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Abstract

The solution of Markov Decision Processes (MDPs) often relies on special properties of the processes. For two-level MDPs, the difference
in the rates of state changes of the upper and lower levels has led to limiting or approximate solutions of such problems. In this paper, we solve
a two-level MDP without making any assumption on the rates of state changes of the two levels. We first show that such a two-level MDP
is a non-standard one where the optimal actions of different states can be related to each other. Then we give assumptions (conditions) under
which such a specially constrained MDP can be solved by policy iteration. We further show that the computational effort can be reduced by
decomposing the MDP. A two-level MDP with M upper-level states can be decomposed into one MDP for the upper level and M to M(M − 1)

MDPs for the lower level, depending on the structure of the two-level MDP. The upper-level MDP is solved by time aggregation, a technique
introduced in a recent paper [Cao, X.-R., Ren, Z. Y., Bhatnagar, S., Fu, M., & Marcus, S. (2002). A time aggregation approach to Markov
decision processes. Automatica, 38(6), 929–943.], and the lower-level MDPs are solved by embedded Markov chains.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In Markov Decision Processes (MDPs) of two-level hierar-
chical structures, the states are formed by the status of both the
upper and the lower levels and state changes can be caused by
the status changes at either level. Decisions are also made at
each level. Such decisions affect both the state transitions of
the two levels and the reward of the MDPs. The existing so-
lutions of such MDPs often rely on the difference in the time
scales of the two levels, i.e., the rate of state changes in the
lower level is faster than that of the upper level by multiple
orders of magnitude. Between two upper-level state changes,
on average the lower level has already gone through so many
state changes that one can make use of the long-run sum or
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average from the lower level to make decision at an upper-level
state change. See Chang, Fard, Marcus, and Shayman (2003)
and its references for examples of MDPs with multiple time
scales.

In a different context and for a different purpose, singularly
perturbed MDPs also make use of two time scales (Abbad,
Filar, & Bielecki, 1992; Bielecki & Filar, 1991). Reducible
transition probability matrices of policies in the form of dis-
joint, closed communicating classes are made positive by per-
turbing with a policy dependent matrix εD, where ε > 0 is a
constant. By controlling ε, the inter-class state transitions can
be less frequent than the intra-class. One main result of sin-
gularly perturbed MDPs is that the optimal control policy for
the “limit control MDPs”, the cases as ε → 0, is a good
control policy for singularly perturbed MDPs of a sufficiently
small ε.

The idea of two time scales also occurs in hybrid stochastic
systems (Filar, Gaitsgory, & Haurie, 2001; Filar & Haurie,
2001). The operation modes in the upper level are modeled by
Markov jump processes and the characteristics of the lower
level are modeled either by deterministic functions (Filar et al.,
2001) or by diffusion processes (Filar & Haurie, 2001), with
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both the upper-level operations modes and the lower-level char-
acteristics controllable.

In this paper, we study a class of the two-level MDPs un-
der the long-run average reward criterion. Our two-level MDPs
take a structure similar to MDPs of two time scales except that
our two-level model is an atypical MDP: an upper-level de-
cision at a state can affect the state transitions of a group of
states with the same upper-level state. The various decisions,
within the lower levels and spanning across both levels, are
coupled, i.e., we cannot single out and solve the decisions level
by level, purpose by purpose. Such coupling effect increases
the computational burden to solve the two-level MDP, making
it practically infeasible for real-life problems. We then show
that the coupling effect disappears if (i) the sojourn times of
each upper-level state—the duration between entering and leav-
ing an upper-level state—are uncontrollable, and (ii) the set
of the initial lower-level state distributions after an upper-level
state change is independent of the lower-level states before the
upper-level state change. With both of these assumptions, the
decisions are decoupled; the computational effort for the opti-
mal policy becomes manageable; and it is possible to imple-
ment the centralized control scheme in a decentralized fashion.

To further reduce the computational effort, we show that
the whole problem can be decomposed into smaller MDPs,
one for the upper level, and a number of MDPs for the lower
level, where the number depends on the problem structure. Our
solution of the upper-level MDP uses time aggregation (Cao,
Ren, Bhatnagar, Fu, & Marcus, 2002), and our lower-level of
embedded Markov chains. Combining the algorithms of the
two levels solves the two-level MDP.

Our model is related to that in Chang et al. (2003), though
the two models have two critical differences. First, the num-
ber of lower-level state changes between two upper-level state
changes is fixed in Chang et al. (2003) but random here. With
constant time between two upper-level state changes, it is con-
ceptually straightforward to embed on upper-level state changes
and make use of the total rewards in upper-level sojourn times
to look for optimal decisions. Nonetheless, the computational
effort for all possible nonstationary policies is too large to be
materialized. Consequently, Chang et al. (2003) looks for ap-
proximations, and bounds the performance of approximations
in the same spirit of those in single-level MDPs. As for our
model, the calculation of the total rewards of sojourn times
is made involved by randomness. We still find computation-
ally simple close-form expressions for such quantities, based
on which later we give an exact analysis of the two-level MDP.
Second, the upper- and lower-level decisions in Chang et al.
(2003) are not coupled as ours. There, any consideration for a
state, e.g., its upper-level decision, can be made purely based
on the cost and benefit of the state. However, in our model,
as shown in (1) below, states with the same upper level must
take the same upper-level decisions, a constraint that makes our
MDP unconventional.

Our contributions are as follows. First, we tackle a two-level
MDP from a perspective that does not rely on multiple time
scales. Our analysis is exact, and we allow for random num-
ber of lower-level state changes between two upper-level state

changes. Second, our two-level control problem is not a stan-
dard MDP because each action at the upper level applies to a
group of states. We solve such a specially constrained MDP un-
der different assumptions. Third, other than satisfying with an
algorithm that solves the two-level MDP, we go further to find
algorithms that take less computational effort, which is a con-
tinuation of one of the authors’ previous work on time aggrega-
tion (Cao et al., 2002). Such algorithms can be implemented as
the optimal decentralized control. Finally, our approach sheds
light on hybrid systems where the lower level is modeled as
continuous systems.

2. The two-level MDP

Consider a two-level MDP with M upper-level states and Ni

lower-level states for the ith upper-level state, i = 1, . . . , M . In
general, Ni can be different from Nm for 1� i �= m�M , and in
specific applications, lower-level states of different upper levels
can bear different physical meanings. For ease of reference,
we call an upper-level state a mode, and its lower-level states
settings of the mode. The state of the MDP at period t is denoted
by (Xt , Yt ), where Xt is the mode and Yt is the setting at period
t, t ∈ {1, 2, . . .}. (Technically, the state is policy dependent. We
omit such dependence for notational simplicity when we refer
to a generic case. The same convention is adopted throughout.)

