Stochastic Learning and Optimization

- A Sensitivity-Based Approach

Plenary Presentation 2008 IFAC World Congress July 8, 2008

Xi-Ren Cao The Hong Kong Uni. of Science & Tech.

A Unified Framework for Stochastic Learning and Optimization (with a sensitivity-based view)

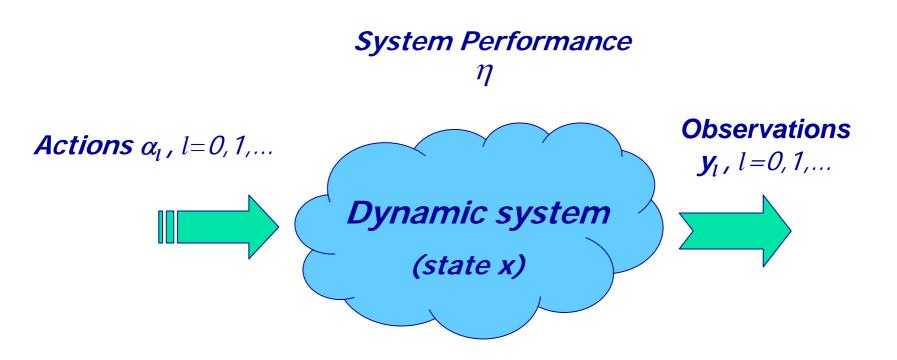
a. Perturbation analysis (PA): a counterpart of MDPs

- b. Markov decision processes (MDPs) a new and simple approach
- c. Overview of reinforcement learning (RL)
- d. Event-based Optimization and others

Event-Based Optimization (vs state-based) SAC (direct)

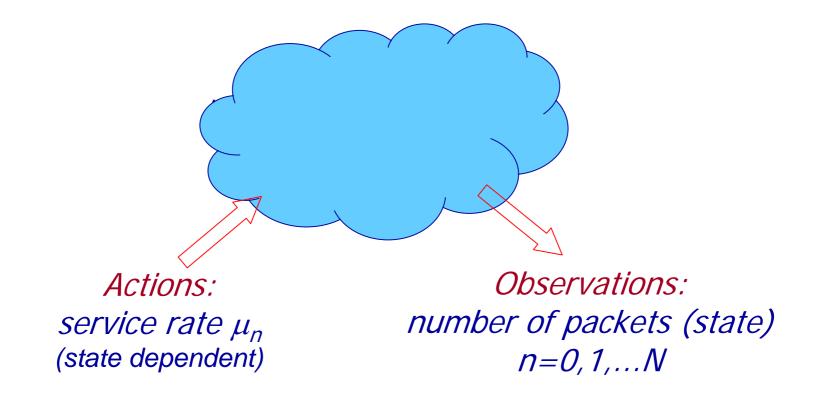
Lebesgue Sampling *Financial Engineering*

Optimization Problems



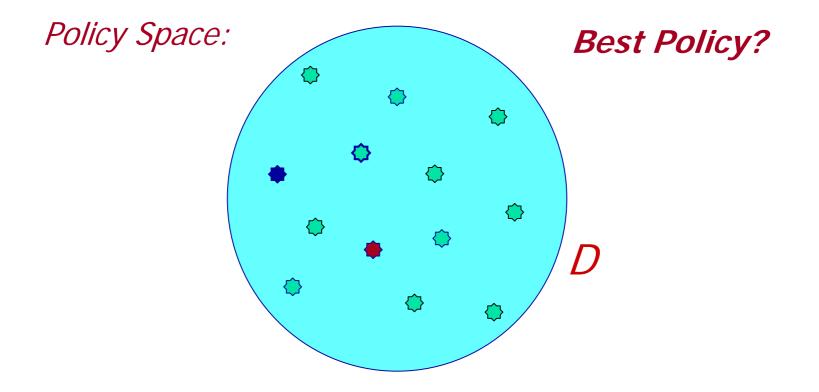
Policy: action = d(information), $\alpha = d(y)$

