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Technical Notes and Correspondence

Partially Observable Markov Decision Processes With
Reward Information: Basic Ideas and Models

Xi-Ren Cao and Xianping Guo

Abstract—In a partially observable Markov decision process (POMDP),
if the reward can be observed at each step, then the observed reward history
contains information on the unknown state. This information, in addition
to the information contained in the observation history, can be used to up-
date the state probability distribution. The policy thus obtained is called
a reward-information policy (RI-policy); an optimal RI-policy performs no
worse than any normal optimal policy depending only on the observation
history. The above observation leads to four different problem-formula-
tions for POMDPs depending on whether the reward function is known
and whether the reward at each step is observable. This exploratory work
may attract attention to these interesting problems.

Index Terms—Partially observable Markov decision process (POMDP),
reward-information policy.

I. INTRODUCTION

Markov decision processes (MDPs) are widely used in many im-
portant engineering, economic, and social problems. Partially observ-
able Markov decision processes (POMDPs) are extensions of MDPs in
which the system states are not completely observable. The solutions
to POMDPs are based on the state probability distributions which can
be estimated by using the information obtained via observations. In
this note, we argue that the reward history also contains information
for system states, and we provide some studies based on this fact. (Al-
though such reward information has been used in a special case of the
bandit problem [1], [8] for instance, our POMDP formulation is for the
general case with the Markov model.)

We discuss the discrete time model. An MDP concerns with a state
space X and an action space A. At time step t, t = 0; 1; . . ., the state
is denoted as xt and the action, at. When an action a 2 A is taken at
state x0 2 X , the state transition law is denoted as P (dxjx0; a), for
x 2 X . In a POMDP, at any time step t, the state xt is not directly
observable; instead, an observation yt can be made; and yt depends on
xt�1; xt, and at�1 and obeys a probability law Q(dytjxt�1; at�1; xt)
on the observation space Y . In particular, it is natural to assume that the
initial observation y0 depends only on x0 and also obeys a probability
law Q0(dy0jx0) on Y .

In addition, there is a reward (or cost) function r(x0; a; x; w), with
w being a random noise representing the uncertainty of rewards. Pre-
cisely, we denote the reward accumulated in period [t; t+ 1) as

zt+1 = r(xt; at; xt+1; wt); t = 0; 1; . . . (1)
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where fwtg is a reward-disturbance process and is assumed to have a
distribution law �w(dujx; a). For simplicity, we assume here that the
initial distributions p0 and �0 for initial state x0 and initial reward z0
respectively, are known. A detailed model will be discussed in Sec-
tion II.

Let a = fa0; a1; . . .g be the sequence of actions at taken at t =
0; 1; . . ., respectively. With the transition law, this sequence of actions
and the initial distribution p0 determine a unique probability measure
with its corresponding expectation denoted simply by E and the state
trajectories denoted as xt(a; p0), t = 0; 1; . . .. For simplicity, we will
omit the symbol a and p0 in the expression of state xt. Therefore, for
any action sequence a and an initial distribution p0, we can define the
discounted- and average-performance criteria as

V�(p0;a) :=

1

t=0

�
t
E[r(xt; at; xt+1; wt)]; 0 < � < 1 (2)

and

J(p0;a) := lim sup
N!1

N

t=0

E[r(xt; at; xt+1; wt)]

N + 1
(3)

respectively. When the reward-disturbancewt is mutually independent
and identically distributed and also independent to all the other random
variables in the system, we can define

�r(xt; at) = r(xt; at; x; u)P (dxjxt; at)�w(dujxt; at): (4)

In this case, the performance criteria (2) and (3) take the simplified
form with E[r(xt; at; xt+1; wt)] replaced by E[�r(xt; at)].

The goal of the optimal control problem is to find a sequence a that
maximizes the performance (2) or (3) by using the information avail-
able to us. Such problems are often called the POMDPs. The main con-
tribution of this note is based on a simple fact: when the system state is
not completely observable, the observed reward history certainly con-
tains information on the unknown state. With this observation, we can
characterize the POMDP-based learning and optimization problem into
four categories.

