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Abstract

The paper proposes a new approach to the theory of Markov decision pro-

cesses (MDPs) with average performance criteria and finite state and action

spaces. Using the average performance and bias difference formulas derived in

this paper, we develop an optimization theory for average performance (or gain)

optimality, bias optimality, and all the high-order bias optimality, in a unified

way. The approach is simple, direct, natural and intuitive; it does not depend

on Laurent series expansion and discounted MDPs. We also propose one-phase

policy iteration algorithms for bias and high-order bias optimal policies, which

are more efficient than the two-phase algorithms in the literature. Furthermore,

we derive the high-order bias optimality equations. This research is a part of

our effort in developing sensitivity-based learning and optimization theory. The

new insights provided by this approach may lead to some new research direc-

tions such as on-line learning, performance derivative based optimization, and

potential or high-order potential aggregations.
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1 Introduction

The paper proposes a new approach to the theory of Markov decision processes

(MDPs) with average performance criteria. We show that a complete theory for

average performance MDPs with finite state and action spaces and multiple chains

can be derived naturally from the average performance and bias difference formulas.

We derive policy iteration algorithms and develop optimization theory for gain (called

average performance in this paper) optimality, bias optimality, and all the high-order

bias optimality (defined in this paper), in a unified way.

This paper is a continuation of the recent research on sensitivity-based perfor-

mance optimization of discrete event dynamic systems [3, 4, 5]. It is motivated by

the previously established results. In particular, it is shown in [3, 4, 5] that the policy

iteration algorithms and the theory for gain-optimality problems in Markov decision

processes follow naturally from the performance difference formula.

Our work is closely related to [12, 13, 17, 18]. [12, 13] provide a solution to the

bias optimality of the uni-chain case and leave the multi-chain case and high-order

bias optimality untouched. Veinott’s pioneering works [17, 18] provide a parallel so-

lution to the problem from a different framework called n-discount optimality. Other

works in MDPs include the linear programming approach [10]. We will not provide a

comprehensive list of references in the MDP literature.

The contributions of this paper are as follows. First, this work provides a new ap-

proach to the performance optimization problems, including the average performance,

bias, and the high-order bias optimality. Compared with previous works on MDPs

and the n-discount optimality theory, this approach is simpler: the theory for bias and

high-order bias optimality is almost the same as that for the average performance;

the proof for the convergence of the policy iteration algorithms is the simplest, to

the best of our knowledge. The approach is more direct: the approach is completely

independent of the discounted MDP formulation and does not depend on Laurent se-

ries expansion; and the approach is more intuitive: it provides a different view for the

optimization problem directly based on comparison of performance. Second, in our
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approach, policy iteration is based on the performance and bias difference formulas

and the optimality equations are only secondly. With this vision, we developed one-

phase policy iteration algorithms for the bias and high-order bias optimal policies,

which may save computation compared with the two-phase algorithms presented in

Puterman’s awarding winning book [16]. Third, this work is a part of our effort in de-

veloping the sensitivity-based performance optimization theory. The sensitivity-based

view provides a unified framework for perturbation analysis and policy iteration for

problems with different performance criteria including the discounted performance,

average performance, and biases [3, 4, 5]; it also provides some new insights to the

optimization problem and will lead to new research directions such as performance

derivative-based optimization, on-line learning, aggregation, and problems that do

not fit the standard MDP framework [6].

The paper is organized as follows. In Section 2, we define the nth bias and nth

potential of a policy and the nth-bias optimality criterion. In Section 3, we derive the

nth-bias difference formulas for multi-chain finite-state Markov chains. In Section 4,

we derive policy iteration algorithms by using the nth-bias difference formulas in a

clear and intuitive way. In Section 5, we give the nth-bias optimality equations. In

Section 6, we provide some additional results and discussions comparing our results

with those in the literature, especially with the n-discount optimality theory. Section

7 concludes the paper.

2 Nth-Bias Optimality

Consider a discrete-time multi-chain Markov decision process (MDP) [1, 16] with a

finite state space S = {1, 2, . . . , M}. Let A be the finite action space consisting of

all available actions, and Ai ⊆ A be the set of actions that are available when the

Markov system is in state i ∈ S. When the system is in state i and action a ∈ Ai

is taken, the system transits to state j at the next decision epoch with transition

probability pa(i, j), and a finite reward r(i, a) is received.

A decision rule prescribes a procedure for action selection. A deterministic Marko-
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vian decision rule is a function d : S → A that specifies the action d(i) ∈ Ai taken

when the system is in state i ∈ S. A policy π = (d0, d1, d2, . . .) is a sequence of deci-

sion rules with dk denoting the decision rule applied at decision epoch k, k = 0, 1, . . ..

A policy is said to be stationary if dk = d for all k ≥ 0. Hence, a stationary policy has

the form of (d, d, . . .). Since we only consider stationary deterministic Markovian poli-

cies in this paper, we will simply use d to denote a stationary policy (d, d, . . .), and use

D to denote the set of all stationary deterministic Markovian policies. If policy d is

adopted, the state transition probability matrix is denoted as Pd = [pd(i)(i, j)]
M
i,j=1, and

the reward function becomes r(i, d(i)), i ∈ S. We have Pde = e, with e = (1, . . . , 1)T

being a column vector whose all components are one, where superscript “T” denotes

transpose.

Consider a Markov chain {Xk, k = 0, 1, . . .} under a policy d ∈ D, where Xk

denotes the system state at time k. The long-run average performance in [5, 9] (or

the gain in [16]) of policy d, denoted as gd
0 , is defined as a vector with components

gd
0(i) = lim

N→∞
1

N
Ed

[
N−1∑

k=0

r(Xk, d(Xk))|X0 = i

]
, i ∈ S, (1)

where Ed denotes the expectation corresponding to the probability measure deter-

mined by the Markov chain {Xk, k = 0, 1, . . .} under policy d. We will see later that

the limit exists. We can rewrite it in vector form:

gd
0 = lim

N→∞
1

N

[
N−1∑

k=0

(Pd)
krd

]
= (Pd)

∗rd, (2)

where rd = [r(1, d(1)), . . . , r(M, d(M))]T , and

(Pd)
∗ := lim

N→∞
1

N

N−1∑

k=0

(Pd)
k, (3)

which was called the Cesaro limit and and its existence was proved in, e.g., [8],

(Pd)
0 = I with I being an M×M identity matrix. We can easily prove that (Pd)

∗e = e

and

Pd(Pd)
∗ = (Pd)

∗Pd = (Pd)
∗(Pd)

∗ = (Pd)
∗. (4)

From (2) and (4), we obtain

Pdg
d
0 = (Pd)

∗gd
0 = gd

0 . (5)
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Now we define the average performance (gain) optimality. The optimal average

performance is defined as g∗0(i) := maxd∈D gd
0(i), for all i ∈ S. A policy d∗ is called

average performance (gain) optimal if

gd∗
0 (i) = g∗0(i) ∀ i ∈ S.

Let D0 := {d ∈ D : gd
0 = g∗0} be the set of all average performance optimal policies.

We will get that D0 is not empty in Section 4.

From (2), it is clear that the average performance optimality criterion focuses

on the long-run average or the steady-state behavior of a system; it ignores the

transient performance in the initial period of the sample path. Therefore, the average

performance optimality criterion is under-selective. We need to introduce a more

selective optimality criterion - the bias optimality in [16] that is concerned with the

transient performance.

For a policy d ∈ D, if Pd is aperiodic, its bias in [16] is defined as a vector gd
1 with

components

gd
1(i) = lim

N→∞
Ed

{
N∑

k=0

[r(Xk, d(Xk))− gd
0(i)]|X0 = i

}
, i ∈ S, (6)

which exists as shown below. By (2), (5) and (9), we can rewrite (6) in the vector

form as follows,

gd
1 =

∞∑

k=0

[(Pd)
krd − gd

0 ]

= [I − Pd + (Pd)
∗]−1(rd − gd

0). (7)

From Theorem 4.3.1 of [11], the matrix I − Pd + (Pd)
∗ is nonsingular, and we have

[I − Pd + (Pd)
∗]−1(Pd)

∗ = (Pd)
∗[I − Pd + (Pd)

∗]−1 = (Pd)
∗, (8)

and

[I − Pd + (Pd)
∗]−1 =

∞∑

k=0

[Pd − (Pd)
∗]k =

∞∑

k=0

[(Pd)
k − (Pd)

∗] + (Pd)
∗. (9)

For the periodic case, the bias (6) need to be defined with the Cesaro limit

gd
1(i) = lim

N→∞
1

N

N−1∑

k=0

Ed

{
k∑

l=0

[r(Xl, d(Xl))− gd
0(i)]|X0 = i

}
, i ∈ S, (10)
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From Theorem 2.14 of [9], we have

[I − Pd + (Pd)
∗]−1 = lim

N→∞
1

N

N−1∑

k=0

k∑

l=0

[(Pd)
l − (Pd)

∗] + (Pd)
∗.

From this equation, we can see that (10) leads to the same equation (7).