Goal – to find a policy that has the best performance



Policy $\mu_n = d(n)$

Performance: average # served/sec - costs

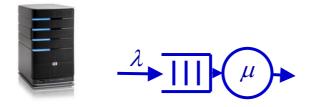


Continuous (with parameters θ) or discrete

Policy space too large

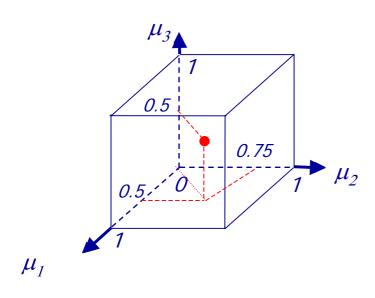
(100 states, 2 actions $\rightarrow 2^{100} = 10^{30}$ policies, 10Gh -> 10¹² yrs to count)

• State space too large and structure unknown



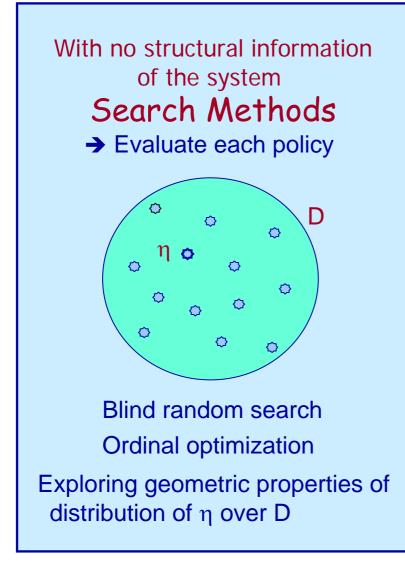
Policy space D Discrete: grid (5^3)

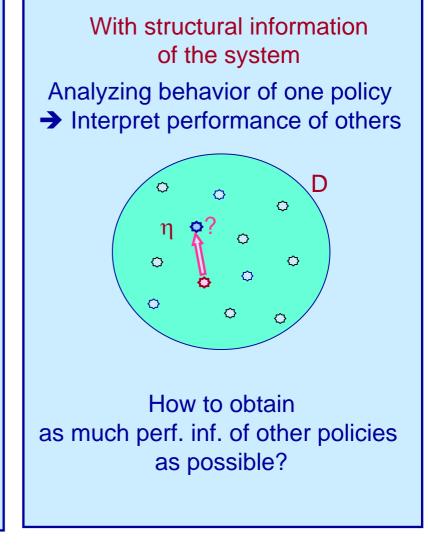
Policy $\mu_n = d(n)$



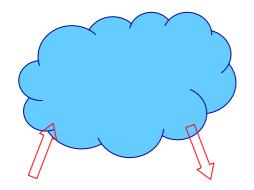
Continuous: $D = [0, 1]^3$

0.75 μ_3 0.5 0.25 0 0.75 $^{0.5}\mu_1$ μ_2^{5} 0.5 0.25 0.25 0 0 $\mu_1 = 0.5$ $\mu_2 = 0.75$ $\mu_3 = 0.5$ 3 states n=1,2,3

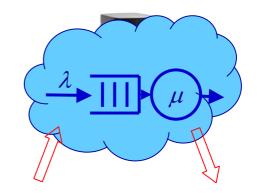




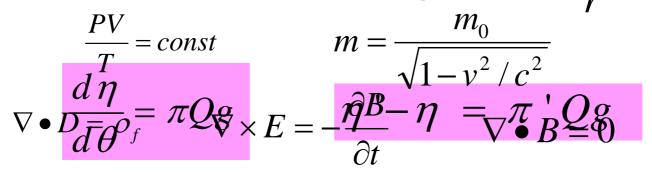
Black Box



Actions: service rate μ_n *Observations: state n=0,1,...N* Structure known

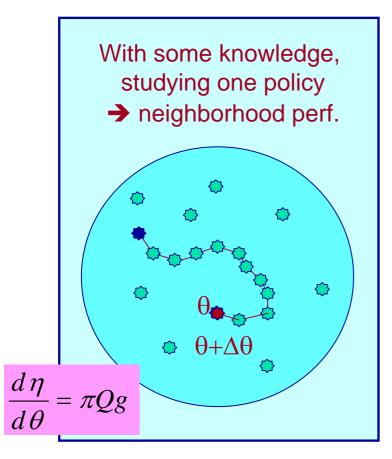


Actions: service rate μ_n *Observations: state n=0,1,...N*

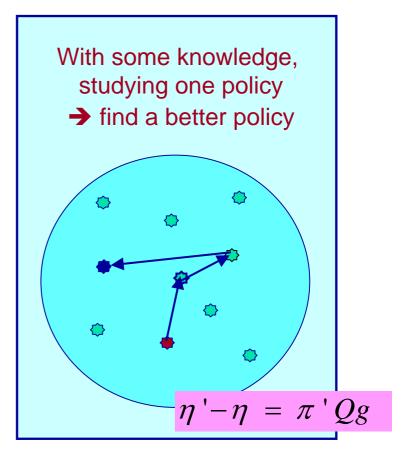


.