POMDPs based on only observation history fytg have been widely
studied; see [2], [3], [7], [9], [10], [13], and [14], for instance. The
common approach in the analysis of a POMDP is to first construct
a completely observable MDP (i.e., a standard MDP) that is equiva-
lent to the POMDP in the sense that not only they have equal optimal
values but also their corresponding policies have equal performance.
The state of the equivalent MDP at time t is the conditional distribution
of the state of the POMDP given the information available up to time
t. The existence of optimal Markov policies for POMDPs, etc, can be
easily derived by using the equivalence and the well-developed theory
for MDPs. Thus, solutions to POMDP depend on those to MDPs. The
reward history can certainly improve the conditional distribution and
therefore can improve the policies.

However, the structure of the information contained in the reward
history is different from that in the observation history. This can be
explained by a comparison with the situation in MDPs. There are two
main approaches to MDPs. One is the analytical approach based on the
Bellman equation (the optimality equation), in which the reward func-
tion �r(x0; a) in (4) is assumed to be known. This approach belongs
largely to the area of operations research. The other was developed in
the artificial intelligence community, which takes a learning point-of-
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view. In this approach, rewards �zt := �r(xt; at) (we will simply denote
it as zt for simplicity) at all times t = 0; 1; . . ., are observed from the
system directly. The optimal policy is determined by analyzing these
data. In MDPs, because the state xt is completely observable, knowing
the function �r is equivalent to observing zt. That is, the problem for-
mulations for both approaches are essentially the same for MDPs.

In POMDPs, however, knowing the reward function r(x0; a; x; w)
(or �r(x0; a)) is not the same as observing the value of zt =
r(xt; at; xt+1; wt) (or �r(xt; at)), because xt is not observable. Thus,
the information available to us for the analytical approach (assuming
r(x0; a; x; w) is known) and the learning-based approach (assuming zt
is observable) are different. Specifically, if we only know the function
r(x0; a; x; w), then we do not know the exact value of zt. On the other
hand, if we are able to observe zt for all t = 0; 1; . . ., we may obtain
some more information on the system states; and if, furthermore, we
know the function r(x0; a; x; w) then we can update the probability
distribution of xt using the fundamental probability theory. Even
if we do not know r(x0; a; x; w), we may derive approximations
of it with statistic inference methods. Thus, there are four different
problem formulations for POMDPs, depending on whether the reward
function is known and whether the reward at each step is observable,
each contains different information about the system state. In all these
cases, the optimal policy depends not only on the histories of the
observation process and the actions taken at each step, but also on the
history of the rewards that are observed. Such a policy will be called a
reward-information policy (RI-policy); see Definition 2.2 for details.

The information provided by the observations of the rewards zt,
t = 0; 1; . . ., is already discussed in bandit problems in [1] and [8] for
instance. However, we feel that none has clearly classified the problems
into the four categories as we do in this note in the general framework,
and the bandit problem is not a standard POMDP.

In this note, we first propose four different problem formulations for
POMDPs, as explained in the above discussion. Then we discuss the
differences among them as well as the approaches to these problems.
After that, we examine in some details the case where both the func-
tion r(x0; a; x; w) is known and the reward zt, t = 0; 1; . . ., are ob-
servable. The existence and algorithms of optimal-RI policies for the
discounted- or average-reward criteria are mainly concerned, and we
hope our exploratory work can attract research attention to these inter-
esting problems.

II. PROBLEM FORMULATIONS FOR POMDPS

In general, a POMDP consists of the following elements:

fX;Y;A; P (dxjx0; a); Q(dyjx0; a; x)

Q0(dyjx); p0; r(x
0

; a; x; w); �0g (5)

where
i) X , the state–space, is a Borel space;

ii) Y , the observation space, is also a Borel space;
iii) A, the control set, is a Borel space as well;
iv) P (dxjx0; a), the state transition law, is a stochastic kernel on X

given X � A;
v) Q(dyjx0; a; x), the observable kernel, is a stochastic kernel on

Y given X � A � X ;
vi) Q0(dyjx), the initial observable kernel, is a stochastic kernel on

Y given X ;
vii) p0, the initial distribution, is the (a priori) initial distribution on

X ;
viii) r(x0; a; x; w), the reward function, is a measurable function on

X�A�X�U , and takes values in a Borel setZ in the space of
all real numbers; w is a disturbance variable with a distribution
�w(�jx

0; a; x) that may depend on (x0; a; x);

ix) �0, the initial distribution for the system’s initial reward z0, is a
distribution on the set Z .

