term of the Laurent series given
that its first term has been optimized. We also see that our nth-
bias optimality is equivalent to the n-discount optimality in Prieto-
Rumeau and Hernández-Lerma (2005).
Themain goal of this paper is to provide anew and self-contained

approach to the finite continuous-time MDPs with the nth-bias
optimality criteria by using the performance difference formulas.
We show the existence of the nth-bias optimal policies, propose
policy iteration algorithms, andprove their convergence to thenth-
bias optimal policies, n ≥ 0. The approach is based on the nth-bias
difference formulas from the sensitivity-based view.

3. nth-bias difference formulas

In this section, we provide the nth-bias difference formulas of
any twodifferent policieswhichhave the same (n−1)th bias,n ≥ 1
(we provide the 0th-bias difference formulas of any two different
policies when the case n = 0). These formulas are used to prove
the existence of an nth-bias optimal policy for all n ≥ 0.
First note that, for each d ∈ D, by (5) and (7) we have

gdn+1 = −
∫
∞

0
[P(t, d)− P∗(d)]gdndt ∀n ≥ 1. (9)

(9) is not convenient to compute gdn+1 since it is an infinite integral.
To solve gdn+1 straightforward, we give a lemma below.

Lemma 2. Let d ∈ D, then
(a) the Poisson equation holds:

gd0 = r(d)+ Q (d)g
d
1 . (10)

(b) P∗(d)gdn = 0 for all n ≥ 1.
(c) For each fixed n ≥ 1, gdn+1 is the unique solution to the following
equations:

P∗(d)gdn+1 = 0, (11)

Q (d)gdn+1 = g
d
n . (12)

Proof. (a) By Lemma 1(a), Lemma 1(b), (3) and (6) we have

Q (d)gd1 = Q (d)
∫
∞

0
[P(t, d)− P∗(d)]r(d)dt

=

∫
∞

0
Q (d)P(t, d)r(d)dt

= lim
T→∞

∫ T

0

d
dt
P(t, d)r(d)dt

= lim
T→∞
[P(T , d)− I]r(d)

= P∗(d)r(d)− r(d)
= gd0 − r(d),

which gives (a).
(b) By Lemma 1(d) and (6), (b) holds for n = 1. In general, by

Lemma 1(d) and (9), we have that, for each n ≥ 1

P∗(d)gdn+1 = −P
∗(d)

∫
∞

0
[P(t, d)− P∗(d)]gdndt

= −

∫
∞

0
[P∗(d)P(t, d)− P∗(d)P∗(d)]gdndt = 0. (13)

Thus, (b) follows.
(c) By (9), Lemma 2(b) and (3), we have

Q (d)gdn+1 = −Q (d)
∫
∞

0
[P(t, d)− P∗(d)]gdndt

= −

∫
∞

0
[Q (d)P(t, d)]gdndt

= −[P∗(d)− I]gdn = g
d
n ,

which, together with (13), implies that gdn+1 is a solution to (11)
and (12). To prove the uniqueness, suppose that

P∗(d)x = 0 and Q (d)x = gdn .

Then, by Lemma 2(b) and Lemma 1(d), we have

P(t, d)Q (d)x = P(t, d)gdn = P(t, d)[g
d
n − P

∗(d)gdn ]

= [P(t, d)− P∗(d)]gdn ,

which, togetherwith (3) and by a straightforward calculation, gives

[P(T , d)− I]x =
∫ T

0
[P(t, d)− P∗(d)]gdndt.

Letting T →∞, by P∗(d)x = 0 and Lemma 1(a), we get

x = −
∫
∞

0
[P(t, d)− P∗(d)]gdndt = g

d
n+1,

so the uniqueness follows. �

By Lemma 2(b), (9) can be rewritten as

gdn+1 = −
∫
∞

0
P(t, d)gdndt ∀n ≥ 1. (14)

We introduce the following notations. The group inverse of Q (d) is
defined as Q (d)# = [Q (d)− P∗(d)]−1+ P∗(d) (cf. Cao (2007)). We
have

Q (d)Q (d)# = Q (d)#Q (d) = I − P∗(d).
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By P∗(d)gd1 = 0 and pre-multiplying both sides of the Poisson
equation (10) by Q (d)#, we obtain

gd1 = −Q (d)
#
[r(d)− gd0 ]

= [−Q (d)+ P∗(d)]−1(r(d)− gd0 ). (15)

With the same reasoning, by (11) (P∗(d)gdn+1 = 0) and pre-
multiplying both sides of (12) by Q (d)#, we can rewrite (14) as

gdn+1 = Q (d)
#gdn

= −[−Q (d)+ P∗(d)]−1gdn

= (−1)n[−Q (d)+ P∗(d)]−(n+1)(r(d)− gd0 ) ∀n ≥ 1. (16)

Note that (15) and (16) for continuous-time MDPs have a similar
form as those for discrete-time MDPs (see in Cao and Zhang
(2008)).
Nowwe give our first main result about the nth-bias difference.

Theorem 1. Suppose that d and h are both in D. Then,

(a) gh0 − g
d
0 = P

∗(h)[r(h)+ Q (h)gd1 − g
d
0 ] + [P

∗(h)− I]gd0 .
(b) If gd0 = g

h
0 , then

gh1 − g
d
1 =

∫
∞

0
P(t, h)[r(h)+ Q (h)gd1 − g

d
0 ]dt

+ P∗(h)[Q (h)− Q (d)]gd2

=

∫
∞

0
P(t, h)[r(h)+ Q (h)gd1 − g

d
0 ]dt

+ P∗(h)[gh1 − g
d
1 ].

(c) For any fixed n ≥ 1, if gdn = g
h
n , then

ghn+1 − g
d
n+1 =

∫
∞

0
P(t, h)[Q (h)− Q (d)]gdn+1dt

+ P∗(h)[Q (h)− Q (d)]gdn+2.