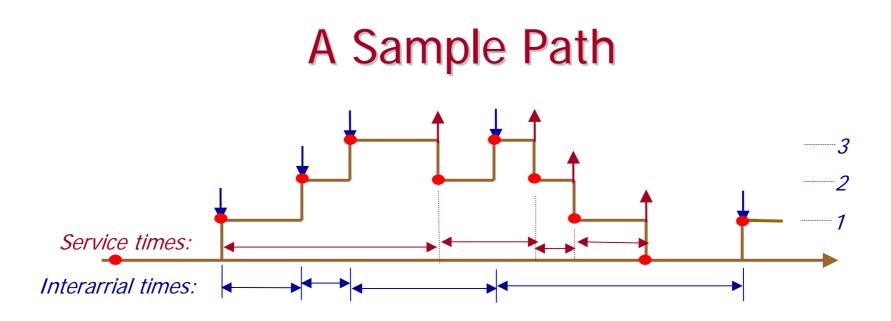
With Structural Information



Continuous policy spaces



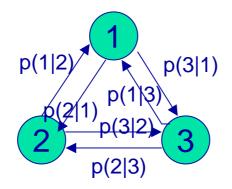
Discrete policy spaces



- The dynamic behavior of a system under a policy can be represented by a sample path
- Analyzing a sample path → performance under the policy
 ? → ? Other policies ?
- Discrete time model (embedded Markov chain):

11/40

The Markov Model



System dynamics: - $X = \{X_n, n=1,2,...\}, X_n \text{ in } S = \{1,2,...,M\}$ - Transition Prob. Matrix $P=[p(j|i)]_{i,i=1,...,M}$

 System performance:
 Reward function f=(f(1),...,f(M))^T Performance measure:

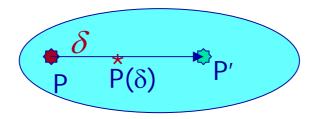
$$\eta = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} f(X_t) = \pi f = \sum_{i \in S} \pi(i) f(i)$$

Steady-state probability: • Steady-state probability: $\pi = (\pi(1), \pi(2), ..., \pi(M)).$ $\pi(I-P)=0, \pi e=1$ I:identity matrix, $e = (1, ..., 1)^T$

Perturbation Analysis

Perturbation Analysis (PA)

For two Markov chains $P=[p(j|i)], \eta, \pi$ and $P'=[p'(j|i)], \eta', \pi', (Q=P'-P)$



$$P(\delta) = (1 - \delta)P + \delta P' \qquad \delta \in [0, 1]$$

Performance gradient:

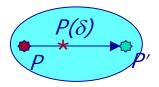
$$\frac{d\eta(\delta)}{d\delta} = \pi Qg = \pi P'g - \pi Pg$$

Poisson equation:

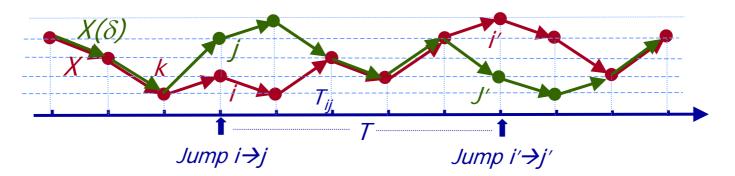
$$(I-P)g + \eta e = f$$

14/40

X: sample path with P and performance η X(δ): sample path with P(δ) = P+ δ Q, Q=P'-P and $\eta(\delta)$



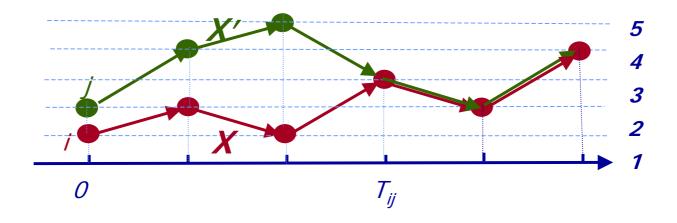
 $\boldsymbol{X} \Longrightarrow \boldsymbol{X}(\boldsymbol{\delta})$



