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A Unified Framework for
Stochastic Learning and Optimization
(with a sensitivity-based view)
a. Perturbation analysis (PA):
a counterpart of MDPs
b. Markov decision processes (MDPs)

a new and simple approach
c. Overview of reinforcement learning (RL)

d. Event-based Optimization and others
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Optimization Problems

System Performance
J)

Observations
Y, 1=01,..

i) =)

Policy: action= d(information), o =d(y)

Actions oy, 1=0,1,...

Goal — to find a policy that has the best performance
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Actions: Observations:

service rate u,, number of packets (state)
(state dependent) n=01,...N

Policy u, = a(n)

Performance. average # serveads/sec - costs
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Policy Space: Best Policy?

Continuous (with parameters 6) or discrete

m Policy space too large
(100 states, 2 actions = 2"°=10" policies, 10Gh ->10% yrs to count)

m State space too large and structure unknown
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P Policy space D
— ||| Discrete: grid (5"3)

Policy u,, = d(n)

Hs A
1
0.5 {
i_\?____a;? —
0.5 0 1 e
1
Y7
: u,=0.5
Continuous: D=[0,1]° p1,=0.75
;=05

3 states n=1,2 3
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With no structural information With structural information

of the system of the system
Search Methods Analyzing behavior of one policy
= Evaluate each policy =>» Interpret performance of others

Blind random search

_ S How to obtain
Ordinal optimization as much perf. inf. of other policies

Exploring geometric properties of as possible?
distribution of n over D
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Black Box

Actions: Observations: Structure known
service rate y,, state n=0,1,...N

Actions: Observations:
service rate u,, state n=0,1,...N
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Simplicity Is Beauty

m,m
How &b5P&tochaste féﬁ?/%/hg & bﬁ?/m?‘zaztlbn ?
mO

ﬂ = const m =
T

d77 \/].—VZ/CZl
V'Dde: ”QQXE:—%%_U :VoBQ%
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With Structural Information

dn _

do

With some knowledge,
studying one policy
=> neighborhood perf.

Qg

Continuous policy spaces

With some knowledge,
studying one policy
=» find a better policy

n'-n =r"Qg

Discrete policy spaces
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A Sample Path

Service times: |4
-9

Interarrial times: L—————A*——ﬂ<

» The dynamic behavior of a system under a policy can be
represented by a sample path
» Analyzing a sample path =» performance under the policy
? =» ? Other policies ?
= Discrete time model (embedded Markov chain):
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The Markov Model

p(1]2 @Y@m
A P(1}3)

—pLaa.

|
p(2[3)
System dynamics:
-X={X,,n=1,2,..}, X, inS ={1,2,...,M}
- Transition Prob. Matrix P=[p(j[)]; =1

System performance: Steady-state probability:
« Reward function f=(f(1),... f(m))T = Steady-state probability:
Performance measure: n=(n(1), 7(2),..,n(M)).

n(I-P)=0, me=1
I:identity matrix, e=(1,...,1)T
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Perturbation Analysis
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Perturbation Analysis (PA)

For two Markov chains
P=[p(|], n, = and P'=[p’(|)],n’, x’,  (Q=P-P)

!5* 3,
p P@E) P

P(S)=(1-8)P+P  S5e[0]]

. d7(5) .
Performance gradient: % =7Q9 = 7P'g — 7Pg

Poisson equation.

(-P)g+ne=f
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X. sample path with P and performance n P(5)
*—k—»0C

X(0). sample path with P(5) = P+6Q, Q=P-P and n(5) &

vV’

Jump 1’2’

0 Is very small ===> changes in sample path are also very small

Changes are represented by many Jumps
] 1 N-1
Performance n=af =lim =3 f(X,)
n=0
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0 y

Define performance potential of state i.
N
g@)=lim_, B Jf (X,) -7 X, =i}
n=0

) ) ) ) 1 _ &
=» Potential contribution of state i to the performance n= Mlﬁ EQD (X))}

n=0

—> pojsson equation: (I —P)g+ne="f. 9=00...gM))

Effect of a yJump from I to j on performance:
y(1,1)=9(1)—9()
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Jump =2/ Jump 1’2/’

Adding the effects of all the jumps we obtain n(s)-n

==>  Performance gradient:

dn(5) _

is 7Qqg,

PP,

O
Il
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Markov Decision Processes
- Policy Iteration
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Two Sensitivity Formulas