Let Xi = {(i, 1), . . . , (i, Ni)} be the collection of states
in mode i, i = 1, . . . , M . The state space of the MDP is
X = X1 ∪ · · · ∪ XM . Arrange the states in the lexicological
order with the modes as the primary and the settings as the
secondary keys. In ascending lexicological order of states,
X = {(1, 1), . . . , (1, N1), . . . , (M, 1), . . . , (M, NM)}. Define
also Xu = {1, . . . , M} as the collection of mode states.

When the two-level MDP adopts policy L, the policy dic-
tates an action �(i,j) ∈ A(i,j) at state (i, j), where A(i,j) is the
action set of the state. Let A = ∪(i,j)A(i,j) be the action set
of the two-level MDP. We consider only finite action sets and
stationary policies.

As in Chang et al. (2003), assume that the evolution of modes
in the two-level MDP is not affected by the actions from the
lower-level settings. That is, the decision on controlling mode
changes can only depend on the upper-level states. Thus, when
action �(i,j) is adopted at state (i, j) at time t, the mode change
probability P(Xt+1 = m|(Xt , Yt ) = (i, j), �(i,j)) depends only
on a decision based on i. We call such a sub-decision (embedded
in �(i,j)) an upper-level action and denote it as �u

i . Thus, we
have

P(Xt+1 = m|(Xt , Yt ) = (i, j), �(i,j))

= P(Xt+1 = m|Xt = i, �u
i ) = r

�u
i

(i,m). (1)

The mode process itself is an MDP with transition probability

matrix RLu = [r�u
i

(i,m)], where Lu denotes the mode policy
induced from L. Let Au

i be the collection of all upper-level
actions {�u

i } at mode i, and Au =⋃
iA

u
i . Au is a finite set.

Assumption 2.1. RLu

is an irreducible transition probability
matrix in Xu for any Lu.
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Assumption 2.1 ensures that all modes are non-trivial. The
MDP is decomposable into smaller independent MDPs if As-
sumption 2.1 is violated.

Assumption 2.2. At any period, the setting action is made
infinitesimally later than the corresponding realization of the
mode action.

This is a purely technical assumption often made in liter-
ature (e.g., Chang et al., 2003). It matches with dynamics in
real-life applications; e.g., usually strategic decisions (upper-
level actions) have already been implemented when operations
decisions (lower-level actions) are considered.

Consider now the setting changes. Suppose that action �(i,j)

is adopted at state (i, j) at period t. If the mode remains un-
changed at the next period, the conditional setting probability is
P(Yt+1 =n|Yt =j, �(i,j), Xt+1 = i, Xt = i). Denote the decision
that determines this transition probability as action �c

(i,j), i.e.,

P(Yt+1 = n|Yt = j, �(i,j), Xt+1 = i, Xt = i)

=: s
�(i,j)

(j,n) = s
�c

(i,j)

(j,n) .

When the mode changes from i to m �= i at the next period,

P(Yt+1 = n|Yt = j, �(i,j), Xt+1 = m, Xt = i)

=: q
�(i,j)

(i,j),(m,n) = q
�p

(i,j)

(i,j),(m,n),

where �p

(i,j) denotes the sub-action that determines the initial
setting after the mode change.

Define the transition probability matrix S(i),L = [s�(i,j)

(j,n) ] for

mode i when the mode remains unchanged after a transition, i=
1, . . . , M , and Q(i,m),L=[q�(i,j)

(i,j),(m,n)] when the mode changes
from i to m, 1� i �= m�M .

Assumption 2.3. S(i),L is irreducible for any L, 1� i�M .

By Assumption 2.3, the settings in mode i are non-trivial.
When combined together, Assumptions 2.1 and 2.3 ensure that
states of the MDP communicate for any policy.

The above discussion reveals that action �(i,j) can be repre-
sented as the triple (�u

i , �
c
(i,j), �

p

(i,j)), where the mode action �u
i

determines mode changes, the initial setting distribution action
�c
(i,j) determines the setting when there is a mode change, and

the setting transition action �p

(i,j) that determines the setting
when a mode preserves. Because the latter two components are
related to the lower level, we also use the notation lower-level
action �l

(i,j) = (�c
(i,j), �

p

(i,j)). Such a convention is also adopted
by policy. Thus, the policy L= (Lu,Lc,Lp) has three com-
ponents, and the lower-level policy Ll = (Lc,Lp) has two.

While actions and policies are in component forms, without
further justification, it is impossible to determine the optimal
actions component by component. For example, it is not clear
whether the determination of the lower-level component �c

(i,j)

affected by that of �p

(i,j) and �u
i . Even for the determination

of �u
i , the upper-level action to which the lower-level actions

play no direct effect, it is not clear what effect the difference

in settings (of the same mode) will assert on the decisions of
the optimal policies at the upper level.

Contrarily to the possible interaction of the optimal decision,
there is no interaction of the action sets for different types of
components, at any state. Specifically, the action set of �c

(i,j)

does not depend on the choice of �p

(i,j); nor does the action set

of �p

(i,j) depending on the choice of �p

(m,n) for (i, j) �= (m, n).
When we consider all the actions simultaneously, the transi-

tion probability becomes

P((Xt+1, Yt+1) = (m, n)|(Xt , Yt ) = (i, j), �(i,j))

=

⎧⎪⎨
⎪⎩

r
�u

i

(i,i)s
�(i,j)

(j,n) if m = i;
r
�u

i

(i,m)q
�(i,j)

(i,j),(m,n) if m �= i.
(2)

For a given policy, {(Xt , Yt )} is a discrete-time Markov chain
(DTMC) with the transition probability matrix

P=

⎡
⎢⎢⎣

r(1,1)S
(1) r(1,2)Q

(1,2) · · · r(1,M)Q
(1,M)

r(2,1)Q
(2,1) r(2,2)S

(2) · · · r(2,M)Q
(2,M)

...
...

...
...

r(M,1)Q
(M,1) r(M,2)Q

(M,2) · · · r(M,M)S
(M)

⎤
⎥⎥⎦ . (3)

By Assumptions 2.1 and 2.3, P is irreducible and hence pos-
itive. Whether P is aperiodic or not depends also on S(i), i =
1, . . . , M , and Q(i,m), 1� i �= m�M .

Let (·)T be the transpose of a vector or a matrix (·). The
performance function of mode i, fi = (f(i,1), . . . , f(i,Ni))

T, is
the column vector of reward per period when the MDP is at
settings 1 to Ni of mode i; the performance function of the
MDP is then

f = (f(1,1), . . . , f(M,NM))
T. (4)

With a positive chain structure and a finite decision set for
any policy, the optimal policy for the long-run average reward
is well-defined. The objective is to find an optimal policy L∗
that attains

max
L

(
lim

�→∞

∑�
t=1E[f(XL

t ,YL
t )]

�

)
, (5)

subject to the transition probabilities specified in (2) as dictated
by L.