 δ is very small \implies changes in sample path are also very small

Changes are represented by many jumps

Performance $\eta = \pi f = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(X_n)$



Define performance potential of state i:

$$g(i) = \lim_{N \to \infty} E\{\sum_{n=0}^{N} [f(X_n) - \eta] | X_0 = i\}.$$

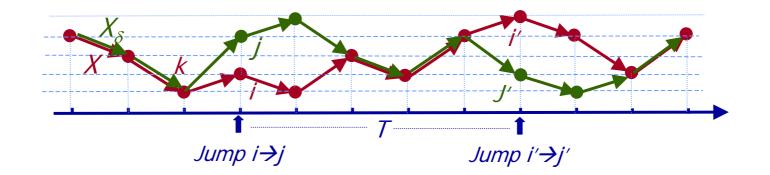
→ Potential contribution of state i to the performance η =

$$= \lim_{N \to \infty} \frac{1}{N} E\{\sum_{n=0}^{N-1} f(X_n)\}$$

 \implies Poisson equation: $(I-P)g + \eta e = f$. $g = (g(1),...,g(M))^T$

Effect of a jump from i to j on performance:

$$\gamma(i,j) = g(j) - g(i)$$



Adding the effects of all the jumps we obtain $\eta(\delta)$ - η

Performance gradient:

$$\frac{d\eta(\delta)}{d\delta} = \pi Qg, \qquad \qquad Q = P' - P.$$

Markov Decision Processes - Policy Iteration

Two Sensitivity Formulas

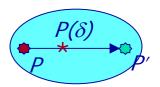
Two Markov chains P, η, π $P', \eta', \pi',$

Continuous policy space

Performance gradient formula:

$$\frac{d\eta(\delta)}{d\delta} = \pi Qg, \qquad Q = P' - P$$

with Q=P'-P



Discrete policy space Similarly, we can construct

Performance difference formula:

$$\eta' - \eta = \pi' Qg. \qquad Q = P' - P.$$

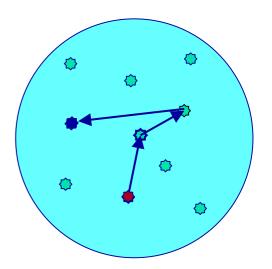
Gradient-based optimization

Policy iteration

Policy Iteration

Perf. diff.
$$\eta' - \eta = \pi' Qg = \pi' (P' - P)g$$

- 1. $\pi' > 0 \rightarrow \eta' > \eta$ if P'g > Pg
- 2. Policy iteration: At any state find a policy P' with P'g>Pg
- *3. Improve performance iteratively, Stop when no improvement can be made*



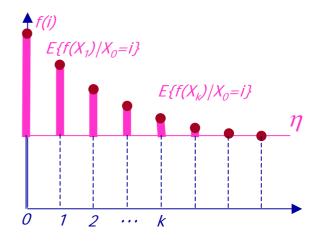
More on Policy Iteration

Performance criteria:

- Average performance $\eta = \pi f$
- Discounted performance

$$\eta_{i} = E\{\sum_{k=0}^{\infty} \beta^{n} f(X_{k}) | X_{0} = i\}$$

• Bias *g*: $g(i) = E\{\sum_{k=0}^{\infty} [f(X_k) - \eta] | X_0 = i\}$



Bias measures transient behavior

Bias of bias (2nd order),
$$g_2$$
:

$$g_2(i) = E\{\sum_{k=0}^{\infty} [g(X_k) | X_0 = i\} \qquad \pi g = 0$$

• Bias of (n-1)th bias $(n^{th} \text{ order}), g_n$:

$$g_n(i) = E\{\sum_{k=0}^{\infty} [g_{n-1}(X_k) | X_0 = i\} \qquad \pi g_{n-1} = 0$$

