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Therefore, choosing �i(xi; ki�1) �
~L2i (xi; ki�1), 2 � i � r, shows
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We will now make use of the Lyapunov-like function Ui, 1 � i � r,
and inequality (5.9) to conclude the global boundedness of the state of
the closed-loop system. For this purpose, we adapt a result from [11]
which is stated here as a lemma for convenience.

Lemma 4.1: Let Ui(�) and ki(�), 1 � i � r, be smooth func-
tions defined on [0; tf ) with Ui(t) � 0, 8t 2 [0; tf ), and N(ki) =
exp(k2i ) cos((�=2)ki). For t 2 [0; tf ), if the following inequality
holds:

Ui(t) �

t

0

bi(� )N (ki(�)) _ki(�)d� + ci

i+1

j=1

kj(t) + �ci

8t 2 [0; tf ); 1 � i � r (5.10)

where bi(t) is a time-varying parameter which takes values in the
unknown closed intervals Ii := [bm ; bM ] with 0 62 Ii, and ci ,
�ci, 1 � i � r, represent some constants, then Ui(t), ki(t), and
t

0
bi(�)N(ki(�)) _ki(�)d� , 1 � i � r, are bounded on [0; tf ).
Now, similarly to the proof given in [11], assume the maximal in-

terval of existence of the solution of the closed-loop system starting
from any given initial condition is [0; tf ) for some tf > 0. Inte-
grating inequality (5.9) and applying Lemma 4.1 shows that Ui(t),
ki(t),

t

0
bi(�)N(ki(�)) _ki(�)d� , 1 � i � r, are bounded on [0; tf ).

Thus, Vi(zi; t), and ~Vi(~xi) are all bounded on [0; tf ). Since Vi(zi; t)
and ~Vi(~xi) are proper positive–definite functions in zi and ~xi, 1 � i �
r, respectively, zi, and ~xi, 1 � i � r, are also bounded on [0; tf ).
Therefore, finite-time escape cannot occur and tf =1, that is, zi and
~xi, 1 � i � r, are bounded for all t � 0.

Furthermore, �i, as functions of ~xi, and ki, 1 � i � r, are bounded
for all t � 0, so are the variables xi, 1 � i � r. Therefore, _zi, and
_xi, are bounded for all t � 0. Also, k _~xk is bounded for all t � 0. As
a result, the inequality k~xk2 = r

i=1
~x2i �

r

i=1
_ki implies that ~x is

square integrable on [0;1). By Barbalat’s lemma, ~x approaches zero
as t ! 1. Thus, x approaches zero as t ! 1.

Moreover, from (5.9), we can conclude that zi, 1 � i � r, are square
integrable on [0;1). This fact together with the boundedness of zi, and
_zi, 1 � i � r, implies that zi, 1 � i � r, approach zero as t!1 by
appealing to Barbalat’s lemma.
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[6] M. Krstić, I. Kanellakopoulos, and P. Kokotović, Nonlinear and Adap-
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Abstract—Perturbation realization factor is an important concept in per-
turbation analysis of both queueing systems and Markov systems. A per-
turbation realization factor measures the effect of a perturbation on the
system performance. This concept is important for the performance sensi-
tivity and performance optimization of these systems. Since the perturba-
tions in queueing systems are continuous in nature and those in Markov
systems are discrete, it is not straightforward to establish the relationship
between these two types of fundamental concepts. This note solves this long-
standing problem. We find a formula that links these two types of pertur-
bation realization factors in Gordon-Newell and open Jackson networks
together. The results enhance our understanding of perturbation analysis
and lead to new research directions.
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I. INTRODUCTION

Perturbation analysis (PA) is an important approach to performance
optimization of discrete event dynamic systems (DEDSs) [3], [7]. Per-
turbation realization factor measures the effect of a single perturba-
tion on the system performance. It captures the flow of perturbations
through DEDS and is as such an important concept in the PA theory.
The performance sensitivities can be obtained by using the realization
factors as building blocks.

