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Generalized LQR Control and Kalman Filtering With
Relations to Computations of Inner–Outer

and Spectral Factorizations
Guoxiang Gu, Xi-Ren Cao, and Hesham Badr

Abstract—We investigate the generalized linear quadratic reg-
ulator (LQR) control where the dimension of the control input is
strictly greater than the dimension of the controlled output, and
the weighting matrix on the control signal is singular. The dual
problem is the generalized Kalman filtering where the dimension of
the input noise process is strictly smaller than the dimension of the
output measurement, and the covariance of the observation noise is
singular. These two problems are intimately related to inner–outer
factorizations for nonsquare stable transfer matrices with square
inners of the smaller size. Such inner–outer factorizations are in
turn related to spectral factorizations for power spectral density
(PSD) matrices whose normal ranks are not full. We propose iter-
ative algorithms and establish their convergence for inner–outer
and spectral factorizations, which in turn solve the generalized
LQR control and Kalman filtering.

Index Terms—Inners/outers, Kalman filtering, linear-quadratic
control, spectral factorizations.

I. INTRODUCTION

I N THE standard linear quadratic regulator (LQR) control,
the dimension of the control input is no greater than the di-

mension of the controlled output, and the weighting matrix on
the control signal is nonsingular. For the standard Kalman fil-
tering, the dimension of the input noise process is no smaller
than the dimension of the output measurement, and the covari-
ance of the observation noise is nonsingular. The standard LQR
control and Kalman filtering are well studied, and their solutions
and properties are well documented [2], [11]. It is interesting to
observe that these two optimization problems are related to, and
have applications to computations of inner–outer and spectral
factorizations [1], [7].

In this paper, we study generalized LQR control and Kalman
filtering for discrete-time systems in which the aforementioned
regular conditions fail. While the solutions to these two gen-
eralized optimization problems can be obtained from similar
Riccati equations to those in the regular case, it is not easy to
compute the stabilizing solutions to the algebraic Riccati equa-
tions (AREs), associated with the generalized LQR control and
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Kalman filtering. Such AREs involve pseudoinverses, and are
often referred to as generalized AREs. In fact for stable sys-
tems the two generalized optimization problems can be equiv-
alently converted to inner–outer factorizations for nonsquare
stable transfer matrices whose inners are square and have a
smaller size that is in turn related to the spectral factorization
for power spectral density (PSD) matrices whose normal ranks
are not full. Our approach to the generalized LQR control and
Kalman filtering is through tackling the equivalent inner–outer
and spectral factorizations, from which we develop an iterative
algorithm for computing the stabilizing solutions to the AREs
associated with the two optimization problems. We will prove
the convergence of the proposed iterative algorithm.

Spectral factorizations have been widely used in signal pro-
cessing, control, and communications, due to the need for spec-
tral analysis in signals and for frequency-domain design in sys-
tems. There is a large body of literatures devoted to such a topic
[1], [6], [14], [18], [19]. The solutions given in [1], [19] are
the most general, but both did not cover those PSD matrices
whose normal ranks are not full. Such spectral factorizations are
less studied, and much harder to compute. Nevertheless its solu-
tion helps to solve the generalized LQR control and Kalman fil-
tering. In addition the blind channel estimation emerged in wire-
less data communications [5], [13], [15] is equivalent to such
spectral factorizations. We will follow the state–space approach
in [1], and develop convergent iterative algorithms to compute
spectral factors for PSD matrices with nonfull normal ranks.

The stabilizing solutions to the generalized AREs have been
studied (see [4], [12], and the references therein), which are ap-
plicable to the generalized LQR control and Kalman filtering.
However the existing approach is based on the augmented ma-
trix pencil via computing the stable deflating subspace. The
difficulty and complexity in computing accurate deflating sub-
spaces render the numerical solutions to the generalized AREs
less reliable than in the regular case [4, p. 168]. In addition the
AREs associated with the generalized LQR control and Kalman
filtering do not cover those AREs for spectral factorization con-
sidered in this paper. Our contribution is that we not only pro-
pose two iterative algorithms for computing solutions to the gen-
eralized LQR control and Kalman filtering, and to the spec-
tral factorization, respectively, but also show the relation be-
tween these two iterative algorithms which ultimately leads to
the proof of the convergence of the proposed iterative algorithms
to their respective stabilizing solutions.