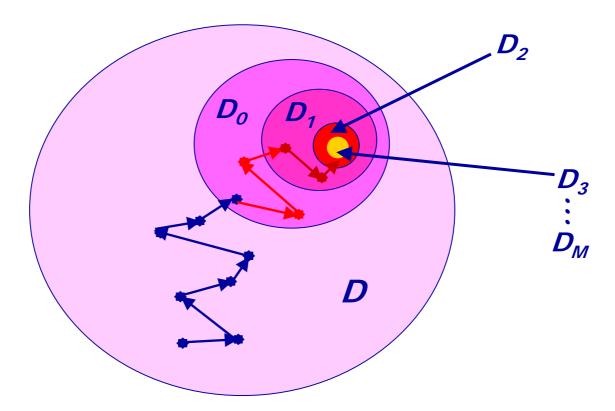
Two policies $P' : \pi', \eta', g', g_2' \dots$ and $P : \pi, \eta, g, g_2, \dots$

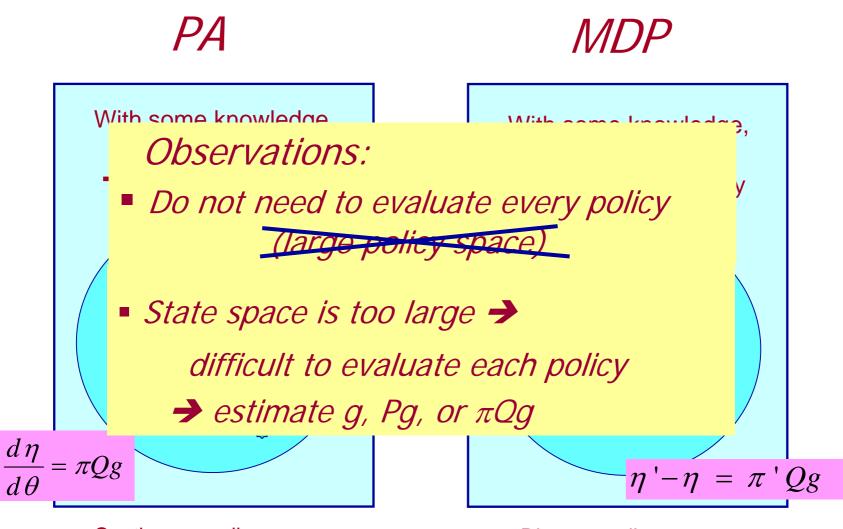
$$\eta' - \eta = P'^{*} [(f' + P'g) - (f + Pg)] + [P'^{*} - I]\eta, \quad P^{*} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} P^{n}.$$
If $\eta' = \eta$ then
$$g' - g = P'^{*} [P' - P]g_{2} + [I - P' + P'^{*}]^{-1} [(f' + P'g) - (f + Pg)].$$
If $g_{n}' = g_{n}$ $n = 1, 2, ...$ then
$$g_{n+1}' - g_{n+1} = P'^{*} [P' - P]g_{n+2} + [I - P' + P'^{*}]^{-1} (P' - P)g_{n+1}.$$

- Policy iteration for optimal n-bias
- Optimality equations for n-bias optimization.

Mutli-Chain MDPs Perf./ Bias/ Blackwell Optimization

With perf. difference formulas, we can derive a simple, intuitive approach without discounting





Continuous policy spaces

Discrete policy spaces

Reinforcement Learning

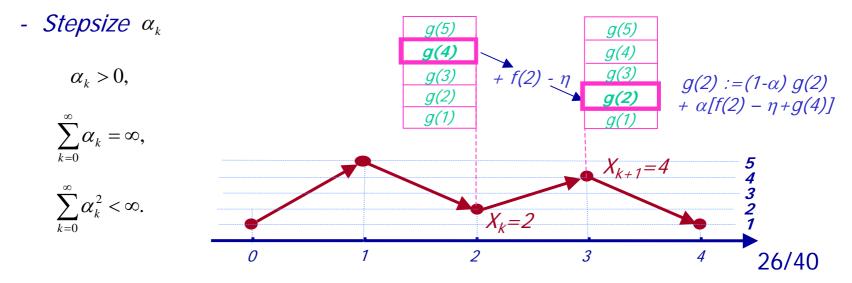
P too large, or not completely known
Learning: estimate from sample path