For simplicity in expression, in this paper we assume that Pd is aperiodic for all

d ∈ D. If Pd is periodic, we just need to replace the normal limit (limN→∞[·]) with

the Cesaro limit (limN→∞ 1/N
∑N−1

k=0 [·]) in the expression of [I − Pd + (Pd)
∗]−1 and

then all results in this paper are true for the periodic case.

Pre-multiplying (7) by (Pd)
∗, by (8), (2) and (5) we obtain

(Pd)
∗gd

1 = (Pd)
∗(rd − gd

0) = 0. (11)

Combining the aforementioned equation with (7), we get the Poisson equation [4, 6]

(I − Pd)g
d
1 + gd

0 = rd. (12)

The solution to (12) is not unique; i.e., if gd
1 is a solution, then for any vector

u satisfying Pdu = u, gd
1 + u is also a solution. The gd

1 defined in (6) in fact is a

unique solution to (12) with the normalizing condition (11), (Pd)
∗gd

1 = 0. If gd
1 only

satisfies the Poisson equation (12), we call gd
1 the potential of policy d in [6]. Thus, the

bias of policy d is a special potential of policy d which also satisfies the normalizing

condition (11). There exist many different versions of potentials for a policy in the

form of gd
1 +u. To simplify the notations, we use the same notation gd

1 to denote both

the bias and the potential of policy d. But unless otherwise noted, gd
1 is the bias of

policy d.

Now we define the bias optimality. The optimal bias is denoted as g∗1(i) :=

maxd∈D0 gd
1(i), for all i ∈ S. A policy d∗ ∈ D0 is called bias optimal if

gd∗
1 (i) = g∗1(i) ∀ i ∈ S.

Let D1 := {d ∈ D0 : gd
1 = g∗1} = {d ∈ D : gd

0 = g∗0, g
d
1 = g∗1} be the set of all bias

optimal policies. We will also see in Section 4 that D1 is not empty.
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In (6), gd
0(i)(= g∗0(i)) is the same for all d ∈ D0. Thus, maximizing the bias in D0

is equivalent to maximizing the sum of the mean rewards E{∑∞
k=0 r(Xk, d(Xk))} in

the initial period.

Next, we will see later that to optimize the average performance, we need to use

the bias. Similarly, to optimize the bias, we need to use the “bias of the bias”, i.e.,

the second order bias. In general, we can define, by induction, the (n + 1)th-order

bias (or simply the (n + 1)th bias) gd
n+1, n ≥ 1, of a policy d ∈ D as a vector with

components

gd
n+1(i) = −Ed

{ ∞∑

k=0

{gd
n(Xk)− [(Pd)

∗gd
n](i)}|X0 = i

}
, i ∈ S, n ≥ 1, (13)

where (Pd)
∗gd

n is the steady-state value of the nth bias. In vector form, we have

gd
n+1 = −

∞∑

k=0

[(Pd)
k − (Pd)

∗]gd
n

= −[I − Pd + (Pd)
∗]−1[gd

n − (Pd)
∗gd

n], n ≥ 1. (14)

Pre-multiplying the aforementioned equation by (Pd)
∗, and by (8) and (4) we have

(Pd)
∗gd

n+1 = −(Pd)
∗[I − Pd + (Pd)

∗]−1[gd
n − (Pd)

∗gd
n] = 0, n ≥ 1.

Together with (Pd)
∗gd

1 = 0, we have

(Pd)
∗gd

n = 0, n ≥ 1. (15)

Thus, (13) can be simplified as

gd
n+1(i) = −Ed

[ ∞∑

k=0

gd
n(Xk)|X0 = i

]
, i ∈ S, n ≥ 1, (16)

and (14) becomes

gd
n+1 = −[I − Pd + (Pd)

∗]−1gd
n, n ≥ 1. (17)

Combining (15) with (17), we obtain

(I − Pd)g
d
n+1 = −gd

n, n ≥ 1. (18)

This is Poisson equation for the high-order biases. Again, the solution to (18) is not

unique; i.e., if gd
n+1 is a solution, then for any vector satisfying Pdu = u, gd

n+1 + u
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is also a solution. gd
n+1 defined in (13) or (16) in fact is a unique solution to (18)

with the normalizing condition (15), (Pd)
∗gd

n+1 = 0. If gd
n+1 only satisfies the Poisson

equation (18), we call gd
n+1 the (n + 1)th potential of policy d. Thus, the (n + 1)th

bias of policy d is a special (n + 1)th potential of policy d which also satisfies the

normalizing condition (15). To simplify the notations, we use the same notation gd
n+1

to denote both the (n + 1)th bias and the (n + 1)th potential of policy d. But unless

otherwise noted, gd
n+1 is the (n + 1)th bias of policy d.

From (17), gd
n+1 is the bias of −gd

n, n = 1, 2, · · ·. In general, we can derive

gd
n+1 = (−1)n[I − Pd + (Pd)

∗]−(n+1)(rd − gd
0), n ≥ 0. (19)

Further, with (9) we can obtain

gd
n+1 = (−1)n

∞∑

k=0




n + k

n


[(Pd)

krd − gd
0 ], n ≥ 0,

or

gd
n+1(i) = (−1)n

∞∑

k=0




n + k

n


 Ed

{
[r(Xk, d(Xk))− gd

0(i)]|X0 = i
}

, n ≥ 0. (20)

This equation or (16) can be used to develop algorithms to estimate gd
n+1 on a single

sample path without knowing Pd.

We now define the nth-bias optimality, n ≥ 0. The optimal nth bias is denoted as

g∗n(i) := maxd∈Dn−1 gd
n(i), for all i ∈ S. A policy d∗ ∈ Dn−1 is called nth-bias optimal

if

gd∗
n (i) = g∗n(i) ∀ i ∈ S,

where Dn−1 := {d ∈ Dn−2 : gd
n−1 = g∗n−1} = {d ∈ D : gd

k = g∗k, k = 0, 1, . . . , n − 1}
is the set of all (n − 1)th-bias optimal policies, and D−1 := D. We will prove that

an nth-bias optimal policy, n ≥ 0, always exists. By definition, we have Dn ⊆ Dn−1,

n ≥ 0. That is, the bigger n is, the more selective the nth-bias optimality is. The

long-run average performance gd
0 and the bias gd

1 will also be called the 0th-order bias

and the 1st-order bias, respectively.
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For the 2nd bias (n = 2), from (20) we have

gd
2(i) = −

∞∑

k=0

(k + 1)Ed{[r(Xk, d(Xk))− gd
0(i)]|X0 = i}, i ∈ S. (21)

By (6), we see that the bias g1 gives the same weight on the received reward at the

different decision epoch. But, g2 exercises a large penalty (negative reward) on lately

received reward r(Xk, d(Xk))− gd
0(i) by multiplying it with a factor (k + 1). In other

words, to maximize g2 implies that we prefer to receive the reward early or to receive

the temporary reward.

The following lemma will be used often in the remaining of this paper. For two

vectors (or functions) x and y defined on state space S, we define x = y if x(i) = y(i)

for all i ∈ S; x ≥ y if x(i) ≥ y(i) for all i ∈ S; x º y if x ≥ y and x(i) > y(i) for at

least some i ∈ S.

Lemma 1 Let u be an M-dimensional vector. If u ≥ 0 (or u ≤ 0) and (Pd)
∗u = 0,

then u(i) = 0 for all recurrent states i under policy d.

Proof: The result follows directly from the fact that (Pd)
∗(i, j) = 0 for all i ∈ S if

j is a transient state under policy d and (Pd)
∗(i, j) > 0 if both i and j are recurrent

states in the same sub-closed set under policy d. 2

3 Nth-Bias Difference Formulas

We first derive formulas for the performance differences and the differences of the

(n + 1)th biases of two different policies with the same nth bias, n ≥ 0. These

formulas form the basis of the optimization theory of the nth biases.

Lemma 2 For any h, d ∈ D, let gh
n and gd

n be the nth biases of policies h and d,

n = 0, 1, . . ., respectively. Then

(a) gh
0 − gd

0 = (Ph)
∗[(rh + Phg

d
1)− (rd + Pdg

d
1)] + [(Ph)

∗ − I]gd
0 .

(b) If gh
0 = gd

0, then

gh
1 − gd

1 = [I − Ph + (Ph)
∗]−1[(rh + Phg

d
1)− (rd + Pdg

d
1)] + (Ph)

∗(Ph − Pd)g
d
2 .
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(c) If gh
n = gd

n, then

gh
n+1 − gd

n+1 = [I − Ph + (Ph)
∗]−1(Ph − Pd)g

d
n+1 + (Ph)

∗(Ph − Pd)g
d
n+2, n ≥ 1.

In addition, the above equations hold even if the gd
1, gd

2, and gd
n+2 on the right-hand

sides of (a), (b) and (c), respectively, are the potential, 2nd potential, and (n + 2)th

potential of policy d, respectively; that is, they satisfy only the corresponding Poisson

equations without the normalizing conditions.