The contents of this paper are organized as follows. After the
introduction section, the problems of inner–outer and spectral
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factorizations are formulated in Section II where the mathemat-
ical notations are introduced. Section III is devoted to the gen-
eralized LQR control and Kalman filtering, and proposes the
iterative algorithm for computing the positive–semidefinite so-
lutions to the corresponding AREs. The convergence of the it-
erative algorithm is studied in Section IV via another iterative
algorithm for spectral factorizations in which PSD matrices do
not have full normal ranks. The relation of these two iterative al-
gorithms is discovered with their convergence property proven.
The paper is concluded in Section V with illustrative examples
and remarks.

II. PRELIMINARIES

We will begin with the formulation of the inner–outer and
spectral factorizations entailed in this paper. Denote the set of
real/complex numbers by . Let be a transfer
function matrix of size . It is called causal, if its impulse
response is causal. Its normal rank is defined as the rank of
for almost all, except a countable set of . Denote the
conjugate of , and the conjugate and transpose of . Then
the para-hermitian conjugate of is defined and denoted by

. Assume that admits a state–space
realization

(1)

by an abuse of notation, where and .
It is clear that and have dimensions of and ,
respectively. If is a stability matrix, i.e., all eigenvalues of
are strictly inside the unit circle, then is stable. If

(2)

then is strict minimum phase. If the previous rank con-
dition holds for only , then is minimum phase.
Notice that neither ensures the full rank of .

A para-hermitian matrix of size has the form

(3)

It follows that is a hermitian matrix for any on the unit
circle. If in addition , then qualifies a
PSD with the covariance sequence. Let the normal rank
of be . We are interested in spectral factorizations

(4)

where has size , has size , and more
importantly both are causal, stable, and strict minimum phase.
In other words, all poles and zeros of and are
strictly inside the unit circle. In this case and are
called right and left spectral factors of . Spectral factors
are unique upto a factor of unitary matrices. Extensions can be
made for spectral factors to include poles and zeros on the unit
circle. However, for the sake of simplicity and brevity, we shall
not do so in this paper. Instead we assume that is a bounded

hermitian positive matrix with rank for all on the unit circle,
which excludes the possibilities of poles and zeros on the unit
circle for the spectral factors. It is worth to pointing out that
most of the existing work on spectral factorizations assume that

, and there lack effective computational algorithms for
spectral factorizations in the case of .

In this paper, we will also consider more general inner–outer
factorizations where as given in (1) may have zeros strictly
outside the unit circle, and its realization is subject to the con-
straint

rank (5)

We investigate inner–outer factorizations for the following two
cases:

Case i)

Case ii) (6)

where is a square inner of the smaller size, and
is an outer. A square transfer matrix is called inner, if
it is stable, and is a unitary matrix for all . In
other words, . A nonsquare
transfer matrix is called outer, if it is both stable, and
minimum phase. A moment of reflection reveals that all zeros of

are strictly outside the unit circle, and are thus unstable.
On the other hand, zeros of are all in the unit disc, in-
cluding the unit circle. The aforementioned inner–outer factor-
izations are intimately related to spectral factorizations. In fact,

is the right spectral factor of for
Case i), and is the left spectral factor of
for Case ii). The assumption that has no loss of gener-
ality, because any causal transfer matrix can be written as

for some and some causal transfer
matrix such that . Thus, inner–outer fac-
torizations of can then be studied with subsumed into
the inner.

It will be shown that the inner–outer factorizations in this
paper have a close relation to the generalized LQR control
and Kalman filtering. These two different problems amount to
solving the stabilizing solutions of certain AREs. Due to the hy-
potheses on the generalized LQR control and Kalman filtering,
the notion of pseudoinverses is needed. For a matrix , its
pseudoinverse, denoted by , satisfies . More
than one pseudoinverses exist in general. Let be
the singular value decomposition (SVD). One of the pseudoin-
verses of is where computes inverses
of the nonzero diagonal elements of .