Proof. (a) Since P∗(h)Q (h) = 0 (by Lemma1(b)), fromLemma2(a)
we have

gh0 − g
d
0 = P

∗(h)r(h)− gd0
= P∗(h)[r(h)+ Q (h)gd1 − r(d)− Q (d)g

d
1 ]

+ P∗(h)r(d)− gd0 + P
∗(h)Q (d)gd1

= P∗(h)[r(h)+ Q (h)gd1 − r(d)− Q (d)g
d
1 ]

+ P∗(h)[r(d)+ Q (d)gd1 ] − g
d
0

= P∗(h)[r(h)+ Q (h)gd1 − g
d
0 ] + [P

∗(h)− I]gd0 .

This implies (a).
(b) By (6), we have

gh1 − g
d
1 =

∫
∞

0
[P(t, h)r(h)− P(t, d)r(d)]dt

=:

∫
∞

0
P(t, h)[r(h)+ Q (h)gd1 − g

d
0 ]dt +∆, (17)

where,∆ := −
∫
∞

0 P(t, h)Q (h)g
d
1dt+

∫
∞

0 [P(t, h)g
d
0 −P(t, d)r(d)]

dt.
Then, by (3) and a straightforward calculation, we have

∆ = gd1 − P
∗(h)gd1 +

∫
∞

0
[P(t, h)gd0 − P(t, d)r(d)]dt.
Thus, by P∗(d)r(d) = gd0 = g
h
0 = P

∗(h)r(h) and Lemma 1(d), we
have

∆ = gd1 − P
∗(h)gd1 +

∫
∞

0
[P(t, h)gh0 − P(t, d)r(d)]dt

= gd1 − P
∗(h)gd1 +

∫
∞

0
[P∗(h)r(h)− P(t, d)r(d)]dt

= gd1 − P
∗(h)gd1 −

∫
∞

0
[P(t, d)− P∗(d)]r(d)dt

= −P∗(h)gd1 ,

which, together with (17), Lemma 1(b) and (12), gives

gh1 − g
d
1 =

∫
∞

0
P(t, h)[r(h)+ Q (h)gd1 − g

d
0 ]dt

+ P∗(h)Q (h)gd2 − P
∗(h)Q (d)gd2

=

∫
∞

0
P(t, h)[r(h)+ Q (h)gd1 − g

d
0 ]dt

+ P∗(h)[Q (h)− Q (d)]gd2

=

∫
∞

0
P(t, h)[r(h)+ Q (h)gd1 − g

d
0 ]dt

+ P∗(h)[gh1 − g
d
1 ].

This implies (b).
(c) By (12) and (14), from gdn = g

h
n , we have

ghn+1 − g
d
n+1

=

∫
∞

0
[P(t, d)− P(t, h)]gdndt

=

∫
∞

0
[P(t, d)− P(t, h)]Q (d)gdn+1dt

=

∫
∞

0
P(t, h)[Q (h)− Q (d)]gdn+1dt

+

∫
∞

0
P(t, d)Q (d)gdn+1dt −

∫
∞

0
P(t, h)Q (h)gdn+1dt

=

∫
∞

0
P(t, h)[Q (h)− Q (d)]gdn+1dt + P

∗(d)gdn+1 − P
∗(h)gdn+1

=

∫
∞

0
P(t, h)[Q (h)− Q (d)]gdn+1dt − P

∗(h)gdn+1,

which, together with (12) and Lemma 1(b), gives

ghn+1 − g
d
n+1 =

∫
∞

0
P(t, h)[Q (h)− Q (d)]gdn+1dt

− P∗(h)Q (d)gdn+2

=

∫
∞

0
P(t, h)[Q (h)− Q (d)]gdn+1dt

+ P∗(h)[Q (h)− Q (d)]gdn+2.

This implies (c). �

Theorem 1 gives the nth-bias difference formulas of two policies
having the same (n − 1)th bias. These formulas are all new
in the literature and will be used to prove some interesting
characterizations of the nth-bias optimal policies below.

Theorem 2. Let |S| be the number of states in S. If d ∈ D is |S|th-bias
optimal, then d is also nth-bias optimal for all n ≥ 0.

Proof. ByDefinition 3 and the uniqueness of P(t, d)determined by
Q (d), it suffices to show that ghn = g

d
n for all n ≥ |S| and d, h ∈ D

∗

|S|
with Q (h) 6= Q (d). In fact, for each h ∈ D∗

|S|, as d ∈ D is |S|th-bias



J. Zhang, X.-R. Cao / Automatica 45 (2009) 1628–1638 1633
optimal, we have ghn = g
d
n for all 0 ≤ n ≤ |S|. Then, by Lemma 1(a),

Lemma 1(b) and (12), we have

[Q (h)− Q (d)]gd0 = Q (h)g
h
0 − Q (d)g

d
0 = 0 and

[Q (h)− Q (d)]gdn = Q (h)g
h
n − Q (d)g

d
n = 0, ∀2 ≤ n ≤ |S|,

which, together with (7), give

[Q (h)− Q (d)]gd0 = 0 and [Q (h)− Q (d)]Hnd r(d) = 0,

∀2 ≤ n ≤ |S|. (18)

Therefore, the vectors gd0 and H
n
d r(d)(2 ≤ n ≤ |S|) belong to

the null space of (the operator determined by) Q (h)− Q (d). Since
Q (h)− Q (d) 6= 0, the rank of Q (h)− Q (d)must be at least 1, and
so the dimension of the null space ofQ (h)−Q (d) is at most |S|−1.
Hence, gd0 and H

n
d r(d)(2 ≤ n ≤ |S|) are linearly dependent. Thus,

there exists an integer 1 ≤ k ≤ |S| − 1 such that Hk+1d r(d) is a
linear combination of gd0 and H

n
d r(d) (2 ≤ n ≤ k).

We now show by induction that, for each m ≥ 2, Hmd r(d) is a
linear combination of gd0 and H

n
d r(d) (2 ≤ n ≤ k). To see this,

suppose that this conclusion holds for some m (≥ k + 1). That is,
there exist k numbers λl such that

Hmd r(d) = λ1g
d
0 +

k∑
l=2

λl(H ldr(d)),

which, together with (5) and Hdgd0 = 0, gives

Hm+1d r(d) =
k−1∑
l=2

λl(H l+1d r(d))+ λk(H
k+1
d r(d)). (19)

Since Hk+1d r(d) is a linear combination of gd0 and H
n
d r(d) (2 ≤ n ≤

k), it follows from (19) that Hm+1d r(d) is also a linear combination
of gd0 and H

n
d r(d) (2 ≤ n ≤ k), and so the desired conclusion is

proved. Therefore, by (7) and (18) we have

[Q (h)− Q (d)]gd0 = 0 and [Q (h)− Q (d)]gdn = 0 ∀n ≥ |S|,

which, together with Theorem 1(c), gives that, for each n ≥ |S|,

ghn+1 − g
d
n+1 =

∫
∞

0
P(t, h)[Q (h)− Q (d)]gdn+1dt

+ P∗(h)[Q (h)− Q (d)]gdn+2 = 0.