Proof. (a) From (2) and (4), we have

gh
0 − gd

0 = (Ph)
∗rh − gd

0

= (Ph)
∗(rh − gd

0) + [(Ph)
∗ − I]gd

0

= (Ph)
∗(rh + Phg

d
1 − gd

0 − gd
1) + [(Ph)

∗ − I]gd
0 .

Then (a) follows directly from Poisson equation (12).

(b) From (12) and gh
0 = gd

0 , we have

gh
1 − gd

1 = rh + Phg
h
1 − gd

0 − gd
1 .

Adding both sides with −Ph(g
h
1 − gd

1), we have

(I − Ph)(g
h
1 − gd

1) = rh + Phg
d
1 − gd

0 − gd
1 .

Since on the left-hand side (Ph)
∗gh

1 = 0, we have

[I − Ph + (Ph)
∗](gh

1 − gd
1) = rh + Phg

d
1 − gd

0 − gd
1 − (Ph)

∗gd
1 .

From (8), we have

gh
1 − gd

1 = [I − Ph + (Ph)
∗]−1(rh + Phg

d
1 − gd

0 − gd
1)− (Ph)

∗gd
1 .

With (4), we get

gh
1 − gd

1 = [I − Ph + (Ph)
∗]−1(rh + Phg

d
1 − gd

0 − gd
1) + (Ph)

∗(Phg
d
2 − gd

1 − gd
2).

Then (b) follows directly from Poisson equations (12) and (18) with n = 1.
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In addition, from (9), and noting that (Ph)
∗(rh + Phg

d
1 − gd

0 − gd
1) = gh

0 − gd
0 = 0,

we have

gh
1 − gd

1 =
∞∑

k=0

(Ph)
k(rh + Phg

d
1 − gd

0 − gd
1) + (Ph)

∗(Phg
d
2 − gd

1 − gd
2) (22)

=
∞∑

k=0

(Ph)
k(rh + Phg

d
1 − rd − Pdg

d
1) + (Ph)

∗(Ph − Pd)g
d
2 . (23)

(c) From (18) and gh
n = gd

n, we have

gh
n+1 − gd

n+1 = Phg
d
n+1 − gd

n − gd
n+1 + Ph(g

h
n+1 − gd

n+1).

Thus,

(I − Ph)(g
h
n+1 − gd

n+1) = Phg
d
n+1 − gd

n − gd
n+1. (24)

Because on the left-hand side we have (Ph)
∗gh

n+1 = 0, by (24) we get

[I − Ph + (Ph)
∗](gh

n+1 − gd
n+1) = Phg

d
n+1 − gd

n − gd
n+1 − (Ph)

∗gd
n+1.

Since [I − Ph + (Ph)
∗]−1(Ph)

∗ = (Ph)
∗, we have

gh
n+1 − gd

n+1 (25)

= [I − Ph + (Ph)
∗]−1(Phg

d
n+1 − gd

n − gd
n+1)− (Ph)

∗gd
n+1

= [I − Ph + (Ph)
∗]−1(Phg

d
n+1 − gd

n − gd
n+1) + (Ph)

∗(Phg
d
n+2 − gd

n+1 − gd
n+2).

Then (c) follows directly from Poisson equation (18) with n and n + 1.

In addition, from (15) and gh
n = gd

n, we obtain

(Ph)
∗(Phg

d
n+1 − gd

n − gd
n+1) = −(Ph)

∗gd
n = −(Ph)

∗gh
n = 0.

Thus, from (25) and using (9) we have

gh
n+1 − gd

n+1

=
∞∑

k=0

(Ph)
k(Phg

d
n+1 − gd

n − gd
n+1) + (Ph)

∗(Phg
d
n+2 − gd

n+1 − gd
n+2) (26)

=
∞∑

k=0

(Ph)
k(Ph − Pd)g

d
n+1 + (Ph)

∗(Ph − Pd)g
d
n+2, (27)

for n ≥ 1. From the process of the proof, we do not use the normalizing conditions,

thus the ”In addition” part of this lemma holds. 2
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The bias difference formulas in Lemma 2 allow us to compare the biases of two

different policies based on only one policy’s biases under some conditions. This is

shown in Theorems 1, 2 and 3 below, for the average performance (gain), the 1st-

order bias, and the higher-order biases, respectively. These theorems lead naturally

to the performance optimization theory presented in the remaining of the paper.

Theorem 1 Suppose that two policies d and h satisfy the following two conditions:

(a) Phg
d
0 ≥ gd

0 , and

(b) rh(i) + (Phg
d
1)(i) ≥ rd(i) + (Pdg

d
1)(i) when (Phg

d
0)(i) = gd

0(i) for some i ∈ S,

then gh
0 ≥ gd

0. This theorem also holds if we change all the symbols “ ≥ ” to “ ≤ ”.

The result also holds if gd
1 is only the potential of policy d.

Proof. For simplicity, we denote yh
d := rh +Phg

d
1− (rd +Pdg

d
1) in this paper. Because

(Ph)
∗Ph = (Ph)

∗, we have (Ph)
∗(Phg

d
0 − gd

0) = 0. Thus, by Lemma 1, with condition

(a), we have (Phg
d
0)(i) = gd

0(i) for all recurrent states i under policy h. Then it follows

from condition (b) that yh
d (i) ≥ 0 for all recurrent states i under policy h. Observing

that (Ph)
∗(i, j) = 0 for all i ∈ S and any transient state j under policy h, we have

(Ph)
∗yh

d ≥ 0. On the other hand, because Phg
d
0 ≥ gd

0 , we have (Ph)
kgd

0 ≥ gd
0 for all

k ≥ 1. Therefore, by (3) we get (Ph)
∗gd

0 ≥ gd
0 . Finally, by the bias difference formulas

in Lemma 2 (a), we have gh
0 − gd

0 = (Ph)
∗yh

d + [(Ph)
∗ − I]gd

0 ≥ 0. The proof for the

“ ≤ ” case is similar, we omit it. By Lemma 2, the theorem also holds if gd
1 is only

the potential of policy d. 2

Theorem 2 Suppose that policy d is average performance optimal. If any h ∈ D

satisfies the following three conditions:

(a) Phg
d
0 = gd

0,

(b) rh + Phg
d
1 ≥ rd + Pdg

d
1, and

(c) (Phg
d
2)(i) ≥ (Pdg

d
2)(i) when rh(i)+ (Phg

d
1)(i) = rd(i)+ (Pdg

d
1)(i) for some i ∈ S,

then policy h is also average performance optimal and gh
1 ≥ gd

1.

In addition, if condition (a) is replaced by the following condition (a′)

(a′) policy h is average performance optimal, i.e., gh
0 = gd

0,

then gh
1 ≤ gd

1 if we change all the symbols “ ≥ ” in (b) and (c) to “ ≤ ”.

12



The result also holds if gd
2 is only the 2nd potential of policy d.

Proof. From conditions (a) and (b), we have

gh
0 − gd

0 = (Ph)
∗yh

d + [(Ph)
∗ − I]gd

0 = (Ph)
∗yh

d ≥ 0.

Since gd
0 is the optimal average performance, we have gh

0 = gd
0 , i.e., h is also average

performance optimal. Thus, (Ph)
∗yh

d = (Ph)
∗(rh + Phg

d
1 − rd − Pdg

d
1) = 0. Because

yh
d ≥ 0, and by Lemma 1 yh

d (i) = 0 for all recurrent states i under policy h, it follows

from condition (c) that [(Ph − Pd)g
d
2 ](i) ≥ 0 for all recurrent states i under policy

h. Thus, from the structure of (Ph)
∗,we have (Ph)

∗(Ph − Pd)g
d
2 ≥ 0. From the bias

difference formulas (23) in Lemma 2 (b), gh
1 −gd

1 =
∑∞

k=0(Ph)
kyh

d +(Ph)
∗(Ph−Pd)g

d
2 ≥

∑∞
k=0(Ph)

kyh
d ≥ 0.

In addition, by condition (a′), gh
0 = gd

0 , we also have gh
0 − gd

0 = (Ph)
∗yh

d = 0. The

additional part of the theorem follows in a similar way. By Lemma 2, the theorem

also holds if gd
2 is only the 2nd potential of policy d. 2

The proof of the following theorem is very similar and hence is omitted.

Theorem 3 Suppose that policy d is (n− 1)th-bias optimal, n ≥ 2. If any (n− 2)th-

bias optimal policy h satisfies the following three conditions:

(a) Phg
d
n−1 = Pdg

d
n−1, for n ≥ 3, rh + Phg

d
n−1 = rd + Pdg

d
n−1, for n = 2,

(b) Phg
d
n ≥ Pdg

d
n, and

(c) (Phg
d
n+1)(i) ≥ (Pdg

d
n+1)(i) when (Phg

d
n)(i) = (Pdg

d
n)(i) for some i ∈ S,

then policy h is also (n− 1)th-bias optimal and gh
n ≥ gd

n.