III. GENERALIZED LQR CONTROL AND KALMAN FILTERING

In this section, we assume that the regular conditions for LQR
control and Kalman filtering fail to hold, and investigate their
optimal solutions. We propose an iterative algorithm to com-
pute the optimal solutions. Its convergence to the stabilizing so-
lution will be proven in the next section. We will also investigate
inner–outer factorizations for nonsquare transfer matrices. For
the interest of this paper, we restrict inners to square, and outers
to nonsquare transfer matrices. Such inner–outer factorizations
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are less studied, let alone the singular constraint in (5). In the
next two subsections, we review the results on optimal control
and optimal estimation, investigate various properties associ-
ated with the generalized LQR control and Kalman filtering, and
develop an iterative algorithm for computing inner–outer factor-
izations with square inners.

A. Generalized LQR Control and Right Spectral Factor

The generalized LQR control assumes the state–space model

(7)

with . It searches for the control input to
minimize the quadratic performance index

(8)

We assume that the control input has size , the controlled
output has size , and . Stability of is not assumed
for the generalized LQR control, and rank .

This problem differs from the standard LQR problem in that
is a “fat” matrix by , and its rank can be strictly

smaller than . That is, the penalty weighting matrix on the con-
trol signal is singular regardless of the rank of . The following
result is adapted from the existing literature.

Theorem 3.1: Let the -input/ -output system be given as
in (7) with . Suppose that is stabiliz-
able, and satisfies the generalized ARE

(9)

where . Then with

(10)

the performance index is .
The optimal solution in the above theorem can be derived

in a similar fashion to that for the standard LQR control using
finite horizon optimal control. Indeed the ARE in (9) can be
obtained by taking the time limit in the following difference
Riccati equation (DRE):

(11)

for some and with the feedback gain

where and . It can
be shown that with for all , the finite horizon
performance index

(12)

is minimized. In fact the finite horizon LQR control is applicable
to time-varying systems as well.

The above discussion suggests the iterative algorithm: For
, do the following:

(13)

where the initial value , , and
. The algorithm can be terminated if

is smaller than some pre-specified tolerance
bound. It is noted that is the solution to the
DRE in (11) at time with the boundary condition

. If is finite and fixed as
, then . Hence, the iterative

algorithm in (13) is convergent for any initial value .
As in the standard LQR theory, we can not conclude stability

of despite the fact that is stabilizable. That is,
the optimal feedback system

(14)

with in (10), may not be internally stable, even though the
energy of the controlled output

is bounded. A careful reflection concludes that any unstable
modes of are unobservable based on the controlled
output . That is, the unstable modes of

are also unobservable modes of .
Remark 3.2: We make the following remarks.

a) The ARE (9) may admit more than one posi-
tive–semidefinite solutions. Each one can be viewed
as an equilibrium to the DRE in (11). However, there
is a unique maximal solution , and a unique
minimal solution such that any other posi-
tive–semidefinite solution to the ARE (9) satisfies

. If the initial value
for the iterative algorithm in (13), then is likely
to converge to as . This is intuitively true
based on the optimality of the feedback control gain
corresponding to for each . On
the other hand, if with sufficiently
large, then is likely to converge to as

. In particular, if is close to some
satisfying the ARE (9), then is likely to

be trapped to the same in a few iterations.
b) For the problem of inner–outer factorizations in Case

(i) of (6), is assumed to be a stability matrix. If the
initial value satisfies the Lyapunov equation

(15)

then . Moreover, taking the difference be-
tween (15) and (9) yields
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Stability of implies that for any posi-
tive–semidefinite solution to the ARE (9). Hence, the
maximal solution to the ARE (9) is likely to be ob-
tained with the iterative algorithm (13) using the solu-
tion to (15) as the initial value.

A solution to the ARE (9) is said to be a stabilizing
solution, if is a stability matrix where has the
expression in (10). Similar to the regular case it can be shown
that is the stabilizing solution, and its existence is
hinged to stabilizability of , and

rank (16)

For ease of the reference, we denote as the optimal stabi-
lizing feedback gain given by

(17)

In the rest of this section, we will examine inner–outer factor-
ization for Case i) in (6).