The proof is completed. �

Theorem 2 is very interesting. It shows that, in order to obtain a
policy which is nth-bias optimal for all n ≥ 0, it suffices to find an
|S|th-bias optimal policy. We can also easily prove that if d ∈ D∗

|S|,
then d is also a Blackwell optimal policy. Thus, in what follows, we
only need to focus on the existence and calculation of an |S|th-bias
optimal policy. We have some simple but useful lemmas.

Lemma 3. (a) For each d ∈ D, if P∗(d)u = 0 and u ≤ 0 (or u ≥ 0),
then u(i) = 0 for all recurrent states i under Q (d).

(b) For each d ∈ D, if u(i) ≥ 0 (or u(i) ≤ 0) for all recurrent states i
under Q (d), then P∗(d)u ≥ 0 (or P∗(d)u ≤ 0).

Proof. Let Cdk ⊂ S, k = 1, 2, . . . ,m, be the disjoint closed
irreducible sets of the recurrent states under Q (d), wherem is the
number of such sets; and Cdm+1 is the set of transient states. First, it
is well known (e.g., Anderson (1991)) that by reordering the states,
P∗(d) takes the canonical form of

P∗(d) =


P∗1 (d) 0 0 · · · 0
0 P∗2 (d) 0 · · · 0
...

...
. . .

...
...

0 · · · 0 P∗m(d) 0
W ∗1 (d) W ∗2 (d) · · · W

∗

m(d) 0

 , (20)
in which P∗k (d) corresponds to the transitions among states in C
d
k ,

k = 1, 2, . . . ,m;W ∗k (d) to the transitions from the transient states
in Cdm+1 to the recurrent states in C

d
k , k = 1, . . . ,m. Since the

columns in P∗(d) corresponding to transient states are all zeros;
thus, all u(l)’s with l being transient states contribute nothing to
P∗(d)u. Further, P∗k (d) > 0 for k = 1, 2, . . . ,m. Then the lemma
follows directly from the canonical form of P∗(d) (20). �

Lemma 4. The following assertions hold for any d, h ∈ D:
(a) If gd0 = g

h
0 , then Q (d)g

h
0 = 0, and P

∗(h)[r(h)+Q (h)gd1 − g
d
0 ] =

0.
(b) If gdn = g

h
n with n ≥ 1, then P

∗(h)[Q (h)− Q (d)]gdn+1 = 0.

Proof. (a) Since gd0 = g
h
0 , by Lemma 1(a) and (b), we have

Q (d)gh0 = Q (d)g
d
0 = Q (d)P

∗(d)r(d) = 0.

Thus, the first part of (a) follows. Moreover, by gd0 = gh0 =
P∗(h)r(h) and Lemma 1(a) and (d), we have

[P∗(h)− I]gd0 = [P
∗(h)− I]gh0 = 0,

which, together with Lemma 1(b), gives the second part of (a).
(b) By (12) and gdn = g

h
n , we have

P∗(h)Q (d)gdn+1 = P
∗(h)gdn = P

∗(h)ghn = 0,

which, together with Lemma 1(b), yields (b). �

4. Necessary and sufficient conditions for nth-bias optimal
policies

From the right-hand sides of the nth-bias difference formulas
in Theorem 1 and Lemma 3 in Section 3, we can derive the bias
optimality Eqs. (24)–(26) in the following.
We now give another characterization of an nth-bias optimal

policy. To do so, we need to introduce some notations:
For each d ∈ D and n ≥ 1, define

Ad0(i) :=

{
a ∈ A(i) :

∑
j∈S

q(j|i, a)gd0 (j) = 0

}
, (21)

Ad1(i) :=

{
a ∈ Ad0(i) : r(i, a)+

∑
j∈S

q(j|i, a)gd1 (j) = g
d
0 (i)

}
,

...

Adn(i) :=

{
a ∈ Adn−1(i) :

∑
j∈S

q(j|i, a)gdn (j) = g
d
n−1(i)

}
, ∀i ∈ S.

Apparently, by (10) and (12), we have d(i) ∈ Adn(i), for all i ∈ S and
for all n ≥ 0 and the action space Adn(i) depends on policy d. When
d is an nth-bias optimal policy d∗, we denote Adn(i) as An(i) (since it
does not depend on d, hereby we have d∗(i) ∈ An(i)), for all i ∈ S.
That is,

A0(i) :=

{
a ∈ A(i) :

∑
j∈S

q(j|i, a)g∗0 (j) = 0

}
, (22)

A1(i) :=

{
a ∈ A0(i) : r(i, a)+

∑
j∈S

q(j|i, a)g∗1 (j) = g
∗

0 (i)

}
,

...

An(i) :=

{
a ∈ An−1(i) :

∑
j∈S

q(j|i, a)g∗n (j) = g
∗

n−1(i)

}
,

∀i ∈ S. (23)
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Theorem 3. Suppose that policy d∗ satisfies the following (n +
2) (n ≥ 0) bias optimality conditions

max
a∈A(i)

{∑
j∈S

q(j|i, a)gd
∗

0 (j)

}
= 0, (24)

max
a∈Ad

∗

0 (i)

{
r(i, a)+

∑
j∈S

q(j|i, a)gd
∗

1 (j)

}
= gd

∗

0 (i), (25)

max
a∈Ad

∗

k (i)

{∑
j∈S

q(j|i, a)gd
∗

k+1(j)

}
= gd

∗

k (i),

∀i ∈ S and 1 ≤ k ≤ n. (26)

Then, d∗ is nth-bias optimal.