We will explain in the next section that our two-level MDP
is a non-standard one in which some actions of groups of states
are coupled. Such coupling eludes standard solution techniques.
Fortunately, if the class of MDP possesses certain structural
properties that weaken the interaction of states, policy iteration
algorithms can be derived to find optimal policies. These struc-
tural properties, defined in Assumptions 2.4 and 2.5 below, are
also necessary to guarantee the existence of such a solution
(i.e., if they are not satisfied, policy iteration does not work ex-
cept for very special cases). In addition, when such properties
hold, the computational effort can be reduced by decomposing
the MDP with a large state space into a number of MDPs with
small state spaces.
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Assumption 2.4. For every mode i, r(i,i) is not controllable,

i.e., for any mode action �u
i , r

�u
i

(i,i) = �i , 0 < �i < 1, a constant
for mode i, 1� i�M .

Assumption 2.4 says that the time staying in a mode is not
affected by any policy. This often reflects the intrinsic random-
ness of the system. For example, a company cannot change
the global economic conditions, nor the built-in lifetime of a
bought machine.

Assumption 2.5. Consider any mode m, 1�m�M . Suppose
that it is possible to change to mode m from any two states
(i1, j1) and (i2, j2), where j1 ∈ Xi1 , j2 ∈ Xi2 , i1, i2 �= m, and
i1 and i2 may or may not be the same. Then for any action
�(i1,j1) at state (i1, j1), there exists action �(i2,j2) at state (i2, j2)

such that the initial setting distributions of mode m are the
same, i.e., q

�(i1,j1)

(i1,j1),(m,n) = q
�(i2,j2)

(i2,j2),(m,n) for all 1�n�Nm.

Assumption 2.5 says that the set of all possible initial setting
distributions in a new mode m does not depend on the previous
state. For example, if there are, say, 20 different initial setting
distributions for a change to mode m from state (i1, j1), then
there are the same 20 initial setting distributions from any state
(i, j) ∈ X that change to mode m. States can have more than
20 actions to mode m; two or more actions from a state can
lead to the same initial setting distribution. The assumption is to
model abrupt changes that make settings in the previous mode
irrelevant.

With Assumptions 2.1–2.5, we show that the two-level MDP
is solvable by policy iteration, and the computation can further
be reduced. Our main result is:

Theorem 2.6. Suppose that Assumptions 2.1–2.5 hold for a
two-level MDP. Then its optimal policy can be found by solving
(M+1) MDPs, the upper-level MDP of M states, and M lower-
level MDPs such that the ith one is of Ni states, i = 1, . . . , M .

There is a trade off of model generality and computational
effort. The following assumption is less restrictive on the initial
setting distributions of new modes.

Assumption 2.7. Consider any mode m, 1�m�M . Suppose
that it is possible to change to mode m from any two states
(i, j1) and (i, j2) of the same mode, where j1, j2 ∈ Xi , i �= m.
Then for any action �(i,j1) at state (i, j1), there exists action
�(i,j2) at state (i, j2) such that the initial setting distributions

of mode m are the same, i.e., q
�(i,j1)

(i,j1),(m,n) = q
�(i,j2)

(i,j2),(m,n) for all
1�n�Nm.

Assumption 2.7 says that the set of all possible initial set-
ting distributions in a new mode m after a jump from mode
i is the same for all states in mode i. This is less restrictive
than Assumption 2.5, which requires that the set of initial
distributions is also independent of i. With this more flexi-
ble problem structure, a two-level MDP is still solvable by
policy iteration, though it takes a bit more computational
effort.

Theorem 2.8. Suppose that Assumptions 2.1–2.4, and 2.7 hold
for a two-level MDP. Then its optimal policy can be found by
solving at most M(M − 1) + 1 MDPs: the upper-level MDP of
M states, and one lower-level MDP of size Nm for each pos-
sible mode transition from mode i to mode m, 1� i �= m�M .
Whenever Assumption 2.5 holds for modes i1 and i2 for a mode
change to m, 1� i1 �= i2 �M , the same lower-level MDP works
for both modes i1 and i2, reducing the computational effort of
one lower-level MDP of size Nm.

3. The coupling and decoupling of the two-level MDP

We will use policy iteration (cf. Cao, 1998, 1999; Cao &
Chen, 1997; Cao, Yuan, & Qiu, 1996) to explain the coupling
effect of actions and the way to decouple them. Other methods
face the same difficulty as policy iteration for the coupled two-
level MDP, and they are not as efficient to decouple actions.

3.1. The coupling of the two-level MDP

Let P be the transition probability matrix of a given policy,
say, the base policy, upon which we want to improve for a
general two-level MDP {(Xt , Yt )}. Assume that P is positive
but otherwise the assumptions specified in Theorems 2.6 and
2.8 may not hold. Let the row vector �= (�(1,1), . . . , �(M,NM))

be the stationary probability distribution of P. As shown in Cao
(1998), the potential g of the policy is found from the Poisson
equation

(I − P + e�)g = f (6)

and the policy improvement of the MDP is equivalent to looking
for a policy L that gives the (componentwise) maximum of

{PLg + fL}. (7)

Without loss of generality, we let fL = f and drop the term
in later discussion.

Consider a typical policy improvement step for {(Xt , Yt )}.
Let gi = (gi(1), . . . , gi(Ni))

T = (g(i,1), . . . , g(i,Ni))
T be the po-

tential vector of the base policy for settings in mode i, and
g = (gT

1 , . . . , gT
M)T = (g(1,1), . . . , g(M,NM))

T be the (full) po-
tential vector of the base policy. From (3) and (7), the policy
improvement step of max{PLg} at state (i, j) gives

max
�(i,j)=(�u

i ,�c
(i,j)

,�p

(i,j)
)

⎡
⎣
⎛
⎝∑

m�=i

r
�u

i

(i,m)

(∑
n

q
�c

(i,j)

(i,j),(m,n)g(m,n)

)⎞⎠

+ r
�u

i

(i,i)

(∑
n

s
�p

(i,j)

(j,n)g(i,n)

)⎤⎦ . (8)

Irrespective of the upper-level action, the optimal setting tran-
sition action of state (i, j) is

�p,∗
(i,j) = arg max

�p

(i,j)

(∑
n

s
�p

(i,j)

(j,n)g(i,n)

)
(9)
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and the maximal action on the initial setting for a mode change
is

�c,∗
(i,j) = arg max

�c
(i,j)

(∑
n

q
�c

(i,j)

(i,j),(m,n)g(m,n)

)
. (10)

Let g̃c
(i,m)(j)=∑nq

�c,∗
(i,j)