Let be a solution to the ARE (9), and the state feed-
back gain be as in (10). Denote . Then

(18)

Indeed for any matrix there holds identity1

. Set

yielding . Thus

that verifies (18). The next lemma shows that
has the same rank as the normal rank of .

Lemma 3.3: Suppose that with
the dimension of as in (1). Let be a solution to the
ARE (9), and the state feedback gain be as in (10). Denote

and . Then there
holds

(19)

Proof: By the property of pseudoinverses, the ARE (9) can
be written as

(20)

The verification of the result in (19) is similar to that in the
regular case, and is thus omitted.

Since has the full normal rank, the rank of
is the same as the normal rank of that is

a useful property. The following observation is also important.
Lemma 3.4: Suppose that of size as in (1) has

normal rank , and rank . Let be a solution
to the ARE (9), and the state feedback gain be as in (10). Let

1The authors thank one of the anonymous reviewers for bringing this identity
to their attention.

be its Cholesky factorization with the size of
, and of size satisfy

(21)

Such an has rank . Then

(22)

Proof: The identity (19) shows that the rank of
is the same as the normal rank of

, which is . Hence, there exist of size and of
size such that , and (21) holds. With the
previous notation, the feedback gain in (10) has the expression

. It follows that

(23)

by as in (21). Let the rank of be . Then

(24)

with by the SVD of where
is a unitary matrix. Then

Thus, implies that , and ,
yielding

(25)

In light of the expression in (20), the ARE (9) can be rewritten
into the form of the following Lyapunov equation:

(26)

Clearly, all unstable poles of as in (22) are unobservable
modes of . Applying the similarity transform

to the realization of gives

with compatible partitions. It follows from (25) that .
Multiplying (26) by from left, and from right, and using
the aforementioned partitions and the SVD of in (24) yield

The fact that implies that and in light
of the previous equation, which coupled with concludes
that (22) is true.
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We are now ready to present our result on the inner–outer
factorization as in Case i) of (6).

Theorem 3.5: Suppose that of size as in (1)
has normal rank , satisfies the condition (16), and
is a stability matrix. Let be the maximal solution
to (9), and be as in (17). Then, there holds the inner–outer
factorization where, with

, the inner and outer are given, respectively,
by

(27)

Proof: We note that the previous two lemmas hold for any
solution to the ARE (9). Thus, by the proof of Lemma
3.3 and

satisfies . That
is, has the same column rank as the normal rank of

, which is , and is square and satisfies
. Because the unstable modes of

are unobservable modes of , they can
be eliminated through Kalman decomposition. Hence
with minimal realization is stable, which is indeed an inner. To
verify the expression of as in (27), we have

in light of Lemma 3.4. Stability of ensures stability of .
Moreover the hypotheses of the theorem imply that the maximal
solution is stabilizing, or is a stability matrix.
Consequently, admits a right inverse given by

which is stable. Hence, is strict minimum phase, and an
outer.

We comment that the outer factor has no transmission
zeros at , due to the full rank of which has size

, and the same rank as the normal rank of . The pos-
sible transmission zeros of at are now transmission

zeros of the inner factor , which is evident by its expres-
sion in (27). In the case when is strict minimum phase
(i.e., (2) is satisfied), there is a unique positive–semidefinite so-
lution to the ARE (9). In fact , if .

B. Generalized Kalman Filtering and Left Spectral Factor

The results in this subsection are dual to those in the pre-
vious subsection. Thus, we will only state the results without
proofs and derivations. We will present the result on gener-
alized Kalman filtering, and the inner–outer factorization for
Case (ii) in (6), which assumes . Since

, we seek a left spectral factor of ,
which is related to the generalized Kalman filtering. That is, we
are given the random process described by

(28)

where is a wide-sense stationary (WSS) random process,
and satisfies

(29)

with the expectation operator and

.