Two Markov chains PP,, 77777; with Q=P’-P |

Continuous policy space Discrete policy space

Similarly, we can construct

Performance gradient formula: Performance difference formula:
—dz(;) =7Qg, Q=P-P. n-n=7n'Q9. Q=P-P.
===>Gradient-based optimization === Policy iteration

19/40



Policy Iteration

Perf. diff n'-n=r'Q9 =r'(P-P)g

[. 7=>0=> n=>n ifPg>Pg

2. Policy iteration:

At any state find a policy P’ with
Pg>Pg

3. Improve performance iteratively,

Stop when no improvement can
be made
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More on Policy Iteration

Performance criteria:

= Average performance 77 =7 1w |
E{HX)IX=}
= Discounted performance =i}
7 =EQ B T (X)X, =i} I P e o o7
k=0 | | | | |

= Bias g
g(l) = E{Z[f (X)) —nll Xq =1}

>

0 1 2 - k
Bias measures transient behavior

= Bias of bias (2" order), g.:
gz(i):E{Z[g(XkHXO:i} 79 =0
k=0
= Bias of (n-1)t" bias (nt" order), g,

0,() =EQ [0, (X)X, =1} 79, ;=0
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Perf./Bias Difference Formulas
—_— Policy Iteration

Two policies P’ - ", n’, g, 9,... andP:rn, n, 9, G5,...

n'=n =P [(f+P'9)—(f +Pg)]+[P"~11p, #~fim >3

If 1'=1n then
g'-g =P"[P-Plg, +[I -P+P" 17 [(f'+P'g) - (f + Pg)].

/f 9.'=0, n=12,... then
gn+1'_gn+1 — PI*[Pl_P]gn+2 +[I o Pl_l_Pl* ]_1(PI_P)gn+1'

= Policy iteration for optimal n-bias
® Optimality equations for n-bias optimization.
22/40
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. . With perf. difference formulas,
M. _Ut/ 1-Chain M. D P S _ we can derive a simple, intuitive
Perf./ Bias/ Blackwell Optimization

approach without discounting

D: Policy space D,: Perf. optimal policies
I D, (@) Bias optimal policies D, 27 Bias optimal policies [}

...... D,,: Blackwell optimal policies
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PA MDP

With enma lennwiladne | | VALl mmimnn lmmvadadan

Observations:
= Do not need to evaluate every policy

(ErgepoteySpace)
» State space Is too large =

difficult to evaluate each policy
= estimate g, Pg, or =Qqg

dn—ﬁQg\/ ‘ ‘ \

Continuous policy spaces Discrete policy spaces

n—ﬂQg
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Reinforcement Learning

m P loo large, or not completely known
m Learning: estimate from sample path
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dn(s)

5 =m0 =7P'g - 7Py MDPs: n'-n=rz'Qg =7r"'(P'-P)g

PA:

s EStimating g.'
9(') E{Z[f(x) I X =ik=E{[f (i) - 7]+ 9(X,) | X, =i}

_/
~ — _/

Monte Carlo:  Average of I[f(X,)- n]

Stochastic approximation

9(X,) =9(X, )+ {f(X,)—n+9(X,,1)—9(X,)},

S = F(X) =7+ 9(Xi.) —9(Xy) - Temporal difference (TD)
- Stepsize o, 9(5) 9(5)
2 I~ 9(4)
o >0, 99 +12) —Zg)L 9(2) :=(1-a) 9(2)
g ** % _
- o) et + a[f(2) = n+9(4)]
2% =0 | =.
e
af <o N 3
; k : \A. ,,,,,,,,,,,, é
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d7n(5)

PA: —=t=1Qq=1P'g-7Pg MDPs: n'-n=r'Qg=7r"(P-P)g

do
s Estimating Pg, (Q-factors)
Qo) = i pe(JIng@)+f(,a)-1n.
Similar Temporal fojejence (TD) algorithms can be developed

= EStimating nQg directly —Q=P-P=AP

dn(5) _
ds 7(AP)g

Ap(Xkﬂ | Xk)
:E Xk+1 )
{ P(Xyq | Xy) o 4

dn0) 1 AKX, -
[—— ———=|im — o . X aXrH_ 1) I
s M & E00c,1x,) S Ko

with — E{§(X,.p, X v b= 9(X,).
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Policy Iteration Based Learning and Optimization