In addition, if condition (a) is replaced by the following condition (a′)

(a′) policy h is (n− 1)th bias optimal, i.e., gh
n−1 = gd

n−1,

then gh
n ≤ gd

n if we change all the symbols “ ≥ ” in (b) and (c) to “ ≤ ”.

The result also holds if gd
n+1 is only the (n + 1)th potential of policy d.

4 Policy Iteration Algorithms

Theorems 1-3, which follow almost directly from the bias difference formulas, provide

a clear picture for bias optimization: Given an nth-bias optimal policy d, we can find

13



another policy h in the space of (n−1)th-bias optimal policies that is nth-bias optimal

and has a larger (n+1)th bias. We can continue this improvement procedure until it

reaches a policy for which no improvement can be made by this procedure. This policy

must be the (n + 1)th-bias optimal. This procedure is called policy iteration. The

remaining of this paper simply makes the above verbal description mathematically

rigorous.

We will first find an average performance (also called the 0th-bias) optimal policy.

For any non-average-performance optimal policy we can always construct a “better”

policy by Theorem 1. That is, we can improve the average performance at each

iteration. If there is no further improvement, we can prove that this policy is average

performance optimal by the average performance and bias difference formulas. This

process can be formally described as follows. The resulting policy iteration algorithm

is the same as what in the literature, but the proof provided here is simpler.

Given any policy d ∈ D, for any i ∈ S and a ∈ Ai, let

Hd(i, a) := r(i, a) +
∑

j∈S

pa(i, j)g
d
1(j),

and

Ad
0(i) :=





a ∈ Ai :

∑
j∈S pa(i, j)g

d
0(j) > gd

0(i); or

Hd(i, a) > Hd(i, d(i))

when
∑

j∈S pa(i, j)g
d
0(j) = gd

0(i)





. (28)

We then define an improvement policy h (depending on d) as follows:

h(i) ∈ Ad
0(i) if Ad

0(i) 6= ∅, and h(i) = d(i) if Ad
0(i) = ∅. (29)

Note that such a policy may not be unique, since there may be more than one action

in Ad
0(i) for some state i ∈ S. Recall yh

d := rh + Phg
d
1 − (rd + Pdg

d
1). We have

yh
d (i) = Hd(i, h(i))−Hd(i, d(i)). (30)

Theorem 4 For any given d ∈ D, let h be defined as in (29). We have

(a) gh
0 ≥ gd

0.

(b) If gh
0 = gd

0 and h 6= d, then gh
1 º gd

1.

14



Proof. For any i ∈ S, if Ad
0(i) = ∅, then h(i) = d(i) and we have Ph(i, j) =

Pd(i, j) for all j ∈ S. Thus,
∑

j∈S Ph(i, j)g
d
0(j) =

∑
j∈S Pd(i, j)g

d
0(j) = gd

0(i). Next, if

Ad
0(i) 6= ∅, from the construction by (28), we have

∑
j∈S Ph(i, j)g

d
0(j) ≥ gd

0(j). Thus,

condition (a) in Theorem 1 holds. In addition, if
∑

j∈S Ph(i, j)g
d
0(j) = gd

0(i), then

either Hd(i, h(i)) = Hd(i, d(i)) when Ad
0(i) = ∅, or Hd(i, h(i)) > Hd(i, d(i)) when

Ad
0(i) 6= ∅. That is, condition (b) in Theorem 1 also holds. Thus, it follows from

Theorem 1 that gh
0 ≥ gd

0 .

For part (b), since gh
0 = gd

0 , Phg
d
0 = gd

0 follows by (5). Then by (28), (29), and (30),

we have either h(i) = d(i) or yh
d (i) > 0 for all i ∈ S. Because h 6= d, we have yh

d º 0,

or rh + Phg
d
1 º rd + Pdg

d
1 . Noting that gh

0 − gd
0 = (Ph)

∗[rh + Phg
d
1 − (rd + Pdg

d
1)] = 0

and by Lemma 1, we have rh(i)+(Phg
d
1)(i) = rd(i)+(Pdg

d
1)(i), for all recurrent states

i under policy h. From (28) and (29),

h(i) = d(i), for all recurrent states i under policy h. (31)

By (31) and (Ph)
∗(i, j) = 0 when i ∈ S and j is any transient state under policy h,

we get (Ph)
∗(Ph−Pd) = 0. Then by the bias difference formula (23) in Lemma 2 (b),

gh
1 − gd

1 =
∑∞

k=0(Ph)
k[rh + Phg

d
1 − rd − Pdg

d
1 ] ≥ rh + Phg

d
1 − rd − Pdg

d
1 º 0. 2

Theorem 4 essentially claims that if h and d have the same average performance,

and rh + Phg
d
1 º rd + Pdg

d
1 , then gh

1 º gd
1 . With Theorem 4, we state the (standard)

Average Performance Optimality Policy Iteration Algorithm as follows:

1. Select an arbitrary policy d0 ∈ D, and set k = 0.

2. (Policy evaluation) Obtain gdk
0 and gdk

1 by solving

(Pdk
− I)g0 = 0,

rdk
− g0 + (Pdk

− I)g1 = 0

subject to (Pdk
)∗g1 = 0.

3. (Policy improvement) Set dk as policy d and obtain policy dk+1 as policy h in

(28) and (29), setting dk+1(i) = dk(i) if possible.
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4. If dk+1 = dk, stop and set d∗ = dk and g∗0 = gdk
0 , otherwise increase k by 1 and

return to step 2.

Theorem 4 (a) guarantees that the average performance does not decrease at each

iteration, and Theorem 4 (a) and (b) guarantee that the policies do not go cycling in

the policy iteration procedure. This leads to the following convergence theorem.

Theorem 5 The Average Performance Optimality Policy Iteration Algorithm stops

at an average performance optimal policy in a finite number of iterations.

Proof: By Theorem 4 (a), we have g
dk+1

0 ≥ gdk
0 . That is, as k increases, the average

performance gdk
0 either increases or stays the same. Furthermore, by Theorem 4 (b),

when gdk
0 stays the same, gdk

1 increases. Thus, any two policies in the sequence of dk,

k = 0, 1, . . . , either have different average performance (g0) or have different 1st bias

(g1). That is, every policy in the iteration sequence is different. Since the number of

policies is finite, the iteration must stop after a finite number of iterations. Suppose

that it stops at a policy denoted as d∗. This means that Ad∗
0 (i) is empty for all i ∈ S.

Then d∗ must satisfy the following equations,

Pdg
d∗
0 ≤ gd∗

0 , ∀ d ∈ D,

and if (Pdg
d∗
0 )(i) = gd∗

0 (i) for some i ∈ S, we have rd(i) + (Pdg
d∗
1 )(i) ≤ rd∗(i) +

(Pd∗g
d∗
1 )(i). (Otherwise for some i the set Ad∗

0 (i) in (28) is non-empty and the iteration

continues at d∗.) Then by Theorem 1 for the ” ≤ ” case, gd
0−gd∗

0 = (Pd)
∗(rd +Pdg

d∗
1 −

rd∗−Pd∗g
d∗
1 )+[(Pd)

∗−I]gd∗
0 ≤ 0, for all d ∈ D. Thus, policy d∗ is average performance

optimal. 2

The existence of the average performance (or 0th-bias, or gain) optimal policy

follows from Theorem 5 by construction with the policy iteration algorithm. Policy

iteration works if we pick up any action in Ad
0(i) by (28) in the policy improvement

step. In real implementation, however, we usually choose the action with the largest

value of
∑

j∈S pa(i, j)g
d
0(j) or Hd(i, a) in (28). To the best of our knowledge, the proof

presented here is the simplest (cf. [5, 16, 17]).

Following the same procedure as for the average performance optimal problem, by

Theorem 2, from any average performance optimal policy we can construct another
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average performance optimal policy that has a larger 1st bias, if such a policy exists.

Ideally, we need only search the set of the average performance optimal policies, D0,

for a (1st) bias optimal policy. However, given an average performance optimal policy,

it is difficult to specify D0 for the multi-chain case. Fortunately, by Theorem 2, we

can search the set F1 = ⊗M
i=1F1(i), where ⊗ denotes the Cartesian product, with

F1(i) := {a ∈ Ai :
M∑

j=1

pa(i, j)g
∗
0(j) = g∗0(i)}.

From (5), if h ∈ D0, we have Phg
∗
0 = g∗0, and thus h ∈ F1. That is, D0 ⊆ F1.

Now we develop the policy iteration theory for the bias optimality. Given d ∈ D0,

for any state i ∈ S, let

Ad
1(i) :=





a ∈ F1(i) :

Hd(i, a) > Hd(i, d(i)); or
∑

j∈S pa(i, j)gd
2(j) >

∑
j∈S pd(i)(i, j)gd

2(j)

when Hd(i, a) = Hd(i, d(i))





. (32)

We then define an improvement policy h (depending on d) as follows:

h(i) ∈ Ad
1(i) if Ad

1(i) 6= ∅, and h(i) = d(i) if Ad
1(i) = ∅. (33)

Note that such a policy also may not be unique, since there may be more than one

action in Ad
1(i) for some state i ∈ S.

