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x: State
u: Control variable
w: Random noise

∫=
T

dttutxfE
T 0

)]}(),([{1η

Performance measure

LQG problem

A Typical Formulation of a Control Problem
(Continuous Time Continuous State Model)
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A policy u(x):  x u ∫ +=

T

dtBuuAxxE
T 0

}{1 ττη



4

Discrete-time Discrete State Model (I)
- an example

A random walk 
of a robot
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Shannon Mouse (Theseus)
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A Sample Path (system dynamics):

A random walk 
of a robot
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Discrete Model (II)
- the dynamics
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System performance: 
– Reward function: f=(f(1),…,f(M))T

– Performance measure:
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Steady-state probability:
– Steady-state probability: 
 π=(π(1), π(2),..,π(M)).

 π(I-P)=0,    πe=1 
 I:identity matrix,  e=(1,…,1)T
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Discrete Model (III)
- the Markov model

System dynamics:
-X = {Xn, n=1,2,…}, Xn in S = {1,2,…,M}
- Transition Prob. Matrix P=[p(i,j)]i,j=1,..,M
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Control of Transition Probabilities 

1 (100) (-100) 2

0 (0)

q

p

(100) 43 (-100)

Turn on red with prob. α

- move to left
α

α

Turn on green with prob. 1- α

- move to right

1−α

1−α



9

α: Action controls transition probabilities
pα(i,j): governs the system dynamics
α=d(x): policy (state based)

)(xd=αα

x
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System dynamics:  
Markov model

Performance depend 
on policies, πd , ηd , etc

Goal of Optimization: 
Find a policy d that maximizes ηd in policy space

- the Control Model

Discrete Model (IV)
- Markov decision processes (MDPs)
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The policy space is too large
M = 100 states, N=2 actions, 

NM = 2100= 1030 policies
(10GHZ 3* 1012 years to count!)

Special structures not utilized

Limitation of State-Based Formulation (I)

May not perform well
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Limitation of State-Based Formulation (II)

Example: Random walk of a robot

Choose α to maximize the average performance
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)1( α−p )1( α−qαq0
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Transition 
probabilities:

At state 0, 
if moves top, α needs to be as large as possible
if moves down, α needs to be as small as possible

Let p = q = 1/2,
Average perf in next step = 0, no matter what α you 
choose (best you can do with a state-based model)
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A large α leads a large
reward at state 1

(100)

But a small  reward 
at state 3 (-100)

But a small  reward 
at state 2

(-100)

A small α leads a large
reward at state 4

(100)

Limitation of State-Based Formulation (III)
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We can do better!

Group two up transitions together as an event “a” and 
two down transitions as event “b”.
When “a” happens, choose the largest α,
When “b” happens, choose the smallest α.
Average performance = 100, if α=1.
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Events and Event-Based Policies

An event is defined as a set of state transitions
Event-based optimization:

• May lead to a better performance than the state-based formulation
• MDP model may not fit:

- Only controls a part of transitions 
- An event may consist of transitions from many states

• May reflect and utilize special structures
Questions:

• Why it may be better?
• How general is the formulation?
• How to solve event-based optimization problems?
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Notations:
A single transition <i,j>,  

i,j in S ={1,2, …, M}
An event: a set of transitions, 

2M sets
a = {<0,1>, <0,2>} 
b = {<0,3>, <0,4>} 

Why it is better?
An event contains information 

about the future!
(compared with the state-based policies)

Physical interpretation 
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How general is the formulation?  

λ
α(n)

1-α(n)

q0i
qij

n: population
No. of customers in network

ni: No. of customers at server i 
n=(n1,…,nM): state
N: network capacity 

Event: a customer arrival finding population n
Action: accept or reject

Only applies when an event occurs
MDP does not apply: Same action is applied for different 

state with the same population

Admission control
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Riemann Sampling vs. Lebesgue Sampling

Sample the system whenever the signal reaches a certain prespecified level, 
and control is added then. 

t1 t2 tk… …

d3

d2

d1

d4d5

t1 t2 tk… …
…

RS:

LS:
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A Model for Stock Price or Financial Assess 
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w(t): Brownian motion;   N(dt,dz): Poisson random measure
X(t): Ito-Levy process
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How to solve event-based optimization problems?
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An overview of the paths to the top of a hill
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(perturbation analysis)
Continuous Parameters

θ

A Sensitivity-Based View of Optimization

(policy iteration)
Discrete Policy Space

θ+Δθ

Qg
d
d π

δ
η

=

η: performance
π: steady-state prob
g: perf. potentials
Q=P’-P

Qg'' πηη =−
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Poisson Equation
g(i)  =  potential contribution of state i  (potential, or bias)

= contribution of the current state f(i)-η
+ expected long term contribution after a transition
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For two Markov chains P, η, π and P’, η’, π’, let Q=P’-P

gPPQg )'(''' −==− ππηηPerformance difference:

fegPI =+− η)(:'π×One line simple derivation:

Two Sensitivity Formulas

g
d

dP
d

d
θ
θπ

θ
θη )()(

=

Performance derivative: P is a function of θ: P(θ )

Derivative =average change in expected potential at next step 

Perturbation analysis: choose the direction with the largest average 
change in expected potential at next step

])([ gP
d
d θπ
θ
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Policy Iteration

gPPQg )'(''' −==− ππηη

1. η’>η  if  P’g>Pg    (Fact: π’>0 )

2.   Policy iteration:  
At any state find a policy P’ with P’g>Pg

3.   Reinforcement learning 
(Stochastic approximation algorithms)

Policy iteration: Choose the action with largest  
changes in expected potential at next step 



D: Policy space D0: Perf. optimal policies

D1: (1st) Bias optimal policies D2: 2nd Bias optimal policies

…… DM: Blackwell optimal policies

D

D0 D1

D2

D3 …

DM

Bias measures transient behavior

Mutli-Chain MDPs
Perf./ Bias/ Blackwell Optimization

With perf. difference formulas, 
we can derive a simple, intuitive 
approach without discounting
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Online gradient based optimi Online policy iteration

RL
TD(λ), Q-learning, Neuro-DP ..