The dimension of the input noise is , and the dimension
of the output measurement is . Since , the covari-
ance of the observation noise is singular. The objective is
to estimate , based on the observation . The
standard Kalman filtering deals with the case when is “fat”
and has the full-row rank. However, we have a “tall” , which
may not have a full-column rank: .

By duality, assume that is detectable. Let
be a solution to the ARE

(30)

(31)

where . Again there are more than one
solution in general. A positive–semidefinite solution

can be obtained iteratively: For , with
, do the following:

(32)

where . In practice the algorithm is terminated
when is smaller than some tolerance bound.

A dual result to Theorem 3.1 is that with estimator

where is as in (31), the error variance for state estimation

Trace Trace

is minimized. However may not be stable, even
though is a solution to the ARE (30). If is
unstable, then is an unreachable pair, and
all unstable modes of are unreachable modes of
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, by noting that the ARE (30) can be written
into the form of Lyapunov equation

(33)

Moreover there are more than one positive–semidefinite solu-
tions to (32), with only one and one . Any other

satisfies the inequality . If in
addition

(34)

then is stabilizing in the sense that with

(35)

is a stability matrix. As in the previous subsection,
and are associated with the inner–outer factorization

entailed in Case ii) of (6).
Let be a solution to the ARE (30) and as in

(31). With , there hold
, that is dual to (18), and

(36)

that is dual to Lemma 3.3 where . More-
over all unstable models of are unreachable modes of

. The equality (36) shows that the rank of
is the same as the normal rank of in

(1), which is parallel to the result in Lemma 3.3. If as in
(1) has normal rank , then has rank

. The result parallel to Lemma 3.4 is

(37)

where is the Cholesky factorization with the
size of . The next result presents the solution to the inner–outer
factorization in Case ii) of (6).

Theorem 3.6: Suppose that as in (1) has normal rank
, satisfies the condition (34), and is a stability ma-

trix. Let be the maximal solution to (32),
and be as in (35). Then there holds the inner–outer fac-
torization where, with

, the inner and outer factors of are given,
respectively, by

(38)

Although iterative algorithms are derived for computing solu-
tions to the AREs in (9) and (30), it is unclear how to choose the
initial value and to (13) and (32), respectively,
that will ensure their convergence to the required stabilizing so-
lutions. It turns out that such an issue has to be resolved together
with that for spectral factorizations.

IV. SPECTRAL FACTORIZATIONS

In this section, we investigate the spectral factorization
problem for the para-hermitian matrix which is

positive semidefinite on the unit circle. So is a PSD
function and has the form

(39)

where is a stability matrix, and the normal rank of is
. This problem is much harder than the case of full normal

rank. Since , there exist factorizations [1]

(40)

where of size and of size are both
stable, given by

(41)

for some and . Such factorizations are re-
ferred to as minimal degree factorizations due to the same de-
grees of as the causal/anticausal part of in
(39), which can not be made smaller without changing realiza-
tion of . The following result is translated from [1, p. 495]
(positive real lemma for continuous-time systems).

Lemma 4.1: Suppose that , where is
a stability matrix. There exist minimal degree factorizations as
in (40) for some and in the form of (41), if and
only if

(42)

(43)

(44)

admit solutions , and , respectively.
Lemma 4.1 shows that in order to obtain the minimal degree

factors and in (41), i.e., and ,
we need first solve for and in (42) and (43), respectively,
which are two Lyapunov equations. Since is stable,
and , if they exist. However, more than one set of such
solutions , or exist, implying that more
than one pair of minimal degree factors exist. However, there
are unique sets of solutions and such
that both and as in (41) are outer functions, i.e.,

(45)

Such and are exactly the left and right spectral
factors, respectively.

The spectral factorization problem in this section is also re-
ferred to as minimal degree spectral factorizations [1], and the
spectral factors are unique up to a factor of unitary matrices. Be-
cause not every set of solutions to (42) or to (43) yields spectral
factors of , our goal is to obtain the right sets of solutions
such that the resultant , and are spectral factors
of , and satisfy (40). For this purpose, the results from the
previous section play the pivotal role.