Definition 2.1: The model (5) with properties i)–ix), is called a par-
tially observable Markov decision process (POMDP).

A POMDP evolves as follows. At the initial decision step t = 0, the
system has an initial (unobservable) state x0 with a priori distribution
p0 and an initial reward z0 with the distribution �0; in addition, an
initial observation y0 is generated according to the kernel Q0(�jx0). If
at time step t (� 0) the system is at state xt and a control at 2 A is
applied, then the system moves to state xt+1 at step t+1 according to
the transition law P (dxt+1jxt; at); an observation yt+1 is generated
by the observation kernelQ(dyt+1jxt; at; xt+1), and a reward zt+1 =
r(xt; at; xt+1; wt) accumulated in the time period [t; t+1) is received
at time step t + 1. (In this definition, zt+1, instead of zt, is used; this
satisfies causality, i.e., the reward is received after action at is taken).
Since the effect of �0 on the performance criteria is straightforward,
we will omit the notation �0 even when the quantities indeed depend
on it.

At time t � 0, all the information about the past can be rep-
resented by the observation-reward-action history denoted as
ht := (p0; y0; z0; y1; z1; a1; . . . ; yt�1; zt�1; at�1; yt; zt). Thus,
the action at at time t � 0 can be taken according to a given kernel
�t(�jht) on A.

Definition 2.2: The sequence of stochastic kernels f�t; t =
0; 1; . . . ; g is called a reward-information (RI) policy.

For a given RI-policy �, because the action sequence a is determined
by �, the discounted- and average-performance criteria are defined as
(2) and (3) with a replaced by�. The goal of POMDPs is to find a � that
maximizes/minimizes the performance (2) or (3) over all RI-policies.

1) Example 1: A stochastic control problem is typically modeled as

a) xt+1 =F (xt; at; �t); t = 0; 1; . . .

b) yt+1 =G(xt; at; xt+1; �t+1); t = 0; 1; . . .

c) y0 =G0(x0; �0) (6)

where xt, at, and yt are, respectively, the state, the control, and the
observation at time t; f�tg is a state-disturbance process, and f�tg an
observation (or measurement) noise. We assume that the initial proba-
bility distribution of x0 is p0. Equation (6) is typically called a partially
observable system.

The system (6) with the reward structure (1) fits the general setting
of POMDPs. Let xt; yt; at take values in Borel space X , Y and A,
respectively. Suppose that f�tg, f�t+1g and fwtg are sequences of
independent and identically distributed (in time) random variables with
values in Borel spaces Ss; So and U , respectively, and we assume that
they may depend on states and actions. Thus, their distributions are
denoted by ��(�jx; a) (with xt = x and at = a), ��(�jx0; a; x) (with
xt = x0; xt+1 = x and at = a), and �w(�jx0; a; x) as in viii) of (5),
respectively. We also denote by �� (�) the distribution of �0 taking
values in So. Let F , G and G0 be given measurable functions, and x0
be independent of f�tg; f�t+1g and fwtg.