(i,j),(m,n)g(m,n) and g̃
p
i (j)=∑ns

�p,∗
(i,j)

(j,n)g(i,n),
where the functional index j (between the pair of parenthe-
ses) indicates the policy improvement for setting j. Substituting
g̃c

(i,m)(j) and g̃
p
i (j) into (8), the policy iteration for the mode

action becomes

max
�u

i

⎡
⎣∑

m�=i

r
�u

i

(i,m)g̃
c
(i,m)(j) + r

�u
i

(i,i)g̃
p
i (j)

⎤
⎦

for every (i, j) ∈ Xi . (11)

From (11), a mode action �u
i determines a mode change

distribution (r�u

(i,1), . . . , r
�u

(i,M)) that affects all states (i, j) ∈
Xi , not only a single state (i, j). That is, the effect of the
actions taken at different states (i, j) ∈ Xi are coupled. To
be an executable policy, settings in the same mode need to
adopt the same mode policy. However, in policy iteration of
a standard MDP, the actions have to be chosen for each state
(i, j) independently. In general, actions that maximize (8) for
all states (i, j) ∈ Xi may not exist, i.e., the policy iteration
approach does not work for general two-level MDPs. The same
restriction is also applicable to other MDP solution methods.

3.2. The decoupling of the two-level MDP

To decouple the effect of actions �u
i , �

c
(i,j), and �p

(i,j) at dif-

ferent states (i, j) ∈ Xi , we need the action �u,∗
i as found in

(11) to be independent of j for all (i, j) ∈ Xi . We will show
that this is the case if Assumptions 2.4 and either of 2.5 or 2.7
hold. First, observe that if

g̃c
(i,m)(j) = g̃c

(i,m) for all (i, j) ∈ Xi (12)

and

g̃
p
i (j) = g̃

p
i for all (i, j) ∈ Xi , (13)

i.e., both g̃c
(i,m)(j) and g̃

p
i (j) are independent of j, then every

term in (11) is independent of the setting j. Therefore, there is
an action �u,∗

i that maximizes (11) for all (i, j) ∈ Xi .
However, (13) is a very strong assumption. It holds, for ex-

ample, when settings in each mode are stochastically equiva-
lent. Instead of having (13), suppose that

r
�u

i

(i,i) = �i for all �u
i , 1� i�M . (14)

When (12) and (14) hold, (11) becomes

arg max
�u

i

⎡
⎣∑

m�=i

r
�u

i

(i,m)g̃
c
(i,m) + �i g̃

p
i (j)

⎤
⎦

= arg max
�u

i

⎡
⎣∑

m�=i

r
�u

i

(i,m)g̃
c
(i,m)

⎤
⎦+ �i g̃

p
i (j) (15)

for every (i, j) ∈ Xi . Again, �u,∗
i is independent of j.

Note that (14) is indeed Assumption 2.4. Next, Assumption
2.7 implies that for any m the set of all possible initial distribu-

tions q
�c

(i,j)

(i,j),(m,n), n = 1, . . . , Nm, corresponding to all different
�c
(i,j), is the same for all states (i, j) ∈ Xi . Thus, the maximal

value of (10), g̃c
(i,m)(j) =∑

nq
�c,∗

(i,j)

(i,j),(m,n)g(m,n), is the same for
all (i, j) ∈ Xi . Therefore, Assumption 2.7 leads to (12). Of
course, so does the more restrictive Assumption 2.5.

Indeed we have established Proposition 3.1 and from here
onwards we only consider two-level MDPs with decoupled
actions.

Proposition 3.1. Suppose that Assumptions 2.1–2.4 and either
Assumption 2.5 or 2.7 holds for the two-level MDP. Then the
effect of mode and setting actions at different states (i, j) ∈
Xi are decoupled, and the problem can be solved by policy
iteration. When the mode is preserved, the maximal setting
action �p,∗

(i,j) is defined by (9). When there is a mode change,

the maximal initial setting action �c,∗
(i,j) is defined by (10), no

matter what the original mode and setting are. Settings in the
same mode take the same maximal mode action �u,∗

i as defined
in (15).

Our set of assumptions is sufficient for the results. While the
set is not necessary for specially designed two-level MDPs, in
general, no policy-iteration type of solution exists for the two-
level MDPs that violate some of the assumptions. For example,

when r
�u

i

(i,i) and hence the sojourn times depend on upper-level
actions, (11) shows that settings may not have a common op-
timal upper-level action, and policy iteration is not applicable.

Finally, observe from (10) that for the optimal policy (or
the improved policy in each iteration), the initial distribution

after the mode changes to m, q
�c

(i,j)

(i,j),(m,n), m = 1, . . . , Nm, does

not depend on j under Assumption 2.7, and not on both i and
j under Assumption 2.5. Therefore, we consider only policies

with this property. Denote (q
�c

(i,j)

(i,j),(m,1)), . . . , q
�c

(i,j)

(i,j),(m,Nm)) as

�(m) for Assumption 2.5 and �(i,m) for Assumption 2.7. Then
in (3), under the two assumptions, Q(i,m) =Q(m) = eT�(m) and
Q(i,m) = eT�(i,m), respectively.

4. Policy iteration for two-level MDPs

In this section, we provide a policy iteration algorithm for
a two-level MDP with decoupled actions. In the next section,
we show that the computational effort can be reduced by de-
composing the problem into the upper-level and a number of
lower-level problems, all of them are of smaller sizes.

As the preparation for subsequent discussion, we introduce
phase-type distributions discussed in Chapter 2 of Neuts (1981).
Let N be a positive integer; B be an N ×N non-negative matrix;
B0 be an N-dimensional non-negative column vector where the
row sums of [B, B0] are equal to 1; � = (�1, . . . , �N) be an N-
dimensional non-negative row vector; �N+1 be a non-negative
number such that

∑N+1
m=1�m =1; e be an N-dimensional column

vector with all elements equal to 1.
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Lemma 4.1. Let L follow the discrete phase-type distribution
defined by the absorption time of the (N + 1)-state DTMC[
B

0

B0

1

]

with state space {1, . . . , N + 1} and the initial distribution
(�, �N+1); Lq be the number of visits to state q before absorp-
tion, q = 1, . . . , N . Then E(L) = �(I − B)−1e and E(Lq) =
�(I − B)−1eq , with eq being the qth column of the identity
matrix, q = 1, . . . , N .