PA was first proposed and extensively studied for queueing systems
[1], [7] and later extended to Markov systems [2]. PA of queueing sys-
tems has clear intuitive interpretations and the algorithms for some
problems are extremely efficient. PA of Markov systems applies to per-
formance sensitivities with respect to all system parameters, and can
be naturally extended to performance difference formulas that lead to
policy iteration in the theory of Markov decision processes. Perturba-
tion realization factors play an important role in both PA of queueing
systems and Markov systems.

Since a queueing system (with exponentially distributed service
times) can be viewed as a special Markov system [9], the realization
factors for both systems must have some relationship. However, a per-
turbation in a queueing system, which refers to a small delay in time,
is continuous in nature; and a perturbation in a Markov system, which
refers to a change in system state, is discrete in nature. Therefore, it
is not straightforward to establish the relationship between these two
types of fundamental concepts.

This long-standing problem is solved in this note. We derive a for-
mula that links the realization factors with queueing models and those
with Markov models together. This study provides some new insights
to the PA of both queueing-types of systems and Markov systems,
which may lead to new ideas and research directions. With the rela-
tionship between both realization factors, we can easily establish par-
allel results for both types of systems. For example, we can establish
the performance difference formulas for queueing systems. It is well
known that the policy iteration algorithm follows directly from the per-
formance difference formula. Therefore, it is natural that we may estab-
lish policy iteration-based optimization methods for queueing systems.
The results of the PA of Markov systems enable us to develop sensi-
tivity formulas and optimization approaches for queueing systems.

The rest of the note is organized as follows. In Section II, we review
the fundamentals for realization factors. In Section III, we derive the
relationship formula between the two types of realization factors for
Gordon–Newell networks, first intuitively from the conceptual mean-
ings of realization factors, and then mathematically from the existing
sensitivity formulas. In Section IV, we further extend the results to open
Jackson networks. In Section V, we conclude the note with some dis-
cussions.

II. BACKGROUND ON PERTURBATION REALIZATION FACTORS

We first review the concept of realization factors in PA of queueing
systems and the related performance derivative equations. We then re-
view the concepts of performance potential, realization factors, and
Poisson equation in the theory of Markov systems.

A. Realization Factors in PA of Queueing Systems

We consider a Gordon–Newell network (it is also called a closed
Jackson network) [4], [6] consisting of M servers with exponentially
distributed service times with service rates �i, i = 1; 2; . . . ;M . The
total number of customers in the network is N . After the service com-
pletion at server i, a customer will leave server i and enter the buffer
of server j with probability qij , j = 1; 2; . . . ;M . Without loss of
generality, we suppose qii = 0. The system state is denoted as n =

Digital Object Identifier 10.1109/TAC.2006.883022

(n1; n2; . . . ; ni; . . . ; nM ), where ni is the number of customers at
server i. The state space is S = fall n : M

i=1 ni = Ng. Let n(t)
denote the system state at time t, f(n) be the cost function which maps
the state space S toR = (�1;1), TL be the Lth service completion
time of the network, and � be the time-average performance defined as

� = lim
L!1

T

0
f (n(t))dt

TL
= lim

L!1

FL

TL
(1)

with FL :=
T

0
f(n(t))dt. We use �(f) to denote the customer-av-

erage performance

�
(f) = lim

L!1

FL

L
: (2)

We assume that the state process n(t) is ergodic so that all the limits
exist.

We study the effect of a single perturbation of a service completion
time on the system performance. As we know, when a perturbation of
a server is propagated in an irreducible closed network, it will either be
realized or lost with probability one [1]. The probability that it is real-
ized is called the perturbation realization probability. It is dependent
on the system state when the perturbation is generated and the server
which is perturbed. We denote the realization probability of a pertur-
bation at server k when the system is at state n as c(n; k), n 2 S ,
k = 1; 2; . . . ;M .