Theorem 6 For any given d ∈ D0, let h be defined as in (33). We have

(a) gh
0 = gd

0 = g∗0, i.e., h ∈ D0, and

(b) gh
1 ≥ gd

1.

(c) If gh
1 = gd

1 and h 6= d, then gh
2 º gd

2.

Proof. (a) By (32), h(i) ∈ F1(i) for all i ∈ S. Thus, Phg
∗
0 = g∗0. Again by (32), we

have Hd(i, h(i)) ≥ Hd(i, d(i)) for all i ∈ S. Thus, by the bias difference formulas in

Lemma 2 (a), we have gh
0 ≥ gd

0 . Since gd
0 = g∗0, We must have gh

0 = gd
0 = g∗0.

(b) By the construction in (32) and (33), the conditions (a), (b) and (c) in Theorem

2 hold. It follows from Theorem 2 that gh
1 ≥ gd

1 .

(c) Since gh
1 = gd

1 , we obtain rh + Phg
d
1 = rd + Pdg

d
1 (by Poisson equation (12)

and gh
0 = gd

0 = g∗0). Then, by (32), (33) and h 6= d, Phg
d
2 º Pdg

d
2 holds. Therefore,
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the first term on the right-hand side of the 1st bias difference formulas in Lemma

2 (b) is zero, and we have gh
1 − gd

1 = (Ph)
∗(Ph − Pd)g

d
2 = 0. By Lemma 1, we have

(Phg
d
2)(i) = (Pdg

d
2)(i) for all recurrent states i under policy h. From (32) and (33),

h(i) = d(i), for all recurrent states i under policy h. (34)

By (34) and the structure of (Ph)
∗, we get (Ph)

∗(Ph − Pd) = 0. Then by (27) in

Lemma 2 (c) gh
2 − gd

2 =
∑∞

k=0(Ph)
k(Ph − Pd)g

d
2 ≥ (Ph − Pd)g

d
2 º 0. 2

The (1st) Bias Optimality Policy Iteration Algorithm then follows directly.

1. Select an arbitrary average performance optimal policy d0 ∈ D0, and set k = 0.

2. (Policy evaluation) Obtain gdk
1 and gdk

2 by solving

rdk
− g∗0 + (Pdk

− I)g1 = 0,

g1 + (Pdk
− I)g2 = 0

subject to (Pdk
)∗g2 = 0.

3. (Policy improvement) Set dk as policy d and obtain policy dk+1 as policy h in

(32) and (33), setting dk+1(i) = dk(i) if possible.

4. If dk+1 = dk, stop and set d∗ = dk and g∗1 = gdk
1 , otherwise increase k by 1 and

return to step 2.

The following convergence theorem follows from Theorem 6 immediately.

Theorem 7 The (1st) Bias Optimality Policy Iteration Algorithm stops at a bias

optimal policy in a finite number of iterations.

Proof. The proof is essentially the same as that for Theorem 5. By Theorem 6 (a),

all dk, k = 0, 1, . . ., produced by the algorithm are average performance optimal. By

Theorem 6 (b), we have g
dk+1

1 ≥ gdk
1 . That is, as k increases, the bias gdk

1 either

increases or stays the same. Furthermore, by Theorem 6 (c), when gdk
1 stays the

same, gdk
2 increases. Thus, any two policies in the sequence of dk, k = 0, 1, . . . , either
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have different g1 or have different g2. That is, every policy in the iteration sequence

is different. Since the number of policies is finite, the iteration must stop after a finite

number of iterations. Suppose that it stops at a policy denoted as d∗. We will prove

that d∗ is bias optimal. First, by Theorem 6 (a), d∗ is average performance optimal.

Next, for any d ∈ D0, we have shown that d ∈ F1. By construction from (32), we

have

(i) rd + Pdg
d∗
1 ≤ rd∗ + Pd∗g

d∗
1 , and

(ii) (Pdg
d∗
2 )(i) ≤ (Pd∗g

d∗
2 )(i), when rd(i) + (Pdg

d∗
1 )(i) = rd∗(i) + (Pd∗g

d∗
1 )(i) for some

i ∈ S.

Then by the “In addition” part of Theorem 2, we get gd
1 ≤ gd∗

1 for all d ∈ D0. Thus,

policy d∗ is bias optimal. 2

The existence of the bias optimal policy can be proved by construction with policy

iteration as sown in Theorem 7. In real implementation, we usually choose the action

with the largest value of Hd(i, a) or
∑

j∈S pa(i, j)g
d
2(j) in (32).

Now we extend the results to the nth biases, n ≥ 2. As indicated by (21), maxi-

mizing g2 means receiving the reward as early as possible, measured by a weighting

factor (k + 1). Denote

F2(i) := {a ∈ F1(i) : r(i, a) +
M∑

j=1

pa(i, j)g
∗
1(j) = g∗0(i) + g∗1(i)},

and Fn(i) recursively for n ≥ 2,

Fn+1(i) := {a ∈ Fn(i) :
M∑

j=1

pa(i, j)g
∗
n(j) = g∗n−1(i) + g∗n(i)}. (35)

Denote Fn = ⊗M
i=1Fn(i) for n ≥ 1. Then we have the following lemma.

Lemma 3 Fn+2 ⊆ Dn ⊆ Fn+1, n ≥ 0.

Proof. Firstly, we will prove Dn ⊆ Fn+1, n ≥ 0. For n = 0, we have already proved

D0 ⊆ F1.

For n = 1, let h ∈ D1 be a bias optimal policy. We have gh
0 = g∗0 and gh

1 = g∗1. Since

h is also average performance optimal, we have h ∈ F1. From (12), rh+Phg
∗
1 = g∗0+g∗1.
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Together with h ∈ F1, we have h ∈ F2. Thus, D1 ⊆ F2. Next, suppose Dk ⊆ Fk+1,

for a particular k ≥ 1. Let h ∈ Dk+1 be a (k + 1)th-bias optimal policy. We have

gh
l = g∗l , where l = 0, 1, . . . , k + 1. Since h is also kth-bias optimal, we have h ∈ Fk+1

from assumption. From (18), Phg
∗
k+1 = g∗k + g∗k+1. Together with h ∈ Fk+1, we have

h ∈ Fk+2 by (35). Thus Dk+1 ⊆ Fk+2. Therefore Dn ⊆ Fn+1 for all n ≥ 0 by

induction.

Secondly, we will prove Fn+2 ⊆ Dn, n ≥ 0. For n = 0, h ∈ F2, we have Phg
∗
0 = g∗0

and rh+Phg
∗
1 = g∗0 +g∗1. Pre-multiplying both sides of this equation by (Ph)

∗, we have

g∗0 = (Ph)
∗rh = gh

0 noting (Ph)
∗g∗0 = g∗0. Obviously, policy h is average performance

optimal, i.e., h ∈ D0. Thus, F2 ⊆ D0.

For n = 1, h ∈ F3. By (35) we have Phg
∗
0 = g∗0, rh + Phg

∗
1 = g∗0 + g∗1 and

Phg
∗
2 = g∗1 + g∗2. Since h ∈ F2, we have h ∈ D0. Pre-multiplying both sides of

Phg
∗
2 = g∗1 +g∗2 by (Ph)

∗, we have (Ph)
∗g∗1 = 0. Combining this with rh+Phg

∗
1 = g∗0 +g∗1

and (7), we get g∗1 = [I − Ph + (Ph)
∗]−1(rh − g∗0) = gh

1 . Obviously, policy h is bias

optimal, i.e., h ∈ D1. Thus, F3 ⊆ D1.

Next, suppose Fk+2 ⊆ Dk, for a particular k ≥ 1. For any h ∈ Fk+3, by (35)

we have h ∈ Fk+2 and Phg
∗
k+2 = g∗k+1 + g∗k+2. From the assumption, h ∈ Dk. Pre-

multiplying both sides of Phg
∗
k+2 = g∗k+1+g∗k+2 by (Ph)

∗, we have (Ph)
∗g∗k+1 = 0. Com-

bining this with Phg
∗
k+1 = g∗k + g∗k+1 and (17), we get g∗k+1 = −[I −Ph + (Ph)

∗]−1g∗k =

gh
k+1. Obviously, policy h is the (k + 1)th-bias optimal, i.e., h ∈ Dk+1. Thus

Fk+3 ⊆ Dk+1. Therefore Fn+2 ⊆ Dn for all n ≥ 0 by induction. 2

Just as for the case of the bias, given an (n− 1)th-bias optimal policy, n ≥ 2, it is

difficult to specify the set of all the (n − 1)th-bias optimal policies, Dn−1. Thus, by

Lemma 3, we may search in Fn for an nth-bias optimal policy.

Next, we devise a policy iteration algorithm for the nth-bias optimality by follow-

ing the same procedure as for the average performance and the (1st) bias optimality

problems. By Theorem 3, from any (n − 1)th-bias optimal policy we can construct

another (n − 1)th-bias optimal policy which has a larger nth bias, if such a policy

exists.