The sojourn time � of a mode of the two-level MDP (for a
given policy) is the duration of a visit to the mode (for the given
policy). Denote the length of a sojourn time � by �(�). Let �(m)

k

be the kth sojourn time of mode m (in a generic sample path of
the two-level MDP). Its length is �(�(m)

k ). Refer to the sequence

of sojourn times of mode m as the m-sojourn time. Let t
(m)
k be

the instant at which the kth m-sojourn time starts; i.e.,

t
(m)
1 = min{t : t > 0, Xt = m},
t
(m)
k+1 = min{t : t > t

(m)
k + �(�(m)

k ), Xt = m}.
The kth sojourn time of mode m is formed by the set of states

{(X
t
(m)
k

, Y
t
(m)
k

), . . . , (X
t
(m)
k +�(�(m)

k )−1
, Y

t
(m)
k +�(�(m)

k )−1
)},

and the total reward collected on �(m)
k is

t
(m)
k +�(�(m)

k )−1∑
t=t

(m)
k

f(Xt ,Yt ).

By Assumption 2.4, each m-sojourn time �(m) follows the
geometric distribution with the probability of success 1 − �m,
no matter what the (mode) policy is. By construction, �(m)

can also be expressed as the phase-type distribution with B0 =
(1 − r(m,m))e, B = r(m,m)S

(m), and (�, �N+1) = (�, 0), where
� is an Nm-dimensional probability row vector that denotes
the initial setting distribution at mode m. From Lemma 4.1,
E(�(m))=�(I −r(m,m)S

(m))−1e, with the expected total reward
�(I − r(m,m)S

(m))−1fm.
The form of � depends on the assumption taken. Consider the

case that mode i changes to mode m. As discussed in Section
3, we have �=�(m), Q(i,m) =Q(m) = eT�(m) if Assumption 2.5
holds; and �=�(i,m), Q(i,m) =eT�(i,m) if Assumption 2.7 holds.
Let 	 = (	1, . . . , 	M) be the stationary distribution of R, i.e.,

M∑
m=1

	m = 1 and 	 = 	R. (16)

By Lemma 4.1 and Little’s formula, we have the following
results for later usage.

Proposition 4.2. Let � = �(m) if Assumption 2.5 holds,
1�m�M; and � = �(i,m) if Assumption 2.7 holds, 1� i �=

m�M . For any policy, the stationary distribution of the tran-
sition probability matrix P of the policy is given by

�(m,n) =
∑
i �=m

	i r(i,m)�(I − r(m,m)S
(m))−1en,

1�n�Nm, m = 1, . . . , M . (17)

The long-run average reward from mode m,

vm =
∑
i �=m

	i r(i,m)�(I − r(m,m)S
(m))−1fm, m = 1, . . . , M .

(18)

The long-run average reward of the system is


 =
M∑

m=1

vm =
M∑

m=1

∑
i �=m

	i r(i,m)�(I − r(m,m)S
(m))−1fm (19)

in general, and when � = �(m),


 =
M∑

m=1

	m�(m)(I − r(m,m)S
(m))−1fm. (20)

Algorithm 1 (Policy iterations for the two-level MDP).

1. Set k = 1. Arbitrarily choose an initial policy L1, where
the initial setting distribution takes the form �(m) for As-
sumption 2.5, and the form �(i,m) for Assumption 2.7.

2. At the kth iteration:
(a) Find the transition probability matrix PLk of policy

Lk , and find its stationary distribution �Lk from (17),
where �= �(m) if Assumption 2.5 holds, and �= �(i,m)

if Assumption 2.7 holds.
(b) Solve the Poisson equation (I −PLk +e�Lk )gLk =f

for the potential vector gLk of policy Lk .
(c) Take the (componentwise) argument maximum of

maxL{PLgLk } to determine an improved policy
Lk+1, where the improved actions of each state are
found from (9), (10), and (15). Whenever applicable,
the action of a state in Lk should be kept for Lk+1
if the action is maximal for the state in both Lk and
Lk+1.

3. Stop if Lk =Lk+1; otherwise set k = k + 1 and return to
step 2.

Algorithm 1 improves on every iteration. Given that the ac-
tion set is finite, Algorithm 1 finds the optimal policy in finite
number of iterations. Note that Algorithm 1 is computationally
intensive. At each iteration, the solution of gLk in Step 2(b)
takes the inverse of an (

∑M
m=1 Nm)× (

∑M
m=1 Nm) matrix. The

computational effort required, to the first-order approximation,
is about O(

∑M
m=1 Nm)3.

5. The decomposition of two-level MDPs

5.1. The lower-level problem

Similar to �(m), we define an (i, m)-sojourn time �(i,m) as an
m-sojourn time that is changed from mode i. Let hf (�(m)) and
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hf (�(i,m)) be, respectively, the total reward from an m-sojourn
time �(m) and an (i, m)-sojourn time �(i,m) for a performance
function f. Setting t = 1 as the beginning of the sojourn time �,
we have hf (�) =∑�(�)

t=1 f(Xt ,Yt ). The expected total reward are

Hf (m) = E[hf (�(m))] = �(m)(I − �mS(m))−1fm (21)

and

Hf (i, m) = E[hf (�(i,m))] = �(i,m)(I − �mS(m))−1fm (22)

for the m- and (i, m)-sojourn times, respectively, 1� i �=
m�M . By Assumption 2.4, Hf (m) < ∞, Hf (i, m) < ∞, and
the expected length of an m- or (i, m)-sojourn time is

H1(m) = 1

1 − �m

, m = 1, . . . , M . (23)

From (19), (20) and (22), the long-run average reward for a
given policy is


 =
M∑

m=1

(1 − r(m,m))	mHf (m) under Assumption 2.5 (24)

and


 =
M∑

m=1

∑
i �=m

	i r(i,m)Hf (i, m) under Assumption 2.7. (25)

In both cases, the lower-level policy is to maximize the total
reward within a mode sojourn time, which can be done mode
by mode.

In Section 5.1.1 below, we will illustrate the procedure to
determine �c,∗

(m,n) and its corresponding �p,∗
(m,n) under Assumption

2.7. We consider (i, m)-sojourn time with �=�(i,m). There can
be as many as M(M −1) different mode transitions, potentially
one for mode change from i to m, 1� i �= m�M .

When Assumption 2.5 holds instead, there will only be M

lower-level MDPs, one for each mode. The procedure to deter-
mine �c,∗

(m,n) and �p,∗
(m,n) for an m-sojourn time follows a similar

procedure by taking �(i,m) =�(m) for all 1� i�M . We skip the
details for conciseness.

5.1.1. The lower-level chain
As discussed before, the optimal lower-level policy Ll,∗ =

(Lc,∗,Lp,∗) is found from

max
Ll

{Hf (i, m)}, (26)

maximizing the expected total reward of an (i, m)-sojourn time.
The problem can be transformed into an average-reward MDP.