PA:
$$\frac{d\eta(\delta)}{d\delta} = \pi Qg = \pi P'g - \pi Pg$$
 MDPs: $\eta' - \eta = \pi'Qg = \pi'(P' - P)g$
• Estimating q :

$$g(i) = E\{\sum_{k=0}^{\infty} [f(X_k) - \eta] | X_0 = i\} = E\{[f(i) - \eta] + g(X_1) | X_0 = i\}.$$
Monte Carlo: Average of $\Sigma[f(X_k) - \eta]$

$$g(X_k) \coloneqq g(X_k) + \alpha_k \{f(X_k) - \eta + g(X_{k+1}) - g(X_k)\},$$

$$\delta_k = f(X_k) - \eta + g(X_{k+1}) - g(X_k) - Temporal difference (TD)$$



PA:
$$\frac{d\eta(\delta)}{d\delta} = \pi Qg = \pi P'g - \pi Pg \qquad MDPs: \quad \eta' - \eta = \pi'Qg = \pi'(P' - P)g$$

• Estimating Pg, (Q-factors) $Q(i,\alpha) = \sum_{i=1}^{M} p^{\alpha}(j|i)g(i) + f(i,\alpha) - \eta.$

Similar Temporal Dfference (TD) algorithms can be developed

• Estimating πQg directly $Q = P' - P = \Delta P$

$$\frac{d\eta(\delta)}{d\delta} = \pi(\Delta P)g$$

$$= E\{\frac{\Delta p(X_{k+1} | X_k)}{p(X_{k+1} | X_k)}g(X_{k+1})\}.$$

$$\frac{d\eta(\delta)}{d\delta} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N} \{ \frac{\Delta p(X_{n+1} \mid X_n)}{p(X_{n+1} \mid X_n)} \hat{g}(X_{n+1}, X_{n+2}, ...) \},\$$

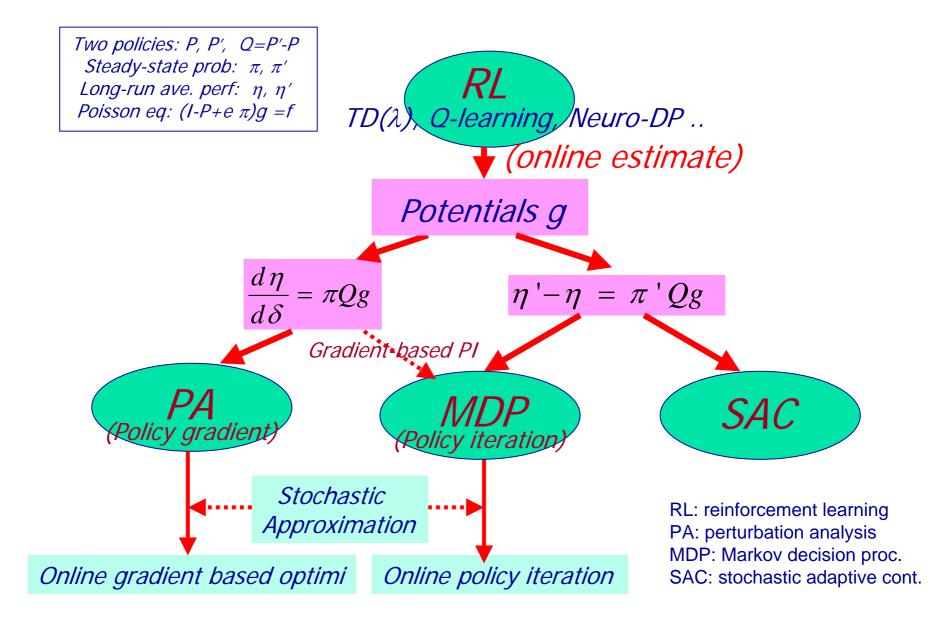
with $E\{\hat{g}(X_{n+1}, X_{n+2}, ...)\} = g(X_n).$

Policy Iteration Based Learning and Optimization

Analytical (P,f known)	Learn g(i) (No matrix inversion, etc)		Learn Q(i,α) (P completely unknown)	
Policy Iteration Solving Poisson Eq. or by numerical methods for g	Monte Carlo		Monte Carlo	
	Long run accurate est. + Pl	Short run noised est. + SA + GPI	Long run accurate est. + Pl	Short run noised est. + SA + GPI (to be done)
	Temporal Difference		Temporal Difference	
	Long run accurate est. + Pl	Short run noised est. + SA + GPI	Long run accurate est. + PI	Short run noised est. + SA + GPI (SARSA)

PA-Gradient Based Learning and Optimization

Analytical (P,f known)	Learn g(i)	Learn ^{dη} directly	Find a zero of dη/dθ	
Perf. Derivative Formula (PDF) + Gradient Methods (GM)	Monte Carlo		Updates every	
	Long run accurate est. + PDF+GM	Long run accurate est. + GM	regenerative period: Updates every	
	Temporal Difference		transition:	
	Long run accurate est. + PDF+GM	Long run accurate est + GM	Short run noised est. +TD	