We denote by IB [�] the indicator function of any set B, and by B(S)
the Borel �-algebra of any Borel space S. Then the state transition law
P (�jx; a) is given by

P (Bjx; a) =
S

IB [F (x; a; u)]��(dujx; a); B 2 B(S)

and the initial observation kernel Q(�jx0; a; x) given by

Q(Cjx0; a; x) =
S

IC [G(x0; a; x; v)]��(dvjx
0

; a; x)

for all C 2 B(Y ). If x0 = x, then

Q0(C
0jx) =

S

IC [G(x; s)]�� (ds);C 0 2 B(Y )
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whereas, if xt = x0; xt+1 = x and at = a, then the observation value
zt+1 is obtained by the reward-observation kernel R(�jx0; a; x) on Z
given X � A � X , defined by

R(Djx0

; a; x) :=
U

ID[r(x
0

; a; x; s)]�w(dsjx
0

; a; x) (7)

for all Borel set D 2 B(Z). Thus, the above discussion regarding the
reward information applies to this control problem. It is easy to see that
the same is true for time variant systems with F and G replaced by Ft
and Gt(depending on t), respectively.

However, the information available to us are different for POMDPs
depending on whether the reward function r(x0; a; x; w) is known and
whether the reward at each step zt, t = 0; 1; . . ., can be observed. This
leads to four different problem formulations for POMDPs specified as
follows.

a) The function r(x0; a; x; w) is known, and the reward zt can be
observed at each step t.

b) The function r(x0; a; x; w) is known, but the reward zt cannot
be observed at each step t.

c) The function r(x0; a; x; w) is unknown, but the reward zt can be
observed at each step t.

d) The function r(x0; a; x; w) is unknown, and the reward zt cannot
be observed at each step t.

In the standard MDPs (e.g., [2], [4]–[6], and [11]), the reward func-
tion �r(x; a) does not involve randomness. With analytical approaches,
it is natural to assume that the reward function is known. However,
with online (or sample path based) approaches such as reinforcement
learning, it is convenient to assume that the reward at each step zt can
be exactly observed, which is used to update the estimate of the value
function. Because the state is completely observable, knowing the func-
tion �r(x; a) is the same as knowing the reward zt. Therefore, the as-
sumptions in both cases are equivalent. In the case of POMDPs, these
assumptions have different implications and we will discuss the four
cases listed above separately.

2) Case (a): (r(x0; a; x; w) known, zt observable) We emphasize
that there is a fundamental difference between Cases (a) and (b) dis-
cussed later in POMDP problems. If zt = r(x0; a; x; w) is observ-
able, then the value of zt certainly provides information to state x via
r(x0; a; x; w). Therefore, once zt is obtained, we can update the con-
ditional distribution of the state, which should be more accurate than
only the observation yt is used. We refer to this case as POMDPs with
full reward information (POMDPs-FRI). Since both observation histo-
ries yt and zt provide information for the distribution of state xt, the
optimal performance of Case (a) (POMDP-FRI) should be no worse
than that of Case (b) (POMDPs-PRI).

3) Case (b): (r(x0; a; x; w) known, zt not observable) This is the
standard formulation for most analytical approaches. We use the clas-
sical LQG problem in stochastic control as an example to illustrate the
idea. The system is described by a linear stochastic differential equa-
tion,

dx

dt
= F (t)x+G(t)u+ w(t)

where x is the m-dimensional state vector, u is a control action, and
w(t) is a Gaussian white noise. The measurement is an n-dimensional
vector

y(t) = H(t)x(t) + v(t)

with v(t) being a Gaussian white noise. The performance to be maxi-
mized is

J = E
t

t

[xT ; uT ]
A(t) N(t)

NT (t) B(t)

x

u
dt (8)

where tf is a termination time. If we write

z(t) = [xT ; uT ]
A(t) N(t)

NT (t) B(t)

x

u

then J = Ef
t

t
z(t)dtg. Apparently, we assume that the form of

z(t), i.e., A(t), B(t) and N(t) are known, but we do not assume that
the value of z(t) can be obtained at any time t. Because the state is
partially observable and the reward function is known, the reward is
also partially observable. We refer to this case as POMDPs with par-
tial reward information (POMDPs-PRI). Although the LQG problem
is defined in a continuous time domain with a finite horizon, the basic
principle for the problem formulation is the same as our model (5).

Case (b) is well studied in literature and it is well known that the
problem can be converted to a standard MDP with all possible state
distributions as its states (called belief states).