Consider a fixed lower-level policy Ll . Let t
(i,m)
k be the

period that the kth (i, m)-sojourn time occurs, and let {Ỹ�} be

the DTMC embedded on the (i, m)-sojourn times, i.e., in {Ỹ�},
only the reward and time contributed from (i, m)-sojourn times
are recorded. {Ỹ�} can be constructed in the following way:

Ỹ1 = Y
t
(i,m)
1

, Ỹ� = Y
t
(i,m)
1 +�−1

for 1����(�(i,m)
1 )

and in general,

Ỹ
(
∑k

q=1�(�(i,m)
q )+�)

= Y
t
(i,m)
k+1 +�−1

for 1����(�(i,m)
k+1 ). (27)

{Ỹ�} is the embedded chain formed by “cutting and pasting”
together all the (i, m)-sojourn times on a sample path of the
original chain. By construction, {Ỹ�} is positive. For any given

policy, the long-run average reward of {Ỹ�} is,


̃(i, m) = lim
K→∞

∑K
k=1 hf (�(i,m)

k )∑K
k=1 h1(�

(i,m)
k )

= lim
K→∞

(1/K)
∑K

k=1 hf (�(i,m)
k )

(1/K)
∑K

k=1 h1(�
(i,m)
k )

= Hf (i, m)

H1(i, m)

= (1 − �m)Hf (i, m), (28)

where we use (23) to get the last equality. Comparing (26)
and (28), the total-reward problem on (i, m)-sojourn times and
the average-reward problem of {Ỹ�} have the same optimal
policy.

Let S̃(i,m) = [s(i,m)
(j,n) ] be the transition probability matrix of

{Ỹ�} for a fixed pair of policies Lc and Lp. S̃(i,m) can be found
from conditioning: Consider any period that the state is (m, j).
If there is no mode change, the chain is in state (m, n) in the
next period with probability s

�(i,j)

(j,n) ; if there is a mode change,
when the chain next visits mode m through a mode change
from i, the initial distribution is determined by q

�(i,j)

(i,j),(m,n) (cf.
(2) and (3)). Then

S̃(i,m) = �mS(m) + (1 − �m)Q(i,m). (29)

The stationary distribution �̃(i,m) = {�̃(i,m)
1 , . . . , �̃(i,m)

Nm
} of

S̃(i,m) can easily be found from the given �(i,m) and S(m).
Define an alternate renewal process such that the system is
“on” when the two-level MDP is in an (i, m)-sojourn time,
and is “off” otherwise. A transition from mode i into mode
m defines a renewal. Within the “on” time, the expected
number of visits to state (m, n) is �(i,m)(I − �mS(m))−1en.
From (23),

Nm∑
n=1

�(i,m)(I − �mS(m))−1en

= �(i,m)(I − �mS(m))−1e = 1

1 − �m

.

By the Renewal Reward Theorem,

�̃(i,m)
n = �(i,m)(I − �mS(m))−1en

�(i,m)(I − �mS(m))−1e

= (1 − �m)�(i,m)(I − �mS(m))−1en,
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i.e.,

�̃(i,m) = (1 − �m)�(i,m)(I − �mS(m))−1. (30)

Check that �̃(i,m) satisfies the balanced equation �̃(i,m)S̃(i,m) =
�̃(i,m). The long-run average reward of {Ỹ�} is


̃(i,m) = �̃(i,m)fm = (1 − �m)�(i,m)(I − �mS(m))−1fm, (31)

which is consistent with (28).

5.1.2. The lower-level algorithm
The lower-level problem for an (i, m)-sojourn time becomes

the optimal control of {Ỹ�} such that the policies Lc and

Lp exert their effect together through S̃(i,m). Supposedly,
rows of Q(i,m) should be the same, which means that states
under the same mode take the same initial setting decision.
Such coupling violates the procedure for policy iteration.
Instead of taking Q(i,m) = eT�(i,m), allow Q(i,m) in (29) to
have different rows. By the nature of the problem, the opti-
mal solution will come out naturally of the form of Q(i,m)

= eT�(i,m).
Let Ll

k = (Lc
k,L

p
k ) be the lower-level policy found in the

kth iteration of the lower-level algorithm, where Lc
k and L

p
k

are Lc and Lp in the kth iteration, respectively.

Algorithm 2 (Policy iterations for the lower level for an (i, m)-
sojourn time).

1. Set k = 1. Arbitrarily choose an initial lower-level policy
Ll

1 = (Lc
1,L

p
1 ), which specifies �(i,m),Lc

1 and S(m),L
p
1 .

2. At the kth iteration:
(a) Find S̃(i,m),Ll

k from (29) and �̃(i,m),Ll
k from (30).

(b) Solve the Poisson equation (I − S̃(i,m),Ll
k +

e�̃(i,m),Ll
k )g̃

Ll
k

m = fm for the potential vector

g̃
Ll

k
m = (g̃

Ll
k

m (1), . . . , g̃
Ll

k
m (Ni))

T of the lower-level
policy Ll

k for (i, m)-sojourn times.
(c) Take the (componentwise) argument maximum of

maxLl {S̃(i,m),Ll

g̃
Ll

k

i } to determine an improved
lower-level policy Ll

k+1. Whenever applicable, the
action of a setting in Ll

k should be kept for Ll
k+1 if

the action is maximal for the setting in both Ll
k and

Ll
k+1.

3. Stop if Ll
k =Ll

k+1; otherwise set k = k + 1 and return to
Step 2.

Algorithm 2 improves on every iteration. With the finite
action space, the algorithm will stop at a maximum lower-
level policy after a finite number of iterations. Given that

S̃(i,m),Lg̃
Ll

k
m = �mS(m),Lg̃

Ll
k

m + (1 − �m)QLg̃
Ll

k
m , the actions

�c
(m,j) and �p

(m,j)can be determined separately, and the im-

proved policy does satisfy Q(i,m) = eT�(i,m) (i.e., the initial
distribution for different rows are the same). In this sense,
allowing Q in (29) to have different rows only has conceptual
meaning.

5.2. The upper-level problem

We apply the time aggregation approach to solve the upper-
level problem. In time aggregation, a subset of states is chosen
as the embedded states. The reward between two visits of the
embedded states is “aggregated” together and is assigned to
the leading embedded states. The approach was first proposed
for performance gradients in Zhang and Ho (1991) and then
extended to MDPs in Cao et al. (2002). For Cao et al. (2002), the
embedded Markov chain for a given mode policy is determined
by a fixed set of states, not by the fixed type of transitions
corresponding to the changes of modes as ours. The expected
total reward in a sojourn time of a mode is aggregated to a
visit of the mode. The aggregated rewards of the sojourn times
depend on the assumptions adopted, and their determination is
described in the previous section for the lower level.