When server k is perturbed, the system performance �(f) will also be
affected. In PA theory, we define the realization factor of a perturbation
� of server k at state n for �(f) as

c
(f)(n; k) = lim

L!1
lim
�!0

E
�FL

�

= lim
L!1

lim
�!0

E
F 0L � FL

�

= lim
L!1

lim
�!0

E

1

�

T

0

f n
0(t) dt�

T

0

f(n(t))dt (3)

where n0(t) is the perturbed system state at time t, T 0L is the time
when the perturbed system has served L customers. From (3), the per-
turbation realization probability c(n; k) can be viewed as a special
c(f)(n; k) with f(n) = I(n) � 1 for all n 2 S .

With realization factors c(f)(n; k), we can derive the system perfor-
mance sensitivity with respect to system parameters. We have [1]

d�(f)

d�k
= �

�(I)

�k
n2S

�(n)c(f)(n; k) (4)

where �(I) is a special system performance corresponding to f(n) =
I(n) � 1 for all n 2 S , and �(n) is the steady-state probability of
state n. The derivative of �(I) is

d�(I)

d�k
= �

�(I)

�k
n2S

�(n)c(n; k): (5)

Derivative formulas (4) and (5) are the basis of the gradient-based
performance optimization schemes of queueing systems [1], [5].
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B. Realization Factors in Markov Systems

The PA theory has been extended to Markov systems in the past
decade. Now, we review the related results for Markov processes [2].

We denote an irreducible Markov process as X = fXt; t � 0g,
where Xt is the system state at time t. The finite state space is S =
f1; 2; . . . ; Sg and the infinitesimal generator is B = [b(u; v)]S�S ,
where b(u; v) � 0 if u 6= v, b(u; u) = �

v 6=u b(u; v), u, v 2 S .
Let � denote the row vector of the steady-state probability, and e be
an S-dimensional column vector whose elements are all one. We have
Be = 0, �e = 1, and �B = 0. Let f be a column vector of the
performance function, and � = �f be the time-average performance.

The performance potential g measures the contribution of the initial
states to the system performance. g is a column vector and its element
g(u), u 2 S , is defined as

g(u) = lim
T!1

E

T

0

[f(Xt)� �] dtjX0 = u : (6)

From (6), we can derive the Poisson equation [2]

Bg = �f + �e: (7)

The perturbation realization factor is defined as the difference of the
performance potentials between any two states

d(u; v)= g(v)� g(u)

= lim
T!1

E

T

0

f X
0
t �f(Xt) dtjX0=u;X

0
0=v :

(8)

d(u; v) reflects the difference of the contributions of two initial states to
the total system performance, i.e., it measures the effect on the system
performance if the system is perturbed from state u to state v.

With the Poisson equation (7), we can easily derive the performance
difference equation. Let B and B0 be two ergodic infinitesimal gener-
ators on S , g be the performance potential of B, �0 be the steady-state
probability of B0, and �0 = �0f be the performance of B0 . Set �B =
B0 � B. Then

�
0 � � = �

0�Bg: (9)

Next, we set B(�) = (1 � �)B + �B0 = B + ��B. Let �(�) =
�(�)f be the performance of the Markov process with infinitesimal
generator B(�). Then, the system performance derivative with respect
to � is

d�

d�
= ��Bg: (10)

Equations (9) and (10) are the fundamental formulas for performance
optimization of Markov systems. The details can be found in [2].

III. RELATIONSHIP BETWEEN TWO REALIZATION FACTORS

Since a queueing system can be viewed as a special Markov system,
we expect that d(u; v) and c(f)(n; k) have some relationship. We study
this relationship in this section.

We first establish the relationship by using the meanings of realiza-
tion factors in both systems. This relatively “intuitive” analysis helps

to derive and explain the results but is not rigorous. The mathematical
proof will be provided later.