In light of (42) and (43), and
, implying that
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Thus, , ,
and consequently

(46)

(47)

The two Lyapunov equations in (42) and (43) now have the re-
spective form of AREs

(48)

(49)

where and . The
following result is again translated from [1, Sec. IV, p. 495].

Lemma 4.2: Suppose that for all . Then all
solutions and to (48), and (49) respectively are nonnegative
definite. There exist maximal solutions , , and min-
imal solutions , to (48), and (49), respectively. All
other solutions , and to (48), and (49), respectively, satisfy

and .
The solution sets corresponding to , and are as-

sociated with right, and left spectral factors of , respec-
tively, while , and are associated with those factors

, and , whose transmission zeros are all outside
unit circle, respectively. Any other solutions and being nei-
ther minimal, nor maximal correspond to those factors
and which contain some nonminimum phase zeros. The
computation of and is the main focus of this section,
which yields the minimal degree spectral factors of in (39).
We propose the following iterative algorithm.

• Set initial values and .
• For , compute

(50)

(51)

• If is smaller than some pre-
specified tolerance bound, terminate com-
putation of ; If is smaller
than the pre-specified tolerance bound,
terminate computation of .

In the rest of the section we will show that the above algorithm
is convergent with limit , and . For this purpose define

and as the minimum Cholesky factors via

(52)

Similarly define and as

(53)

Then, , and are realiza-
tions associated with left, and right spectral factors of , re-
spectively. That is

(54)

are the left, and right spectral factors of , respectively, and
are thus outers. In light of Lemma 3.3 and Theorem 3.5,
has rank , and by duality in Section III-B, also has rank

. As a result, and have dimensions and ,
respectively, and thus have the full rank. Recall that is the
normal rank of . However for any other minimal degree
factors and as in (41) which are not spectral fac-
tors of , the associated and may have ranks strictly
smaller than . It is crucial to observe that the right spectral
factor of can be obtained from the inner–outer factoriza-
tion of as in Case i) of (6), and the left spectral
factor of can be obtained from the inner–outer factoriza-
tion of as in Case ii) of (6). Hence, the fol-
lowing result is true.

Theorem 4.3: Consider of size , and of
size as in (41), which are not spectral factors of , but
satisfy (40) with , where for all . Denote

Then, for any and , the following DREs:

(55)

(56)

have solutions , and , respectively, which
are nonnegative definite. Suppose that and
are chosen such that converges to , and
converges , respectively, as , satisfying the
AREs

(57)

(58)

In this case, realizations of the left and right spectral factors in
(54) are uniquely specified (up to a factor of unitary matrices),
respectively, by

(59)

(60)

where and are the minimum rank Cholesky factors.
Proof: For factorizations in (40) with and

given in (41), the inner–outer factorization of
as in Case i) of (6) can be applied to obtain the right spectral
factor . Hence, the DRE in (55) is obtained
using the iterative algorithm (13) with , , and

, leading to the limit ARE in (57) as under the
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hypothesis . It follows that and, thus,
in light of Theorem 3.5

Thus, (59) holds. A similar argument can be used to prove its
dual in (60), which is skipped.

Theorem 4.3 shows that the minimal solutions , and
to the AREs (48) and (49) can be computed from

(61)

respectively, which are basically the special cases of (42) and
(43), respectively. It also indicates that

(62)

(63)

in light of (59) and (60). Adding (62) to (57), and (63) to (58),
respectively, yield

(64)

(65)

Comparing the above two Lyapunov equations with those in
(42) and (43), respectively, concludes that

(66)

Note that is dependent on , while is dependent
on , but and are not. Hence we now switch to the
notations

respectively. The aforementioned analysis leads to

(67)

which are associated with and in (41), respec-
tively. It follows that

(68)

(69)

where and are given as in (67). We are now ready
for the main result of this section.

Theorem 4.4: Let of size as in (39) have normal
rank . Suppose that is a minimal realization
with a stability matrix, and and
for all . Then, the iterative formulas (50) and (51) in the
proposed algorithm are convergent with limits , and ,
which are the minimum solutions to the AREs (48) and (49),
respectively.