Proof. First, consider the case n = 0. For each d ∈ D, since d∗
satisfies (24), we have u := Q (d)gd

∗

0 ≤ 0. Then, by Lemma 3(a) and
Lemma 1(b), we have u(i) = 0 for all recurrent states i under Q (d).
Thus, it follows from (25) and (21) that v(i) := [r(d)+ Q (d)gd

∗

1 −

gd
∗

0 ](i) ≤ 0 for all recurrent states i under Q (d). By Lemma 3(b),
we have P∗(d)v ≤ 0. On the other hand, since Q (d)gd

∗

0 ≤ 0,
we have P(t, d)Q (d)gd

∗

0 ≤ 0 for all t ≥ 0. Thus, by (3) we have
[P(T , d)− I]gd

∗

0 ≤ 0 for all T ≥ 0; therefore, from Lemma 1(a) and
letting T →∞, we have [P∗(d)− I]gd

∗

0 ≤ 0. Thus, by Theorem 1(a)
we have gd0 − g

d∗
0 = P

∗(d)v + [P∗(d) − I]gd
∗

0 ≤ 0, for all d ∈ D.
This means that d∗ is 0th-bias optimal, i.e., in D∗0 .
Second, consider the case n = 1. For each d ∈ D∗0 , we have

gd
∗

0 = g
d
0 , and so it follows from Lemma 1(b) that d(i) is in A

d∗
0 (i)

for all i ∈ S. Thus, by (25) we have gd
∗

0 − r(d) − Q (d)g
d∗
1 ≥ 0.

Therefore, by Lemmas 3(a) and 4(a), we have

r(i, d(i))+
∑
j∈S

q(j|i, d(i))gd
∗

1 (j) = g
d∗
0 (i)

for all recurrent states i under Q (d), which, together with the
definition of Ad

∗

1 (i) and (26) with n = 1, gives∑
j∈S

q(j|i, d(i))gd
∗

2 (j) ≤ g
d∗
1 (i) =

∑
j∈S

q(j|i, d∗(i))gd
∗

2 (j),

which holds for all recurrent states i under Q (d), and so
P∗(d)[Q (d) − Q (d∗)]gd

∗

2 ≤ 0 (by Lemma 3(b)). Since we have
shown that r(d) + Q (d)gd

∗

1 − g
d∗
0 ≤ 0, by P(t, d) ≥ 0 and

P∗(d)[Q (d)− Q (d∗)]gd
∗

2 ≤ 0, we have∫
∞

0
P(t, d)[r(d)+ Q (d)gd

∗

1 − g
d∗
0 ]dt

+ P∗(d)[Q (d)− Q (d∗)]gd
∗

2 ≤ 0,

which, together with Theorem 1(b), yields

gd1 − g
d∗
1 ≤ 0,

and so d∗ is 1st-bias optimal, i.e., in D∗1 .
Finally, consider the case n ≥ 2. By induction, suppose that d∗

is in D∗m for some 1 ≤ m ≤ n− 1. Then, to show that d
∗ is in D∗m+1,

by Definition 3 we need to prove that gd
∗

m+1 ≥ g
d
m+1 for all d ∈ D

∗
m.

In fact, for each d ∈ D∗m, by the definition of D
∗
m and the induction

hypothesis, we have gd
∗

l = g
d
l for all 0 ≤ l ≤ m. Then, we see

that d(i) is in Ad
∗

m (i) for all i ∈ S (by (12) for m ≥ 2 and by (10) for
m = 1), and then it follows from (12) and (26) that

Q (d)gd
∗

m+1 ≤ g
d∗
m = Q (d

∗)gd
∗

m+1.
Hence, by Lemmas 3(a) and 4(b), we have∑
j∈S

q(j|i, d(i))gd
∗

m+1(j) = g
d∗
m (i),

for any recurrent state i under Q (d), and so d(i) is in Ad
∗

m+1(i) for all
recurrent states i under Q (d). Thus, by (26) we have∑
j∈S

q(j|i, d(i))gd
∗

m+2(j) ≤ g
d∗
m+1(i) =

∑
j∈S

q(j|i, d∗(i))gd
∗

m+2(j)

for all recurrent states i under Q (d), and so P∗(d)[Q (d) −
Q (d∗)]gd

∗

m+2 ≤ 0 (by Lemma 3(b)). Since we have shown that
Q (d)gd

∗

m+1 − g
d∗
m ≤ 0, by P(t, d) ≥ 0 we have P(t, d)[Q (d) −

Q (d∗)]gd
∗

m+1 ≤ 0, and so∫
∞

0
P(t, d)[Q (d)gd

∗

m+1 − g
d∗
m ]dt

+ P∗(d)[Q (d)− Q (d∗)]gd
∗

m+2 ≤ 0,

which, together with Theorem 1(c), gives

gdm+1 − g
d∗
m+1 ≤ 0, ∀d ∈ D

∗

m,

and so d∗ is (m+1)th-bias optimal, i.e., in D∗m+1. Hence, Theorem 3
is proved. �

Theorem 3 provides a sufficient condition for the nth-bias
optimal policies. We now give a necessary condition for the nth-
bias optimal policies.

Theorem 4. The optimal kth biases, g∗k , k = 0, 1, . . . , n, satisfy the
first (n+ 1) bias optimality conditions, n ≥ 0.