From the definition (3) we have (with � > 0, we have T 0L � TL)

c
(f)(n; k) = lim

L!1
lim
�!0

E

1

�

T

0

f n
0(t) dt�

T

0

f (n(t))dt

= lim
L!1

lim
�!0

1

�
E

T

0

f n
0(t) � f (n(t)) dt

+ lim
L!1

lim
�!0

1

�
E

T

T

f n
0(t) dt

= lim
T!1

lim
�!0

1

�
E

T

0

f n
0(t) � f (n(t)) dt

+ lim
L!1

lim
�!0

1

�
E

T

T

f n
0(t) dt : (11)

For a rough analysis, let us assume that we can freely change the
order of the two limits, the expectation and the integration in each term
of (11). We first consider the second term on the right-hand side of
(11). As L ! 1, the system will reach its steady state and we have
limt!1 Eff(n0(t))g = limt!1 Eff(n(t))g = �. So asL becomes
large, we may roughly have Ef

T

T
f(n0(t))dtg � �E(T 0L � TL).

Therefore

lim
L!1

lim
�!0

1

�
E

T

T

f n
0(t) dt = lim

L!1
lim
�!0

1

�
�E T

0
L�TL :

(12)
By the definition of the perturbation realization probability, we have

c(n; k) = lim
L!1

lim
�!0

E fT 0L � TLg

�
: (13)

Therefore

lim
L!1

lim
�!0

1

�
E

T

T

f n
0(t) dt = c(n; k)�: (14)

Now, let us focus on the first term of the right-hand side
of (11). Roughly speaking, by the concept of the realization
factor d(u; v) for the Markov systems (see (8), with u, v un-
derstood as the states of the queueing system), the difference
limT!1Ef

T

�
[f(n0(t)) � f(n(t))]dtg can be determined by the

realization factors d(n(�);n0(�)), with �! 0. Therefore, we need
to determine the states n(�) and n0(�).

By assumption, at time t = 0, the system is at state n and server
k obtains a small perturbation �. This can be viewed as that server k
is “frozen” (no service provided and hence no service completion) in
the time period [0;�) on the perturbed sample path n0(t). Therefore,
the difference between n(t) and n0(t) is that on n(t) all servers may
complete service in [0;�), but on n0(t) all servers except server k may
complete service in [0;�). We do not consider the possibility that more
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than one server complete service in [0;�) since its probability is at the
order of �2 (the number of servers is finite). Thus, at time t = �, n(t)
is

at state nij ; with probability

�(ni)�iqij�; i; j = 1; 2; . . . ;M (15)

at state n; with probability

1�

M

i=1

�(ni)�i� (16)

where nij = (n1; . . . ; ni � 1; . . . ; nj + 1; . . . ; nM ) is a neighboring
state of n with ni � 1, �(ni) is an indicator function which is defined
as �(ni) = 0 (or 1) if ni = 0 (or > 0). Similarly, at t = �, n0(t) is

at state nij ; with probability

�(ni)�iqij�; i; j = 1; 2; . . . ;M; i 6= k (17)

at state n; with probability

1�

M

i6=k

�(ni)�i� : (18)

Therefore, at time t = �, ignoring the high-order terms of �, we
conclude that with probability �(ni)�iqij�, n(t) is at nij and n0(t)
is at n, i, j = 1; 2; . . . ;M ; with probability �(ni)�iqij�, n(t) is at
n and n0(t) is at nij , i, j = 1; 2; . . . ;M , i 6= k; and with probability
1� M

i=1 �(ni)�i�� M

i6=k �(ni)�i�, both n(t) and n0(t) are at n.
From the meaning of realization factors in (8), we should have

lim
T!1

E

T

�

f n
0(t) � f (n(t)) dt

=

M

i;j=1

f�(ni)�iqij�g d(nij ;n)

+

M

i;j=1;i6=k

f�(ni)�iqij�g d(n;nij)

= �(nk)�k�

M

j=1

qkjd(nkj ;n): (19)