For a given (n − 1)th-bias optimal policy d ∈ Dn−1 with the kth bias gd
k, k =
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0, 1, . . . , n + 1, n ≥ 2, we first define

Ad
n(i) := {a ∈ Fn(i) :

∑
j∈S pa(i, j)g

d
n(j) >

∑
j∈S pd(i)(i, j)g

d
n(j); or

∑
j∈S pa(i, j)g

d
n+1(j) >

∑
j∈S pd(i)(i, j)g

d
n+1(j)

when
∑

j∈S pa(i, j)g
d
n(j) =

∑
j∈S pd(i)(i, j)g

d
n(j))





, i ∈ S. (36)

We then define an improvement policy h (depending on d) as follows:

h(i) ∈ Ad
n(i) if Ad

n(i) 6= ∅, and h(i) = d(i) if Ad
n(i) = ∅. (37)

Such a policy may not be unique, since there may be more than one action in Ad
n(i)

for some state i ∈ S.

We omit the proofs of the following Theorems 8 and 9 since they are similar to

the respective proofs of the n = 1 case.

Theorem 8 For any given (n − 1)th-bias optimal policy d ∈ Dn−1, n ≥ 2, let h be

defined as in (37). We have

(a) gh
n−1 = gd

n−1 = g∗n−1, i.e., h ∈ Dn−1, and

(b) gh
n ≥ gd

n.

(c) If gh
n = gd

n and h 6= d, then gh
n+1 º gd

n+1.

The nth-Bias Optimality Policy Iteration Algorithm is then as follows:

1. Set k = 0 and select an arbitrary (n−1)th-bias optimal policy d0 ∈ Dn−1, which

may be obtained from the (n− 1)th-bias optimality policy iteration algorithm.

2. (Policy evaluation) Obtain gdk
n and gdk

n+1 by solving

−g∗n−1 + (Pdk
− I)gn = 0,

−gn + (Pdk
− I)gn+1 = 0

subject to (Pdk
)∗gn+1 = 0.

3. (Policy improvement) Set dk as policy d and obtain policy dk+1 as policy h in

(36) and (37), setting dk+1(i) = dk(i), i ∈ S, if possible.
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4. If dk+1 = dk, stop and set d∗ = dk and g∗n = gdk
n ; otherwise increase k by 1 and

return to step 2.

Theorem 9 The nth-Bias Optimality Policy Iteration Algorithm stops at an nth-bias

optimal policy in a finite number of iterations.

The existence of the nth-bias optimal policy can also by proved with Theorem 9 by

construction.

As shown above, the nth-bias optimality policy iteration procedure for an nth-bias

optimal policy consists of n steps. Each step is based on two biases gl and gl+1, and

reaches an optimal lth bias, l = 0, 1, . . . , n. In addition to this procedure, we can also

develop an algorithm which works roughly as follows: at each iteration k, we choose

an action that maximizes (myopically) all the expected lth biases
∑

j∈S pa(i, j)g
dk
l (j),

l = 2, . . . , n, and r(i, a) +
∑

j∈S pa(i, j)g
dk
1 (j) for l = 1. Generally, this algorithm may

take fewer policies to reach an nth-bias optimal policy. We will leave the details to

the readers.

At this point, the theory for the nth-bias optimization is almost complete. In the

next section, we will derive the optimality equations that the nth-bias optimal policies

must satisfy. Unlike for ergodic systems, for multi-chain MDPs we cannot find a set

of equations that are both necessary and sufficient. In fact, in our formulation these

optimality equations are not the central piece of the theory; they provide additional

information but are not essential.

5 Bias Optimality Equations

We need two lemmas, one for n = 1 and the other for n 6= 1.

Lemma 4 For any d ∈ Dn−1, where n 6= 1,

(a) if Pdg
∗
n ¹ g∗n−1 + g∗n, then gd

n ¹ g∗n, where g∗−1 := 0.

(b) If d is nth-bias optimal, then Pdg
∗
n = g∗n−1 + g∗n.
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Proof. First, we prove the lemma for n = 0 with D−1 = D. For part (a), by (5)

we have gd
0 = Pdg

d
0 ≤ Pdg

∗
0 ¹ g∗0. For part (b), since policy d is average performance

optimal, we have gd
0 = g∗0. Thus, from (5) we obtain Pdg

∗
0 = g∗0.

Next, we prove the lemma for n > 1. Since d ∈ Dn−1, we have gd
k = g∗k for all

0 ≤ k ≤ n − 1. By (18) we have gd
n = −gd

n−1 + Pdg
d
n ≤ −gd

n−1 + Pdg
∗
n. Then the

condition in (a) leads to gd
n ¹ −gd

n−1 + g∗n−1 + g∗n = g∗n. For part (b), since policy

d is nth-bias optimal, we have gd
n−1 = g∗n−1 and gd

n = g∗n. Thus, from (18) we have

Pdg
∗
n = g∗n−1 + g∗n. 2

Lemma 5 For any d ∈ D0,

(a) if rd + Pdg
∗
1 ¹ g∗0 + g∗1, then gd

1 ¹ g∗1.

(b) If d is bias optimal, then rd + Pdg
∗
1 = g∗0 + g∗1.

Proof. For part (a), since d ∈ D0, we have gd
0 = g∗0. By (12) and the condition of

part (a), we have gd
1 = rd + Pdg

d
1 − gd

0 ≤ rd + Pdg
∗
1 − gd

0 ¹ g∗0 + g∗1 − gd
0 = g∗1. Next we

prove (b). Since policy d is bias optimal, we have gd
0 = g∗0 and gd

1 = g∗1. Thus, from

(12) we obtain that rd + Pdg
∗
1 = g∗0 + g∗1. 2

From Lemmas 4 and 5, we conclude that the nth-bias optimal policy must belong

to the set of {d : d ∈ Dn−1 and Pdg
∗
n = g∗n−1 + g∗n} for n > 1 and {d : d ∈ D0 and rd +

Pdg
∗
1 = g∗0 + g∗1} for n = 1.

With Theorems 1-3 and Lemmas 4-5, we are ready to derive the bias optimality

equations. Let g0, g1, . . . , gn+1 be a set of M -dimensional vectors. The following

equations are called the bias optimality equations.

g0(i) = max
a∈E0(i)





∑

j∈S

pa(i, j)g0(j)



 , (38)

g0(i) + g1(i) = max
a∈E1(g0)(i)



r(i, a) +

∑

j∈S

pa(i, j)g1(j)



 , (39)

gk(i) + gk+1(i) = max
a∈Ek+1(g0,g1,...,gk)(i)





∑

j∈S

pa(i, j)gk+1(j)



 , k = 1, 2, . . . , n, (40)

where E0(i) := Ai,

E1(g0)(i) := arg max
a∈E0(i)





∑

j∈S

pa(i, j)g0(j)



 ,
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E2(g0, g1)(i) := arg max
a∈E1(g0)(i)



r(i, a) +

∑

j∈S

pa(i, j)g1(j)



 ,

and

Ek+1(g0, . . . , gk)(i) := arg max
a∈Ek(g0,...,gk−1)(i)





∑

j∈S

pa(i, j)gk(j)



 , k = 2, . . . , n.

For k ≥ 1, we set

Ek(g0, . . . , gk−1) := ⊗M
i=1Ek(g0, . . . , gk−1)(i).

We denote d ∈ Ek(g0, . . . , gk−1) if (d(1), d(2), . . . , d(M)) ∈ Ek(g0, . . . , gk−1). We have

D = ⊗i∈SAi = E0.

The bias optimality equations (38) - (40) take the vector form as follows.

g0 = max
d∈E0

{Pdg0}, (41)

g0 + g1 = max
d∈E1(g0)

{rd + Pdg1}, (42)

gk + gk+1 = max
d∈Ek+1(g0,g1,...,gk)

{Pdgk+1}, k = 1, . . . , n. (43)

If g0, g1, . . . , gk satisfy the first (k + 1) bias optimality equations, then the set

Ek+1(g0, g1, . . . , gk) contains all the policies d such that the following equations hold:

g0 = Pdg0, g0 + g1 = rd + Pdg1, and gk−1 + gk = Pdgk. That is

Ek+1(g0, g1, . . . , gk)

= {d ∈ D : g0 = Pdg0, g0 + g1 = rd + Pdg1, gl−1 + gl = Pdgl, l = 2, . . . , k}.

In particular, by (35) we have

Fn = En(g∗0, . . . , g
∗
n−1). (44)

It was well known that any average performance (0th-bias) optimal policy satisfies

the first bias optimality equation (38) but may not satisfy the second bias optimality

equation (39). On the other hand, if a policy satisfies both (38) and (39), then it

must be average performance (0th-bias) optimal. These results can be extended to

the nth-bias optimality with n ≥ 1.
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Theorem 10 g∗k, k = 0, 1, . . . , n, satisfy the first (n + 1) bias optimality equations,

n ≥ 0.