4) Case (c): (r(x0; a; x; w) unknown, zt observable) For many
practical systems, the function r(x0; a; x; w) is very complicated and
cannot be exactly determined; however, the instant reward zt can be
observed. For instance, in communication networks, even the state of
the system is hard to observe, but the instant reward (or cost), such
as dropping a packet, can be observed. In addition, the online (or
sample-path-based) optimization approaches depend on observing the
current reward to adjust their estimates for the value functions (or
potentials). In reinforcement learning algorithms, the essential fact is
the value of the reward at each step, the form of the reward function
is not needed. Therefore, Case (c) is also practically important. We
refer to this case as POMDPs with incomplete reward information
(POMDPs-IRI).

Although the form of r(x0; a; x; w) is unknown, with the reward ob-
servation sequence zt = r(xt; at; xt+1; wt), the distribution ofwt, the
distribution of xt obtained from the observation history yt, and the ac-
tion at, we can try to estimate the function r(x0; a; x; w) using statistic
theory. Therefore, with zt observed, using the estimated function, we
can apply similar approaches as Case (a) to obtain more information
about xt and a possibly better policy than Case (b). This is a difficult
problem and will be left for further research.

5) Case (d): (r(x0; a; x; w) unknown, zt not observable) Few in-
formation is available in this case. However, if we can obtain (observe)
the total reward in a time period, such as the value of J in the LQG
problem (8), we still can get some information about how good we
are doing in the entire interval [t0; tf ). Therefore, if we are allowed to
repeat the experiment, we will be still able to learn from the past oper-
ations. Thus, this case still presents a meaningful research (albeit hard)
problem. We refer to this case as POMDPs with no reward information
(POMDPs-NRI).

To understand more about the previous cases, we give an example.
6) Example 2: A robot moves among three rooms lining up in a

row. The rooms are denoted as L, M, and R, representing the left, the
middle, and the right rooms, respectively. The robot can take two ac-
tions in each room. In room M, if action Al (Ar) is taken, the robot
will move to room L with probability 0.8 (0.2) and to room R with
probability 0.2 (0.8). In room L, if action Al (Ar) is taken, the robot
will hit the left wall then stay in room L with probability 0.8 (0.2), or
will move to room M with probability 0.2 (0.8). Similarly, In room R,
if action Ar (Al) is taken, the robot will hit the right wall then stay in
room R with probability 0.8 (0.2), or will move to room M with prob-
ability 0.2 (0.8).

A unit cost will be received if the robot hits a wall. The cost function
is denoted as r(xt; xt+1) with r(L;L) = r(R;R) = 1, and r = 0 for
other cases. The goal is to design a policy that minimizes the long-run
average cost.
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The system states are L,M, andR. With the MDP model, the state is
observable, and the optimal policy is obvious: Take action Ar at state
L and action Al at state R. With POMDPs, the state is not observable
and we need to consider four cases (assume there is no additional ob-
servation y).

7) Case a: r is known and zt = r(xt; xt+1) is observable. For
example, we know that when the robot hits a wall we can hear a beep.
Suppose that the a priori probabilities of the states are p0(L), p0(M),
and p0(R), respectively. If we hear a beep after actionAl (Ar) is taken,
we have the following conditional probabilities:

p(beepjL;Al) = 0:8

p(beepjM;Al) = 0; p(beepjR;Al) = 0:2:

With this, the state probability distribution after hearing or not hearing
a beep can be easily updated.

8) Case b: r is known but zt = r(xt; xt+1) is not observable.
This is a standard POMDP problem. No additional information can
be obtained by rewards. The state distribution has to be estimated by
observations. In this particular problem, no additional observation is
available. Given any initial state probability distribution p0, if there is
no periodicity, the system eventually will reach some steady state dis-
tribution denoted as � = (�(L); �(M); �(R)). Suppose that with this
state distribution we take a random policy: Take action Al with prob-
ability pl and take action Ar with probability pr . Then, the transition
matrix (list the states in the order of L, M, and R)

P =

0:8pl + 0:2pr 0:2pl + 0:8pr 0

0:8pl + 0:2pr 0 0:2pl + 0:8pr
0 0:8pl + 0:2pr 0:2pl + 0:8pr

:

Then, we have � = �P . The problem becomes to minimize

�(L)(0:8pl + 0:2pr) + �(R)(0:8pr + 0:2pl)

with pl + pr = 1.
9) Case c: r is unknown and zt = r(xt; xt+1) is observable. That

is, we can hear a beep when a cost is incurred, but we don’t know
why there is a beep. In this case, we need to learn the pattern for the
beeps. For example, we may find that if we take action Al twice and
mean while we hear the beep twice, then it is more likely that we will
hear a beep if we take Al again; and so on. This is the learning-based
approach. After learning for some times, we may find the form of the
function r based on the patterns we learned. Then the problem becomes
Case a.

10) Case d: r is unknown and zt = r(xt; xt+1) is not observable.
If the total cost in a finite period of N steps can be obtained and the
experience is repeatable, we can still do something. There are 2N pos-
sible ways to choose actions. We can search for the best choice in this
space of 2N elements using various approaches such as the ordinal op-
timization [12], [15] and genetic algorithms etc.

As we can see, Case b is the standard POMDP problem and has been
widely studied, Case a can be solved by the standard POMDP methods
once the conditional distribution of the system state is updated by the
additional information from the rewards. Case c is a difficult problem
involving the estimation of the reward function r, Case d contains little
information and may resort to searching.

III. CONCLUSION

Our main observation is that the reward history in a POMDP contains
information on the distribution of the unknown state. This leads to four
different problem-formulations for POMDPs depending on whether the

reward function r(x0; a; x; w) is known and whether the reward at each
step zt is observable. The policy depending on both the observation and
reward histories is called a reward-information (RI) policy.

POMDPs-FRI (reward function known and zt observable) can be
converted to the standard MDPs. For POMDPs-PRI (reward function
unknown and zt observable), one approach is to approximately esti-
mate the function �r(x0; a) = E[r(x0; a; x; w)] and then apply the
solution to POMDPs-FRI. This certainly requires further research. In
most reinforcement learning algorithms, it is assumed that zt can be ob-
served; these problems therefore belong to POMDPs-PRI or POMDPs-
FRI. POMDPs-IRI (reward function known and zt unobservable) is
a typical problem in control theory (e.g., the LQG problem). Finally,
POMDPs-NRI (reward function unknown and zt unobservable) only
make sense when the process repeats and the total reward is known.
The study in this note demonstrates the fundamental difference be-
tween the analytical approaches (no observation on reward is made)
and the learning based approaches in the POMDP framework.

Finally, we note that the same idea applies to the observation yt.
That is, we may assume that we can observe yt but its distributions
Q0(dy0jx0) and Q(dytjxt�1; at�1; xt) are unknown or only partially
known. For example, in Example 1, the function G is unknown or the
distribution of �t+1 is unknown, and in the LQG problem, the variance
of the Gaussian noise v(t) is unknown. Thus, we can formulate another
class of POMDPs.

The study on the four problems of POMDPs is in progress.
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Distributed Geodesic Control Laws for Flocking of
Nonholonomic Agents

Nima Moshtagh and Ali Jadbabaie

Abstract—We study the problem of flocking and velocity alignment in
a group of kinematic nonholonomic agents in 2 and 3 dimensions. By ana-
lyzing the velocity vectors of agents on a circle (for planar motion) or sphere
(for 3-D motion), we develop a geodesic control law that minimizes a mis-
alignment potential and results in velocity alignment and flocking. The pro-
posed control laws are distributed and will provably result in flocking when
the underlying proximity graph which represents the neighborhood rela-
tion among agents is connected. We further show that flocking is possible
even when the topology of the proximity graph changes over time, so long
as a weaker notion of joint connectivity is preserved.

Index Terms—Cooperative control, distributed coordination, flocking,
multiagent systems.

I. INTRODUCTION

Cooperative control of multiple autonomous agents has become a
very active part of control theory research. The main underlying theme
of this line of research is to analyze and/or synthesize spatially dis-
tributed control architectures that can be used for motion coordination
of large groups of autonomous vehicles. Each vehicle is assumed to
be capable of local sensing and communication, and there is often a
global objective, such as swarming, or reaching a stable formation, etc.
A nonexhaustive list of relevant research in control theory and robotics
includes [1], [3], [5], [8]–[10], [12], [13], [19].