From (11), (14), and (19), we get

c(f)(n; k)� c(n; k)� = �(nk)�k

M

j=1

qkjd(nkj ;n)

+ lim
�!0

1

�
E

�

0

f n
0(t) � f (n(t)) dt : (20)

We can use the same argument as in (19) to evaluate the last term in
(20). For any 0 � t � �, we have

E f n
0(t) � f (n(t))

=

M

i;j=1

f�(ni)�iqijtg [f(n)� f(nij)]

+

M

i;j=1;i6=k

f�(ni)�iqijtg [f(nij)� f(n)]

= �(nk)�kt

M

j=1

qkj [f(n)� f(nkj)] : (21)

From (21), we have jEff(n0(t))� f(n(t))gj < 2G�k�, where G is
the upper bound of jf(n)j, i.e., jf(n)j < G, n 2 S . Then, it can be
easily verified that the last term in (20) is zero and we have

c(f)(n; k)� c(n; k)� = �(nk)�k
M

j=1

qkjd(nkj ;n):
(22)

This formula describes the relationship between realization factors
defined with the queueing model and those with the Markov model.
The meaning of this formula can be understood from the above analysis
procedure. Generally speaking, both sides of this formula describe the
average effect of a perturbation at server k. The left-hand side of the
formula quantifies the perturbation effect from the traditional PA theory
in queueing systems. The right-hand side of the formula quantifies the
effect from the perturbation due to state jumps at server k in a time
unit. This formula bridges the gap between PA of queueing systems
and Markov potential theory.

The previous derivation is very rough especially we have exchanged
the order of limits, expectations and integrations at our wish. Now,
we rigorously prove this relationship formula with the existing mathe-
matical formulas. The performance derivatives of Gordon–Newell net-
works can be derived in two ways: from the perturbation analysis with
realization factors c(f)(n; k), and from the Markov theory with poten-
tial-based realization factors d(n;n0). With these two approaches, we
can formally prove the relationship formula (22).

We consider a more general closed network which is the same as the
one discussed in Section II-A except that the service rate of server k
may depend on the system state. When the system state is n the service
rate of server k is denoted as �k;n, n 2 S . Now, we suppose that the
service rate of server k changes from �k;n to �k;n+��k;n. It is known
that the derivative of the customer-average performance �(f) is [1]

d�(f)

d�k;n
= �

�(I)

�k;n
�(n)c(f)(n; k): (23)

Similarly, the derivative of �(I) with respect to the state-dependent ser-
vice rate �k;n is

d�(I)

d�k;n
= �

�(I)

�k;n
�(n)c(n; k): (24)

Since �(f) = limL!1(FL=L) = limL!1(FL=TL)(TL=L)=
��(I), we have

d�(f)

d�k;n
=

d ��(I)

d�k;n
=

d�

d�k;n
�(I) +

d�(I)

d�k;n
�: (25)

So the derivative of the time-average performance � with respect to
�k;n is

d�

d�k;n
=

1

�(I)
d�(f)

d�k;n
�

d�(I)

d�k;n
�

= �
�(n)

�k;n
c(f)(n; k)� c(n; k)� : (26)

Now, let us use the Markov potential theory to derive the deriva-
tive of � with respect to �k;n. The state process can be viewed as a
Markov process with infinitesimal generator B, which can be deter-
mined by �i;n and qij , i, j = 1; 2; . . . ;M and n 2 S . Let g(n),
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n 2 S , be the performance potential. Now, we pick up a particular
state denoted as n. When the service rate of server k changes from
�k;n to �k;n +��k;n, the infinitesimal generator changes from B to
B(��k;n) = B + ��k;n�B, where the high order of ��k;n is ne-
glected. Comparing with (10), ��k;n can be viewed as � in (10).