Proof: From Section 4, we have proved that there exists an nth-bias optimal policy,

and we denote it as d∗n, for n ≥ 0.

We first consider the case n = 0. Let d∗0 be an average performance optimal

policy with average performance g∗0 and bias g
d∗0
1 . From (5), Pd∗0g

∗
0 = g∗0. We need to

prove that g∗0 satisfies the first bias optimality equation (41), i.e., Pdg
∗
0 ≤ g∗0 for all

d ∈ D. Assume that this does not hold; that is, there exists a policy h and some

state i ∈ S such that (Phg
∗
0)(i) > g∗0(i). Based on this, we can construct another

policy d̂ by setting d̂(j) = d∗0(j) for all j ∈ S − {i} and d̂(i) = h(i). Consequently,

rd̂(j) = rd∗0(j) for j ∈ S − {i} and rd̂(i) = rh(i). Then we have (Pd̂g
∗
0)(i) > g∗0(i) and

(Pd̂g
∗
0)(j) = g∗0(j) for j ∈ S − {i}. Thus,

Pd̂g
∗
0 º g∗0. (45)

Therefore, (Pd̂)
lg∗0 º g∗0 for all l ≥ 1, so (Pd̂)

∗g∗0 ≥ g∗0 follows. Because (Pd̂)
∗(Pd̂g

∗
0 −

g∗0) = 0, by Lemma 1 we have (Pd̂g
∗
0)(k) = g∗0(k) for all recurrent states k under policy

d̂. Then the particular state i must be transient under policy d̂. By the construction

of d̂, we have (Pd̂)
∗[rd̂ − rd∗0 + (Pd̂ − Pd∗0)g

d∗0
1 ] = 0. (The only nonzero component of

the vector in bracket is at state i which is a transient state.) Finally, by the bias

difference formulas in Lemma 2 (a), we have

gd̂
0 − g∗0 = [(Pd̂)

∗ − I]g∗0 ≥ 0.

If gd̂
0 = g∗0, then Pd̂g

∗
0 = Pd̂g

d̂
0 = gd̂

0 = g∗0. This conflicts with (45). Thus, we have

gd̂
0 º g∗0. This is impossible because g∗0 is the optimal average performance. Therefore,

the theorem holds for n = 0.

The case n > 0 can be proved in the same way by constructing counter examples,

and we put it in Appendix A. 2

Theorem 11 If the M-dimensional vectors g0, g1, . . ., gn, gn+1 satisfy the first (n+2)

bias optimality equations, then gk is the optimal kth bias, k = 0, 1, . . . , n.
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Proof: First, we prove the case n = 0. That is, if two vectors g0 and g1 satisfy

the first two bias optimality equations (41) and (42) (equivalently (38) and (39)),

then g0 is the optimal average performance. Denote by d∗0 the policy that reaches

the maximum in both (41) and (42). From (41), we have (Pd∗0)
∗g0 = g0. From (42),

we have rd∗0 + Pd∗0g1 = g0 + g1. Pre-multiplying its both sides by (Pd∗0)
∗, we get

g
d∗0
0 = (Pd∗0)

∗rd∗0 = (Pd∗0)
∗g0 = g0. Thus, g0 is the average performance of d∗0. Since g1

only satisfies the Poisson equation rd∗0 + Pd∗0g1 = g0 + g1, g1 is the potential of policy

d∗0.

We prove that for any d ∈ D, g0 ≥ gd
0 . From (41) and (42), we have

(i) for all d ∈ D, Pdg0 ≤ g0, and

(ii) rd(i) + (Pdg1)(i) ≤ g0(i) + g1(i) when (Pdg0)(i) = g0(i) for some i ∈ S.

Then by Theorem 1 for the ”≤” case, we know gd
0 ≤ g0. Thus, g0 is the optimal

average performance and d∗0 is average performance optimal.

The proof for the case n > 0 are similar, and we put it in Appendix B. 2

Theorem 10 and Theorem 11 provide a necessary and a sufficient condition, re-

spectively, for the nth-bias optimal policies. Because the nth-bias optimal policy

exists, the solution to the first (n + 2) bias optimality equations also exists. From

Theorem 11, if (g0, g1, . . . , gn+1) is one of the solutions of the first (n + 2) bias opti-

mality equations, then g0, g1, . . . , gn are unique (the optimal values). But gn+1 is only

the (n + 1)th potential of a nth-bias optimal policy, therefore it may not be uniquely

determined by these equations.

From the definition, D ⊇ D0 ⊇ D1 ⊇ · · · ⊇ Dn−1 ⊇ Dn ⊇ · · ·. That is, as n

increases, the set Dn shrinks. Veinott [19] proved that if a policy is (M−m+1)th bias

optimal, where M is the number of states and m the number of recurrent classes, then

it is nth bias optimal for all n ≥ 0. That is, DM−m+1 = DM−m+2 = · · · = Dn = · · ·,
for all n ≥ M −m + 1.

26



6 Discussions

We first review some related results in [2, 15, 16, 18, 19]. A policy d∗ ∈ D is said to

be n-discount optimal for some integer n ≥ −1 if

lim inf
λ↑1

(1− λ)−n[vd∗
λ − vd

λ] ≥ 0, for all π ∈ D,

where vd
λ(s) = Ed ∑∞

k=0[λ
kr(Xk, d(Xk))|X0 = s]. In a Markov decision process with

transition matrix Pd and reward rd, vd
λ can be expanded in the Laurent series,

vd
λ = (1 + ρ)

[
yd
−1

ρ
+ yd

0 +
∞∑

k=1

ρkyd
k

]
,

where ρ = 1−λ
λ

and yk, k = −1, 0, . . ., denote the coefficients of the Laurent series

expansion. And yk, k = −1, 0, . . . satisfy the following equations.

(I − Pd)y−1 = 0,

y−1 + (I − Pd)y0 = rd,
...

yn−1 + (I − Pd)yn = 0, n = 1, 2, . . . .

These equations correspond to (5) and Poisson equations (12) and (18), respectively,

and we can prove that gd
k+1 = yd

k, for k ≥ −1.

An n-discount optimal policy maximizes the first nth derivative of vd
λ with respect

to ρ. Therefore, an nth-bias optimal policy is an (n− 1)-discount optimal policy, and

vise versa.

Historically, Veinott published his pioneering work in as early as 1969 [18] on

the n-discount optimality, which laid the foundation for the n-discount optimality

theory. Later in his award winning book [16], Puterman refined the method on the

n-discount optimality. He derived the n-discount optimality equations and provides

a policy iteration algorithm for the n-discount optimal policies.

We now briefly state Puterman’s algorithm. To simplify presentation, for d ∈ D

we define

rn
d =





rd, n = 0;

0, n = −1, 1, 2, 3, . . . .

The N-discount Optimality Policy Iteration Algorithm in [16] is
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1. Set n = −1, D−1 = D, y∗−2 = 0, k = 0, and select a d0 ∈ D.

2. (Policy evaluation) Obtain yk
n and yk

n+1 by solving

rn
dk
− y∗n−1 + (Pdk

− I)yn = 0,

rn+1
dk

− yn + (Pdk
− I)yn+1 = 0

subject to (Pdk
)∗yn+1 = 0.

3. (Policy improvement)

(a) (n-improvement) Choose

dk+1 ∈ arg max
d∈Dn

{rn
d + Pdy

k
n},

setting dk+1(s) = dk(s) if possible. If dk+1 = dk go to (b); otherwise

increase k by 1 and return to step 2.

(b) ((n + 1)-improvement) Choose

dk+1 ∈ arg max
d∈Dn

{rn+1
d + Pdy

k
n+1},

setting dk+1(s) = dk(s) if possible. If dk+1 = dk, go to step 4; otherwise

increase k by 1 and return to step 2.

4. Set

Dn+1 = arg max
d∈Dn

{rn+1
d + Pdy

k
n+1}.

If Dn+1 contains a single decision rule or n = N , stop. Otherwise, set y∗n = yk
n,

increase n by 1, set k = 0, d0 = dk and return to step 2.

Puterman’s algorithm iterates between two phases in step 3(a) and 3(b). With

3(a), yn improves, and the algorithm keeps implementing 3(a) until no improvement

can be achieved then shifts to 3(b) to improve yn+1.

Compared with the n-discount optimality theory, our approach is completely in-

dependent of the discounted MDP formulation. It does not depend on Laurent series
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expansion. The approach is based on the performance difference formula. It is sim-

pler, more direct, and more intuitive. The n-discount optimality is equivalent to the

(n + 1)th bias optimality defined in this paper. However, because of its complicated

theory, it does not gain its deserved popularity. We wish our simpler approach may

help to popularize these results. Next, based on the performance difference formu-

las, we derived policy iteration algorithms that are generally more efficient than the

two-phase algorithms in the literature. Finally, our approach fits the recently es-

tablished framework of sensitivity-based optimization; the new sensitivity-based view

may lead to new research directions, such the bias derivatives, on-line optimization,

and potential aggregations.