Proof. We will prove that, there exists an nth-bias optimal policy
in Section 5 using the constructionmethod, and we denote it as d∗n ,
for n ≥ 0.
We first consider the case n = 0. Let d∗0 be an average optimal

policy with average reward g∗0 and bias g
d∗0
1 . From Lemma 1(b),

Q (d∗0)g
∗

0 = 0. We need to prove that g∗0 satisfies the first bias
optimality condition (24), i.e., Q (d)g∗0 ≤ 0 for all d ∈ D. Assume
that this does not hold; that is, there exists a policyh and some state
i ∈ S such that (Q (h)g∗0 )(i) > 0. Based on this, we can construct
another policy d̂ by setting d̂(j) = d∗0(j) for all j ∈ S−{i} and d̂(i) =
h(i). Consequently, r(d̂)(j) = r(d∗0)(j) for j ∈ S − {i} and r(d̂)(i) =
r(h)(i). Then we have (Q (d̂)g∗0 )(i) > 0 and (Q (d̂)g

∗

0 )(j) = 0 for
j ∈ S − {i}. Thus,

Q (d̂)g∗0 � 0. (27)

Therefore, we have P(t, d̂)Q (d̂)g∗0 ≥ 0 for all t ≥ 0. Thus, by (3) we
have [P(T , d̂)−I]g∗0 ≥ 0 for all T ≥ 0. From Lemma1(a) and letting
T →∞, we have [P∗(d̂)−I]g∗0 ≥ 0. Assume that [P

∗(d̂)−I]g∗0 = 0.
We get Q (d̂)g∗0 = Q (d̂)P

∗(d̂)g∗0 = 0, which contradicts (27). As a
result,

[P∗(d̂)− I]g∗0 � 0. (28)

Since P∗(d̂)Q (d̂) = 0, P∗(d̂)Q (d̂)g∗0 = 0 follows. By Lemma 3(a)
we have (Q (d̂)g∗0 )(j) = 0 for all recurrent states j under policy d̂.
Then the particular state i must be a transient state under policy
d̂. By the construction of d̂, we have P∗(d̂)[r(d̂)− r(d∗0)+ (Q (d̂)−

Q (d∗0))g
d∗0
1 ] = 0. (The only nonzero component of the vector in

bracket is in state i which is a transient state.) Finally, by the
average-reward difference formula in Theorem 1(a) and (28), we
have

g d̂0 − g
∗

0 = [P
∗(d̂)− I]g∗0 � 0.
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This is impossible because g∗0 is the optimal average reward. Hence,
the assumption does not hold. Therefore, the theorem holds for
n = 0.
The case n > 0 can be proved in the same way by constructing

counterexamples. Considering the length of this paper,we omit the
proof of the case n > 0. �

Because the nth-bias optimal policy exists (in Section 5), the
solution to the first (n+ 1) bias optimality equations also exists.
In the following section, we propose iteration algorithms for

nth-bias optimal policies; and with these algorithms, we prove
that the existence of a policy d∗ satisfying the optimality equations
(24)–(26).

5. Policy iteration algorithms for nth-bias optimal policies

5.1. 0th-bias optimal policy iteration algorithm

In this subsection, we provide an iteration algorithm for
searching a 0th-bias optimal policy.
We first introduce some notations. For a given d ∈ D, i ∈ S, and

a ∈ A(i), let

wd(i, a) := r(i, a)+
∑
j∈S

q(j|i, a)gd1 (j), (29)

and

Bd0(i) :=

a ∈ A(i) :
∑
j∈S

q(j|i, a)gd0 (j) > 0; or

wd(i, a) > wd(i, d(i))
when

∑
j∈S

q(j|i, a)gd0 (j) = 0

 . (30)

We then define an improvement policy h ∈ D (depending on d) as
below:

h(i) ∈ Bd0(i) when B
d
0(i) 6= ∅,

and h(i) = d(i) if Bd0(i) = ∅. (31)

Note that such a policy h may not be unique since there may be
more than one action in Bd0(i) for some state i ∈ S. Let

uhd := Q (h)g
d
0 , vhd := r(h)+ Q (h)g

d
1 − g

d
0 . (32)

Lemma 5. For any given d ∈ D, let h be defined as in (31). Then,

(a) gh0 ≥ g
d
0 .

(b) If gh0 = g
d
0 and h 6= d, then g

h
1 � g

d
1 .

Proof. (a) By (30) and (31), we have uhd = Q (h)g
d
0 ≥ 0. Then, by

Lemmas 1(b) and 3(a), we have uhd(i) = 0 for all recurrent states
i under Q (h), and so it follows from (30) and (32) that vhd(i) ≥ 0
for all recurrent states i under Q (h). Moreover, by Q (h)gd0 ≥ 0 and
(3), we have [P(T , h)− I]gd0 ≥ 0 for all T ≥ 0, which together with
Lemma 1(a) gives [P∗(h) − I]gd0 ≥ 0. Thus, by Theorem 1(a) and
Lemma 3(b), we have gh0 − g

d
0 = P

∗(h)vhd + [P
∗(h)− I]gd0 ≥ 0, and

thus (a) follows.
(b)We first prove that gh1 ≥ g

d
1 . By g

h
0 = g

d
0 , wehaveQ (h)g

d
0 = 0

and [P∗(h) − I]gd0 = 0. From (30)–(32), we have v
h
d ≥ 0. Noting

that gh0 − g
d
0 = P

∗(h)vhd + [P
∗(h) − I]gd0 = P

∗(h)vhd = 0 and by
Lemma 3(a), we have vhd(i) = 0, for all recurrent states i under
policy h. From (30)–(32),

h(i) = d(i), for all recurrent states i under policy h. (33)
By (33), we get P∗(h)[Q (h) − Q (d)] = 0. Thus, by Theorem 1(b)
and vhd ≥ 0, we have g

h
1 − g

d
1 =

∫
∞

0 P(t, h)v
h
ddt + P

∗(h)[Q (h) −
Q (d)]gd2 =

∫
∞

0 P(t, h)v
h
ddt ≥ 0. The rest is to prove g

h
1 6= g

d
1 .

Suppose that gh1 = g
d
1 . By Lemma 2(a) and g

h
0 = g

d
0 , we have

r(h)+ Q (h)gd1 = r(h)+ Q (h)g
h
1 = g

h
0

= gd0 = r(d)+ Q (d)g
d
1 . (34)

On the other hand, since h 6= d and Q (h)gd0 = 0, from (29)–(31),
we have

r(h)+ Q (h)gd1 � r(d)+ Q (d)g
d
1 ,

which leads to a contradiction with (34), therefore, gh1 � g
d
1 . �

With Lemma 5, we can state the 0th-bias optimal policy iteration
algorithm as follows:

(1) Let k = 0 and select an arbitrary policy dk ∈ D.
(2) (Policy evaluation) Obtain (by Lemma 1(a) and (15) or
Lemma 2) gdk0 and g

dk
1 .

(3) (Policy improvement) Obtain an improvement policy dk+1
from (31).