From the structure of the infinitesimal generator in Gordon–Newell
networks, �k;n only determines the transition probabilities from
state n. Thus, when �k;n changes, it only affects one row in the
transition probability matrix. That is, all the elements of ��k;n�B

are zero except the row corresponding to state n, denoted as
��k;n�B(n; �). For this row, the value of the diagonal element
is ��k;n�B(n;n) = ���k;n�(nk); the value for the neigh-
boring states of n is ��k;n�B(n;nkj) = qkj��k;n�(nk),
j = 1; 2; . . . ;M ; and all the other elements are zero. Thus, we get the
value of the matrix �B. From (10), we can derive the performance
derivative as

d�

d�k;n
=��Bg

= �(nk)�(n)

M

j=1

qkjg(nkj)� g(n)

= �(nk)�(n)

M

j=1

qkj [g(nkj)� g(n)]

= �(nk)�(n)

M

j=1

qkjd(n;nkj): (27)

Comparing (26) and (27), we obtain the relationship formula

c
(f)(n; k)� c(n; k)� = �(nk)�k;n

M

j=1

qkjd(nkj ;n): (28)

In fact, (22) can be viewed as a special case of (28). If the service rates
are state independent, i.e., �k;n = �k for all n 2 S , (28) becomes
(22).

IV. EXTENSION TO OPEN JACKSON NETWORKS

We have established the relationship between the two types of real-
ization factors defined with two different models for Gordon–Newell
networks. In this section, we will show that these results hold for open
Jackson networks after some minor notational modifications.

Compared with Gordon–Newell networks, the main difference in
open Jackson networks is that there is a customer arrival process from
the outside to the network. The customer arrival process is assumed to
be a Poisson process with rate �0. When a customer arrives, it will
enter the buffer of server i with probability q0i, i = 1; 2; . . . ;M .
After its service completion at server i, a customer will depart from
the network with probability qi0 and enter server j with probability
qij , j = 1; 2; . . . ;M [8]. Since the number of states is infinite, we re-
quire the cost function f be bounded.

We view the customer arrival source as server 0. As we know, server
0 can be considered as a server containing infinitely many customers.
In this sense, an open Jackson network consisting of M servers can be
viewed as a Gordon–Newell network consisting of M +1 servers with
server 0 having infinitely many customers [1].

It is easy to check that all the previous analyses and results preserve
correctness. The only thing we need to change is that the servers should
be counted from 0 to M . The relationship formula (22) becomes

c
(f)(n; k)� c(n; k)� = �(nk)�k

M

j=0

qkjd(nkj ;n) (29)

where we define �(n0) = 1, q00 = 0, nk0 = (n1; . . . ; nk �

1; . . . ; nM ), n0k = (n1; . . . ; nk+1; . . . ; nM ), and k = 0; 1; . . . ;M .
Furthermore, it is known that the realization probability of open

Jackson networks has the special property [1]

c(n; 0) =1

c(n; k) = 0; k 6= 0: (30)

This formula can be understood from the analysis of perturbation prop-
agation in open Jackson networks. With (30), the relationship formula
will have a simpler format

c
(f)(n; 0)� � =�0

M

j=1

q0jd(n0j ;n)

c
(f)(n; k) = �(nk)�k

M

j=0

qkjd(nkj ;n);

k = 1; 2; . . . ;M: (31)

V. CONCLUSION

This note solves a long-standing problem in perturbation analysis: It
establishes the relationship between the realization factors defined with
the queueing model, which measure the effect of continuous perturba-
tions, and the realization factors defined with the Markov model, which
measure the effect of discrete perturbations. This study enhances our
understanding of perturbation analysis of both queueing-types of sys-
tems and Markov systems. The results may lead to new ideas and new
research directions. One direct consequence is, the study builds up a
bridge between perturbation analysis of both systems and hance allows
us to establish parallel results for both types of systems. For example,
we can establish the performance difference formulas for queueing sys-
tems. It is well known that the policy iteration algorithm follows di-
rectly from the performance difference formula. Therefore, it is nat-
ural that we may establish policy iteration-based optimization methods
for queueing systems. This approach is new to the optimization of
queueing systems [10]. Also, since the realization factors d(u; v) for
Markov systems can be applied to the performance sensitivities with
respect to all the system parameters, with the relationship formulas,
we may be able to use the realization factors c(f)(n; k) for queueing
systems to establish performance sensitivity formulas for parameters
other than mean service times, such as routing probabilities, which is
unsolved by the current PA approach for queueing systems. These are
new directions that require further investigations.
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A Method for Nonlinear Least Squares
With Structured Residuals