Analytical Learn g(i) Learn Q(i,a)
(P,f known)| (No matrix inversion, etc) | (P completely unknown)
Monte Carlo Monte Carlo
Policy Short run
lteration Long run Short run Long run noised est.
accurate est.| noised est. |accurate est.| | ga 4+ gp)
+ Pl + SA + GPI + Pl (to be done)
Solving
PO'SS;” Ea. | Temporal Difference | Temporal Difference
by numerical
Short run
methods Longrun | Shortrun | Longrun | iicoq est
forg . .
accurate est.| noised est. |accurate est.| , ga 4 Ggp|
+ PI + SA + GPI + Pl (SARSA)
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PA-Gradient Based Learning and Optimization

. dn .
Analytical Learn gi) Learn - Find adﬁero
P.fk i o=
(P.f known) directly of
Monte Carlo
Updates every
Perf. ] regenerative
Derivative ong run Long run period:
accurate est. | accurate est.
Formula
+ PDF+GM + GM
(PDF) Updates every
* _ transition:
Gradient Temporal Difference
Methods ﬁ
(GM) I _Sﬁort ran_ I
Long run Long run ised est. |
accurate est. | accurate est [ "O'Se9eSt
+ PDF+GM +GM b
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Two policies: P, P, Q=P-P
Steaadly-state prob.: n, n’
Long-run ave. perf: n, n’

Poisson eq: (I-P+e r)g =f TD( A

Neuro-DP ..

online estimate)

Potentials g
&~ \
dn :
a5 7Qg n-—n==x

Stochastic e .
----------- RL: reinforcement learning

Approximation PA: perturbation analysis
. . o . - . MDP: Markov decision proc.
Online gradient based optimi  Online policy iteration SAC: stochastic adaptive cont.

A Map of the L&O World
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Event-Based Optimization
- New directions
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Limitations of State-Based Model

1. Curse of dimensionality
2. State based policies may not be the best

3. Special features not captured

= Event-Based Formulation
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Admission Control in Communication

n. population

No. of all cust. in net
n.: No. of cust. at svri
n=m,...,n,,). state
N: Capacity

How do we choose the admission probability 6(r1)?

Event: A customer arrives finding a population n
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Constructing New
Sensitivity Eqs! TP Neuro-DP ..

online estimate)

Potentials g
/ \

S @QC190y, 111 =7 (€)Q(*€) Yy

N\

RL: reinforcement learning
PA: perturbation analysis

. ; .. ) o ) MDP: Markov decision proc.
Online gradient based optimi  Online policy iteration SAC: stochastic adaptive cont.

/ Grad/éﬁt-lzgsea’ Pl

Stochastic

Approximation

Sensitivity-Based Approaches to Event-Based Optimization
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Advantages of the Event-Based Approach

1. # of aggregated potentials d(n). N
may be linear in system

2. Actions at different states are correlated
standard MDPs do not apply

3. Special features captured by events
action depends on future information

4. May have better performance

5. Opens up a new direction

[o many engineering problems

POMDRPs. observation y as event
hierarchical control: mode change as event
network of networks: transitions among subnets as events
Lebesgue Sampling 35/40



Riemann Sampling vs. Lebesgue Sampling

A

RS:

LS:

T

Sample the system whenever the signal reaches a certain prespecified level,
and control is added then.
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A Model for Stock Price or Financial Assess

A X

dX (t) = b(t, X ()dt + o (t, X (©))dw(t) + [ 7(t, X (t-), )N (dt, dz).

w(t). Brownian motion; N(dt,dz): Poisson random measure
X(t): Ito-Levy process
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A Material Handling System for an Assembly Line

sem-prodquces A I HE EE = B

Assembling
saons—(s1) (82) (s3) (s0) (89
Lineside 580 00 oS00 00 000 B

buffers B, B,B; B, Bg Be B; Bg By BigBin  Bi;BizByy,  Bis

4
. O
Dollies %

Central docking area

Event-based approach leads to 6-10% performance improvement
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Sensitivity-Based View of Optimization

1. A map of the learning and optimization world:

B Results in Different areas can be obtained /
explained from two sensitivity equations
B Simple and complete derivation for MDPs

2.  Extension to event-based optimization
B Policy iteration, perturbation analysis
reinforcement learning, time aggregation....
B [ebesgue sampling, sensor networks,
POMDRPs, hierarchical control

111111
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THANKS !

Questions?



Stochastic Learning Xi-Ren Cao:

and Optimization

Stochastic Learning
A Sensitivity-Based Approach

and Optimization
- A Sensitivity Based
Approach

9 Chapters, 566 pages
119 Figures, 27 Tables,
212 homework problems

{ \ -
Pa i MDP l ‘ RL
o x{AMg n'-n=xTAMG
'ilrl'-l

Springer
October 2007
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