On the other hand, such problems of distributed coordination have
also been studied in areas as diverse as statistical physics and dynam-
ical systems (in the context of synchronization of oscillators and align-
ment of self propelled particles [18]), in biology, and ecology, and in
computer graphics in the context of artificial life and simulation of so-
cial aggregation phenomena, and in distributed computation [17], in the
context of reaching consensus in parallel and distributed processing.

Most of the above cited research on distributed control of multive-
hicle systems has been focused on fully actuated systems [16], or planar
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under-actuated systems [8]. Our goal here is to develop motion coordi-
nation algorithms that can be used for distributed control of a group of
nonholonomic vehicles in 2 and 3 dimensions. Using results of Bullo
et al. [2] we develop geodesic control laws that result in flocking and
velocity alignment for nonholonomic agents in 3 dimensions.

In order to introduce the idea of a geodesic control law to the reader,
we start with the special case of planar motion in Section III. We will
show that the planar version of such a control law (where the velocity
vector is restricted to stay on a circle) is exactly the well-known Ku-
ramoto model of coupled nonlinear oscillators [6], [14]. Such a control
law is a gradient controller that minimizes a potential function which
represents the aggregate “misalignment energy” between all agents. In
Section V we return to the general case of 3-D motion and we develop
control laws that result in stable coordination and velocity alignment
of a group of agents with a fixed connectivity graph. In Section VI, we
show that flocking is possible even when the topology of the proximity
graph changes over time. Finally, in Section VII, we provide simula-
tions that show the effectiveness of the designed controllers. But, let us
review the concepts of graph theory that we use in this note for stability
analysis.

II. GRAPH THEORY PRELIMINARIES

In this section, we introduce some standard graph theoretic notation
and terminology. An (undirected) graph consists of a vertex set, V ,
and an edge set E , where an edge is an unordered pair of distinct vertices
in . If x; y 2 V , and (x; y) 2 E , then x and y are said to be adjacent,
or neighbors and we denote this by writing x � y. The number of
neighbors of each vertex is its valence. A path of length r from vertex
x to vertex y is a sequence of r + 1 distinct vertices starting with x

and ending with y such that consecutive vertices are adjacent. If there
is a path between any two vertices of a graph , then is said to
be connected. If there is such a path on a directed graph ignoring the
direction of the edges, then the graph is weakly connected.

The adjacency matrix A( ) = [aij ] of an (undirected) graph is a
symmetric matrix with rows and columns indexed by the vertices of ,
such that aij = 1 if vertex i and vertex j are neighbors and aij = 0,
otherwise. The valence matrix D( ) of a graph is a diagonal matrix
with rows and columns indexed by V , in which the (i; i)-entry is the
valence of vertex i. The (un)directed graph of a (symmetric) matrix is a
graph whose adjacency matrix is constructed by replacing all nonzero
entries of the matrix with 1. Matrix A has property SC if and only if
jAj is the adjacency matrix of a strictly connected graph.

The symmetric singular matrix defined as:

L( ) = D( )� A( )

is called the Laplacian of . The Laplacian matrix captures many topo-
logical properties of the graph. The Laplacian L is a positive semidefi-
nite M-matrix (a matrix whose off-diagonal entries are all nonpositive)
and the algebraic multiplicity of its zero eigenvalue (i.e., the dimension
of its kernel) is equal to the number of connected components in the
graph. The n-dimensional eigenvector associated with the zero eigen-
value is the vector of ones, 1.

Given an orientation of the edges of a graph, we can define the in-
cidence matrix of the graph to be a matrix B with rows indexed by
vertices and columns indexed by edges with entries of 1 representing
the source of a directed edge and �1 representing the sink. The Lapla-
cian matrix of a graph can also be represented in terms of its incidence
matrix as L = BBT independent of the orientation of the edges.
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