A Map of the L&O World

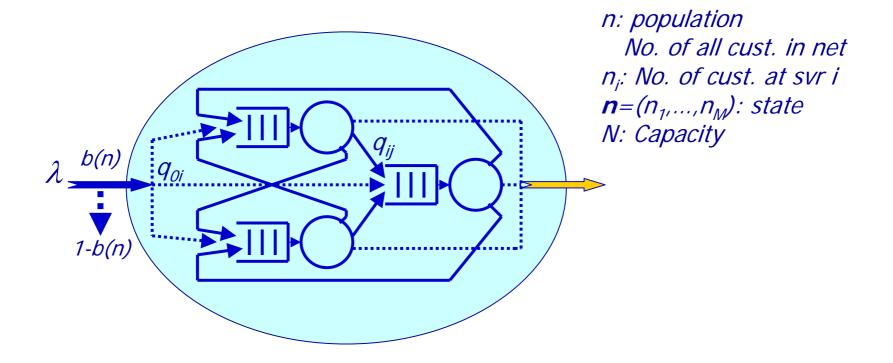
30/40

Event-Based Optimization - New directions

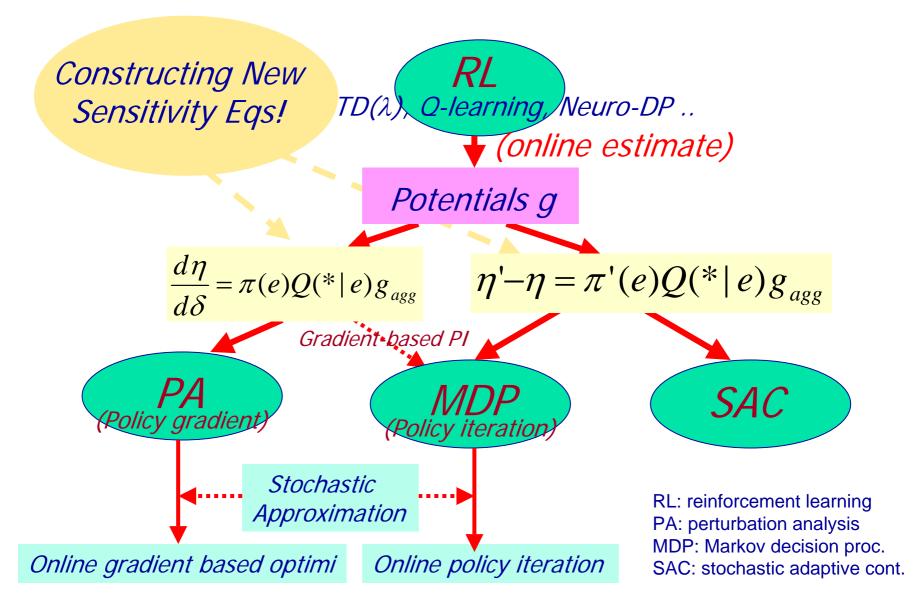
Limitations of State-Based Model

- 1. Curse of dimensionality
- 2. State based policies may not be the best
- 3. Special features not captured

Admission Control in Communication



How do we choose the admission probability *b(n)*? Event: A customer arrives finding a population n