7 Conclusion

With the nth-bias difference formulas, we have developed an optimization theory for

MDPs that covers a complete spectrum from average performance optimality, bias

optimality, to higher-order bias optimality. This approach is intuitively clear. Policy

iteration algorithms can be easily developed with this approach.

The new approach fits the recently developed sensitivity-based learning and op-

timization framework for discrete even dynamic systems [3, 4, 6] and provides some

new insights. For example, we first derive the performance difference formulas for

problems that do not fit the standard MDP framework and develop policy itera-

tion algorithms, see [7] for some examples. Also, sample-path-based estimation algo-

rithms, or reinforcement learning type of algorithms for nth biases can be developed

with (20) without knowing the state transition probability matrix Pd [14]. With such

algorithms on-line optimization methods can be developed. In addition, if a policy

space contains continuous parameters, the derivatives of the nth biases with respect

to the parameters can be easily derived. These derivative formulas are similar to the

difference formulas (see [3, 4, 5]). Then the gradient-based optimization approaches

can be developed. Finally, with the sensitivity-based point of view, potential aggre-

gation can be implemented to save computation by utilizing the special feature of a

29



particular problem, see [6].

Further research also includes to extend the results to continuous-time MDPs and

MDPs with countable state spaces, and/or compact action sets.

Appendix A

The Proof of Theorem 10 for the Case n > 0.

(a) We prove the case n = 1. Let d∗1 be a bias optimal policy with average

performance g∗0 and (1st) bias g∗1. We have shown that g∗0 satisfies the first bias

optimality equation (41) and need to prove that g∗0 and g∗1 satisfy the second bias

optimality equation (42). By Poisson equation (12), we have g∗0 + g∗1 = rd∗1 + Pd∗1g
∗
1.

Now we need to prove

rd + Pdg
∗
1 ≤ g∗0 + g∗1 for all d ∈ D satisfying Pdg

∗
0 = g∗0. (46)

Assume that (46) does not hold. Then there exists a policy h and some state i ∈ S

such that (Phg
∗
0)(i) = g∗0(i) and

rh(i) + (Phg
∗
1)(i) > g∗0(i) + g∗1(i).

Based on this, we can construct another policy d̂ by setting d̂(j) = d∗1(j) for all

j ∈ S − {i} and d̂(i) = h(i). Consequently, rd̂(j) = rd∗1(j) for all j ∈ S − {i} and

rd̂(i) = rh(i). Therefore, by construction we have Pd̂g
∗
0 = g∗0, rd̂(j) + (Pd̂g

∗
1)(j) =

rd∗1(j)+(Pd∗1g
∗
1)(j) for all j ∈ S−{i} and rd̂(i)+(Pd̂g

∗
1)(i) > rd∗1(i)+(Pd∗1g

∗
1)(i). From

Theorem 1, we have gd̂
0 ≥ g∗0. Because g∗0 is the optimal average performance, so we

must have gd̂
0 = g∗0. Next, by Theorem 4, we must have gd̂

1 º g∗1. This conflicts to the

fact that g∗1 is the optimal bias. Thus the theorem holds for n = 1.

(b) Now we prove the general case n > 1 by induction. That is, if g∗0, . . . , g
∗
k

of a kth-bias optimal policy satisfy the first (k + 1) bias optimality equations, then

g∗0, . . . , g
∗
k+1 of a (k + 1)th-bias optimal policy (denoted as d∗k+1) must satisfy the first

(k + 2) bias optimality equations, k ≥ 1. By assumption, we only need to check the

(k + 2)th bias optimality equation. In other words, we need to prove that

Pdg
∗
k+1 ≤ g∗k + g∗k+1, for all d ∈ Ek+1(g

∗
0, g

∗
1, . . . , g

∗
k). (47)
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Suppose that (47) does not hold. Then there must exist an h ∈ Ek+1(g
∗
0, g

∗
1, . . . , g

∗
k)

and some state i ∈ S such that (Phg
∗
k)(i) = g∗k−1(i) + g∗k(i) = (Pd∗

k+1
g∗k)(i) for k > 1,

rh(i) + (Phg
∗
k)(i) = rd∗

k+1
(i) + (Pd∗

k+1
g∗k)(i) for k = 1, and

(Phg
∗
k+1)(i) > g∗k(i) + g∗k+1(i) = (Pd∗

k+1
g∗k+1)(i).

Again, we can construct another policy d̂ by setting d̂(j) = d∗k+1(j) for all j ∈ S−{i}
and d̂(i) = h(i). Consequently, rd̂(j) = rd∗

k+1
(j) for all j ∈ S − {i} and rd̂(i) = rh(i).

Because h ∈ Ek+1(g
∗
0, . . . , g

∗
k) ⊆ Ek(g

∗
0, . . . , g

∗
k−1) = Fk (cf. (44)), by construction, the

policy d̂ can be viewed as constructed from d∗k+1 by (36) and (37) for k > 1 and by

(32) and (33) for k = 1. Therefore, gd̂
k ≥ g∗k follows from Theorem 8 (b) for k > 1

and from Theorem 6 (b) for k = 1. Because d∗k+1 is (k + 1)th-bias optimal, we have

gd̂
k = g∗k. Then from Theorem 8 (c) for k > 1 and Theorem 6 (c) for k = 1, we have

gd̂
k+1 º g∗k+1. This is impossible because g∗k+1 is the optimal (k + 1)th bias. Thus

g∗0, . . . , g
∗
k+1 satisfy the first (k +2) bias optimality equations. We complete the proof

of the theorem. 2

Appendix B

The Proof of Theorem 11 for the Case n > 0.

(a) We prove the case n = 1. That is, if three vectors g0, g1 and g2 satisfy

the first three bias optimality equations, then g0 is the optimal average performance

and g1 is the optimal 1st bias. Denote by d∗1 the policy that reaches the maximum

in the first three equations. We have shown that g0 is the average performance of

d∗1. Pre-multiplying both sides of Pd∗1g2 = g1 + g2 by (Pd∗1)
∗ we get Pd∗1g1 = 0. By

rd∗1 + Pd∗1g1 = g0 + g1, we have g1 = [I − Pd∗1 + (Pd∗1)
∗]−1(rd∗1 − g0) = g

d∗1
1 . That is, g1

is the 1st bias of d∗1. Since g2 only satisfies the Poisson equation Pd∗1g2 = g1 + g2, g2

is the 2nd potential of policy d∗1.

Since we have proved that g0 = g∗0, now we just need to prove g1 = g∗1. For any

d ∈ D0, we know that d ∈ F1. By the second and the third bias optimality equations,

we have

(i) rd + Pdg
d∗1
1 ≤ rd∗1 + Pd∗1g

d∗1
1 = g0 + g1, and

31



(ii) (Pdg
d∗1
2 )(i) ≤ g1(i) + g2(i) when rd(i) + (Pdg

d∗1
1 )(i) = g0(i) + g1(i) for some i ∈ S.

By the “In addition” part of Theorem 2, we have gd
1 ≤ g1 for all d ∈ D0. Thus, g1 is

the optimal (1st) bias and d∗1 is (1st) bias optimal.

(b) Now we prove the general case n > 1 by induction. Assume that the theorem

holds for the case of (n − 1) (we have proved the case n − 1 = 1). That is, if the

vectors g0, . . . , gn satisfy the first (n + 1) bias optimality equations, then gk is the

optimal kth bias, k = 0, 1, . . . , n−1. We wish to prove that the theorem holds for the

case of n. That is, if the vectors g0, . . . , gn+1 satisfy the first (n + 2) bias optimality

equations, then gk = g∗k, 0 ≤ k ≤ n. Again, we denote by d∗n the policy that reaches

the maximum in the first (n + 2) bias optimality equations. Then by the assumption

of induction, we have proved that g0, . . . , gn−1 are the 0th to the (n − 1)th biases of

d∗n, respectively. For gn, by the (n + 1)th and (n + 2)th bias optimality equations we

have gn = −[I − Pd∗n + (Pd∗n)∗]−1gn−1 = gd∗n
n . That is, gn is the nth bias of d∗n. Since

gn+1 only satisfies the Poisson equation Pd∗ngn+1 = gn + gn+1, gn+1 is the (n + 1)th

potential of policy d∗n.

Again, from the assumption, we know gk = g∗k, 0 ≤ k ≤ n− 1. Now we just need

to prove that gn = g∗n. For any d ∈ Dn−1, we know that d ∈ Fn. By the (n + 1)th

and the (n + 2)th bias optimality equations, we have

(i) Pdg
d∗n
n ≤ Pd∗ngd∗n

n = gn−1 + gn, and

(ii) (Pdg
d∗n
n+1)(i) ≤ gn(i) + gn+1(i) when (Pdg

d∗n
n )(i) = gn−1(i) + gn(i) for some i ∈ S.

By the “In addition” part of Theorem 3, we have gd
n ≤ gn for all d ∈ Dn−1. Thus, gn

is the optimal nth bias and d∗n is nth-bias optimal.

2
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