(4) If dk+1 = dk, then stop and dk+1 is 0th-bias optimal (by
Theorem 5). Otherwise, increase k by 1 and return to step 2.

Lemma 5 can be used to prove the anti-cycling property in the
policy iteration procedure. We now prove the existence of d∗
satisfying (24) and (25) by using the 0th-bias optimal policy
iteration algorithm.

Theorem 5. In a finite number of iterations, the 0th-bias optimal
policy iteration algorithm stops at a 0th-bias optimal policy, denoted
as d∗0 , which satisfies (24) and (25).

Proof. Let {dk, k = 0, 1, 2, . . .} be the sequence of policies in the
policy iteration algorithm above. Then, by Lemma 5(a), we have
gdk+10 ≥ gdk0 . That is, as k increases, g

dk
0 either increases or stays

the same. Furthermore, by Lemma 5(b), when gdk0 keeps the same,
gdk1 increases. Thus, any two policies in the sequence of {dk, k =
0, 1, . . .}, either have different long-run average rewards or have
different 1st biases. Thus, every policy in the iteration sequence
is different. Since the number of policies is finite, the iteration
procedure must stop after a finite number of iterations. Suppose
that it stops at a policy denoted as d∗0 . Then d

∗

0must satisfy (24) and
(25), because otherwise we can find the next improvement policy
in the policy iteration, and the iteration procedure would not stop.
Thus, by Theorem 3, d∗0 is 0th-bias optimal. �

5.2. 1st-bias optimal policy iteration algorithm

In this subsection, we provide an iteration algorithm for
searching a 1st-bias optimal policy.

Lemma 6. (a) For any d∗ ∈ D∗0 , and d ∈ D, if the following two
conditions hold
(i) Q (d)gd

∗

0 = 0,
(ii) r(d)+ Q (d)gd

∗

1 ≥ g
d∗
0 ,

then gd0 = g
d∗
0 .

(b) Under the conditions in (a) , if, in addition, Q (d)gd
∗

2 (i) ≥ g
d∗
1 (i)

for all states i such that [r(d)+ Q (d)gd
∗

1 ](i) = g
d∗
0 (i), then

gd0 = g
d∗
0 and gd1 ≥ g

d∗
1 .
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Proof. (a) Let u := [Q (d) − Q (d∗)]gd
∗

2 and w := r(d) +
Q (d)gd

∗

1 − g
d∗
0 ≥ 0 (by condition (ii)). Then, by condition (i) we

have P(t, d)Q (d)gd
∗

0 = 0 for all t ≥ 0, and so it follows from
(3) and Lemma 1(a) as well as a straightforward calculation that
[P∗(d)− I]gd

∗

0 = 0. Thus, by Theorem 1(a), we have

gd0 − g
d∗
0 = P

∗(d)w + [P∗(d)− I]gd
∗

0 = P
∗(d)w ≥ 0. (35)

Thus, by the long-run average optimality of d∗, we have

gd0 = g
d∗
0 , (36)

and so (a) follows.
(b) From (35) and (36), we have P∗(d)w = 0. Since w ≥ 0, by

Lemma 3(a), we further have w(i) = 0 for all recurrent states i
under Q (d). Hence, by the conditions in (b) we have u(i) ≥ 0 for
all recurrent states i under Q (d). Then, it follows from Lemma 3(b)
that P∗(d)u ≥ 0, and so by Theorem 1(b), we have

gd1 − g
d∗
1 =

∫
∞

0
P(t, d)wdt + P∗(d)u ≥ 0.

This together with (36) proves (b). �

The main goal of this paper is to find a policy that is nth-bias
optimal for all n ≥ 0. From the proof of Theorem 3, a policy d∗ ∈ D
satisfying (24)–(26) (with n = 1) is 1st-bias optimal. In what
follows, we first provide a policy iteration algorithm for finding a
1st-bias optimal policy.
We use the following notations. For a given d ∈ D∗0 (such as d

∗

0
in Theorem 5) and i ∈ S, let

Bd1(i) :=


a ∈ A0(i) :

wd(i, a) > wd(i, d(i)); or∑
j∈S

q(j|i, a)gd2 (j) >∑
j∈S

q(j|i, d(i))gd2 (j)

whenwd(i, a) = wd(i, d(i))


, (37)

(cf. A0(i) in (22) and wd(i, a) in (29)). We then define an
improvement policy h ∈ D (depending on d) as follows:

h(i) ∈ Bd1(i) when B
d
1(i) 6= ∅,

and h(i) = d(i) if Bd1(i) = ∅. (38)

Note that such a policymay not be unique, since theremay bemore
than one action in Bd1(i) for some state i ∈ S.

Lemma 7. For any given d ∈ D∗0 , let h be defined as in (38). Then,

(a) gh0 = g
d
0 , and g

h
1 ≥ g

d
1 ; and

(b) if gh1 = g
d
1 and h 6= d, then g

h
2 � g

d
2 .

Proof. (a) We take d∗ and d in Lemma 6 as d and h here,
respectively. It follows from Lemma 2 that wd(i, d(i)) = gd0 (i) and∑
j∈S q(j|i, d(i))g

d
2 (j) = g

d
1 (i) for all i ∈ S. Thus, by (22) and (38),

the conditions in Lemma 6(b) holds. Therefore, (a) follows from
Lemma 6(b).
(b) Since gh1 = g

d
1 , by (a) and Lemma 2(a), we have

r(h)+ Q (h)gd1 = r(h)+ Q (h)g
h
1 = g

h
0

= gd0 = r(d)+ Q (d)g
d
1 . (39)

By Lemma 1(b) and Lemma 2(b), (c), we obtain

P∗(h)[Q (h)− Q (d)]gd2 = 0. (40)

By (39) and (29), we see that wd(i, h(i)) = wd(i, d(i)) for all i ∈ S.
Hence, by (37) and (38) we have

[Q (h)− Q (d)]gd2 ≥ 0, (41)
which, together with Lemma 3(a) and (40) as well as (38), implies
that Bd1(i) = ∅ for all recurrent states i under Q (h), and so we have

h(i) = d(i) ∀ recurrent state i under Q (h).

Therefore, we have

P∗(h)[Q (h)− Q (d)] = 0.