5.2.1. The upper-level time-aggregated chain
{Xt } stays at the same mode during a sojourn time of the

mode. The beginning of the sojourn times marks the transitions
that the time aggregated chain bases on. Define

t1 = 1 and t�+1 = min{t : t� < t, Xt �= Xt�}.
Basically, {t�} is the sequence of periods of new modes formed

by sorting {t (m)
k , m=1, . . . , M; k=1, 2, . . .} in ascending order.

Define an embedded DTMC {X̃�} of {Xt } by

X̃� = Xt� for all � = 1, 2, . . . (32)

{X̃�} gives the successive new modes of the machine. Its tran-
sition probability matrix is

R̃ = [r̃(i,m)] where r̃(i,m) =
{

0 if i = m,
r(i,m)

1 − �i

, i �= m.
(33)

Let  be the rate of the occurrence of sojourn times.

 =
M∑

m=1

(1 − �m)	m, (34)

where 	 = (	1, . . . , 	M), the stationary distribution of R, is
found from (16). It is straightforward to show that the stationary
distribution of R̃ is

	̃ = (	̃1, . . . , 	̃M) where 	̃i = (1 − �i )


	i ,

i = 1, . . . , M . (35)

The subsequent development depends on the assumption taken.
First consider Assumption 2.5. From (24), (33), and (35), the
long-run average reward of {X̃�} is

M∑
i=1

	̃iHf (i) = 



. (36)

From (23) and (35), the average length of a sojourn time is

M∑
i=1

	̃iH1(i) = 1


. (37)
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For � > 0, re-define the reward of a visit of state m in the chain
{X̃�} (cf. Cao et al., 2002) to

��(m) = Hf (m) − �H1(m), 1�m�M ,

i.e., �� = Hf − �H1. (38)

Let Lu be any upper-level policy. From (35)–(38), the long-run
average reward of {X̃�} is


L
u

� := 	̃L
u

�� = 
L
u − �

Lu
.

Note that � is arbitrary. Suppose that �=
, the long-run average
reward of a given upper-level policy, the base policy L from
which we want to improve upon. The performance function of
{X̃Lu

� } for this particular case becomes

�
 = Hf − 
H1 (39)

under policy Lu. Its long-run average reward is 
Lu

 =

(
L
u − 
)/L

u

, whose value reflects the difference in the
performance of Lu and the based policy L. Indeed, we have
established

Proposition 5.1. For any lower-level policy, let 
 be the long-
run average reward of {(Xt , Yt )} of the (upper-level) base pol-
icy. Re-define the reward function for the embedded chain {X̃�}
to �
 with �=
 in (39), where 
 is the long-run average reward
of the base policy. Then for any upper-level policy Lu, we
have 
L

u

> 
, or 
L
u =
, or 
L

u

< 
, if 
L
u


 > 0, or 
L
u


 =0,

or 
L
u


 < 0, respectively. Furthermore, if we have 
L
u


 �0 for
all Lu, then L is the optimal upper-level policy for the given
lower-level policy.

When Assumption 2.7 holds, recall from (22) that Hf (i, m) is
the expected total reward for the (i, m) sojourn time. It follows
from (25), (33), and (35) that

∑M
i=1	̃i

∑
m�=i r̃(i,m)Hf (i, m) =


/. Note that r̃ is policy dependent. Define a policy de-
pendent performance function Hf such that Hf (i) =∑

m�=i r̃(i,m)Hf (i, m), 1� i�M . Then
∑M

i=1	̃iHf (i) = 
/.
As an analogy of (38), re-define �� under Assumption 2.7 as

�� = Hf − �H1. (40)

Proposition 5.1 applies with the policy dependent performance
function Hf .

5.2.2. The upper-level algorithm given a lower-level policy
We can develop policy iteration algorithms based on Propo-

sition 5.1. In the following algorithm, Lu
k , the kth upper-level

policy found by the algorithm, is considered as the base policy
L in Proposition 5.1. For notational simplicity, let

�
k =
{

Hf − 
L
u
k H1 under Assumption 2.5,

Hf − 
L
u
k H1 under Assumption 2.7,

(41)

be the value of �� when � = 
L
u
k , where �
k is policy inde-

pendent under Assumption 2.5 and is policy dependent under
Assumption 2.7.

In the policy improvement step under Assumption 2.7, for the

new policy Lu
k+1, the performance function becomes �

Lu
k+1


k =
H

Lu
k+1

f − 
L
u
k H1, where H

Lu
k+1

f (i) = ∑
m�=i r̃

Lu
k+1

(i,m) Hf (i, m).
Recall that H1(i), Hf (i) under Assumption 2.5, and Hf (i, m)

under Assumption 2.7 have already been found from (23), (21),
and (22), respectively.

Algorithm 3 (Policy iterations for the upper level).

1. Set k = 1. Arbitrarily choose an initial upper-level policy
Lu

1.
2. At the kth iteration:

(a) Find 	L
u
k from (16), 
L

u
k from (24) if Assumption 2.5

holds, or from (25) if Assumption 2.7 holds, L
u
k from

(34), R̃Lu
k from (33) and its stationary distribution

	̃L
u
k from (35), and �
k from (41).

(b) Solve the Poisson equation

(I − R̃Lu
k + e	̃L

u
k )g̃L

u
k = �
k (42)

for the potential vector g̃L
u
k = (g̃L

u
k (1), . . . , g̃L

u
k

(M))T of upper-level policy Lu
k .

(c) Take the (componentwise) argument maximum of

max
Lu

{R̃Lu

g̃L
u
k } under Assumption 2.5,

max
Lu

{R̃Lu

g̃L
u
k + �L

u


k } under Assumption 2.7,

to determine an improved upper-level policy Lu
k+1.

Whenever applicable, the action of a mode in Lu
k

should be kept in Lu
k+1 if the action is maximal for

the mode in both Lu
k and Lu

k+1.
3. Stop if Lu

k = Lu
k+1; otherwise set k = k + 1 and return

to step 2.

By Proposition 5.1, each iteration of Algorithm 3 leads to an
increase in the objective function. Given that the action space
is finite, Algorithm 3 will stop at a maximal upper-level policy
after a finite number of iterations.

5.3. The combined algorithm for the two-level model

Using the optimal lower-level policy (Lc,∗,Lp,∗) of
Algorithm 2 as the input of Algorithm 3 to deduce the optimal
upper-level policy Lu,∗, we have

Algorithm 4 (The time-aggregated algorithm for the two-level
model).

1. Use Algorithm 2 to find the optimal lower-level policy
Ll,∗ = (Lc,∗,Lp,∗).

2. Given the optimal lower-level policy Ll,∗, use Algorithm
3 to find the optimal upper-level policy Lu,∗ and stop.

Given Assumption 2.4, the upper-level policies Lu play no
effect on the expected total reward of any m-sojourn time.
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Consider policy L = (Lu,Ll ). From (24) and (25),


L =
M∑
i=1

(1 − r
Lu

i

(i,i))	
Lu

i HLl

f (i)

or


L =
M∑
i=1

∑
i �=m

	L
u

i r
Lu

i

(i,m)H
Ll

f (i, m).