Proof: We first prove that the limiting solution to (50) is
. By (68) and in (39)

for some and with . Denote
. Substituting the above into (50) yields

(70)

Because by (42), the aforemen-
tioned equation leads to

which is identical to (55) with for and .
Since , for any posi-
tive–semidefinite solution to ARE

(71)

which is the same ARE as in (57). In light of b) in Remark 3.2,
and the results in the previous section, the iterative algorithm
(13) is convergent with most likely. Moreover,
the iterative algorithm in (50) is in fact independent of and

. In other words for every possible pair of the itera-
tive solutions in (50) satisfies

with the iterative solutions to (55). We may thus choose
and such that is strictly minimum phase, and

has full rank. Such and clearly exist by the hypothesis
that has the rank for all on the unit circle, and by the
minimality of . As such the positive semi-definite
solution to the ARE in (71) is unique, which is . As a
result is convergent, implying that

is convergent to by (67). The
proof for the limiting solution of (51) to can be shown
similarly, which is omitted.

It is noted that the convergence of the proposed spectral fac-
torization algorithm embodied in (50) and (51) is established
under the zero initial condition . If
and are arbitrary, then the convergence of the DREs
in (50) and (51) remains unknown, that is very different from
the inner–outer factorization algorithms in the previous section.

Remark 4.5: In light of (67) and the proof of Theorem 4.4,
we also obtain the right initial values and for the itera-
tive algorithms in (13), and (32), respectively, in order to ensure
the limits and , respectively. That is, the initial con-
dition as the solution to the Lyapunov equation (15) can
ensure that the iterative algorithm in (13) admits limit , as
required for the inner–outer factorization in Case i) of (6); Sim-
ilarly if satisfying is chosen, then the
iterative algorithm (32) admits the limit , as required for
the inner–outer factorization in Case ii) of (6).

Remark 4.6: Regarding the generalized LQR control and
Kalman filtering in Section III, stability of can not be
assumed in general, and thus Remark 4.5 does not apply. A
simple way to bypass the instability issue is to set the control
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gain where is a stability matrix, and
then consider the generalized LQR control for

(72)

This leads to the following modified algorithm:

where satisfies the Lyapunov equation

Remark 4.5 can be used to conclude that and
, as entailed for the generalized LQR control. Sim-

ilarly, we can obtain the dual algorithm

where is a stability matrix, and satisfies the Lya-
punov equation

(73)
The convergence of to , and to hold true as well.

V. ILLUSTRATIVE EXAMPLES AND CONCLUDING REMARKS

This paper considers generalized LQR control and Kalman
filtering. The main contributions are the relations between these
two optimization problems and computations of inner–outer
factorizations (Section III), and spectral factorizations (Sec-
tion IV). It is these relations that help develop iterative
algorithms, convergent to the stabilizing solutions of the AREs,
associated with generalized LQR control and Kalman filtering,
which in turn solves the problem of inner–outer factorizations
and spectral factorizations. In this section, we present two
examples to demonstrate the proposed iterative algorithms,
and their applications. Due to the space limit, we are unable
to present the control example for tracking and sensitivity
minimization. Interested readers are referred to [3].

Example 5.1: Our first example examines spectral factoriza-
tion with the PSD modified from [19]

(74)

where and

It can be verified that has rank 2 approximately with its
third eigenvalue no greater than for all . To apply the
algorithm in (50), we set of size 3 3 and

It takes only two iterations for the algorithm to terminate with
error tolerance in computing . The right spectral
factor is obtained via computing

as in (52) and (53), respectively. Since the spectral factors are
unique up to a factor of unitary matrices, we have

is also a right spectral factor, which agrees with the example in
[19], where

is a unitary matrix. It is surprising to see the faster convergence
in our proposed iterative algorithm. However, we need keep in
mind that the highest power in this PSD matrix is only 1. Usually
the number of iterations increases with respect to the highest
power of .

We would like to comment that in practical numerical exam-
ples, the normal rank of the PSD matrix is almost always full,
as in the above example. For this reason, we have to determine
the normal rank numerically, which can be difficult in practice.
On the other hand, it is possible that the normal rank is known
in advance, and its inflation is due to the noise in estimation of
the covariance data , which is the case for blind channel
estimation in [5], [13], and [15].