From this equation, (41) and Theorem 1(c), we have

gh2 − g
d
2 =

∫
∞

0
P(t, h)[Q (h)− Q (d)]gd2dt

+ P∗(h)[Q (d)− Q (h)]gd3

=

∫
∞

0
P(t, h)[Q (h)− Q (d)]gd2dt ≥ 0.

Now, the rest is to show that gh2 6= g
d
2 . Suppose that g

h
2 = g

d
2 . Then,

by gh1 = g
d
1 and (12), we have

Q (d)gd2 = g
d
1 = g

h
1 = Q (h)g

h
2 = Q (h)g

d
2 . (42)

On the other hand, since h 6= d, by (37)–(39), we have

Q (h)gd2 � Q (d)g
d
2 ,

which contradicts (42). �

From Lemma 7, we may propose the following 1st-bias optimal
policy iteration algorithm.

(1) Let k = 0, and take dk := d∗0 as in Theorem 5 and set g
∗

0 = g
d∗0
0 .

(2) (Policy evaluation) Obtain (by (15) and (16) or Lemma 2) gdk1
and gdk2 .

(3) (Policy improvement) Obtain policy dk+1 from (38).
(4) If dk+1 = dk, then stop and dk+1 is 1st-bias optimal (by
Theorem 6). Otherwise, increase k by 1 and return to step 2.

Lemma 7 is then used to prove the anti-cycling property in the 1st-
bias optimal policy iteration algorithm. The existence of a policy
satisfying (24)–(26) (with n = 1) follows naturally from the 1st-
bias optimal policy iteration algorithm.

Theorem 6. Starting from a 0th-bias optimal policy d∗0(∈ D∗0),
the 1st-bias optimal policy iteration algorithm stops at a 1st-bias
optimal policy (denoted as d∗1) satisfying (24)–(26) (with n = 1), in a
finite number of iterations.

Proof. Let {dk, k = 0, 1, . . .} be the sequence of policies obtained
by the 1st-bias optimal policy iteration algorithm. Then, from the
construction of {dk, k = 0, 1, . . .} and Lemma 7(a), we see that
dk’s are all in D∗0 and g

dk+1
1 ≥ gdk1 . Hence, as k increases, g

dk
1 either

increases or stays the same. Furthermore, by Lemma 7(b), when
gdk1 keeps the same, g

dk
2 increases. Thus, any two policies in the

sequence of {dk, k = 0, 1, . . .} either have different 1st biases
or have different 2nd biases. Thus, every policy in the iteration
sequence is different. Since the number of policies in D∗0 is finite,
the iteration must stop after a finite number of iterations. Suppose
that it stops at a policy, denoted as d∗1 . Then d

∗

1 must satisfy
the optimality conditions (25) and (26) (with n = 1) because,
otherwise, we can find the next improvement policy in the policy
iteration. On the other hand, since d∗1 is also in D

∗

0 , we have g
d∗1
0 =

g
d∗0
0 . Thus, by Theorem 4we see that d

∗

1 also satisfies (24), and so d
∗

1
satisfies (24)–(26) (with n = 1). Hence, by Theorem3, d∗1 is 1st-bias
optimal. �
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5.3. nth-bias optimal policy iteration algorithm

As we have seen, starting from d in D, we can obtain a 0th-
bias optimal policy satisfying (24) and (25) by using the 0th-bias
optimal policy iteration algorithm. Then, with such a 0th-bias
optimal policy, we can further obtain a 1st-bias optimal policy
satisfying (24)–(26) with n = 1, by using the 1st-bias optimal
policy iteration algorithm. Following the similar procedure, we
now propose policy iteration algorithms for nth-bias optimal
policies, n > 1, and prove the existence of a policy satisfying
(24)–(26) for all n ≥ 1. This is achieved by induction on n.
Suppose that d is an (n − 1)th-bias optimal policy for some

n ≥ 2. We need to derive a policy iteration algorithm for an nth-
bias optimal policy and show the existence of a policy h satisfying
(24)–(26) for n.
Now, we recall (23) when n there is replaced by n−1 here, and,

for each i ∈ S, let

Bdn(i) :=


a ∈ An−1(i) :

∑
j∈S

q(j|i, a)gdn (j) > g
d
n−1(i); or∑

j∈S

q(j|i, a)gdn+1(j) > g
d
n (j)

when
∑
j∈S

q(j|i, a)gdn (j) = g
d
n−1(i)


. (43)

We then define an improvement policy h ∈ D (depending on d) as
follows:

h(i) ∈ Bdn(i) when B
d
n(i) 6= ∅,

and h(i) = d(i) if Bdn(i) = ∅. (44)

Lemma 8. For d and n > 1 as in the inductive hypothesis, let h be
defined as in (44). Then,

(a) ghk = g
d
k for all 0 ≤ k ≤ n− 1, and g

h
n ≥ g

d
n .

(b) If ghn = g
d
n and h 6= d, then g

h
n+1 � g

d
n+1.

Proof. (a) Since d(i) is in An−1(i) (cf. (22) and (23)) for all i ∈ S, and
so in Ak(i) for all 0 ≤ k ≤ n− 1 and i ∈ S. Hence, by (23) and (44)
we see that h(i) is also in Ak(i) for 0 ≤ k ≤ n− 1 and i ∈ S, and so
we have

Q (h)gd0 = 0, r(h)+ Q (h)gd1 = g
d
0 ,

Q (h)gdk+1 = g
d
k = Q (d)g

d
k+1 ∀1 ≤ k ≤ n− 2, and (45)

Q (h)gdn ≥ g
d
n−1 = Q (d)g

d
n . (46)

By (45)–(46) and Theorem 1 we have

ghk = g
d
k ∀0 ≤ k ≤ n− 2, and ghn−1 ≥ g

d
n−1,

which, together with gdn−1 ≥ g
h
n−1 (by the (n − 1)th-bias optimal-

ity of d), gives the first part of (a). Noting that ghn−1 = g
d
n−1 and

by Theorem 1 and Lemma 3(a), we obtain (Q (h)gdn )(i) = g
d
n−1(i) =

(Q (d)gdn )(i) for all recurrent states i under policy h.Moreover, from
(43)–(44) and Lemma 3(b) we see