Steven R. Shaw and Christopher R. Laughman

Abstract—This note develops a modification of standard nonlinear least
squares methods with reduced sensitivity to the quality of the initial guess.
The technique is presented in the context of least squares fitting of dynamic
system models, but may apply to other kinds of problems. The performance
of the technique is compared to standard methods for a variety of test prob-
lems.

Index Terms—Nonlinear least squares, optimization, system identifica-
tion.

I. INTRODUCTION

Nonlinear least squares methods are often used to fit dynamic system
models to experimental data. Conventional methods applied to these
problems tend to be susceptible to local minima, have unpredictable
performance for initial guesses that are far from the desired minimum,
and do not take advantage of the structure of residuals in data fitting
problems. The method developed in this note uses residual structure
and offers convergence from a wider range of initial guesses to the
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desired minimum than standard techniques such as Levenburg–Mar-
quardt or Gauss–Newton. In addition, the performance of the proposed
method is easy to predict in some cases.

The unconstrained nonlinear least squares estimate can be expressed
as the argument of the minimization over parameter vectors �

�̂ = argmin
�

V (�) (1)

where V (�) is the “sum-of-squared errors” loss function

V (�) =
1

2
r
T
r =

1

2

N

k=1

r
2
k: (2)

For the common output error data-fitting application, the residual
vector r is the difference between a model response ŷ, which depends
on the parameters � and inputs, and a set of observations y. We
assume that successive values rk in r represent errors at increasing
time values. A requirement for the minimum in (1) is that the gradient
of V (�) be zero. The gradient can be written

g(�) =

N

k=1

@rk

@�1

@rk

@�2
� � �

@rk

@�M

T

rk (3)

=J
T
r (4)

where M is the number of parameters and J is the Jacobian matrix
of the residual with respect to the parameters. Newton’s method can
applied to (3) to find a series of iterates �(i) that can be evaluated by
computer to solve for g(�(i)) = 0, i.e.,

�
(i+1) = �

(i)
� rg �

(i)
�1

g �
(i)

: (5)

This is the “full-Newton” update for solving the nonlinear least-squares
problem [1]. The difficulty in this equation is the Hessian matrix
rg(�(i)), which can be written

rg �
(i) = J

T
J + second-order derivative terms (6)

where the second order derivative terms are often inconvenient to com-
pute. The popular Levenberg–Marquardt method uses (5), except that
the second-order terms are replaced with a continuation parameter �
and weight matrix D, i.e.,

�
(i+1) = �

(i)
� [JTJ + �D]

�1
J
T
r (7)

where J and r are evaluated at �(i). The Gauss–Newton method uses
(7) with � = 0.

Nonlinear least squares problems are usually solved by the various
implementations of Levenberg–Marquardt [1]–[3], which differ in the
selection of � and D. Independent of the details of implementation,
(5) and (7) have a fixed point when g(�) = JT r = 0. Unfortunately,
this can happen for local minima that correspond to poor estimates of
the parameters, as opposed to the desired global minimum �̂ in (1).
Conventional methods become practically useless for many problems
where the desired solution can be obtained only with a “high-quality”
initial guess.

Several groups have worked to improve the performance of nonlinear
least squares methods. For example, [4] considers further refinement of
(7), while [5] develops methods suited to specific class of residuals. In
[6], Bertsekas presents a method based on the extended Kalman Filter
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