Example 5.2: This example is motivated from multiuser
wireless data communications. Because of the multipath phe-
nomena, the discretized wireless channels is represented by

(75)

Thus, the received signal data are convolution of the discretized
channel with the transmitted digital data, plus the observation
noise. As such it causes the problem of inter-symbol-inter-
ference (ISI) that poses the difficulty in symbol detection. A
conventional approach to eliminate the ISI is through channel
equalization [8], [9], [20]. Because redundancies are often
introduced purposely in communications, the channel transfer
matrix is tall, i.e., , and can be assumed to be
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strictly minimum phase. A simple state–space realization for
is

...
. . .

. . .
...

...

(76)

In [8] and [9], is assumed to have rank and optimal
channel equalizers are derived, which are the causal and stable
left inverse of that have the smallest norm. How-
ever due to the existence of the transmission delay, full-rank
assumption on is not realistic. Hence, we apply the algo-
rithm in Section III to compute the inner–outer factorization

, where is FIR, and has all its zeros
at infinity, and has the full-column rank. Let be the
minimum integer such that is causal. Then, the op-
timal linear equalizer can be obtained as

(77)
where is the causal and stable left inverse of ,
that has the smallest -norm.

In the following, we consider a numerical example with
of size 3 2, specified by and

Recall realization as in (76). Each element in and is gen-
erated as a normal random variable with zero mean, and unit
variance, and the two columns of are linearly depen-
dent. It can be verified that is strictly minimum phase.

It is noted that in applying the iterative algorithm in (32), we
do not need begin with initial condition ,
with a realization of , due to the assumption
that is strictly minimum phase. In fact with , the
iterative algorithm in (32) often converges faster, based on our
numerical experience. For the given numerical example with the
error tolerance , the number of iterations is only 2, if

; The number of iterations is 6, if . Both
give the same . With obtained, the inner and outer
factors are computed according to Theorem 3.6. It turns out that
the reachability gramian of has rank 1, implying that the
minimal realization of has an order at most 1. Since
has only one zero outside the unit circle at infinity, has

McMillan degree exactly 1. After eliminating the unreachable
modes of , we obtain

which is indeed an inner. The outer factor is specified by

The iterative algorithm works quite efficiently in terms of the
computational complexity.

As a final remark, we point out that the existence of the trans-
mission zeros for near the unit circle can lead to slow
convergence in computation of the inner–outer factorizations,
which can, in turn, cause the accumulation of the rounding-off
errors in our proposed iterative algorithms. We suggest, in this
case, to terminate the iteration before the rounding-off error
grows large. One way to implement this is to employ the itera-
tive algorithms in (13) and (50) simultaneously for inner–outer
factorization in Case i) of (6) by setting

and computing , , and in accordance with (42). The
iterations need be terminated, once the difference between
and exceeds certain tolerance at the th iteration.
In light of (67) and the proof of Theorem 4.4, such a difference
is zero for each in absence of rounding-off errors, which is
indeed observed in our numerical simulations for at least the
first ten or more iterations. For the inner–outer factorization in
Case ii) of (6), we may set

and compute , , and in accordance with (43). The it-
erations can be terminated, once the difference between and

exceeds certain tolerance at the th iteration. Be-
cause of the possible early termination, the precision of the nu-
merical solution can be compromised due to the existence of the
transmission zeros near the unit circle. The rounding-off error
problem also exists for the spectral factorizations, but seems to
be minor based on our simulation experience. One way to check
the growing of the rounding-off error is to verify whether or not

, or is sign positive. The it-
erative algorithm (50) needs be terminated, if
has negative eigenvalues, of which the absolute values exceed
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certain tolerance. Similarly the iterative algorithm (51) needs
be terminated, if has negative eigenvalues, of
which the absolute values exceed certain tolerance. Clearly, the
ultimate solution to rounding-off errors is to speed up the con-
vergence rate for our proposed iterative algorithms when the
transmission zeros are near the unit circle, which is currently
under study.
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