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A Unified Framework for 
Stochastic Learning and Optimization 

(with a sensitivity-based view)

a. Perturbation analysis (PA): 
a counterpart of MDPs

b. Markov decision processes (MDPs)
a new and simple approach 

c.   Overview of reinforcement learning (RL)

d. Event-based Optimization and others
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Sensitivity-Based
View

PA
(System theory)

MDPs
(Operations Res.)

RL
(Compt. Sci.)

Event-Based
Optimization

(vs state-based)

Lebesgue
Sampling

SAC
(direct)

Financial
Engineering
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Optimization Problems

(state x)

Dynamic system

Actions αl , l=0,1,… Observations
yl , l=0,1,…

System Performance
η

Policy:  action= d(information) ,  α =d(y)

Goal – to find a policy that has the best performance
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packets packets

Actions:
service rate μn  
(state dependent)

Policy  μn = d(n)

Observations: 
number of packets (state) 

n=0,1,...N

Performance: average # served/sec - costs 
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Continuous (with parameters θ) or discrete

Policy Space: Best Policy?

D 

Policy space too large
(100 states, 2 actions 2100=1030 policies, 10Gh ->1012 yrs to count)

State space too large and structure unknown



λ μ

Policy  μn = d(n)

μ1

μ2

μ3

0

1

1

1

Continuous: D=[0,1]3

Policy space D
Discrete: grid (5^3)

3 states n=1,2,3

μ3

μ1
μ2

μ3
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D

How to obtain
as much perf. inf. of other policies 

as possible?

With structural information
of the system

Analyzing behavior of one policy
Interpret performance of others

?η

With no structural information
of the system 

Search Methods

Blind random search
Ordinal optimization

Exploring geometric properties of
distribution of η over D

D
η

Evaluate each policy
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Actions:
service rate μn  

Observations: 
state n=0,1,...N
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Black Box

Actions:
service rate μn  

Observations: 
state n=0,1,...N

λ μ

Structure known



Simplicity is Beauty
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How about Stochastic Learning & Optimization?
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With some knowledge, 
studying one policy

find a better policy

Discrete policy spaces

With Structural Information

With some knowledge, 
studying one policy

neighborhood perf.

θ+Δθ
θ

Continuous policy spaces

Qg
d
d π

θ
η

= Qg'' πηη =−
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A Sample PathA Sample Path

The dynamic behavior of a system under a policy can be
represented by a sample path
Analyzing a sample path performance under the policy

? ? Other policies ?
Discrete time model (embedded Markov chain): 

Interarrial times:

Service times:

2

3

1

3
2
1
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System performance: 
Reward function f=(f(1),…,f(M))T

Performance measure:

∑∑
∈
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Steady-state probability:
Steady-state probability: 

 π=(π(1), π(2),..,π(M)).
 π(I-P)=0,    πe=1 
 I:identity matrix,  e=(1,…,1)T

System dynamics:
- X = {Xn, n=1,2,…}, Xn in S = {1,2,…,M}
- Transition Prob. Matrix P=[p(j|i)]i,j=1,..,M

The Markov ModelThe Markov Model

1

32

p(3|1)
p(1|3)

p(1|2)

p(2|3)

p(2|1)
p(3|2)
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Perturbation Analysis
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For two Markov chains
P=[p(j|i)], η, π and P’=[p’(j|i)], η’, π’,   (Q=P’-P)

PggPQg
d

d πππ
δ
δη

−== ')(
Performance gradient:

P P’
δ

*P(δ)

Poisson equation:

fegPI =+− η)(

Perturbation Analysis (PA)

')1()( PPP δδδ +−= ]1,0[∈δ
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X: sample path with P and performance η

X

i
k

i’
X 

J’

j
X(δ) 

X(δ)

X(δ): sample path with P(δ) = P+δQ, Q=P’-P and η(δ) P P’*
P(δ)

δ is very small            changes in sample path are also very small

Tij

Jump i j Jump i’ j’
T

Changes are represented by many jumps 
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5
4
3
2
1

i

j

0 Tij

X 

X’

Define performance potential of state i: 
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Effect of a jump from i to j on performance: 

( , ) ( ) ( )i j g j g iγ = −
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Adding the effects of all the jumps we obtain η(δ)-η 