(online estimate)

Qg
d
d π

δ
η

=

Two policies: P, P’,  Q=P’-P
Steady-state prob:  π, π’
Long-run ave. perf:  η, η’
Poisson eq: (I-P+e π)g =f 

PA

Stochastic
Approximation   

Potentials g

Qg'' πηη =−

SACMDP
(Policy iteration)(Policy gradient)

Gradient-based PI

RL: reinforcement learning
PA: perturbation analysis
MDP: Markov decision proc.
SAC: stochastic adaptive cont.

A Map of the L&O World
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Overview of
State-Based Optimization

Introduction to
Event-Based Optimization

Sensitivity-Based Approach to
State-Based Optimization

Solution to
Event-Based Optimization

Extension of the sensitivity-based approach
to event-based optimization
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Two sensitivity formulas
• Performance derivatives
• Performance differences
PA & PI
• PA: Choose the direction with largest average    

change in expected potential at next step 
• PI:  Choose the action with largest changes   

in expected potential at next step 
Potentials are aggregated according 
to event structure
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Solution to 
Random Walker Problem

0

1 2
(100) (-100)

3 4
(-100) (100)

α α−1

α α−1

a

b

p

q
Two policies:

),(ada =α )(bdb =α
),('' ada =α )('' bdb =α

Apparently, g(a)>0 and g(b)<0 for any policy

Policy iteration:  at any iteration choose            and       .
Optimal policy:       is the largest and       is the smallest.*

aα
aa αα >' bb αα <'

*
bα

2.  Performance deriv:

)]4()3([)()( θθθ θ
θαπ gg

d
db b −+

)]2()1([)()( θθθ
θ

θ
θαπ

θ
η gg

d
da

d
d a −=

)(θαa )(θαbContinuous with θ:          ,

1. Performance diff:

π’(a), π’(b): perturbed steady-
state prob. of events a and b

)]()')[(('' aga aa ααπηη −=−
)]()')[((' bgb bb ααπ −+

)2()1()( ggag −= )4()3()( ggbg −=

Choose the action with the largest changes
In expected potential at next step

g(a), g(b) aggregated
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Solution to 
Admission Control Problem α(n)

1-α(n) Two policies: α(n) and α’(n)

Potential aggregation:
p(n): prob. of arrival finding n cust.
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ndnnnp ααηη1. Performance diff:

d(n)= changes in expected potentials of accepting and rejecting a cust. 

Policy iteration:  Choose α’(n) such that [α’(n) – α(n) ]d(n) >0 
d(n) can be estimated on a sample path

Choose the action with the largest changes
In expected potential at next step

d(n): aggregated potential
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Constructing New
Sensitivity Eqs!

RL: reinforcement learning
PA: perturbation analysis
MDP: Markov decision proc.
SAC: stochastic adaptive cont.

Sensitivity-Based Approaches to Event-Based Optimization

Gradient-based PI

MDP
(Policy iteration)

Online gradient based optimi Online policy iteration

PA SAC

Stochastic
Approximation   

RL
TD(λ), Q-learning, Neuro-DP ..

(online estimate)

Qg
d
d π

δ
η

= Qg'' πηη =−

Potentials g

(Policy gradient)

agggeQe )|(*)('' πηη =−agggeQe
d
d )|(*)(π
δ
η

=
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Summary
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Advantages of the Event-Based Approach

2. # of aggregated potentials d(n): N
may be linear in system

3.  Actions at different states are correlated
standard MDPs do not apply

4.  Special features captured by events
action depends on future information

5.  Opens up a new direction 
to many engineering problems

POMDPs: observation y as event
hierarchical control: mode change as event

network of networks: transitions among subnets as events
Lebesgue Sampling

1.  May have better performance
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1. A map of the learning and optimization world: 
Different approaches can be obtained from two 

sensitivity equations
2. Extension to event-based optimization

Policy iteration, perturbation analysis 
reinforcement learning, time aggregation

stochastic approximation, Lebesgue sampling
……

3. Simpler and complete derivation for MDPs
Multi-chains, different perf. criteria

Average performance with no discounting
N-bias optimality – Blackwell optimality

Sensitivity-Based View of Optimization
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a

b
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Pictures to Remember (I)
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Online gradient based optimi Online policy iteration

PA AC

Stochastic
Approximation   

MDP
(Policy iteration)(Policy gradient)

Gradient-based PI

RL
TD(λ), Q-learning, Neuro-DP ..

(online estimate)

Qg
d
d π

δ
η

= Qg'' πηη =−

Potentials g

Constructing New
Sensitivity Eqs!

agggeQe )|(*)('' πηη =−agggeQe
d
d )|(*)(π
δ
η

=

Pictures to Remember (II)
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?!???????

?????

?????

0 Yautai

1 Alaska

2 Hawaii

Limitation of State-Based 
Formulation (I)

0
1

2
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Thank You!



40

Xi-Ren Cao:

Stochastic Learning
and Optimization
- A Sensitivity Based
Approach

9 Chapters, 566 pages
119 Figures, 27 Tables, 
212 homework problems

Springer
October 2007