(Q (h)gdn+1)(i) ≥ g
d
n (i) = (Q (d)g

d
n+1)(i)

for all recurrent states i under policy h, (47)

which, together with Theorem 1(c) and (46), gives ghn ≥ g
d
n , and so

(a) follows.
(b) Since ghn = g

d
n , by (a) and Lemma 2(c), we have

Q (h)gdn = Q (h)g
h
n = g

h
n−1 = g

d
n−1 = Q (d)g

d
n ,

which, together with Theorem 1(c) and ghn = g
d
n , gives

P∗(h)[Q (h)− Q (d)]gdn+1 = 0. (48)
Thus, by (47) and (48) and Lemma 3(a), we have that Bdn(i) = ∅ for
all recurrent states i under Q (h). Hence, it follows from (44) that

h(i) = d(i) ∀ recurrent state i under Q (h),

and so

P∗(h)[Q (h)− Q (d)] = 0,

which together with Theorem 1(c) and (47) gives

ghn+1 − g
d
n+1 =

∫
∞

0
P(t, h)[Q (h)− Q (d)]gdn+1dt ≥ 0.

Thus, the rest is to show that ghn+1 6= g
d
n+1. Suppose that g

h
n+1 =

gdn+1. Since g
h
n = g

d
n , it follows from (12) that

Q (d)gdn+1 = g
d
n = g

h
n = Q (h)g

h
n+1 = Q (h)g

d
n+1. (49)

On the other hand, since h 6= d, by (43)–(44) we have

Q (h)gdn+1 � g
d
n = Q (d)g

d
n+1,

which contradicts (49). �

With Lemma 8, we can state an nth-bias optimal policy iteration
algorithm as follows:

(1) Let k = 0 and dk ∈ D∗n−1 (with fixed n ≥ 2).
(2) (Policy evaluation) Obtain (by (16) or Lemma 2) gdkn and g

dk
n+1.

(3) (Policy improvement) Obtain policy dk+1 from (43) to (44).
(4) If dk+1 = dk, then stop and dk+1 is nth-bias optimal (by
Theorem 7). Otherwise, increase k by 1 and return to step 2.

Lemma 8 can be used to prove the anti-cycling property in the nth-
bias optimal policy iteration algorithm. The existence of a policy
satisfying (24)–(26) can be proved by the nth-bias optimal policy
iteration algorithm, see below.

Theorem 7. Starting from an (n− 1)(n ≥ 2)th-bias optimal policy,
the nth-bias optimal policy iteration algorithm stops at an nth-bias
optimal policy satisfying the first (n + 2) bias optimality conditions
from (24) to (26), in a finite number of iterations.

Proof. For the fixed n ≥ 2, let {dk, k = 0, 1, . . .} be the
sequence of policies obtained by the nth-bias optimal policy
iteration algorithm, with d0 being (n − 1)th-bias optimal. Hence,
as k increases, from the construction of {dk, k = 0, 1, . . .} and
Lemma 8(a), we see that gdkn either increases or stays the same.
Furthermore, by Lemma 8(b), when gdkn keeps the same, gdkn+1
increases. Thus, any two policies in the sequence of {dk, k =
0, 1, . . .} either have different nth biases or have different (n+1)th
biases. Thus, every policy in the iteration sequence is different.
Since the number of policies in D∗n−1 is finite, the iteration must
stop after a finite number of iterations. Suppose that it stops at a
policy denoted as d∗. Thus, by (23) (with n being replaced by n− 1
here) and (43), we see that d∗ must satisfy

max
a∈An−1(i)

∑
j∈S

q(j|i, a)gd
∗

n (j) = g
d∗
n−1(i) ∀i ∈ S, (50)

max
a∈Ad

∗

n (i)

∑
j∈S

q(j|i, a)gd
∗

n+1(j) = g
d∗
n (i) ∀i ∈ S, (51)

because, otherwise, we can find the next improvement policy in
the policy iteration. Moreover, from the construction of d∗ above
and Lemma 8 we also have

(A) gd
∗

l = g
d0
l for all 0 ≤ l ≤ n− 1, which together with (23) gives

(B) Ad
∗

l (i) = Al(i) for all 0 ≤ l ≤ n− 1 and i ∈ S, and
(C) d∗ also satisfies the first n bias optimality conditions by
Theorem 4.



1638 J. Zhang, X.-R. Cao / Automatica 45 (2009) 1628–1638
Thus, by (A), (B) and (C) above as well as (50)–(51), we see that d∗
satisfies the first (n + 2) bias optimality conditions from (24) to
(26). Thus, by Theorem 3, the policy d∗ is nth-bias optimal. �

Inductively, by Theorems 2 and 5–7 we conclude that we can
use nth-bias optimal policy iteration algorithms to obtain a policy
that is nth-bias optimal. In particular, we can obtain a policy that is
nth-bias optimal for all n ≥ 0 by using the 1st- to |S|th-bias policy
iteration algorithms, and each algorithm takes a finite number of
iterations.

6. Conclusion

In this paper, we deal with the finite continuous-time MDPs
with a multichain structure from a sensitivity-based perspective
with the concept of nth-bias optimality.
First, we derive the nth-bias difference formulas of two policies

which have the same (n − 1)th-bias. Then, we give a sufficient
condition and a necessary condition for nth-bias optimal policies.
Finally, we prove the existence of an nth-bias optimal policy by
using nth-bias optimal policy iteration algorithms, and show that
such an nth-bias optimal policy can be obtained in a finite number
of policy iterations.
Our approach is based on nth-bias difference formulas of two

policies which are derived from the sensitivity point of view. Our
proofs need neither any result for discrete-time MDPs nor one for
discounted continuous-time MDPs, while the approaches in the
literature depend heavily on results about discrete-time MDPs or
on the Laurent series expansion of discounted continuous-time
MDPs. This research is a part of our effort in developing sensitivity-
based learning and optimization theory. The nth-bias optimality
approach presented in this paper is more intuitive and provides
a clearer view: the optimization procedure is simply based on
comparison of performance (or nth bias) of two policies. Policy
iteration algorithms can be easily developed with this approach.
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