,)( Qg
d

d π
δ
δη

= .' PPQ −=

Performance gradient:

P P’*
P(δ) P P(δ)

X X(δ)

i
k

i’
X 

J’

j
Xδ

Jump i j Jump i’ j’
T
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Markov Decision Processes
- Policy Iteration
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Two Sensitivity Formulas

P P’*
P(δ)Two Markov chains P, η, π

P’, η’, π’, with Q=P’-P

Continuous policy space Discrete policy space

Gradient-based optimization

Similarly, we can construct

,)( Qg
d

d π
δ
δη

= .' PPQ −=

Performance gradient formula: Performance difference formula:

.'' Qgπηη =− .' PPQ −=

Policy iteration
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Policy Iteration

gPPQg )'(''' −==− ππηηPerf. diff.

1. π’> 0 η’>η  if P’g>Pg

2.  Policy iteration:  
At any state find a policy P’ with 
P’g>Pg

3. Improve performance iteratively,
Stop when no improvement can 
be made 
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More on Policy Iteration

Performance criteria:

Average performance fπη =

}|)({ 0
0

iXXfE
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Discounted performance
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Bias of bias (2nd order), g2:

01 =−ngπ∑
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=

−
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Bias of (n-1)th bias (nth order), gn:

η

f(i)
E{f(X1)|X0=i}

E{f(Xk)|X0=i}

k0 1 2 …

Bias measures transient behavior
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Perf./Bias Difference Formulas
Policy Iteration

Two policies P’ : π’ , η’, g’, g2’… and P : π,  η,  g,  g2 ,... 

Policy iteration for optimal n-bias
Optimality equations for n-bias optimization.

ηη ='
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D

D0 D1

D2

D3 …

DM

Mutli-Chain MDPs
Perf./ Bias/ Blackwell Optimization

With perf. difference formulas, 
we can derive a simple, intuitive 
approach without discounting

D: Policy space D0: Perf. optimal policies

D1: (1st) Bias optimal policies D2: 2nd Bias optimal policies

…… DM: Blackwell optimal policies
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With some knowledge, 
studying one policy

find a better policy

Discrete policy spaces

With some knowledge, 
studying one policy

neighborhood perf.

θ+Δθ
θ

Continuous policy spaces

Qg
d
d π

θ
η

= Qg'' πηη =−

PA MDP

Observations: 
Do not need to evaluate every policy

(large policy space)

State space is too large 

difficult to evaluate each policy
estimate g, Pg, or πQg



Reinforcement Learning

P too large, or not completely known
Learning:  estimate from sample path
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PggPQg
d

d πππ
δ
δη
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PA: gPPQg )'(''' −==− ππηηMDPs:

kα- Stepsize
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g(5) g(5)
g(4) g(4)
g(3) g(3)
g(2) g(2)
g(1) g(1)

Xk=2

Xk+1=4 

g(2) :=(1-α) g(2)
+ α[f(2) – η+g(4)]

Estimating g:
∑
∞

=−=
=0

0 }|])([{)(
k

k iXXfEig η }.|)(])({[ 01 iXXgifE =+−= η

Monte Carlo: Average of Σ[f(Xk)- η]
Stochastic approximation

)},()()({)(:)( 1 kkkkkk XgXgXfXgXg −+−+= +ηα

- Temporal  difference (TD))()()( 1 kkkk XgXgXf −+−= +ηδ
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Estimating Pg, (Q-factors)
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Analytical
(P,f known)

Learn  g(i)
(No matrix inversion, etc)

Learn  Q(i,α)
(P completely unknown)

Policy
Iteration

Solving
Poisson Eq.

or
by numerical

methods
for g

Monte Carlo

Temporal Difference

Long run
accurate est.

+ PI

Short run
noised est.
+ SA + GPI

Long run
accurate est.

+ PI

Long run
accurate est.

+ PI

Short run
noised est.
+ SA + GPI

Monte Carlo

Short run
noised est.
+ SA + GPI
(to be done)

Temporal Difference

Long run
accurate est.