The optimal lower-level policy as found in Section 5.1 is in fact
optimal for the original problem. Hence, Algorithm 4 finds the
optimal policy of the two-level problem in a finite number of
iterations. As we specialize to different sets of assumptions for
the lower level, Assumptions 2.5 and 2.7, we get Theorems 2.6
and 2.8, respectively.

In all algorithms, step 2(b) takes most computational effort.
For Algorithm 1, it is of order O((

∑M
m=1 Nm)3). For Algo-

rithm 4, under Assumption 2.5, the computation is of order
O(M3) +∑M

m=1 O(N3
m), and under Assumption 2.7, the com-

putation is of order O(M3)+∑M
m=1 (M −1)O(N3

m). In typical
real-life applications, M>

∑M
m=1 Nm, which makes Algorithm

4 attractive. For example, when M = 10 and Nm = 1000 for
1�m�M , the computational effort of Algorithm 4 is around
one-tenth of Algorithm 1 even under Assumption 2.7.

Policy iteration can still be applied when R, Q(m), and S(m)

are unknown. See Cao (1999, 1998); Cao and Chen (1997);
Cao et al. (1996), and Cao and Wan (1998) for the single-
sample path-based approach, particularly Cao et al. (2002) for
the approach on a time-aggregated chain.

5.4. A numerical example

Consider a two-level MDP with M = 3, N1 = 3, N2 = 4,

N3 = 2,X = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4),

(3, 1), (3, 2)} and performance function f =(10, 5, 6, 4, 8, 7, 3,

10, 2)T. Using Roman numerals I, II, etc., to label actions, the
mode transition probabilities in (1) are

[r I
(i,m)] =

[ 0.99 0.01 0
0.002 0.99 0.008
0.007 0.003 0.99

]
,

[r II
(i,m)] =

[ 0.99 0.005 0.005
0.005 0.99 0.005
0.005 0.005 0.99

]
,

[r III
(i,m)] =

[ 0.99 0 0.01
0.007 0.99 0.003
0.004 0.006 0.99

]
,

where modes can take actions combined from rows of [r I
(i,m)],

[r II
(i,m)], and [r III

(i,m)], an interpretation that holds for all action
matrices listed below.

When a mode is preserved, there are 2, 3, and 4 actions to
determine the setting for states in modes 1, 2, and 3, respec-
tively. For mode 1, the setting transition probability matrices

for the two actions are

[sI
(1,j),(1,n)] =

[0 0.6 0.4
0 0 1
1 0 0

]
,

[sII
(1,j),(1,n)] =

[ 0 1 0
0.5 0 0.5
0.3 0.7 0

]
.

For mode 2, the setting transition probability matrices for the
three actions are

[sI
(2,j),(2,n)] =

⎡
⎢⎣

0 0.5 0.5 0
0 0 0.5 0.5

0.5 0 0 0.5
0.5 0.5 0 0

⎤
⎥⎦ ,

[sII
(2,j),(2,n)] =

⎡
⎢⎣

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

⎤
⎥⎦ ,

[sIII
(2,j),(2,n)] =

⎡
⎢⎣

0 0.4 0.3 0.3
0.3 0 0.2 0.5
0.1 0 0.2 0.7
0 0.7 0.3 0

⎤
⎥⎦ .

For mode 3, the setting transition probability matrices for the
four actions are

[sI
(3,j),(3,n)] =

[
0 1
1 0

]
, [sII

(3,j),(3,n)] =
[

0.3 0.7
0.7 0.3

]
,

[sIII
(3,j),(3,n)] =

[
0.6 0.4
0.4 0.6

]
, [sIV

(3,j),(3,n)] =
[

0.9 0.1
0.1 0.9

]
.

The initial distribution of settings of new mode 1 are

[�(1),I] = [0.7 0.2 0.1], [�(1),II] = [0.25 0.5 0.25],
[�(1),III] = [0.25 0.25 0.5].
The initial distribution of settings of new mode 2 are

[�(2),I] = [0.25 0.25 0.25 0.25],
[�(2),II] = [0.4 0.2 0.2 0.2],
[�(2),III] = [0.2 0.2 0.2 0.4].
The initial distribution of settings of new mode 3 are

[�(3),I] = [0.5 0.5], [�(3),II] = [0.8 0.2],
[�(3),III] = [0.2 0.8].
For the two-level MDP, the given set of transition probabilities
satisfies Assumptions 2.1 and 2.3. With �i =0.99 for all modes,
its actions are decoupled. As innocent as the prior numbers, they
can form (33)(33)(23)(34)(42) = 7, 558, 272 different policies.

Applying the lower-level algorithm to the three modes, the
optimal initial setting distribution action �c,∗

(i,j) = �(i),∗, the op-

timal setting transition actions �p,∗
(i,j) of states, and their cor-

responding total expected return in a sojourn time H ∗
f (i) are

shown in Table 1. The optimal lower-level transition probabil-
ities SLp,∗(i) can be constructed from �p,∗

(i,j) of mode i. As for
the upper level, the optimal actions of modes 1, 2, and 3 are
actions III, I, and I, respectively.
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Table 1
The optimal initial setting distributions, optimal actions, and H∗

f
(i)

Mode i �(i),∗ (�p,∗
(i,j)

) H∗
f
(i)

1 (0.7, 0.2, 0.1) (I, II, I) 748.3274
2 (0.25, 0.25, 0.25, 0.25) (I, II, II, III) 619.5318
3 (0.8, 0.2) (IV, I) 926.4786

When Assumption 2.7 holds instead, initial setting distribu-
tions may depend on original as well as new modes. See Wan
and Cao (2005) for an expanded example with this feature.

6. Conclusion

In this paper, we show that for a two-level MDP, if the so-
journ time of each mode is uncontrollable and the sets of the
initial setting distributions after a mode change are independent
of the settings before the mode change, the effect of the ac-
tions at different states can be decoupled and the problem can
be solved with policy iteration accordingly. Furthermore, the
upper-level MDP is solved by the time-aggregated approach,
and the lower-level MDP for each mode is solved as a total-
cost MDP with an embedded chain. The approach allows dis-
tributive implementation of the centralized control, and it saves
computational effort compared with the standard policy itera-
tion.

When the assumptions hold, our solution approach works so
long as the distribution on settings of a new mode is independent
of the settings of the old mode. Thus, our approach can be
extended to cases with set up costs for new modes or with
action dependent costs that are independent of settings before
any mode change. See the extension in the conclusion of Wan
and Cao (2005) for examples on each of these two cases.
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