Sensitivity-Based Approaches to Event-Based Optimization

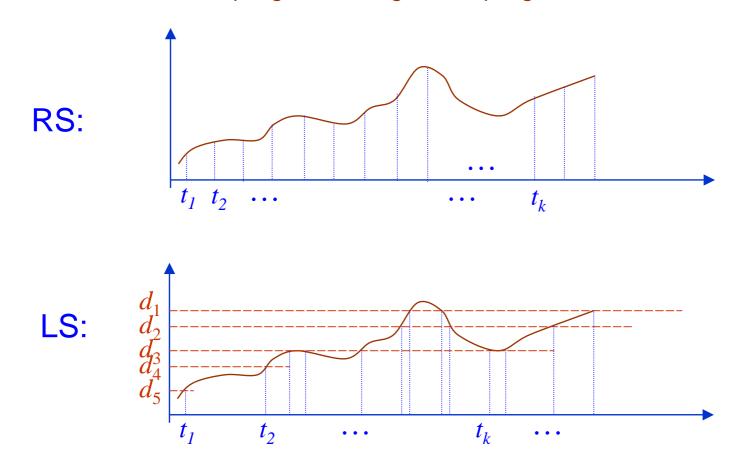
Advantages of the Event-Based Approach

1. # of aggregated potentials d(n): N may be linear in system

2. Actions at different states are correlated standard MDPs do not apply

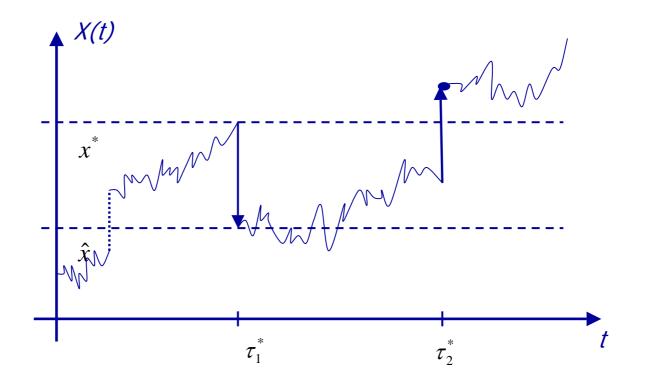
- 3. Special features captured by events action depends on future information
- 4. May have better performance
- 5. Opens up a new direction to many engineering problems

POMDPs: observation y as event hierarchical control: mode change as event network of networks: transitions among subnets as events Lebesgue Sampling Riemann Sampling vs. Lebesgue Sampling



Sample the system whenever the signal reaches a certain prespecified level, and control is added then.

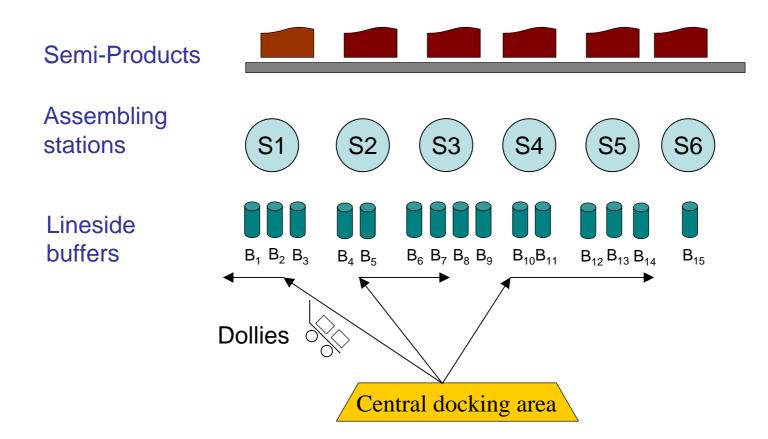
A Model for Stock Price or Financial Assess



 $dX(t) = b(t, X(t))dt + \sigma(t, X(t))dw(t) + \int \gamma(t, X(t-), z)N(dt, dz).$

w(t): Brownian motion; N(dt,dz): Poisson random measure X(t): Ito-Levy process

A Material Handling System for an Assembly Line



Event-based approach leads to 6-10% performance improvement

Sensitivity-Based View of Optimization

1. A map of the learning and optimization world:

 Results in Different areas can be obtained / explained from two sensitivity equations
 Simple and complete derivation for MDPs

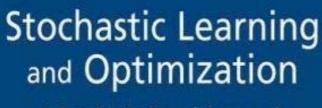
Extension to event-based optimization Policy iteration, perturbation analysis reinforcement learning, time aggregation.... Lebesgue sampling, sensor networks, POMDPs, hierarchical control

.

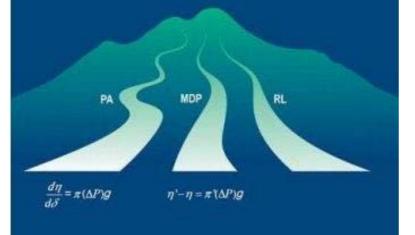
THANKS !

Questions?

40/40



A Sensitivity-Based Approach



Xi-Ren Cao

Xi-Ren Cao:

Stochastic Learning and Optimization - A Sensitivity Based Approach

9 Chapters, 566 pages 119 Figures, 27 Tables, 212 homework problems

Springer October 2007