+ PI

Short run
noised est.
+ SA + GPI

(SARSA)

Policy Iteration Based Learning and Optimization
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Analytical
(P,f known)

Learn  g(i)

Perf.
Derivative
Formula
(PDF)

+
Gradient
Methods

(GM)

Monte Carlo

Temporal Difference

Updates every
regenerative 

period:

Learn       
dθ
dη

directly       

Long run
accurate est.
+ PDF+GM

Long run
accurate est.
+ PDF+GM

Long run
accurate est.

+ GM

Long run
accurate est

+ GM

Updates every
transition: 

Short run
noised est.

+TD

PA-Gradient Based Learning and Optimization

Find a zero
of

dθ
dη

Find a zero
of           dθ

dη
Learn dθ

dη

directly



Online gradient based optimi Online policy iteration

RL
TD(λ), Q-learning, Neuro-DP ..

(online estimate)

Qg
d
d π

δ
η

=

Two policies: P, P’,  Q=P’-P
Steady-state prob:  π, π’
Long-run ave. perf:  η, η’
Poisson eq: (I-P+e π)g =f 

PA

Stochastic
Approximation   

Potentials g

Qg'' πηη =−

SACMDP
(Policy iteration)(Policy gradient)

Gradient-based PI

RL: reinforcement learning
PA: perturbation analysis
MDP: Markov decision proc.
SAC: stochastic adaptive cont.

A Map of the L&O World
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Event-Based Optimization
- New directions
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Limitations of State-Based Model

2.  State based policies may not be the best

3.  Special features not captured 

1.  Curse of dimensionality

Event-Based Formulation
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Admission Control in Communication

λ b(n)

1-b(n)

q0i

qij

n: population
No. of all cust. in net

ni: No. of cust. at svr i 
n=(n1,…,nM): state       
N: Capacity 

Event: A customer arrives finding a population n
How do we choose the admission probability b(n)?
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Constructing New
Sensitivity Eqs!

RL: reinforcement learning
PA: perturbation analysis
MDP: Markov decision proc.
SAC: stochastic adaptive cont.

Sensitivity-Based Approaches to Event-Based Optimization

Gradient-based PI

MDP
(Policy iteration)

Online gradient based optimi Online policy iteration

PA SAC

Stochastic
Approximation   

RL
TD(λ), Q-learning, Neuro-DP ..

(online estimate)

Qg
d
d π

δ
η

= Qg'' πηη =−

Potentials g

(Policy gradient)

agggeQe )|(*)('' πηη =−agggeQe
d
d )|(*)(π
δ
η

=
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Advantages of the Event-Based Approach

1. # of aggregated potentials d(n): N  
may be linear in system

2.  Actions at different states are correlated
standard MDPs do not apply

3.  Special features captured by events
action depends on future information

5.  Opens up a new direction 
to many engineering problems

POMDPs: observation y as event
hierarchical control: mode change as event

network of networks: transitions among subnets as events
Lebesgue Sampling 35/40

4.  May have better performance



Riemann Sampling vs. Lebesgue Sampling

Sample the system whenever the signal reaches a certain prespecified level, 
and control is added then. 

t1 t2 tk… …

d3

d2

d1

d4d5

t1 t2 tk… …
…

RS:

LS:
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*x

x̂

*
1τ *

2τ

X(t)

t

A Model for Stock Price or Financial Assess 

.),()),(,()())(,())(,()( ∫ −++= dzdtNztXttdwtXtdttXtbtdX γσ

w(t): Brownian motion;   N(dt,dz): Poisson random measure
X(t): Ito-Levy process
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Semi-Products

S1 S2 S6S5S4S3
Assembling 
stations

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11 B12 B13 B14 B15

Lineside
buffers

Central docking area

Dollies 

A Material Handling System for an Assembly Line

Event-based approach leads to 6-10% performance improvement
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2.    Extension to event-based optimization
Policy iteration, perturbation analysis 

reinforcement learning, time aggregation…. 
Lebesgue sampling, sensor networks,

POMDPs, hierarchical control
……

Sensitivity-Based View of Optimization

1. A map of the learning and optimization world:
Results in Different areas can be obtained /
explained from two sensitivity equations
Simple and complete derivation for MDPs
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THANKS !

Questions?
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Xi-Ren Cao:

Stochastic Learning
and Optimization
- A Sensitivity Based
Approach

9 Chapters, 566 pages
119 Figures, 27 Tables, 
212 homework problems

Springer
October 2007
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